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A B S T R A C T

Firms’ growth, the darling measure of investors, comes from higher revenues. Thus, sales and marketing
departments make extreme efforts to accept as many customer orders as possible. Unfortunately, not all orders
contribute equally to profits, and some orders may even reduce net profits. Thus, saying no (i.e., not accepting
an order) may be a necessary condition for net profits growth. For understanding the impact of rejecting
orders on profitability, we propose an order acceptance and scheduling problem (OAS). Although the OAS has
extensively been studied in the literature, there is still some gap between these papers and real-life problems
in industry. In an attempt to close that gap, the OAS we propose considers orders revenues, machines costs,
holding costs and tardiness costs. We develop a mixed integer linear programming (MILP) model for solving
this problem. Since the complexity of the problem makes it impossible for the MILP to solver large-scale
instances, we also propose a metaheuristic algorithm. Numerical experiments show that the metaheuristic
finds good quality solutions in short computational times. In the last part of the paper we confirm some
managerial insights: higher holding and tardiness costs imply a lower acceptance of orders, forcing production
has a concave negative impact on net profits, and accurately estimating costs is essential for good planning.
1. Introduction

In this article, we discuss on the problem of accepting and schedul-
ing orders from customers with the goal of maximizing profits. The
work is based on the Acceptance Ordering Scheduling Problem (AOS),
where decision makers choose orders to accept for production from a
pool of customer orders. We provide different approaches for solving
the problem and, simultaneously, take a look at the effect that accepting
suboptimal orders has on profitability.

Our environment is a make-to-order setting, which is different from
a make-to-stock environment. In a make-to-order production process,
goods are manufactured in response to real customer demand: the
manufacturing process responds to the demand by producing the goods
and delivering the exact quantity demanded to the customers at the
origin of the order. That directly contrasts with make-to-stock en-
vironment, where the production process is triggered by speculative
means (usually a forecast). In a make-to-stock environment, there is
more leeway for moving around production orders and adjusting the
quantities produced in each order for optimizing the response to a
stochastic speculative process.
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Assuming a make-to-order environment, suboptimal orders are or-
ders that would not be on any optimal production plan, but are in-
cluded based on other (typically nonquantitative) criteria. To illustrate,
consider the following real case. A customer orders 26 times per year
the same general product, but the orders’ specifications (e.g., color of a
detail) slightly changes through time. Consequently, these changes do
not allow for making-to-stock, so orders are produced in the quantity
requested at each time. Although the total annual volume would be
profitable if split in two or three orders, the order size when split in
26 orders is too small to make an order profitable. However, because
of the belief that the customer could eventually stop making changes
in the specifications, allowing for a better scheduling of the orders, the
company keeps accepting orders that bring negative contribution to the
company’s profitability.

This forced, or compulsory, inclusion of orders may increase the
number of orders accepted, which originates the so called structural
complexity. Structural complexity is related to the number of prod-
uct varieties or orders in the case of a make-to-order environment
(see Ruiz-Hernández et al. (2019) for more information on struc-
tural complexity). To illustrate, consider the case of Sonoco Product
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Company, Industrial Core Division. This is a packaging company that
throughout the years, has increased its portfolio to unsustainable lev-
els. Competitive pressures and a lack of strategic alignment between
operations and sales functions pushed Sonoco to high levels of struc-
tural complexity (see Bloemen and Menezes (2019a) and Bloemen
and Menezes (2019b)). This happened until December 1, 2017, when
Sonoco’s CEO announced, in its New York Analysts Meeting that the
company would reduce the number of stock-keeping units by 35%. This
action would reduce available capacity by 30% and would still increase
profits by an estimated 20%: reducing production implied an increase
in profits.

Practitioners recognize that structural complexity (see, for exam-
ple, Adams et al. (2016), Hirose et al. (2017), Mocker and Ross (2017))
is an important factor consistently believed to induce profitability loss.
Therefore, researchers and practitioners design strategies for reducing
it. Another illustrative example is Carrefour, a large French retailer,
which announced in its 2017 Annual Report a decision to reverse
its focus away from very large business units to chains operating
with small shops since they are ‘‘less complex and more adapted to
customers behaviour’’.

Around the same period, the Danish toymaker Lego announced
large cuts, alleging bureaucracy and complexity as the root cause of
its financial problems; see Mocker and Ross (2017). Lately, Coca-Cola
announced that they were ‘‘slashing’’ nearly 50% of the total number of
product lines (Grothaus, 2020). This action not only suggests that the
firm was suffering the effect of complexity, but also makes us wonder
why they achieved that number of products in the first place.

A possible reason to explain why companies allow the number
of products and/or orders to grow too much is that growth is often
measured by revenue growth, which leads the marketing and sales
functions to accept as many orders as possible or to introduce as many
products as possible in the portfolio; see Mariotti (2008). A second
possible explanation is related to the power of retailers, that seem to
have increased with time, to push firms to enlarge the product varieties
of the offered portfolio. Lu and Menezes (2022), in a study based on
competitive games between a manufacturer and a retailer, find that
retailers’ negotiating power is a main factor that leads to product-
variety proliferation and consequently, structural complexity. When the
retailer chooses the assortment depth but has no first-mover pricing
advantage, then product proliferation arises moderately. Nevertheless,
according to Lu and Menezes (2022), ‘‘However, in the case where
the retailer also enjoys a high profit margin due to pricing leadership,
product proliferation becomes rampant...’’ We follow the insights dis-
cussed in that paper and ask ourselves what happens when the buyer
has sufficient negotiating power to impose orders to be satisfied, even
if these same orders would never be accepted by the supplier if the
optimal decision was unconstrained from the buyer power.

Another explanation is that because accurately forecasting profits is
unattainable in complex systems (see Bradley (2022) for an interesting
anecdote), managers substitute this performance metric for revenue,
a much easier indicator to forecast. Hyndman and Menezes (2021)
suggest that this form of salience bias may be common in complex envi-
ronments. If this is the case, then more products imply more revenues,
which is a thought shared by practitioners. Mariotti (2008) mentions
that while aiming for higher profitability, firms have ‘‘proliferated
nearly every-thing: products, customers, markets, suppliers… which
leads to higher revenues but too often to operational profit losses.’’ In
particular, as a detail important to our work, make-to-order firms have
embarked on a large expansion of their product portfolios (Menezes
et al., 2021). Although there is some agreement that ‘‘overserving’’
customers may lead to profitability losses, it is not clear how much
profitability improvement may potentially be secured by cutting back
complexity.

Scheiter et al. (2007) suggests that complexity management could
lead to an increase in earnings before interest and taxes (a.k.a. EBIT,
2

a form of operational profits) from 3 to 5 percentage points. Adams r
et al. (2016) mention the case of a large food manufacturer facing an
approximately 10% margin loss due to increased complexity.

The operations management/research literature gives emphasis on
solving a problem; that is, finding an optimal solution. The academia
has placed less emphasis on understanding the impact of ’pseudo-
externalities’ on the economics of production at operational level. Our
paper brings this novelty. Instead of simply assuming a list of jobs
to process, we look on the impact of filtering out profit-wise less
attractive jobs. This allowance is equivalent to giving more degrees of
freedom to the operations manager as opposed to the marketing/sales
group that have as main objective increasing sales revenues (even
though sales/marketing functions are called profit centers, they are
really aiming at increasing revenues) - see Mariotti (2008) for more
on those conflicting goals of marketing and sales functions. We bring
to the model the ability to solve real problems: in a recent collaboration
with Sonoco Industrial it was estimated a lower bound of 20% for
EBIT improvements, and in another work with Danone, the food/dairy
producer, we estimated potential gains of similar magnitude. These
improvements contrast to most work in the literature that by focusing
on reducing costs have less significant impact on the firms’ profitability.

In a first work where the level of structural complexity is mea-
sured, Menezes et al. (2021) reports, in an empirical study that uses
a measure for structural complexity called pars-Complexity proposed
in Ruiz-Hernández et al. (2019), that a decrease of over 2 percent-
ge points of the EBIT margin may be lost for each additional pars-
omplexity point. In a simulated study, Chatha and Jalil (2022) found
hat ‘‘structural complexity on the demand side has a negative... in-
luence on the operational performance of the manufacturer’’. They
lso observed that complexity has an inverted U-shaped impact on
perational performance (as previously suggested by Menezes et al.
2021)) and that demand uncertainty interacts with structural complex-
ty and reduces the overall operational performance of the manufac-
urer, which is a fact already noted by Menezes and Pinto (2022).

Shifting our attention from the motivational to the methodological
spect of our paper, the scheduling of parallel machines has been
eeply studied in the literature. One of its simplest versions consists
f deciding which machines perform which orders, see Fanjul-Peyro
nd Ruiz (2011). A more realistic version of this problem considers
achine setups between the processing of the orders, see Fanjul-Peyro

t al. (2019). Lately, more and more literature on these problems
ssume that the functioning of machines needs of additional resources
e.g. workers), both in the processing of the orders and on the machine
etups (see e.g. Fanjul-Peyro et al. (2017), Yepes et al. (2020), Lopez-
steve et al. (2022)). These papers impose that all orders need to be
ccepted. As we have discussed before, this might be suboptimal, and
nother decision that should be made is whether or not to accept a
iven order. Therefore, the OAS (Order Acceptance and Scheduling)
roblem has also been deeply studied in the literature. However, from
hat the authors know, only two OAS papers consider machine costs
nd only one of those two consider fixed costs. The reader is referred
o Slotnick (2011) for a review. We now briefly summarize some related
iterature on problems similar to the one addressed in this paper. Oguz
t al. (2010) propose an OAS problem on a single machine. Orders
ave release dates, due times and a revenue that (piecewise linearly)
epends on how tardy they are. These authors also consider setups
n the machine. The problem consists of deciding which orders to
chedule and their sequence to maximize global revenue. No costs
elated to machines are considered. Tanaka (2011) shows that some
cheduling problems with rejection can be converted into ordinary
cheduling problems by making some changes in the order completion
osts. Fanjul-Peyro and Ruiz (2012) address the not all machines (NAS)
roblem and the not all jobs (NAJ) problem. In NAS, only a number of
he available machines can be used. In NAJ, at least a fixed number
f jobs (for us, order and job are synonyms) need to be processed. No

evenues or costs are involved in the objective.
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Table 1
Specifications of OAS papers reviewed.
Paper 𝑏𝑗 𝑟𝑗 𝑑𝑗 𝜏𝑗 𝛽𝑗 𝛼𝑖 𝛿𝑖 𝑝𝑖𝑗 𝑠𝑖𝑗𝑘 𝑚

Oguz et al. (2010) X X X X X X 1
Wang et al. (2015) X X X X 2
Xu et al. (2015) X X X X 1
Wang and Wang (2018) X X X X X 𝑚
Wang and Ye (2019) X X X X 𝑚
Kong et al. (2020) X X X X 𝑚
Li and Ventura (2020) X X X X 1
Naderi and Roshana (2020) X X X X 𝑚
Yavari et al. (2020) X X X X 𝑚
Bruni et al. (2020) X X X 𝑚
Tarhan and Oguz (2021) X X X X X X 1
Xu et al. (2015) extend (Oguz et al., 2010) by assuming the stochas-
ic arrival times of orders. Wang et al. (2015) study an OAS with two
dentical parallel machines, assuming that no costs on the machine are
nvolved, with the objective of total profit maximization. Wang and

ang (2018) consider several parallel machines. For each order, the
uthors consider production costs, processing times (both are machine
ependent), revenues, due dates and unit tardiness costs. In the same
aper, a bi-objective approach is considered to simultaneously optimize
he makespan and the net profit. Wang and Ye (2019) maximize the
otal revenue minus a weighted tardiness in an unrelated parallel
achine OAS. Kong et al. (2020) consider both orders and machine

osts, with budget constraints both in energy consumption and machine
aunch. Li and Ventura (2020) consider an order acceptance problem
ith one machine and maximize total revenue minus the tardiness
enalty. Naderi and Roshana (2020) address a multiple-machine order
cceptance problem by assuming machines are identical. Yavari et al.
2020) study an order acceptance problem that maximizes revenues
inus tardiness penalties. Bruni et al. (2020) add uncertainty to an OAS
roblem in which the total completion time is minimized, which guar-
ntees a certain profit. Tarhan and Oguz (2021) propose a generalized
AS problem with a single machine in which orders are grouped on
atches according to clients.

Readers may note that most of the papers related to order accep-
ance problems assume no costs on the machines. In an attempt to close
he gap between industry and academia, in the problem addressed in
his paper we do assume both fixed and variable costs on machines.
ore specifically, and as it will be detailed in Section 2, we consider:

rders revenues, release dates, due dates, holding costs, tardiness costs,
achines fixed costs, machines variable costs, processing times, and
achine setup times. Table 1 in Section 2 compares the specifications

f our problem with other OAS problems found in the literature.
The contribution of this paper can be summarized as:

• Algorithmic contribution: We address a new acceptance schedul-
ing problem, which is closer to industry than other similar prob-
lems found in the literature and includes several profits and costs.
As solution approaches for this problem, we propose both a Mixed
Integer Linear Programming (MILP) model and a metaheuristic
solution. Both approaches are tested by performing extensive
numerical tests on it for assessing its performance.

• Managerial contribution: We use the metaheuristic to derive some
managerial insights, among which we emphasize the following:

– We evaluate the impact of forcing order acceptance and
bring insight on the rate of increase of that impact as higher
fractions of the orders are imposed.

– We analyze holding and tardiness costs as drivers of perfor-
mance.

– Our analysis brings insights on the relationship between
complexity, measured by number of orders, and operations’
freedom. The analysis include the possibility that complex-
ity leads to a mis-estimation of some cost drivers.
3

As explained in the experiments, we find that (as expected) by
increasing the fraction of orders that must be accepted, profitability
suffers. However, this is only a partial understanding: although average
profitability decays, median profitability decays even more, and the
interquartile range of profit outcomes shift down, which substantially
increases the risk for profit losses. We also find, through numerical
experiments, that profit losses concavely decrease in forced order-
acceptation. That is, although a few orders imposed in the optimal
solution impact just slightly, these same few orders could impact prof-
itability substantially when added to an already suboptimal solution.
This is equivalent to saying that relaxing the enforcement of a few
orders in a loss situation may already make a large difference on the
bottom line (i.e., profitability).

The rest of the paper is structured as follows. In Section 2 we
formally state the problem treated in this paper, and formulate it as
a MILP. Since that MILP can only solve small-sized instances of the
problem, in Section 3, we present a metaheuristic for finding good
feasible solutions in reasonable CPU times. In Section 4, we explain
the set of numerical experiments conducted and assess the quality of
both the MILP and the metaheuristic. In Section 5, we comment on
some managerial insights, from the results obtained on another set of
instances. Section 6 summarizes some conclusions and further research.

2. Problem statement

This section formally defines the problem treated in this paper.
In such problem, there is a set of orders offered to a company. The
company has the option of accepting or rejecting the orders. If an order
is rejected, no cost or no benefit is incurred. If the order is accepted,
the company receives it at a predefined point in time. Orders also
come with deadlines. If an order is delivered to the client after the
deadline, a penalty fee is paid per unit of time of delay. Holding costs
are also paid, since the moment the order is received until delivery to
the client. Successful delivery to the client implies a benefit. Orders
need to be processed in one of the available machines, which can work
in parallel. However, the same machine cannot process two orders at
the same time. Machines have associated costs: fixed cost of starting the
machine, plus variable costs which depend on the time the machines
are processing orders. Machines also need to be adjusted between the
processing of two consecutive orders (setups).

The problem consists of deciding

• which orders to accept,
• when to process the accepted orders (time), and
• where to process the accepted orders (machine),

so that net profits (revenues minus costs) are maximized
In the rest of this section we formally define the problem, by propos-

ing a mixed integer linear programming (MILP) model. We will start by
defining its input data, followed by variables, objective function and

constraints.
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2.1. Input data

We begin by defining the sets and indices needed for the formulation
proposed:

• 𝑁 = {1,… , 𝑛} is the set of orders, indexed by 𝑗 and 𝑘. For
modeling purposes, we add a dummy order 0 and denote 𝑁0 =
𝑁 ∪ {0}.

• 𝑀 = {1,… , 𝑚} is the set of machines, indexed by 𝑖.

For each order 𝑗, the following input data are needed.

• 𝑏𝑗 ≥ 0 is the revenue obtained if it is processed.
• 𝑟𝑗 ≥ 0 is the time when it is received, also known as release time.

From that moment on, order 𝑗 can be processed.
• 𝑑𝑗 ≥ 0 is its due date. Accepted orders cannot be delivered before

their due date, and if they are delivered after the due date, a
penalty cost is incurred.

• 𝜏𝑗 ≥ 0 is its unitary holding cost. Note that this cost is incurred
from the release time (𝑟𝑗) until the delivery to the client.

• 𝛽𝑗 ≥ 0 is the unitary tardiness penalty. Note that this penalty is
incurred from the due date (𝑑𝑗) until the order is delivered to the
client.

In addition, for each machine 𝑖, the following input data are given.

• 𝛼𝑖 ≥ 0 is its processing cost per time unit.
• 𝛿𝑖 ≥ 0 is the fixed cost incurred if using it.
• 𝑝𝑖𝑗 ≥ 0 is the processing time of order 𝑗 on it.
• 𝑠𝑖𝑗𝑘 ≥ 0 is its setup time, which is needed after processing order
𝑗 ∈ 𝑁0 if order 𝑘 ∈ 𝑁 is the next order processed on this machine.
Note that 𝑠𝑖0𝑗 is the initial setup needed if the first order processed
by this machine is order 𝑗.

Table 1 summarizes the main characteristics of the OAS problems
reated in the papers revised in the Introduction. For each of the
haracteristics considered in our problem (by columns), we insert an
‘X’’ if the corresponding paper (by rows) does consider it. We do not
how any column for the processing times 𝑝𝑖𝑗 , since all papers analyzed
o consider such processing times. The last column refers to the number
f machines considered, which is divided into three levels: 1, 2 or any
(no constraint on the number of machines). Note that none of the

apers considers all the specifications we include in our problem.

.2. A mathematical formulation

In this section, we provide an MILP model for our problem. For
his, we need the following sets of binary variables and nonnegative
ariables.

Binary variables:

• 𝑌𝑖𝑗 takes a value of one if machine 𝑖 processes order 𝑗 and zero
otherwise.

• 𝑋𝑖𝑗𝑘 takes a value of one if orders 𝑗 and 𝑘 are consecutively
processed on machine 𝑖. In this case, we say that 𝑗 − 𝑘 are
consecutive: 𝑗 is the predecessor of 𝑘 or, equivalently, 𝑘 is the
successor of 𝑗. Otherwise, the variable takes a value of zero.

• 𝑉𝑖 takes a value of one if machine 𝑖 is activated and zero other-
wise.

• 𝑊𝑗 takes a value of one if order 𝑗 is accepted and zero otherwise.

Nonnegative variables:

• 𝐶𝑗 ≥ 0 is the completion time of order 𝑗.
• 𝐷𝑗 ≥ 𝑑𝑗 is the moment when order 𝑗 is given to the client and

is defined in the model as the maximum between 𝐶𝑗 and 𝑑𝑗 (the
4

delivery time).
ote that the delivery date 𝐷𝑗 does not necessarily have to coincide
ith the completion time 𝐶𝑗 , since orders processed before their due
ate need to wait until such due date to be delivered to the client.
owever, we need to impose that 𝐷𝑗 ≥ 𝐶𝑗 for accepted orders as a
onstraint in our MILP model. The model consists of the following:

ax
∑

𝑗∈𝑁
𝑏𝑗𝑊𝑗 −

∑

𝑖∈𝑀,𝑗∈𝑁
𝛼𝑖𝑝𝑖𝑗𝑌𝑖𝑗 −

∑

𝑖∈𝑀
𝛿𝑖𝑉𝑖

−
∑

𝑗∈𝑁
𝜏𝑗 ((𝑑𝑗 − 𝑟𝑗 )𝑊𝑗 + (𝐷𝑗 − 𝑑𝑗 )) −

∑

𝑗∈𝑁
𝛽𝑗 (𝐷𝑗 − 𝑑𝑗 ) (1)

s.t.:
∑

𝑘∈𝑁
𝑋𝑖0𝑘=𝑉𝑖, 𝑖 ∈ 𝑀 (2)

∑

𝑖∈𝑀
𝑌𝑖𝑗 = 𝑊𝑗 , 𝑗 ∈ 𝑁 (3)

𝑌𝑖𝑗 =
∑

𝑘∈𝑁0⧵{𝑗}
𝑋𝑖𝑗𝑘, 𝑖 ∈ 𝑀, 𝑗 ∈ 𝑁 (4)

𝑌𝑖𝑘 =
∑

𝑗∈𝑁0⧵{𝑘}
𝑋𝑖𝑗𝑘, 𝑖 ∈ 𝑀,𝑘 ∈ 𝑁 (5)

𝐶𝑗 ≥ 𝑟𝑗 +
∑

𝑖∈𝑀
𝑝𝑖𝑗𝑌𝑖𝑗 , 𝑗 ∈ 𝑁 (6)

𝐶𝑘 ≥ 𝐶𝑗 + 𝑠𝑖𝑗𝑘 + 𝑝𝑖𝑘 − �̄�(1 −𝑋𝑖𝑗𝑘), 𝑗 ∈ 𝑁0, 𝑘 ∈ 𝑁 ⧵ {𝑗}, 𝑖 ∈ 𝑀 (7)

𝐷𝑗 ≥ 𝐶𝑗 − �̄�(1 −𝑊𝑗 ), 𝑗 ∈ 𝑁 (8)

1) defines the objective, which consists of maximizing

• total revenue from the orders accepted (𝐵 =
∑

𝑗∈𝑁 𝑏𝑗𝑊𝑗),
• minus machine variable costs (𝑉 =

∑

𝑖∈𝑀,𝑗∈𝑁 𝛼𝑖𝑝𝑖𝑗𝑌𝑖𝑗),
• minus machine fixed costs (𝐹 =

∑

𝑖∈𝑀 𝛿𝑖𝑉𝑖),
• minus order holding costs (𝐻 =

∑

𝑗∈𝑁 𝜏𝑗 ((𝑑𝑗 − 𝑟𝑗 )𝑊𝑗 + (𝐷𝑗 − 𝑑𝑗 ))),
• minus order tardiness costs (𝑇 =

∑

𝑗∈𝑁 𝛽𝑗 (𝐷𝑗 − 𝑑𝑗 )).

Constraint (2) ensures that there is a first order processed on ma-
chine 𝑖 only if this machine is activated. (3) states that one machine
processes order 𝑗 if and only if such an order is accepted. These last
two sets of constraints ensure that the orders that are accepted are
processed by exactly one machine. (4) ensures that if 𝑗 is processed by 𝑖,
then 𝑗 should have exactly one successor on this machine (which could
also be the dummy order). (5) ensures that if 𝑘 is processed by 𝑖, then
𝑘 should have exactly one predecessor on this machine (which could
also be the dummy order). (6) state that the completion time of order
𝑗 should be, at least, its release date plus the processing time on the
machine on which it is processed. (7) are MTZ-like subtour elimination
constraints that allow us to find the completion time of orders, where
�̄� is a sufficiently large constant. Finally, constraints (8) impose that
the delivery time of accepted order 𝑗 is, at least, its completion time.

Note that if order 𝑗 is not accepted, and therefore 𝑊𝑗 = 0, then
(8) do not impose any value on 𝐷𝑗 . Therefore, this variable 𝐷𝑗 is only
constrained by its definition domain, [𝑑𝑗 ,+∞). Since both 𝜏𝑗 and 𝛽𝑗 are
positive, from the objective function (1) we deduce that an optimal
solution would set 𝐷𝑗 as small as possible, and therefore we conclude
𝐷𝑗 = 𝑑𝑗 in these cases.

2.2.1. Complexity
This problem is quite complex, since a much simpler version of it,

in which no benefits or costs are considered and the only decision is
how to schedule the orders, is already NP-hard (see Garey and Johnson
(1979)). Therefore, the problem proposed is also NP-hard.

3. Metaheuristic algorithm

As we will see in the experiments section, the MILP proposed before
is only able to solve small-sized instances of our problem. Therefore,
in this section we propose a semi-greedy heuristic as an alternative
method, see Hart and Shogan (1987), which is expected to provide good

feasible solutions to large-scale instances in short computational times.
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Fig. 1. Example of an insertion into the partial solution.
Semi-greedy algorithms are GRASP algorithms (as introduced in Feo
and Resende (1995)) without the local search phase. In our algorithm,
preliminary tests with a local search phase did not show improvements
in solutions, due to the fact that small changes in the final solution of
our semi-greedy heuristic, most of the time generate worse solutions. In
addition, local search phases are time-consuming. Since the proposed
semi-greedy algorithm is very fast and provides good-quality solutions
(see the experiments section), we decided to use all available CPU
time to generate different feasible solutions by applying randomization
over the constructive rule, without the local search. The results of this
preliminary test, comparing our heuristic with and without the local
search phase on a set of 90 instances, can be found in the appendix.

3.1. Constructive phase

During the execution of the constructive phase, we define the set
of pending orders as the set of orders that have not yet been assigned
to a machine. Note that this set changes during the execution of the
algorithm. Originally, the set of pending orders is 𝑁 . We define an
insertion as a 3-tuple (𝑖, 𝑗, 𝑘), which summarizes on which machine (𝑖)
and at which position (𝑘) the order (𝑗) is inserted in the current solution.
Given a current solution (which is originally empty), the constructive
phase consists of testing the insertion of each pending order into each
possible position on each machine. At each possible insertion (𝑖, 𝑗, 𝑘), we
compute a value that we call 𝜆𝑖𝑗𝑘 profit, which measures the impact that
such machine-order-position insertion will have on the objective value.
The insertion with the best 𝜆 profit is chosen, and the partial solution
is updated. This value is computed as follows:

𝜆𝑖𝑗𝑘 = 𝑏𝑗 − 𝜏𝑗 (𝐷𝑗 − 𝑟𝑗 ) − 𝛽𝑗 (𝐷𝑗 − 𝑑𝑗 ) − 𝛼𝑖𝑝𝑗 − 𝛾𝑖𝛿𝑖𝜃 − 𝜏′𝑖𝑗𝑘 + 𝛽′𝑖𝑗𝑘.

Some of the parameters involved in this definition are introduced in
Section 2. The others are defined as follows.

• 𝛾𝑖 is a new parameter that takes a value of one if machine 𝑖 does
not have any order assigned yet and zero otherwise. In this way,
we only consider the fixed cost of machine 𝑖, 𝛿𝑖, the first time this
machine is assigned an order in the algorithm.
5

• 𝜃 is a factor to account for the fixed cost. During the algorithm,
this value changes and takes one of the following three values:
{𝜃1 = 0; 𝜃2 = 1

𝑛𝑚 ; 𝜃3 = 1}. Note that 𝜃 = 0 means that the fixed
cost of machines is not taken into account for the computation
of 𝜆. Note also that 𝜃 is used internally in the algorithm, and
regardless of its value, in the final solution, the fixed costs are
considered.

• 𝜏′𝑖𝑗𝑘 is the increase in the holding costs if we insert order 𝑗 on
machine 𝑖 into position 𝑘.

• 𝛽′𝑖𝑗𝑘 is the increase in the tardiness costs if we insert order 𝑗 on
machine 𝑖 into position 𝑘.

Fig. 1 shows an example of an insertion into a partial solution. In
Fig. 1(a), the partial solution has orders 𝑗 and 𝑘 assigned. We observe
that order 𝑗 ends at time 2 and that order 𝑘 ends at time 5. Note that
if we insert order 𝑙 after order 𝑗 (Fig. 1(b)), then order 𝑘 ends at time
8, which increases the holding cost for this order (𝜏′) and possibly also
the tardiness cost (𝛽′). Finally, in Fig. 1(c), we observe that if we insert
order 𝑙 before orders 𝑗 and 𝑘, then both orders will finish later. In this
case, the value 𝜏′ is the sum of the increment in the holding cost of
orders 𝑗 and 𝑘. Similarly, the 𝛽′ value is the sum of the increment (if
any) in the tardiness cost of orders 𝑗 and 𝑘.

At each iteration, we find the list of insertions that have a 𝜆 value
greater than or equal to −𝜂, where 𝜂 is a threshold factor that is
calibrated in the experiments section. This list of insertions is called
the Candidate List, or 𝐶𝐿, and depends on the value of 𝜂:

𝐶𝐿(𝜂) = {(𝑖, 𝑗, 𝑘) ∶ 𝜆𝑖𝑗𝑘 ≥ −𝜂}. (9)

In this heuristic algorithm, we choose the insertion in the 𝐶𝐿 with the
largest 𝜆 value.

After an insertion is chosen and the partial solution is updated
(the order is assigned and removed from the list of pending orders),
we repeat the process with the remaining pending orders. Then, we
repeat this process with the remaining pending orders until no feasible
insertion generates a 𝜆 value greater than or equal to −𝜂, and in this
case, the algorithm ends.
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3.2. Randomization

The previous constructive phase builds a feasible solution in a
greedy way: at every iteration, the best insertion (the insertion with
the largest 𝜆 value) is chosen. To further explore the feasible region,

e use randomization when choosing the insertion. Instead of choosing
he insertion with the largest 𝜆 value in the CL, we randomly choose
ne element from a list formed by the insertions with 𝜆 value greater

than a given threshold (named Restricted Candidate List, or RCL). The
RCL depends on a parameter 𝜌 ∈ [0, 1] as follows:

𝑅𝐶𝐿(𝜌, 𝜂) = {(𝑖, 𝑗, 𝑘) ∈ 𝐶𝐿(𝜂) ∶ 𝜆𝑖𝑗𝑘 ∈ [𝜆max − 𝜌(𝜆max − 𝜆min), 𝜆max]}, (10)

where 𝜆min = min(𝑖,𝑗,𝑘)∈𝐶𝐿(𝜂) 𝜆𝑖𝑗𝑘 and 𝜆max = max(𝑖,𝑗,𝑘)∈𝐶𝐿(𝜂) 𝜆𝑖𝑗𝑘. Note that
the best value in 𝐶𝐿(𝜂) would be 𝜆max, and the worst value in 𝐶𝐿(𝜂)
would be 𝜆min. Note also that when 𝜌 is closer to 1, the size of the RCL is
larger. In addition, 𝜌 = 0 means that the algorithm is completely greedy
(we only keep the insertion with the best value), and 𝜌 = 1 means that
the algorithm is completely random (considering only insertions that
yield a 𝜆 value greater than the threshold 𝜂).

The value of 𝜌 is calibrated in the experiments section. The algo-
rithm is run during the available CPU time (denoted as 𝑡max), and we
keep the best solution obtained.

To avoid getting stuck in local optima, we keep track of the number
of iterations without an improvement in the objective. If 𝐼 ∈ Z+ iter-
ations of the algorithm are run without improvement in the objective,
then the value of 𝜃 is updated. The algorithm begins with 𝜃 = 𝜃1 and,
after 𝐼 iterations without improvement, we update 𝜃 = 𝜃2. After another
𝐼 iterations without improvement, we update 𝜃 = 𝜃3, which remains
with the same value until the rest of the run. The value of 𝐼 is calibrated
in the experiments.

Algorithm 1 shows a pseudocode of the metaheuristic proposed. In
this pseudocode, we use the following new notation: 𝐵𝑒𝑠𝑡𝑉 𝑎𝑙 refers to
the best objective value found; 𝑛𝑜_𝑖𝑚𝑝 refers to the number of iterations
without finding a better solution; 𝑃𝑒𝑛𝑑𝑖𝑛𝑔𝑂𝑟𝑑𝑒𝑟𝐿𝑖𝑠𝑡 is the list of orders
that have not been assigned to a machine yet; 𝑎𝑑𝑑𝑒𝑑 is a binary
variable to check if at least one insertion can be added to the CL;
𝑀𝑎𝑐ℎ𝑖𝑛𝑒𝑃 𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑖 is the list of potential positions of machine 𝑖 where
a new order can be inserted; and 𝑁𝑒𝑡𝐵𝑒𝑛𝑒𝑓𝑖𝑡 is the objective value of
the feasible solution found. We note that if 𝜃 has been updated to 𝜃3,
then 𝜃 remains with the same value for the rest of the available time.

4. Experiments

This section summarizes the computational experiments performed
in order to assess the performance of the MILP, and the quality of the
solution returned by the metaheuristic. For this aim, random instances
were generated with number of orders 𝑛 ∈ {10, 15, 20} and number of
machines 𝑚 ∈ {2, 3, 4}. Each of the 9 possible combinations of 𝑛 and 𝑚
was replicated 20 times randomly, which results in a total of 9×20 = 180
instances. These instances were divided into two groups, namely, a
training set (where the metaheuristic algorithm was calibrated) and an
evaluation set (where the metaheuristic algorithm and the MILP were
compared). The input data were generated following the distributions
detailed below ( [𝑢,𝓁] denotes a discrete uniform distribution between
𝑢 and 𝓁):

1. 𝑝𝑖𝑗 =  [10, 50], ∀ 𝑖, 𝑗.
2. 𝑠𝑖𝑗𝑘 =  [10, 50], ∀ 𝑖, 𝑗, 𝑘.
3. 𝑏𝑗 =  [300, 350], ∀ 𝑗.
4. 𝑟𝑗 =  [0, 20], ∀ 𝑗.
5. 𝑑𝑗 = 𝑟𝑗+ [0, 100], ∀ 𝑗, in this way the due date (𝑑𝑗) is not before

the release date (𝑟𝑗).
6. 𝜏𝑗 =  [1, 3], ∀ 𝑗.
7. 𝛽𝑗 =  [10, 30], ∀ 𝑗.
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8. 𝛼𝑖 =  [1, 10], ∀ 𝑖.
𝐵𝑒𝑠𝑡𝑉 𝑎𝑙 = 0
𝑛𝑜_𝑖𝑚𝑝 = 0
𝜃 = 𝜃1
while 𝑡𝑖𝑚𝑒 < 𝑡max do

𝑛𝑜_𝑖𝑚𝑝 + +
𝑃𝑒𝑛𝑑𝑖𝑛𝑔𝑂𝑟𝑑𝑒𝑟𝐿𝑖𝑠𝑡 = 𝑁
𝐶𝐿(𝜂) = ∅
𝑎𝑑𝑑𝑒𝑑 = 1
while 𝑎𝑑𝑑𝑒𝑑 = 1 do

𝑎𝑑𝑑𝑒𝑑 = 0
foreach 𝑗 ∈ 𝑃𝑒𝑛𝑑𝑖𝑛𝑔𝑂𝑟𝑑𝑒𝑟𝐿𝑖𝑠𝑡 do

foreach 𝑖 ∈ 𝑀 do
foreach 𝑘 ∈ 𝑀𝑎𝑐ℎ𝑖𝑛𝑒𝑃 𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑖 do

Compute 𝜆𝑖𝑗𝑘
if 𝜆𝑖𝑗𝑘 > −𝜂 then

𝐶𝐿(𝜂) = 𝐶𝐿(𝜂) ∪ {(𝑖, 𝑗, 𝑘)}
𝑎𝑑𝑑𝑒𝑑 = 1

end
end

end
end
if 𝑎𝑑𝑑𝑒𝑑 = 1 then

Compute 𝑅𝐶𝐿(𝜌, 𝜂)
Randomly choose one element (𝑖∗, 𝑗∗, 𝑘∗) ∈ 𝑅𝐶𝐿(𝜌), and
update the current solution accordingly

𝑃𝑒𝑛𝑑𝑖𝑛𝑔𝑂𝑟𝑑𝑒𝑟𝐿𝑖𝑠𝑡 = 𝑃𝑒𝑛𝑑𝑖𝑛𝑔𝑂𝑟𝑑𝑒𝑟𝐿𝑖𝑠𝑡 ⧵ {𝑗∗}
end

end
Compute value of complete solution: 𝑁𝑒𝑡𝐵𝑒𝑛𝑒𝑓𝑖𝑡
if 𝑁𝑒𝑡𝐵𝑒𝑛𝑒𝑓𝑖𝑡 > 𝐵𝑒𝑠𝑡𝑉 𝑎𝑙 then

𝐵𝑒𝑠𝑡𝑉 𝑎𝑙 = 𝑁𝑒𝑡𝐵𝑒𝑛𝑒𝑓𝑖𝑡
𝑛𝑜_𝑖𝑚𝑝 = 0

end
if 𝑛𝑜_𝑖𝑚𝑝 = 𝐼 and 𝜃 ≠ 𝜃3 then

Update 𝜃
𝑛𝑜_𝑖𝑚𝑝 = 0

end
end
Return 𝐵𝑒𝑠𝑡𝑆𝑜𝑙

Algorithm 1: Pseudocode of the metaheuristic algorithm.

9. 𝛿𝑖 =  [50, 100], ∀ 𝑖.

We chose the parameters in these ranges to ensure some variability in
the results with respect to the number of orders accepted, the number
of orders delayed, etc. We consider the initial setup of machine 𝑖 for
order 𝑘 to be 𝑠𝑖𝑘𝑘.

Besides, and in order to better assess the performance of our meta-
heuristic, we also propose a set of large instances. In this set, the
number of jobs varies in 𝑛 ∈ {60, 80, 100, 120}, and the number of
machines varies in 𝑚 ∈ {8, 12, 16}. Each combination of 𝑛 and 𝑚 is
randomly replicated 10 times, the input data for these instances being
randomly generated in the same way as explained before. Therefore,
this set contains a total of 4 × 3 × 10 = 120 instances.

The MILP was run on a Windows 10 computer with 8 GB of RAM
memory and an AMD Opteron 2600 MHz processor with two cores,
programmed in GAMS and solved with CPLEX 12.9. The metaheuristic
algorithm was coded in Microsoft Visual Studio 2019 using C# and run
on virtual machines with 2 virtual processors and 8 GB of RAM mem-
ory, which are virtualized in an OpenStack virtualization framework
supported by 12 blades. Each blade has four 12-core AMD Opteron Abu
Dhabi 6344 processors running at 2.6 GHz and 256 GB of RAM. No
parallel computing is performed.
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Table 2
Calibration of the size of the RCL.
𝜌 0 0.25 0.5 0.75 1

mean 431.55 485.69 489.31 488.86 487.29

Table 3
Calibration of the maximum number of instances without improvement.
𝐼 100 100 nm 1000 nm

mean 475.2218 477.2676 477.1293

Table 4
Calibration of the threshold.
𝜂 0 10 50 100 200

mean 498.4600 497.8126 491.3163 469.9874 425.1215

4.1. Results over the training set

In this section, we calibrate some parameters of the metaheuristic
algorithm.

• The size of the restricted candidate list 𝜌, for which the following
five levels are tested: {0, 0.25, 0.5, 0.75, 1}.

• The number of iterations without improvement 𝐼 , for which the
following three levels are tested: {100, 100 × 𝑛 × 𝑚, 1000 × 𝑛 × 𝑚}.

• The threshold 𝜂, for which the following five levels are tested:
{0, 10, 50, 100, 200}.

ach of the 90 instances was run for each possible combination of the
factors tested, which resulted in a total of 90 × 5 × 3 × 5 = 6750 runs

f the metaheuristic algorithm.
In order to calibrate the metaheuristic, an analysis of variance

ANOVA) was performed, with the objective value as the response
ariable, the three parameters tested as factors, removing the effect
n the variability produced by the instances themselves. The results
howed that both 𝜌 and 𝜂 significantly affect the average objective
alue (𝑝-value < 2𝑒−16). However, the number of iterations without
mprovement does not seem to affect the average objective value
𝑝-value = 0.361). We now analyze the three factors independently.

.1.1. Calibration of the RCL size (𝜌)
Table 2 shows the average results for each value of 𝜌. We observe

that the best average value is found for 𝜌 = 0.5. Therefore, this level
was used to assess the quality of the metaheuristic algorithm in the
evaluation set of instances.

4.1.2. Calibration of the maximum number of instances without improve-
ment (𝐼)

Table 3 shows the average objective value for each of the values
tested in this factor. Although we have seen that the number of itera-
tions does not significantly affect the average objective value, we chose
for the evaluation set the value 100𝑛𝑚, as it showed the best average
results.

4.1.3. Calibration of the threshold (𝜂)
Table 4 shows the average results obtained for the different values

of 𝜂. We observe that the metaheuristic yields the best average results
when this parameter is set to 0. Therefore, we chose this value the
metaheuristic will be run with this value in the evaluation set.

4.2. Results over the evaluation set

We now evaluate both the MILP and the metaheuristic over the
evaluation set of instances.
7

4.2.1. Results of the MILP
Table 5 shows the average results obtained by the MILP, grouped

according to the number of orders (𝑛) and the number of machines
(𝑚). The other columns of the table are the terms that constitute the
objective function: 𝑍 = the global objective value, 𝐵 = gross benefit,
𝑉 = machine variable cost, 𝐹 = machine fixed cost, 𝐻 = holding
costs and 𝑇 = tardiness costs. We also show in the last column the
percentage of rejected orders in the solutions found. We observe that
there is a proportion of rejected orders, which means that the expenses
that would be generated when processing them do not compensate for
the benefit returned. We also observe that there are tardiness costs,
which means that there are orders that cannot be delivered on time,
and they are still profitable.

From a computational perspective, we observe in Table 6 that,
except in nine instances, the MILP reaches the optimal solution in less
than one hour. The nine instances in which the optimality was not
found belong to the groups with 𝑛 = 20 orders and 𝑚 = {3, 4} machines.

We run these nine instances again by allowing three hours of CPU
ime, with the results shown in Table 7. Instance names reflect the
umber of orders, number of machines, and instance number within
ts group (in this order). In the table we detail, for each instance, the
bjective value (𝑍), the upper bound (𝑈𝐵) and the MILP GAP for both
he run with one hour of the maximum time (subindex 1) and the run
ith three hours of maximum time (subindex 3). The last two columns

how the improvements in the objective value and GAP.
We observe an improvement in the upper bounds and, therefore, in

he gaps of the nine instances. However, we also observe that only in
hree of the nine instances there was an improvement in the objective
alue. This fact suggests that we may have reached the maximum
ize for which optimal solutions to this problem can be found in a
easonable amount of time.

.2.2. Metaheuristic results
In Table 8, we see the average results obtained by the metaheuristic

lgorithm with the optimal factor levels found in the training set
𝜌 = 0.5, 𝐼 = 100𝑛𝑚, 𝜂 = 0). For each instance, the metaheuristic
lgorithm was run for a maximum time of 𝑚𝑛 seconds. For each group
f instances, column RPD shows the average relative percent deviation
f the solution, which is computed as follows:

𝑃𝐷 = 100
𝑍𝑀𝐼𝐿𝑃 −𝑍𝑚𝑒𝑡𝑎ℎ𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐

𝑍𝑀𝐼𝐿𝑃
,

where 𝑍𝑀𝐸𝑇𝐻𝑂𝐷 refers to the best objective value found by the cor-
responding method. Column OPT_MH(%) shows the percentage of op-
timal solutions found by the metaheuristic algorithm (among those
instances in which the MILP did prove optimality). Finally, Column
t_Best (Sec.) shows the average time when the algorithm found its best
solution.

It can be observed that the average RPDs are quite low (all of them
were less than 1%, except in the group of 20 orders and 2 machines).
In addition, for the groups of instances in which the MILP did not find
all optimal solutions, the metaheuristic algorithm already yields better
objective values on average (negative RPD). Additionally, in terms of
optimal solutions found, the metaheuristic reports satisfactory results
and finds on average 95% of the optimal solutions in the instances
tested. In addition, even though the metaheuristic algorithm was run
for 𝑚𝑛 seconds, it found the best solution quite rapidly (for most groups
of instances, an average of less than a second), as opposed to the much
longer running times needed by the MILP.

4.3. Results over the large set

In this section we test the performance of the metaheuristic over the
set of large instances. It is worth mentioning that the MILP cannot find
a feasible solution in one hour, even for the smallest group of instances
of this set. This set of larger instances also allows us to compare
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Table 5
Summary of results for MILP.
𝑛 𝑚 𝑍 𝐵 𝑉 𝐹 𝐻 𝑇 Rejected (%)

10 2 232 716.6 143.6 109.9 221.3 9.8 78
15 2 397.6 1172.5 246.6 131.2 319.2 77.9 76
20 2 321.2 1252.8 377.1 141.5 392.3 20.7 81
10 3 425.9 1451.6 376.5 202.4 431.4 15.4 56
15 3 452.8 1624.4 401.6 213.3 535 21.7 67
20 3 737.5 2120.4 498.5 218.7 637 28.7 67
10 4 515.5 1651.6 353.1 220.9 515.7 46.4 49
15 4 595.6 1805.2 404.8 248 516.9 39.9 63
20 4 790.1 2420 546.3 269.9 777.3 36.4 63

Average 496.5 1579.5 372.0 195.1 482.9 33.0 66.7
Table 6
Summary of the time and GAP results for MILP allowing for a time limit
of 60 min of CPU time.
𝑛 𝑚 𝑍 Seconds GAP (\%)

10 2 232 2 0.0
15 2 397.6 24 0.0
20 2 321.2 378 0.0
10 3 425.9 3 0.0
15 3 452.8 44 0.0
20 3 737.5 1815 8.8
10 4 515.5 5 0.0
15 4 595.6 123 0.0
20 4 790.1 2859 31.5

Average 496.5 583.6 4.5

our metaheuristic with a state-of-the-art algorithm for a related prob-
lem, adapted to our problem. More specifically, we have adapted the
memetic algorithm proposed in He et al. (2019). In brief, this algorithm
combines a biased random-key genetic algorithm (see Gonçalves and
Resende (2011)) and a large neighborhood search algorithm (see Demir
et al. (2012)). The main change we had to make to adapt this algorithm
was in the crossovers of the genetic algorithm, since the original
algorithm was proposed for a single machine problem, and our problem
has multiple machines. For this, we use the crossover operator proposed
in Vallada and Ruiz (2011), since it showed very good results in a
parallel machine problem with sequence-dependent setup times.

Table 9 shows the average RPD of the two algorithms at the differ-
ent instance sizes (20 instances per group). For each group of instances,
column 𝑅𝑃𝐷_𝑀𝐴(%) shows the average RPD of the memetic algorithm
and column 𝑅𝑃𝐷_𝑆𝐺 shows the average RPD of our semi-greedy
lgorithm. The last row shows the average RPD over all instances in
his set. We observe that for all groups of instances, the semi-greedy
lgorithm proposed in this paper yields better results than the memetic
lgorithm with the same computing time, being the average RPD of the
emetic 11.59% and the average RPD of our algorithm 0.01%. We also

bserve that in all groups except 80 × 16 and 120 × 16, the average
RPD of our algorithm is 0.00 (meaning that our algorithm always found
the best solution). In the other two groups, the average RPD of our
algorithm is 0.07%. We checked that only in one instance of each of
those group of instances, our algorithm returned a worse solution than
the memetic algorithm.

5. Managerial insights

To derive managerial insights, we generate 100 new instances in-
spired by the mentioned problem at Sonoco Company (Bloemen and
Menezes, 2019a,b). All of them have 𝑚 = 5, 𝑛 = 30. The rest of the
input data are generated as follows.

• Processing times. Let 𝑝𝑗 = 𝑧𝑒𝑡𝑎(𝑠ℎ𝑎𝑝𝑒 = 1.5). This distribution rep-
resents a Pareto-like distribution for the order size: few orders are
large, and many orders are small (the case of Sonoco company).
We define 𝑝 = 𝑝 + [0, 1]. In this way, we add some noise, which
8

𝑖𝑗 𝑗
means that not all machines need the same processing time for the
same order.

• Setup times. Let 𝑠𝑗𝑘 =  [1, 3], from which we set 𝑠𝑖𝑗𝑘 = 𝑠𝑗𝑘 +
 [0, 1]. In this way, the machines are unrelated.

• Revenues: 𝑏𝑗 = 100𝑝𝑗 . Revenue depends on the order size.
• Release times: 𝑟𝑗 =  [0, 5]. Release times are randomly dis-

tributed from 0–5.
• Due dates: 𝑑𝑗 = (𝑟𝑗 + 𝑝𝑗 ) [1, 2]. Due dates depend on the release

dates plus the base processing time and are multiplied by 1 or 2
(chosen randomly).

• Holding cost: 𝜏𝑗 =  [1, 3]. The holding cost is randomly chosen.
• Tardiness penalty cost: 𝛽𝑗 = 𝜏𝑗 +  [1, 3]. The tardiness cost is

larger than the holding cost.
• Variable cost of machines: 𝛼𝑖 =  [70, 90].
• Fixed cost of machines: 𝛿𝑖 =  (50, 100).

Machine costs (both variable and fixed) are chosen so that net profit is
approximately 80% of revenues.

In the rest of this section, we perform a sensitivity analysis on
the holding cost (𝜏𝑗) and tardiness penalty cost (𝛽𝑗) as follows. We
simulate that both of these costs are estimated wrongly, by modifying
them. For each instance, we generate 49 new instances, in which
𝜏𝑗 = 𝜏𝑗𝛾𝑡 (with 𝛾𝑡 ∈ {0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75}) 𝛽𝑗 = 𝛽𝑗𝛾𝑏 (with
𝛾𝑏 = {0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75}). In this way, for each instance, we
have a 7 × 7 table. In each cell, we modify the reference instances
(reference instances are those in which 𝛾𝑡 = 𝛾𝑏 = 1).

We will see that changes in these parameters (the holding cost and
penalty cost) imply substantial changes in the solutions. Besides, we
will also check that forcing orders to be accepted has a negative impact
on net profit, and that such impact follows a concave function.

5.1. Impact of holding and tardiness costs

The distribution of profits for a given combination of tardiness and
holding costs can be seen in Fig. 2. Figs. 2 (1a), (1b), and (1c) show
box-and-whisker plots of profits on the 𝑦-axis for the problems defined
above. In each of the three plots, we fix holding (tardiness) costs, which
are represented by a dark (light) box plot, to the value shown on the
legend on the right, while in the 𝑥-axis, we vary the tardiness (holding)
costs. These box-and-whisker plots show up through the third quartile
completely but cut short of showing the last quartile. From Figs. 2 (1a),
(1b), and (1c), we can see that profits can be as low as zero. The median
profit, which is marked by a white horizontal line, shows the expected
trend that as holding and tardiness costs increase, then median profits
decrease.

Figs. 2 (1d), (1e), and (1f) show the corresponding acceptance
fraction of the total orders (vertical axis) when optimally choosing
orders that maximize profits. The same lines of the plots on the left
column show the accepted fraction of orders on the 𝑦-axis for the
problems defined above. In each of the three plots, we fix holding
(tardiness) costs, which are represented by a dark (light) box plot, to
the value shown on the legend on the right, while in the 𝑥-axis, we vary
the tardiness (holding) costs. The conclusion is that for lower tardiness
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Table 7
Improvement when increasing the maximum CPU time allowed from 60 to 180 min.
Instance 𝑍3 𝑈𝐵3 𝐺𝐴𝑃3 𝑍1 𝑈𝐵1 𝐺𝐴𝑃1 𝑍3 −𝑍1 𝐺𝐴𝑃1 − 𝐺𝐴𝑃3

I_020_03_6 1482 2364.23 37.32 1482 2442.29 39.32 0 2.00
I_020_03_9 1313 2255.38 41.78 1190 2341.03 49.17 123 7.38
I_020_04_0 636 636.00 0.00 636 983.58 35.34 0 35.34
I_020_04_1 1021 1626.44 37.22 1021 1723.65 40.77 0 3.54
I_020_04_3 1197 1594.24 24.92 1197 1814.70 34.04 0 9.12
I_020_04_4 1177 2074.34 43.26 1119 2149.66 47.95 58 4.69
I_020_04_5 1095 2277.06 51.91 1095 2342.32 53.25 0 1.34
I_020_04_8 774 1294.47 40.21 717 1463.32 51.00 57 10.79
I_020_04_9 767 1461.85 47.53 767 1637.42 53.16 0 5.63
w
t
l

b
m
p
b
l
i
w
b
q
i
o

t

Table 8
Summary of the results obtained by the metaheuristic algorithm.

n m t RPD (%) OPT_MH(%) t_Best (Sec.)

10 2 20 0.00 1 0.01
15 2 30 0.00 1 0.04
20 2 40 2.90 0.9 0.02
10 3 30 0.16 0.9 0.12
15 3 45 0.00 1 0.77
20 3 60 −0.72 0.875a 0.20
10 4 40 0.60 0.9 0.12
15 4 60 0.00 1 0.58
20 4 80 −0.31 1a 1.47

Average 0.29 0.95 0.37

aThe average was computed over the instances that were solved to optimality by the
MILP.

Table 9
Summary of results obtained by the metaheuristic algorithms over the large set.

n m t RPD_MA (%) RPD_SG (%)

60 8 60 8.36 0.00
80 8 80 16.07 0.00

100 8 100 8.88 0.00
120 8 120 12.91 0.00
60 12 60 11.63 0.00
80 12 80 13.29 0.00

100 12 100 11.55 0.00
120 12 120 11.97 0.00
60 16 60 9.79 0.00
80 16 80 8.54 0.07

100 16 100 14.42 0.00
120 16 120 11.66 0.07

Average 11.59 0.01

and holding costs, there is a relatively high acceptance of orders (close
to 75% of them), while when these costs are higher, the acceptance
ratio goes down to 25%.

Fig. 2 shows unconstrained situations. That is, decision makers
choose freely which orders to accept or not to optimize the firm’s
profitability. Such an unconstrained situation may not be the case,
because some orders need to be accepted regardless of their impact in
the final profits, and this is what we discuss next.

5.2. Required acceptance

As discussed in the Introduction, product proliferation permeates
many industries. Menezes et al. (2021) presents the case of a firm in
the packaging industry where the number of products grew one order
of magnitude in the last two decades. In this case, the firm, under
growth pressure, was accepting all orders that the sales department
would bring to the productive units.

To ellaborate on this fact, we solve the same set of instances and
fix both tardiness and holding cost factors to the value of 1. Besides,
we assume that a certain fraction 𝑓 ∈ {0.0, 0.25, 0.50, 0.75, 1.00} of the
orders (randomly chosen) are compulsorily accepted. The other orders
are chosen so as to maximize the net profit.
9
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Fig. 3 shows the average profits on the 𝑦-axis, as a fraction of the
unconstrained profit, for different levels, on the 𝑥-axis, of compulsory
order acceptance. When the level of compulsory acceptance is 25%,
average profits fall to approximately 85% of the unconstrained levels
and continue to fall for a higher level of compulsory acceptance until
the profits become negative (losses) when it is compulsory to accept
all orders. This result reflects what the authors of this article have
observed in several companies that they have recently worked with,
see Menezes et al. (2021): Profits decay in an increasing loss manner
as the constraint tightens the ability of the firm to choose the orders
that better fit their situation (capacity installed, tardiness and holding
costs, and setup costs).

Consequently, as seen in Fig. 3, profitability decays when companies
are forced to accept orders. One common behavior that we encounter
too often is when customers have sufficient power to impose a series
of less profitable orders. This often happens because they also order
profitable orders. Nonetheless, Fig. 3 does not tell the whole story.

Fig. 4 shows, in an analogous plot to the one presented in Fig. 3, the
distribution of profits for different levels of order acceptance through
box-and-whisker plots. The white line in each box represents the me-
dian values, and the small dark square marks the mean values (the
values shown in Fig. 3). When the level of compulsory acceptance is
zero, profits are at the maximum level and serve as a benchmark for
which we normalize all profits.

The average values are similar to Fig. 3, but the distribution of
profits presented in Fig. 4 shows that even for relatively low values of
compulsory acceptance, the risk of losses is already important. When
25% of orders are compulsorily accepted, there is already over 0.25
probability of losses (profits below the dot-dashed line that marks
zero profits). When this fraction increases to 50%, almost half of the
outcomes imply losses.

Our insights in this subsection are mediated by different values of
tardiness and holding costs. In the results presented in Fig. 4, both
tardiness and holding cost factors are 1. However, it is clear from Fig. 2
(1𝑑), (1𝑒), (1𝑓 ) that optimal solutions have fewer orders in the portfolio

hen these factors are higher. That is, when the factors are higher,
he total fraction of products produced is lower, the average profits are
ower (an unsurprising result), and the risk of losses is higher.

These results not only show that risk is substantially increased
ut also suggest that business unit performance is less dependent on
anagerial decisions and more dependent on the chance of particular
ressures for accepting orders. That is, companies with many compara-
le business units, such as those presented in Menezes et al. (2021), are
ikely to present a wide range of performance among the plants. The
ncrease in orders in the order portfolio, when compared to Fig. 2-(1𝑒),
hich is also said to increase structural complexity, has been observed
y Hyndman and Menezes (2021) to increase the variability of the
uality of decision making, which compounds the problem because the
ncrease in range reported herein is induced by the compulsory nature
f orders but is fully optimized otherwise.

Fig. 5 shows the distribution of the fraction of accepted orders and
he fraction of profits with respect to the unconstrained instance, when

5% of the orders are compulsory and different levels of tardiness and
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Fig. 2. Profit for different holding and tardiness costs.

Fig. 3. Average profits on the 𝑦-axis, as a fraction of the unconstrained profit, for different levels, on the 𝑥-axis, of compulsory order acceptance.
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Fig. 4. Average profits on the 𝑦-axis, as a fraction of the unconstrained profit, for different levels, on the 𝑥-axis, of compulsory order acceptance.
Fig. 5. Distribution of the fraction of accepted orders and profits for different levels of tardiness and holding costs (equally valued). All cases consider that a fraction 0.25 of all
orders must be accepted. The profits are normalized to the average profit when no orders must be accepted.
holding costs (equally valued) are considered. The profits are normal-
ized to the average profit when there is no minimum amount of orders
to be accepted in each of the different tardiness and holding costs. In
this figure, it is possible to see that the number of accepted orders
decreases slightly. However, the impact of profitability is substantial
as costs increase even when compared to profits obtained without
acceptance constraints, even if they are obtained with these same costs.

5.3. On the costs’ accuracy

A common concern when discussing the impact of complexity on
profits, as caused by product proliferation, is the loss of visibility
of the true value of operational parameters. The large number of
product variants and customers associated with these variants make
it difficult to precisely assess the costs. For example, a manufacturer
serving different customers may have different penalty fees for the
different customers. Even for the same buyer, the type of product and
the location of ownership transfer can impact the penalty fees. To
complicate matters even more, penalty fees are sometimes related to
a shipment that carries several products, which makes any penalty
cost allocation nearly impossible. Therefore, we focus in this section
on instances where tardiness and holding costs are miscalculated. In
particular, we are concerned with underestimating costs, which often
happens with products with small contributions. Firms often allocate
operational (nonvariable) costs based on each product’s contribution
11
to the total revenue. Therefore, products with lower contributions have
a smaller share of the cost allocation. Let 𝛽 represent the error factor
with respect to the correct cost. To illustrate, 𝛽 = 0.25 implies that a
parameter is estimated at a fraction equal to 0.25 of its corrected value.
Fig. 6 reports on the top (bottom) plot the profit losses that result when
holding (tardiness) costs are estimated as with error factor 𝛽 as shown
on the horizontal axis.

Profit losses due to underestimating tardiness costs come from late
delivery of orders whose penalty cost is more than the decision maker
thought. These late orders may bring friction with customers and
potential litigation.

Profit losses, from holding cost underestimation, come mostly from
accepting nonvalue adding orders and holding them for a long period
before ownership is transferred. These costs also negatively impact the
length of the cash-to-cash cycle time, create a financial burden and
increase the firm’s operational risk.

Fig. 6 shows that when the value of 𝛽 is lower, the profit losses
are higher. Moreover, profit losses that originate from underestimating
holding costs not only are higher in absolute value than those that
originate from miscalculating tardiness costs, but also have a higher
dispersion, which implies a higher risk exposure.

6. Conclusion

We present in this paper an acceptance order scheduling problem,
considering different costs related to both orders and machines. We
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Fig. 6. These plots show the profit losses resulting from solving the heuristic algorithm
when holding (tardiness) costs are estimated as 𝛽 times its correct value. Profit losses
are the amount lost beyond the objective function value using the correct value of each
parameter.

have formulated it as a MILP model and have introduced an effi-
cient metaheuristic heuristic approach for addressing reasonably large
instances. Extensive numerical tests empirically prove that the meta-
heuristic returns good-quality solutions in short CPU times. Besides,
we also compare our metaheuristic with a state-of-the art algorithm
for a similar problem, and conclude that our approach finds better
solutions. Therefore, our paper contributes to numerical approaches for
addressing the problem.

Based on the quality of the results in the numerical tests, we focus
on the impact of compulsory order acceptance and the effect that it
has on portfolio size and on both profitability and risk. We find that,
as expected, by increasing the fraction of orders that must be accepted,
profitability suffers. We note that even though profitability loss may
not be dramatic in expectation (i.e., not leading to negative profits),
the fraction of instances that end up with negative profits can be
substantial. As an example from our reported numerical experiments,
when some 25% of the potential orders are imposed to be accepted,
profit losses are less than 20% of the optimal profit. This could be a
reasonable price to pay, for example, to keep some customers happy.
However, over 25% of the cases indeed result in negative profits.
We have other insights from the managerial perspective, such as the
misjudgment of the values of tardiness and holding costs.

The important managerial insights obtained call attention to the fact
that when order acceptance is imposed, the financial performance of
the business units can go from being minimally impacted to strongly af-
fected. That is, the randomness of the profile of the orders imposed may
be a much more important factor that impacts performance than the
quality of the managerial decisions. That is, management performance
becomes a matter of luck! This insight explains some significant gaps in
performance in real business units that we recently encountered in our
collaboration with some companies, where managers show frustration
for not being able to better explain why their business unit is not
performing at par with other business units that belong to the same
company. This issue seriously impacts motivation and may affect entire
career progressions.

We close this paper by pointing out that our work has taken a
static point of view, which is sometimes the case. That is, all customers
express their needs before the first unit is produced so the decision
maker can select which orders to accept or not. Some other times,
orders come at random times, and the acceptance or not of an order will
impact, in a probabilistic manner, future profits. This dynamic setting
12
Table 10
Local search preliminary test.

Jobs Machines RPD without LS (%) RPD with LS (%)

10
2 0.00 0.00
3 0.00 0.00
4 0.00 0.00

15
2 0.00 0.00
3 0.00 0.00
4 0.00 0.15

20
2 0.00 4.26
3 0.00 0.13
4 0.00 0.05

has not been explored and may lead to even more interesting insights.
Another direction to explore in the future is related to the mathematical
properties of our objective function. Although we have not been able
to prove any particular property, we believe based on the numerical
results that profits are a submodular decreasing function in the set of
orders accepted. This is an important mathematical result and could
constitute a paper by itself.

Data availability

Data will be made available on request
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Appendix

Table 10 shows the preliminary tests performed with the local
search. We observe that the average RPD is better for the algorithm
without a local search when the size of the instances increases.
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