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A B S T R A C T

This paper analyzes the use of discontinuous quarter-point quadratic elements in a dual or hypersingular
boundary element context to compute the T-stress for cracked 2-D isotropic components. The performance of
this approach has been demonstrated in the past for stress intensity factors (SIFs) computation and, herein, it
is revisited to assess its adequacy for T-stress evaluation. To this end, novel direct extrapolation formulas that
determine the T-stress from the computed nodal displacements at the collocation nodes of the discontinuous
quarter-point element are proposed, and their accuracy and effectiveness is satisfactorily tested by several
numerical examples involving 2-D cracked Carbon NanoTube (CNT) reinforced composites. SIFs extrapolated
from the computed nodal crack opening displacements and T-stress evaluated from the computed stresses at
internal points (close to the crack-tip) are also presented for completeness. The proposed techniques are a valid
and easy-to-implement alternative to the interaction integral approaches when determining SIFs and T-stress.
1. Introduction

In modern engineering, reliable numerical tools able to simulate the
behavior of cracked domains, when subjected to any general loading
condition, play a critical role in life assessment of structural com-
ponents. These tools must be able to simulate the singular behavior
occurring around the crack-tip and further provide the relevant fracture
parameters in an accurate and straightforward manner.

In the case of isotropic linear elastic materials, fracture behavior
is characterized by the well-known Williams’ series expansion, which
for plane problems describes the asymptotic stress field around the
crack-tip as [1,2]
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and the displacement field in the vicinity of the crack-tip as
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where (𝑟, 𝜃) are cylindrical coordinates centered at the crack tip
(Fig. 1.a); 𝐾𝐼 and 𝐾𝐼𝐼 stand for the mode-I and mode-II Stress Intensity
actors (SIFs), respectively; 𝑇 denotes the T-stress; 𝜇 is the shear
odulus and 𝜈 is the Poisson’s ratio, so that the Young’s modulus is

iven by 𝐸 = 2𝜇(1 + 𝜈); and 𝜅 is the Kolosov’s constant, defined as
= 3 − 4𝜈 for plane strain or 𝜅 = (3 − 𝜈)∕(1 + 𝜈) for plane stress. 𝑢10

and 𝑢20 are the displacements at the crack tip and, as expected, do no
contribute to neither the stresses nor the strains.

In Eqs. (1)–(3), the SIFs correspond to the singular terms of
Williams’ series expansion for the stress field, while the leading non-
singular term, which corresponds to a constant stress acting parallel
to the crack plane, is the so-called T-stress. Classical fracture theories
habitually neglect all but the singular terms, thus resulting into a
single parameter description of the near-tip stress fields in terms of
the SIFs. However, several studies reveal the importance of the T-stress
in the characterization of crack stability and kinking for linear elastic
materials. Furthermore, T-stress has a significant effect on the plastic
zone size and shape and the tensile stress triaxiality of elastic–plastic
crack-tip fields, so that it plays as well an important role in elastic–
plastic fracture analysis (even though the T-stress is calculated from the
linear elastic material properties). As a consequence, various fracture
theories suggest the inclusion of the T-stress as a second crack-tip
parameter [3–8].

Several numerical techniques have been developed to evaluate the
relevant fracture parameters: SIFs and, in particular, T-stress. For in-
stance, within the framework of the Finite Element Method (FEM),
Kfouri [9] implemented path-independent contour integrals to compute
the T-stress. Ayatollahi et al. [10] proposed the direct evaluation of
the T-stress from the computed displacement and stress values obtained
from FE analysis using rather fine meshes, while mesh-dependence of
this procedure was later discussed in [11]. Chen et al. [12] combined
the use of path independent integrals with a hierarchical p-version
of the FEM. Karihaloo and coworkers [2] developed a hybrid crack
element (HCE) with p-adaptivity and also illustrated the need for
finer meshes in order to evaluate T-stress, in comparison with the
ones required to accurately determine the SIFs. They later extended
this procedure to mixed mode cracks [13] and further coupled their
HCE with the eXtended FEM (XFEM) [14]. Su and coworkers [15,16]
implemented the fractal FEM to obtain SIFs and T-stress directly from
the computed coefficients using rather coarse meshes. Ayatollahi and
Nejati [17] proposed an over-deterministic approach, based on the
formulation of linear least-squares, to evaluate the higher-order terms
in Williams’ expansion using the displacement fields obtained from
conventional FE analysis. More recently, Sladek et al. [18] derived
simple extrapolation formulas to compute the T-stress in function-
ally graded materials by comparing the variation of displacements in
quarter-point crack-tip elements with the corresponding asymptotic
expression for the displacement field around the crack-tip. Hou and
coworkers combined the interaction integral method with the XFEM
to evaluate SIFs and T-stress at a central cracked Brazilian disks sub-
jected to both confining pressure and diametric forces [19] and later
proposed an over-deterministic method based on crack-tip stress fields
to this end [20]. Li and Zheng [21] implemented an over-deterministic
displacement field fitting method in conjunction with XFEM to evaluate
these fracture parameters.

Other numerical techniques have been successfully applied as well
to compute T-stress. For example, Song [22] and Chidgzey and Deeks
[23] used the Scaled Boundary Finite Element Method (SBFEM) to
directly evaluate the coefficients of the Williams’ expansion of the
linear elastic crack tip asymptotic field. This method was later extended
to dynamics by Song and Vrcelj [24]. The interested reader is referred
to a recent review paper by Song et al. on the application of the SBFEM
to fracture analysis [25]. Meanwhile, Huang et al. [26] implemented
the finite block method to evaluate both SIFs and T-stress, whilst Zhang
2

et al. [27] employed the numerical manifold method to this end.
When it comes to solving linear elastic fracture mechanics problems,
it is well established that the Boundary Element Method (BEM) is a
quite efficient numerical technique [28,29]. Although seminal works
determined the T-term using path-independent integrals with a rather
large uncertainty [30], subsequent contributions led to more accurate
T-stress estimations. Sladek et al. [31] derived contour integrals based
on Betti’s theorem to compute T-stress in both statics and dynamics.
Yang and Ravi-Chandar [32] implemented an iterative single-domain
dual BEM, together with a tip-node rule imposing zero displacement
jump at the crack tip, to compute the T-term from the stresses evaluated
at interior points close to the crack-tip. Tan and coworkers derived
a formula to directly evaluate the elastic T-stress by adjusting the
variation of the displacements along the quarter-point crack-tip element
to Williams’ asymptotic displacement expansion using the classical
BEM formulation [33] and later implemented the M-contour integral
approach to this same end [34]. In both cases, quadratic displacement
and traction-singular quarter-point continuous crack-tip elements were
used, so that, when meshing, the domain had to be divided in subdo-
mains connected at interfaces where the crack is located. Sutradhar and
Paulino [35] implemented the symmetric Galerkin BEM in conjunction
with an interaction integral method for evaluating T-stress in mixed-
mode crack problems. Phan [36] developed a non-singular boundary
integral equation, based upon the asymptotic Williams’ series for the
stress field near the crack tip, that permitted to numerically evaluate
the T-stress in the post-processing stage of any BEM crack analysis.
More recently, Chen et al. [37] presented a spline fictitious boundary
element alternating method to compute T-stress in multi-cracked 2-D
domains, whilst Feng et al. [38] developed a dual BEM formulation to
evaluate SIFs and T-stress. These latter authors claim that extrapolation
methods are imprecise to compute fracture parameters and circumvent
such issue by using the interaction integral approach. Although our
work and this literature review mainly focuses on 2-D applications, it is
worth mentioning here the recent papers by Sladek and coworkers [39,
40], where the authors apply the BEM to compute static and dynamic
SIFs and elasticity T-stresses in 3D cracked domains.

Many of the approaches above make use of the interaction integral
method to numerically compute the fracture parameters. A recent paper
by Yu and Kuna [41] presents a critical overview on the topic. At
any event, direct extrapolation formulas that compute these parameters
from the nodal values are straightforward and easy to implement,
do not require elaborated postprocessing techniques and have proven
efficient in the past, thus providing a valuable cross-check. In this
regard, Sáez et al. [42] developed a dual BEM formulation that, in
conjunction with the use of discontinuous quarter-point elements, al-
lowed the precise evaluation of SIFs in isotropic materials from the
computed nodal displacements. This approach is quite straightforward,
robust and easy to implement and provides stable results for even rather
coarse meshes. For this reasons, it was later extended successfully to
static and dynamic crack analysis of anisotropic, piezoelectric or mag-
netoelectroelastic materials [43–46], thus illustrating the capabilities
of discontinuous quarter-point elements for SIFs computation. In this
paper, the use of such discontinuous quarter-point elements in a dual
BEM context is revisited, with the objective of establishing whether
they are suitable for T-stress computation as well. To this aim, T-stress
will be directly evaluated from the computed nodal displacements
at the crack-line nodes and from the stresses evaluated at internal
points located in the vicinity of the crack-tip, yielding satisfactory
results. The remainder of this paper is organized as follows: the dual
BEM formulation employed and the implementation of discontinuous
quarter-point elements is summarized in Section 2 to ensure the paper
is as self-contained as possible; while Section 3 is devoted to derive the
(SIFs and) T-stress computation formulas that are employed in Section 4
to obtain some numerical results that permit to validate our proposal
and characterize some key aspects of its practical implementation, like
mesh dependence. Finally, Section 5 draws the main conclusions of this

study.
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2. Dual BEM formulation for crack problems: discontinuous quar-
ter point elements

2.1. Dual BEM approach

Let 𝛺 be homogeneous, linear, elastic and isotropic 2-D cracked
domain with external boundary 𝛤 = 𝛤𝑐 ∪ 𝛤+ ∪ 𝛤−, where 𝛤𝑐 denotes
the non-cracked boundary and 𝛤+ ∪ 𝛤− stand for the two coincident
crack faces, as Fig. 1.b depicts. The dual BEM formulation [42,47–49]
applies the classical displacement Boundary Integral Equation (uBIE) on
collocation nodes 𝜉 at 𝛤𝑐 and either one of the crack faces, say 𝜉 ∈ 𝛤+,

𝑐𝑖𝑗 (𝜉)𝑢𝑗 (𝜉) + ∫𝛤
𝑝∗𝑖𝑗 (𝐱, 𝜉)𝑢𝑗 (𝐱)𝑑𝛤 (𝐱) = ∫𝛤

𝑢∗𝑖𝑗 (𝐱, 𝜉)𝑝𝑗 (𝐱)𝑑𝛤 (𝐱) (6)

whilst the traction Boundary Integral Equation (pBIE) is applied on
collocation nodes belonging to the other crack face 𝜉 ∈ 𝛤−

𝑐𝑖𝑗 (𝜉)𝑝𝑗 (𝜉) +𝑁𝑗 (𝜉)∫𝛤
𝑠∗𝑖𝑗𝑘(𝐱, 𝜉)𝑢𝑘(𝐱)𝑑𝛤 (𝐱) =

𝑁𝑗 (𝜉)∫𝛤
𝑑∗𝑖𝑗𝑘(𝐱, 𝜉)𝑝𝑘(𝐱)𝑑𝛤 (𝐱)

(7)

to yield a complete system of equations to determine displacement
and tractions on the whole boundary 𝛤 . This dual collocation scheme
resolves the ill-conditioning that would result from applying the uBIE
on both crack faces, thus providing a single-domain BEM formulation.
In Eqs. (6) and (7), absence of body forces is assumed, while all
subscripts adopt values 𝑖, 𝑗, 𝑘 = 1, 2 and the summation rule on repeated
indices is implied; 𝑢∗𝑖𝑗 and 𝑝∗𝑖𝑗 are the Green’s function displacements
and boundary tractions, respectively; 𝑁𝑗 (𝜉) stands for the components
of the outward unit normal at the collocation node 𝜉; and 𝑐𝑖𝑗 (𝜉) is the so-
called free term, that takes the values 𝑐𝑖𝑗 (𝜉) = 𝛿𝑖𝑗 when 𝜉 is an internal
point and 𝑐𝑖𝑗 (𝜉) =

1
2 𝛿𝑖𝑗 for a smooth boundary point, with 𝛿𝑖𝑗 standing

for Kronecker’s delta. The pBIE (7) follows from differentiation of the
uBIE (6) with respect to 𝜉𝑘 and its subsequent substitution into the
material constitutive law, so that 𝑠∗𝑖𝑗𝑘 and 𝑑∗𝑖𝑗𝑘 are directly obtained by
differentiation of 𝑝∗𝑖𝑗 and 𝑢∗𝑖𝑗 , respectively.

In this paper, the dual BEM approach as implemented in Sáez
et al. [42] will be considered, so that the interested reader is referred to
that paper for the expressions of the Green’s function and its derivatives
together with a thorough discussion on the practical implementation of
the approach for fracture problems. In particular, [42] details simple
and accurate regularization schemes to deal with the singular and
hypersingular integrals arising when evaluating the uBIE and pBIE for
boundary collocation nodes. Meshing strategy follows [42] and it is
schematized in Fig. 1.b, so that discontinuous quadratic elements are
considered to mesh the crack lines in order to guarantee the 𝐶1 con-
tinuity of displacements required to compute the pBIE, with the ones
at the crack-tip being discontinuous quarter-point elements; standard
(continuous) isoparametric quadratic elements are used for the rest of
the boundary, except at intersections between a crack-line and any
external boundary, where transition semi-discontinuous elements are
placed onto the outer boundary.

2.2. Discontinuous quarter-point boundary element

In order to capture the asymptotic
√

𝑟 behavior that the displace-
ment field exhibits near the crack-tip, straight line
quarter-point quadratic boundary elements are located at the crack-tip.
This elements are simply generated by placing the mid-element node
at a distance 𝐿∕4 from the crack-tip, with 𝐿 being the element length,
as Fig. 2.a illustrates.

In this figure, N1 (crack-tip node), N2 and N3 denote the geomet-
rical nodes employed to define the geometry, while NC1, NC2 and
NC3 denote the collocation nodes (where the BIEs are applied and the
field variables computed) and 𝜁 is the element dimensionless natural
coordinate. It is well-known that in the quarter-point element (see for
3

Fig. 1. (a) Local coordinate system at crack tip; (b) Dual BEM discretization of a
cracked 2D specimen.

Fig. 2. (a) Quadratic discontinuous quarter-point element; (b) Quadratic interpolation
shape functions for the boundary variables at discontinuous elements.
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instance [42]) the following relation holds between 𝜁 and the distance
𝑟 to the crack-tip along the element
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here 𝜙𝑖(𝜁 ) are the quadratic element interpolation functions (Fig. 2.b),
𝑖
𝑘 are the values of the displacements at the collocation nodes and,
herefore, coefficients 𝐴, 𝐵 and 𝐶 can be expressed as linear combina-
ions of 𝑢𝑖𝑘. In particular, for the case in which the collocation nodes
re located at 𝜁1 = −3∕4 (𝑟1 = 𝐿∕64), 𝜁2 = 0 (𝑟2 = 𝐿∕4) and 𝜁3 = +3∕4
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It shall be remarked that the generality of the integration scheme
proposed in [42] permits to deal with any general straight or curved
boundary element with no additional effort involved.

3. T-stress and SIFs computation

Previous studies reveal that extrapolation formulas to directly ob-
tain the SIFs from the Crack Opening Displacements (CODs) at the
collocation nodes of discontinuous quarter-point elements are robust
and accurate [42,43]. While this technique will be summarized in this
section for completeness, new formulas to evaluate T-stress from the
computed nodal variables will be presented and its performance and
accuracy will be assessed through several numerical examples in the
following section.

3.1. SIFs computation

In Ref. [42], the authors present and validate several formulas
to evaluate the SIFs directly from the CODs. In particular, one-point
formulas that obtain the SIFs from the CODs at the collocation node
closest to the crack-tip (NC1) are quite precise and exhibit little mesh
dependence. Such formulas follow from particularizing Eqs. (4) and (5)
for points along the crack-line (𝜃 = ±𝜋), which for instance for plain
strain conditions leads to (neglecting the higher order terms)
(
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here superscripts + and − denote the upper and lower crack lines,
espectively. Setting 𝑟 = 𝐿∕64 yields the following one-point formulas
o estimate the mode-I and II SIFs
(
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from the computed displacements at collocation node NC1. Similar one-
point formulas could be obtained for the collocation nodes NC2 or NC3,
although SIFs extrapolated from the CODs at the closest collocation
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node to the crack-tip (NC1), where the
√

𝑟 behavior dominates the
asymptotic CODs behavior, yields the best option [42].

Alternative two-point formulas (see [42] for details) or three-point
formulas may be derived to evaluate the SIFs by adjusting the variation
of the

√

𝑟-term of the displacements along the discontinuous quarter-
point crack-tip element, defined by coefficient 𝐵 in Eqs. (9) and (10), to
he corresponding term of the asymptotic displacement expansion given
y Eqs. (4) and (5). In this manner, the following three-point formula
an be obtained to evaluate the SIFs from the nodal displacements
t the three collocation nodes (NC1, NC2, NC3) of the discontinuous
uarter-point element

𝐾𝑁𝐶123
𝐼

𝐾𝑁𝐶123
𝐼𝐼

)

=
𝜇

36(1 − 𝜈)

√

2𝜋
𝐿

×

⎛

⎜

⎜

⎝

−44𝛥𝑢𝑁𝐶1
2 + 64𝛥𝑢𝑁𝐶2

2 − 20𝛥𝑢𝑁𝐶3
2

−44𝛥𝑢𝑁𝐶1
1 + 64𝛥𝑢𝑁𝐶2

1 − 20𝛥𝑢𝑁𝐶3
1

⎞

⎟

⎟

⎠

(13)

3.2. T-stress computation

Analogous expressions may be derived to compute the T-stress. For
instance, following a similar approach to that of Tan and Wang [33]
or Sladek et al. [18], by adjusting the variation of the 𝑟-term of the
displacements along the discontinuous quarter-point crack-tip element,
defined by coefficient 𝐶 in Eqs. (9) and (10), to the corresponding term
of the asymptotic displacement series (4)–(5), the following three-point
formula can be derived, for plain strain conditions, in terms of the nodal
displacements at the three collocation nodes (NC1, NC2, NC3) of the
discontinuous quarter-point element

𝑇𝑁𝐶123 = −𝐸
1 − 𝜈2

1
9𝐿

(

32𝑢𝑁𝐶1
1 − 64𝑢𝑁𝐶2

1 + 32𝑢𝑁𝐶3
1

)

(14)

Alternatively, extending to BEM the displacement approach sug-
gested in a FEM context by Ayatollahi et al. [10], the T-stress in mixed
mode loading may be determined from the nodal displacements at
two collocation nodes located along the crack-line on both its upper
and lower faces. It follows from Eq. (4) that the sum of the nodal
displacements at the upper, 𝑢+1 = 𝑢1(𝑟, 𝜃 = +𝜋), and lower, 𝑢−1 = 𝑢1(𝑟, 𝜃 =
−𝜋), crack faces in the local 𝑥1-direction (Fig. 1.a) is given as – for the
case of plane strain and neglecting the higher order terms –

𝑢+1 + 𝑢−1 = 2𝑢10 − 21 − 𝜈2

𝐸
𝑇 𝑟 (15)

so that considering the difference in the values of 𝑢+1 + 𝑢−1 between two
collocation nodes along the crack line, say nodes I and J, located at
distances 𝑟𝐼 and 𝑟𝐽 from the crack-tip, the T-stress can be evaluated
from

𝑇 𝐼𝐽 = −𝐸
2(1 − 𝜈2)

1
𝑟𝐼 − 𝑟𝐽

[

(𝑢+1𝐼 + 𝑢−1𝐼 ) − (𝑢+1𝐽 + 𝑢−1𝐽 )
]

(16)

In the case of a mode-I crack, the above expression (16) simplifies
to

𝑇 𝐼𝐽 = −𝐸
1 − 𝜈2

1
𝑟𝐼 − 𝑟𝐽

(

𝑢+1𝐼 − 𝑢+1𝐽
)

(17)

T-stress may be as well computed from the stresses evaluated at
internal points once the boundary value problem has been solved, fol-
lowing a similar approach to that previously proposed in [10] or [32].
In particular, for internal points located along the crack line, ahead of
the crack-tip and quite close to the tip (𝜃 = 0), Eqs. (1) and (2) lead to

𝑇 𝜎 =
(

𝜎11 − 𝜎22
)

𝜃=0 (18)

Although this last method requires some postprocessing, it im-
plies little computational effort when compared to interaction integral
approaches.
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Fig. 3. Inclined crack under tensile loading in an unbounded domain.

4. Numerical results and discussion

This section presents and discuss results obtained for several ex-
amples involving both finite and unbounded cracked specimens under
pure mode-I and mixed-mode loading conditions. Although emphasis
will be placed on T-stress evaluation, data illustrating SIFs computation
will be as well included, so that the reader may get a clear picture
of the potential, accuracy and robustness of the proposed methods to
compute both fracture parameters. The material considered in all the
examples corresponds to a 0.50 wt% Multi Walled Carbon NanoTube
(MWCNT)/epoxy composite, whose elastic moduli are computed by
a core–shell micromechanics approach (see García-Macías et al. for
details [50]). This interphase model assumes that interfacial properties
can be idealized as finite elastic coatings with constant thickness 𝑡
surrounding the fillers and computes the homogenized properties at a
Representative Volume Element (RVE) adopting invariant geometrical
dimensions of the MWCNTs throughout the RVE, resulting into a ho-
mogeneous and isotropic material description with effective properties:
𝐸 = 2.86 GPa and 𝜈 = 0.28. At any event, any arbitrary values could be
adopted for this validation examples, provided that the values of the
coefficients of the Williams expansion are independent of the material
constants for homogeneous materials [17,20].

4.1. Inclined crack in an unbounded domain

The first example corresponds to an inclined crack of length 2𝑎
immersed in an unbounded domain and subjected to a uniaxial far-
field stress 𝜎0, as Fig. 3 illustrates. For this configuration, the analytical
solution is given by (see for instance [5])

𝐾𝐼 = 𝜎0
√

𝜋𝑎 sin2 𝛽

𝐾𝐼𝐼 = 𝜎0
√

𝜋𝑎 sin 𝛽 cos 𝛽

𝑇 = 𝜎0 cos 2𝛽

(19)

For a mixed-mode crack with inclination 𝛽 = 60◦, Fig. 4 depicts
the computed values of the T-stress and the SIFs for different boundary
element meshes, ranging from 5 to 80 uniform (same size) quadratic
elements on the crack line. T-stress is evaluated from the obtained
nodal displacements at the 3 collocation nodes of the discontinuous
quarter-point element (𝑇𝑁𝐶123) using Eq. (14), whilst 𝐾𝐼 and 𝐾𝐼𝐼 are
determined employing both: (i) the one-point formula based on the
computed nodal crack opening displacements (CODs) at the collocation
node closest to the crack-tip (𝑁𝐶1: 𝐾𝑁𝐶1), as derived in Eq. (12); and
(ii) the three-point formula given by Eq. (13), based on the CODs at
the three nodes of the discontinuous quarter-point element (𝐾𝑁𝐶123).
All the values are normalized against their analytical counterparts
(Eq. (19)). As previous studies already revealed [42,43], the SIFs
obtained using the one-point formula are quite stable and converge
for rather coarse meshes, leading to good results even for a 5 element
mesh. However, the SIFS obtained using the three point formula exhibit
5

Fig. 4. Normalized T-stress (𝑇𝑁𝐶123) and SIFs versus number of elements to mesh the
crack (uniform meshes). Inclined crack in infinite domain (𝛽 = 60◦).

Fig. 5. Normalized T-stress (𝑇𝑁𝐶123) and SIFs versus crack-tip element size for 10
(non-uniform) element mesh. Inclined crack in infinite domain (𝛽 = 60◦).

a greater mesh dependence and converge to the expected analytical
values only for finer meshes: above 40 elements the discrepancy with
the reference solution is below 1%. 𝑇𝑁𝐶123 exhibits a similar behavior
to 𝐾𝑁𝐶123: convergence is attained only for fine meshes so that, at least,
proper computation of the T-stress requires a mesh that guarantees
that the value of 𝐾𝑁𝐶123 is close to the more stable 𝐾𝑁𝐶1 value, thus
providing a rule of thumb for those cases where analytical solutions are
not available.

Fig. 5 illustrates the behavior of these same fracture parameters
(𝑇𝑁𝐶123, 𝐾𝑁𝐶123, 𝐾𝑁𝐶1) for a mesh of 10 elements with varying crack-
tip element size (𝐿), so that 𝐿∕𝑎 = 0.2 corresponds to the uniform
mesh case. It can be observed that good results are obtained for the
T-stress provided that L/a is between 0.025 and 0.05, which – as in
Fig. 4 – coincides with the range where the three-point formula for the
SIFs (𝐾𝑁𝐶123) approaches the results provided by the one-point formula
(𝐾𝑁𝐶1).

Regarding the crack mesh, for instance results shown for 𝐿∕𝑎 = 0.05
in Fig. 5 correspond to a 10-element mesh with non uniform element
sizes, so that the ratio between the sizes of the elements at the center of
the crack and at the crack-tip is 10. This figure reveals that the crack-tip
element size is the key parameter to ensure the accuracy of the T-stress
values directly extrapolated from the computed nodal displacements,
when using the three-point formula derived in Eq. (14).

Next, performance of the two-point displacement formula proposed
in Eq. (16) is analyzed (𝑇 𝐼𝐽 ). To this end, collocation node 𝐼 will
be selected always as the closest to the crack tip, NC1 (𝐼 = 𝑁𝐶1),
whilst results for collocation nodes 𝐽 along the crack-line are displayed
in Fig. 6 in terms of their distance 𝑟 to the crack-tip, so that for
𝐽
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Fig. 6. Normalized T-stress, 𝑇 𝐼𝐽 , versus distance 𝑟𝐽 of collocation node 𝐽 to the
crack-tip (uniform meshes; node 𝐼 = 𝑁𝐶1). Inclined crack in infinite domain (𝛽 = 60◦).

Fig. 7. Normalized T-stress evaluated from stresses at internal points ahead of the
crack-tip, 𝑇 𝜎 , versus distance 𝑟 of the internal point to the crack-tip (uniform meshes).
Inclined crack in infinite domain (𝛽 = 60◦).

instance, the first point (lowest 𝑟𝐽 ) shown in the figure for each mesh
corresponds to 𝐽 = 𝑁𝐶2, the second point corresponds to 𝐽 = 𝑁𝐶3
(NC2 and NC3 being the central and extreme collocation nodes on the
quarter-point discontinuous element, as denoted in Fig. 2), the third
point corresponds to 𝐽 coinciding with the first node of the element
connected to the quarter-point discontinuous element (denoted here
as NC4) and so on. T-stress in Fig. 6 is normalized with respect to
its analytical value and the distance to the crack-tip 𝑟𝐽 is normalized
with respect to the crack half-length 𝑎. Results for uniform meshes
ranging from 5 to 80 equal-length elements are presented. Fig. 6 reveals
that T-stress obtained adopting 𝐼 = 𝑁𝐶1 and 𝐽 = 𝑁𝐶3 are not only
accurate but exhibit little mesh dependence. Results of 𝑇 𝐼𝐽 obtained for
𝐼 = 𝑁𝐶1 and 𝐽 = 𝑁𝐶4 or 𝐽 = 𝑁𝐶2 should not be considered, as they
lead to the less accurate results. 𝑇 𝐼𝐽 values obtained for collocation
nodes 𝐽 outside the quarter-point element (and different from NC4),
although mesh-dependent, provide also a good approximation to the
actual T-tress for fine meshes.

Observation of Figs. 5 and 6 concludes that the derived extrap-
olation formulas for 𝑇 𝐼𝐽 (with 𝐼 = 𝑁𝐶1 and 𝐽 = 𝑁𝐶3) clearly
outperforms 𝑇𝑁𝐶123 in terms of both accuracy and mesh dependency.

Normalized T-stress obtained from the computed stresses at internal
points located ahead of the crack-tip are depicted in Fig. 7 for several
uniform meshes and an inclination angle 𝛽 = 60◦. Obtained values of
𝑇 𝜎 (Eq. (18)) are quite stable and exhibit little mesh dependence, with
discrepancies with respect to the analytical solution below 0.3% even
for a coarse 5 element mesh.

Finally, Tables 1 and 2 summarize the obtained T-stress and SIFs
results, respectively, for crack angles ranging from 𝛽 = 0◦ to 𝛽 = 90◦,
6

Table 1
T-stress computed by the proposed formulations for inclined crack in infinite domain
under tensile load. Analytical solution adopted for Ref. (Eq. (19)).

Crack angle [◦] 𝑇 𝜎∕𝜎0 𝑇 𝐼𝐽 ∕𝜎0 𝑇𝑁𝐶123∕𝜎0
0 1.0000 1.0000 1.0000
7.5 0.9659 0.9659 0.9660
15 0.8659 0.8659 0.8665
22.5 0.7069 0.7067 0.7081
30 0.4996 0.4994 0.5016
37.5 0.2582 0.2578 0.2612
45 −0.0009 −0.0014 −0.0031
52.5 −0.2600 −0.2606 −0.2549
60 −0.5015 −0.5022 −0.4954
67.5 −0.7088 −0.7097 −0.7020
75 −0.8679 −0.8689 −0.8605
82.5 −0.9680 −0.9690 −0.9601
90 −1.0021 −1.0031 −0.9941

Crack angle [◦] 𝑇 𝜎∕Ref . 𝑇 𝐼𝐽 ∕Ref . 𝑇𝑁𝐶123∕Ref .

0 1.0000 1.0000 1.0000
7.5 1.0000 1.0000 1.0001
15 0.9999 0.9998 1.0005
22.5 0.9997 0.9995 1.0014
30 0.9992 0.9987 1.0032
37.5 0.9976 0.9962 1.0091
45 – – –
52.5 1.0045 1.0069 0.9850
60 1.0029 1.0044 0.9909
67.5 1.0024 1.0036 0.9927
75 1.0022 1.0033 0.9936
82.5 1.0021 1.0031 0.9940
90 1.0021 1.0031 0.9941

adopting the analytical solution in Eq. (19) as reference. Results for
𝑇 𝜎 are computed at an internal point located at a distance 𝑟 = 2𝑎∕500
ahead of the crack-tip, while 𝑇 𝐼𝐽 are computed adopting 𝐼 = 𝑁𝐶1 and
𝐽 = 𝑁𝐶3. A 10-elements non-uniform mesh with the crack-tip element
size being 𝐿∕𝑎 = 0.025 has been considered for all the cases. Excellent
agreement with the analytical solution, for both T-stress and SIFs, is
observed for all the inclination angles 𝛽.

4.2. Inclined edge crack in a rectangular plate

The following example considers a finite rectangular plate with an
inclined edge crack, as Fig. 8 illustrates. The geometry of the problem
is defined by ℎ = w, 𝑎 = 0.6 w and 𝛽 = 60◦. The plate is subjected to a
uniform tensile stress of magnitude 𝜎0 applied onto its upper and lower
edges. The quadratic boundary element mesh consists of 60 equally
sized elements on the non-cracked boundary plus 10 elements on the
crack, with the element at the crack-tip being discontinuous quarter-
point. This problem has been previously solved by other authors using
different numerical techniques, as Table 3 summarizes. In particular,
the results obtained by Hou et al. [20] using the finite element package
ABAQUS will be adopted as the reference solution in our study.

Fig. 9 depicts the values of T-stress and SIFs obtained using a 10-
element mesh on the crack with varying crack-tip element size (𝐿):
𝐿∕𝑎 = 0.1 corresponds to the uniform mesh case while, for instance,
𝐿∕𝑎 = 0.015 corresponds to a non-uniform mesh with a ratio between
the sizes of the elements at the edge of the plate and at the crack-tip
of 20. Results for 𝑇 𝐼𝐽 are obtained adopting collocation node NC1 as
node 𝐼 and collocation node NC3 of the quarter-point element as node
𝐽 , whilst 𝑇 𝜎 is computed from the stresses at an internal point located
at a distance 𝑟 = 𝑎∕500 ahead of the crack tip, following the conclusions
drawn from the previous example. Once again, the one-point formula
for the SIFs (𝐾𝑁𝐶1), Eq. (12), exhibits good accuracy and stability for
all the considered meshes, while the three-point formula for the SIFs
(𝐾𝑁𝐶123), Eq. (13), does only lead to values within 1% of the reference
solution for small crack-tip element sizes, say 𝐿∕𝑎 ≤ 0.025. Regarding
the T-stress values, similar conclusions to those obtained in the previous
example may be extracted: (i) 𝑇 𝜎 provides accurate and stable results
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Table 2
Normalized SIFs (𝐾∗∕𝜎0

√

𝜋𝑎) computed by one and three point CODs formulas for
inclined crack in infinite domain under tensile load. Analytical solution adopted for
Ref. (Eq. (19)).

Crack angle [◦] 𝐾𝑁𝐶1
𝐼 𝐾𝑁𝐶1

𝐼𝐼 𝐾𝑁𝐶123
𝐼 𝐾𝑁𝐶123

𝐼𝐼

0 0.0000 0.0000 0.0000 0.0000
7.5 0.0171 0.1300 0.0172 0.1308
15 0.0673 0.2511 0.0677 0.2527
22.5 0.1471 0.3551 0.1481 0.3574
30 0.2512 0.4350 0.2528 0.4377
37.5 0.3724 0.4852 0.3748 0.4882
45 0.5025 0.5023 0.5056 0.5055
52.5 0.6325 0.4852 0.6365 0.4883
60 0.7538 0.4350 0.7585 0.4378
67.5 0.8579 0.3552 0.8633 0.3575
75 0.9377 0.2512 0.9437 0.2528
82.5 0.9880 0.1300 0.9942 0.1309
90 1.0051 0.0000 1.0115 0.0000

Crack angle [◦]
𝐾𝑁𝐶1

𝐼

Ref .
𝐾𝑁𝐶1

𝐼𝐼

Ref .
𝐾𝑁𝐶123

𝐼

Ref .
𝐾𝑁𝐶123

𝐼𝐼

Ref .
0 – – – –
7.5 1.0047 1.0044 1.0111 1.0108
15 1.0047 1.0044 1.0111 1.0108
22.5 1.0048 1.0045 1.0112 1.0108
30 1.0048 1.0045 1.0112 1.0109
37.5 1.0049 1.0045 1.0112 1.0109
45 1.0049 1.0046 1.0113 1.0110
52.5 1.0050 1.0046 1.0113 1.0110
60 1.0050 1.0047 1.0114 1.0111
67.5 1.0050 1.0047 1.0114 1.0111
75 1.0051 1.0048 1.0114 1.0111
82.5 1.0051 1.0048 1.0115 1.0111
90 1.0051 – 1.0115 –

Table 3
T-stress and SIFs for rectangular plate with an inclined edge crack, obtained by different
numerical techniques.

Reference 𝑇 ∕𝜎0 𝐾𝐼 𝐾𝐼𝐼

Hou et al. [20] ODM 0.6078 11.02111 2.9937
Hou et al. [20] ABAQUS 0.6019 11.03 2.998
Karihaloo et al. [51] HCE 0.5852 10.4278 2.829
Karihaloo et al. [51] BCM 0.594 10.4662 2.8403

Fig. 8. Inclined edge crack in a rectangular plate.

with negligible mesh dependence; (ii) small crack-tip element sizes are
required in order to capture T-stress using the displacement formulas
for 𝑇𝑁𝐶123, Eq. (14), and 𝑇 𝐼𝐽 , Eq. (16) and, furthermore, 𝑇𝑁𝐶123

exhibits a greater mesh dependence and does only converge to the
reference T-stress value when the SIFs values obtained using 𝐾𝑁𝐶123

converge to those evaluated using 𝐾𝑁𝐶1, while 𝑇 𝐼𝐽 produces more
stable results for all the considered crack-tip sizes and leads to quite
accurate results for 𝐿∕𝑎 ≤ 0.01, so that finer meshes are required to
compute the T-stress than those necessary to evaluate the SIFs. Once
again, 𝑇 𝐼𝐽 outperforms 𝑇𝑁𝐶123 and provides good approximation to the
T-stress from direct extrapolation of the computed nodal displacements.
7

Fig. 9. Normalized T-stress and SIFs versus crack-tip element size. Rectangular plate
with inclined edge crack.

Fig. 10. Normalized T-stress, 𝑇 𝐼𝐽 , versus distance 𝑟𝐽 from collocation node 𝐽 to the
crack-tip (node 𝐼 is NC1). Results for 10-element mesh on the crack and varying crack-
tip element size. ABAQUS results in Table 3 adopted as Ref. solution. Rectangular plate
with an inclined edge crack.

Tables 4 and 5 present the same results in tabular format for the T-stress
and SIFs, respectively.

Fig. 10 illustrates the behavior of the 𝑇 𝐼𝐽 formula to compute the T-
stress for different non-uniform meshes of 10 elements along the crack,
adopting NC1 (closest node to the crack-tip) as the collocation node 𝐼
and varying the collocation node 𝐽 along the crack line (identified by
their dimensionless distance to the crack-tip 𝑟𝐽∕𝑎) so that, for instance,
the first point (lowest 𝑟𝐽∕𝑎) in Fig. 10 – for each mesh – corresponds
to 𝐽 = 𝑁𝐶2, the second point corresponds to 𝐽 = 𝑁𝐶3 (see Fig. 2) and
so on. Similar conclusions as those obtained in the previous example
may be drawn: results obtained adopting 𝐼 = 𝑁𝐶1 and 𝐽 = 𝑁𝐶3 are
the most accurate and exhibit little mesh dependence.

4.3. Mode-I single edge notched (SEN) specimen

A horizontal edge crack in a rectangular plate is next considered.
The geometry is illustrated in Fig. 8, with ℎ = w and 𝛽 = 90◦, so that
only mode-I crack behavior is excited by the uniaxial stress loading 𝜎0.
In this case, crack lengths ranging from 𝑎∕w = 0.1 to 0.5 are considered
and the solution obtained by Leonetti and Vantadori [52] using weight
functions is adopted as reference (Table 6 summarizes the normalized
T-stress (𝑇 ∕𝜎0) and SIFs (𝐾𝐼∕𝜎0

√

𝜋𝑎) for all the considered 𝑎∕w ratios).
The mesh coincides with the one described in the previous example,
with 10 non-uniform elements employed to mesh the crack, with a
crack-tip element size 𝐿∕𝑎 = 0.0085, as sketched in Fig. 11.

Results for the T-stress and mode-I SIF are favorably compared with
the reference solution in Tables 7 and 8, respectively. As in previous
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Fig. 11. Boundary element mesh for SEN specimen.

Table 4
T-stress evaluated using the proposed formulation and a 10-element mesh for the crack,
with varying crack-tip element size (L). ABAQUS results in Table 3 adopted as Ref.
solution. Rectangular plate with an inclined edge crack.

L/a 𝑇 𝜎∕𝜎0 𝑇 𝐼𝐽 ∕𝜎0 𝑇𝑁𝐶123∕𝜎0
0.1000 0.5996 0.5542 0.7284
0.0393 0.6000 0.5794 0.6819
0.0245 0.6000 0.5854 0.6574
0.0182 0.6000 0.5877 0.6413
0.0147 0.6000 0.5889 0.6286
0.0085 0.6002 0.5905 0.5923

L/a 𝑇 𝜎∕Ref . 𝑇 𝐼𝐽 ∕Ref . 𝑇𝑁𝐶123∕Ref .

0.1000 0.9961 0.9207 1.2102
0.0393 0.9968 0.9627 1.1329
0.0245 0.9968 0.9726 1.0923
0.0182 0.9968 0.9764 1.0654
0.0147 0.9968 0.9785 1.0444
0.0085 0.9971 0.9811 0.9841

Table 5
SIFs evaluated using the proposed formulation and a 10-element mesh for the crack,
with varying crack-tip element size (L). ABAQUS results in Table 3 adopted as Ref.
solution. Rectangular plate with an inclined edge crack.

L/a 𝐾𝑁𝐶1
𝐼 𝐾𝑁𝐶123

𝐼 𝐾𝑁𝐶1
𝐼𝐼 𝐾𝑁𝐶123

𝐼𝐼

0.1000 11.0643 10.6701 2.9968 3.0701
0.0393 11.0641 10.9022 2.9998 3.0268
0.0245 11.0656 10.9613 3.0015 3.0173
0.0182 11.0679 10.9875 3.0027 3.0137
0.0147 11.0792 11.0034 3.0066 3.0120
0.0085 11.0793 11.0349 3.0068 3.0101

L/a
𝐾𝑁𝐶1

𝐼

Ref .
𝐾𝑁𝐶123

𝐼

Ref .
𝐾𝑁𝐶1

𝐼𝐼

Ref .
𝐾𝑁𝐶123

𝐼𝐼

Ref .
0.1000 1.0031 0.9674 0.9996 0.9996
0.0393 1.0031 0.9884 1.0006 1.0006
0.0245 1.0032 0.9938 1.0012 1.0012
0.0182 1.0034 0.9962 1.0016 1.0016
0.0147 1.0045 0.9976 1.0029 1.0029
0.0085 1.0045 1.0004 1.0029 1.0029

examples, 𝑇 𝜎 is computed from the stresses at an internal point located
t a distance 𝑟 = 𝑎∕500 ahead of the crack-tip. 𝑇 𝐼𝐽 is computed

adopting 𝐼 = 𝑁𝐶1 and 𝐽 = 𝑁𝐶3 (extreme nodes on the discontinuous
quarter-point element, Fig. 2). Agreement for the mode-I SIF is excellent
in all the cases. Regarding T-stress, both 𝑇 𝜎 and 𝑇 𝐼𝐽 provide excellent
results, while 𝑇𝑁𝐶123 exhibits larger discrepancies for 𝑎∕w = 0.4, 0.5.

hese discrepancies reduce to acceptable limits in case of employing
iner meshes. At any event, 𝑇 𝐼𝐽 outperforms 𝑇𝑁𝐶123 and provides a
alid extrapolation formula for all the considered examples.
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Table 6
Normalized T-stress and mode-I SIF for SEN specimen. Weight functions solution
adopted as Ref. [52].

a/w 𝑇 ∕𝜎0 𝐾𝐼∕𝜎0
√

𝜋𝑎

0.1 −0.5500 1.1899
0.2 −0.5890 1.3682
0.3 −0.6080 1.6610
0.4 −0.5710 2.1123
0.5 −0.4100 2.8249

Table 7
Normalized T-stress using the proposed formulation and a 10-element non-uniform
mesh on the crack. SEN specimen (see Table 6 for Ref. results).

a/w 𝑇 𝜎

𝜎0
𝑇 𝐼𝐽

𝜎0
𝑇𝑁𝐶123

𝜎0
𝑇 𝜎

Ref .
𝑇 𝐼𝐽

Ref .
𝑇𝑁𝐶123

Ref .

0.1 −0.5494 −0.5490 −0.5524 0.9990 0.9982 1.0044
0.2 −0.5893 −0.5890 −0.5942 1.0004 1.0001 1.0089
0.3 −0.6081 −0.6085 −0.6182 1.0001 1.0009 1.0167
0.4 −0.5711 −0.5730 −0.5925 1.0001 1.0036 1.0376
0.5 −0.4091 −0.4146 −0.4559 0.9979 1.0113 1.1120

Table 8
Normalized mode-I SIF (𝐾𝐼∕𝜎0

√

𝜋𝑎) using one and three-point formulas, for different
crack sizes. SEN specimen (see Table 6 for Ref. results).

a/w 𝐾𝑁𝐶1
𝐼 𝐾𝑁𝐶123

𝐼

𝐾𝑁𝐶1
𝐼

Ref .
𝐾𝑁𝐶123

𝐼

Ref .
0.1 1.1947 1.1946 1.0040 1.0039
0.2 1.3720 1.3716 1.0028 1.0025
0.3 1.6661 1.6649 1.0031 1.0024
0.4 2.1196 2.1166 1.0034 1.0020
0.5 2.8352 2.8280 1.0037 1.0011

4.4. Circular arched crack in an unbounded domain

The last example corresponds to a circular arched crack, of radius
𝑅 and semi-angle 𝛼, immersed in an infinite plate and subjected to a
bidirectional tensile far field stress of magnitude 𝜎0, as Fig. 12 depicts.

This example aims at illustrating the performance of the proposed
pproach when dealing with curved crack geometries. Cracks with
emi-angles ranging from 𝛼 = 30◦ to 𝛼 = 90◦ will be next considered.
oundary element meshes consisting of 20 discontinuous quadratic
lements are used for all the cases: 18 curved quadratic elements plus
quite small quarter-point straight elements at the tips (i.e., so that
∕𝑎 ≤ 0.01, with 𝐿 being the size of the element at the crack-tip and
being the crack length). Numerical results obtained for both SIFs

nd T-stress are favorably compared with Cotterell and Rice’s [53]
nd Chen’s [54] analytical solutions, respectively, in Fig. 13. Only
esults evaluated by direct extrapolation from the computed nodal
isplacements are presented in Fig. 13. 𝑇𝑁𝐶123 and 𝑇 𝐼𝐽 are computed,
espectively, according to Eqs. (14) and (16) whilst 𝐾𝑁𝐶1 and 𝐾𝑁𝐶123

are evaluated using Eqs. (12) and (13), respectively. As in previous
examples, for 𝑇 𝐼𝐽 computations, collocation node 𝐼 is selected as NC1,
whilst node 𝐽 is adopted as NC3 in the quarter-point element (see
Fig. 2). The conclusions drawn for this case are identical to those of
the previous cases.

5. Conclusions

This paper extends the formulation of the dual BEM in conjunc-
tion with the use of discontinuous quarter-point elements to obtain
T-stress in fracture mechanics applications. To this end, new extrap-
olation formulas are derived to directly evaluate the T-stress from
the computed nodal displacements at the collocation nodes of the
discontinuous quarter-point element. T-stress is also evaluated from
the computed stresses at internal points. The use of quarter-point dis-
continuous quadratic boundary elements had proven quite effective, in

previous works by the authors [42–45], to evaluate SIFs and, herein, its
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Fig. 12. Arc-shaped crack under bidirectional tensile loading in an unbounded domain.

Fig. 13. T-stress and SIF’s vs. crack semi-angle 𝛼. Circular arched crack in infinite
domain.

adequacy to further compute T-stress has been addressed and validated
via several numerical examples involving both mode-I and mixed mode
crack configurations. Although the main objective of the paper focuses
on the calculation of T-stress in planar isotropic media, results for the
SIFs have also been included for the sake of completeness. The main
conclusions of this study are:

• The use of discontinuous quarter-point boundary elements in a
dual BEM context permits an effective and accurate evaluation of
both SIFs and T-stress by direct extrapolation from the computed
nodal displacements.

• To evaluate the SIFs, the one-point formula derived in Eq. (12)
leads to a quite precise procedure to compute the SIFs in terms
of the COD at the collocation node of the quarter-point element
that is located next to the crack-tip (NC1 in Fig. 2): 𝐾𝑁𝐶1.
This procedure produces accurate results even for rather coarse
meshes. The alternative three-point formula derived in Eq. (13) to
extrapolate the SIFs in terms of the CODs at the three collocation
nodes of the quarter-point discontinuous element (NC1, NC2 and
NC3 in Fig. 2) leads to SIFs values (𝐾𝑁𝐶123) that only converge for
finer meshes and exhibit a strong mesh dependence. Therefore,
𝐾𝑁𝐶1 is the recommended procedure to evaluate the SIFs.

• Three procedures have been proposed and analyzed for T-stress
computation:

– 𝑇𝑁𝐶123: The three-point formula derived in Eq. (14) allows
to extrapolate the T-stress from the nodal displacements at
the three collocation nodes of the quarter-point element.
This procedure requires finer meshes than those needed for
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SIFs computation and exhibits a strong mesh dependence.
Accurate results can only be obtained for meshes that ensure
that, at least, the SIFs computed using 𝐾𝑁𝐶123 converge to
the values obtained using 𝐾𝑁𝐶1.

– 𝑇 𝐼𝐽 : The two-point formula derived in Eq. (16) permits to
extrapolate the T-stress from the nodal displacements of any
two collocation nodes 𝐼 and 𝐽 along the crack faces. When
node 𝐼 is selected as NC1 and node 𝐽 as NC3 in the quarter-
point element (see Fig. 2), optimal results with limited mesh
dependence are obtained. 𝑇 𝐼𝐽 outperforms 𝑇𝑁𝐶123 in all the
numerical examples analyzed. Accurate results are obtained
even for rather coarse meshes (10 elements on the crack),
provided that the ratio of the size of the element at the
crack-tip (𝐿) to the crack length (𝑎) is 𝐿∕𝑎 ≤ 0.01, thus
leading to a non-uniform mesh.

– 𝑇 𝜎 : The formula derived in Eq. (18) evaluates the T-stress
from the computed stresses at any internal point located
along the crack line and ahead of the crack-tip. Stable
and accurate results are obtained for even rather coarse
meshes. In this work, we evaluate 𝑇 𝜎 at a point located
at a distance 𝑟 = 𝑎∕500 from the crack-tip. Although this
procedure requires some additional postprocessing when
compared to the extrapolation procedures (𝑇 𝐼𝐽 , 𝑇𝑁𝐶123), it
still implies little computational effort in comparison with
the interaction integral approaches.

In conclusion, both 𝑇 𝐼𝐽 and 𝑇 𝜎 are efficient and accurate proce-
dures to determine the T-stress that can be implemented quite straight-
forwardly in a dual BEM context using discontinuous quarter-point
quadratic boundary elements.
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