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Abstract A precise characterization of the articular

disc of the temporomandibular joint (TMJ) is essen-

tial to study the masticatory biomechanics. The disc is

responsible for the load distribution over the articular

surface and for absorbing impacts during mastication.

The main objective of this work is to characterize the

mechanical behaviour of the articular disc under com-

pression, the usual stress state during mastication. A

quasi-linear viscoelastic (QLV) model, with a hypere-

lastic response for the elastic function, is proposed to

describe the mechanical behaviour of the articular disc.

The validity of that simplified model relies on the in-

dependence of their constants with the strain level and

strain rate. The independence of the strain level was

proved in a previous work. In this paper, different load-

ing rates were tested to fully confirm the validity of the
model in the physiological range of loads. Moreover, the

strong non-linearity of the stress-strain relation made

the exponential strain energy function the most suitable

of the different models tried to represent the elastic re-

sponse of the QLV model.
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1 Introduction

Disorders in the temporomandibular joint (TMJ) are

very common and most of them are related to a mal-

function of the articular disc [1]. The articular surfaces

of the TMJ are highly incongruent, what could pro-

duce high contact loads in the articulating surfaces. The

presence of the articular disc prevents high stresses by

absorbing the loads and distributing them over larger

contact areas.

In vivo measurements are difficult to perform in the

articular disc, mainly due to the inaccessibility of the

joint. Biomechanical models represent an alternative

tool to study the TMJ, but it is important to have a

proper constitutive models of the tissues involved and

specially of the disc. This is also important in tissue
engineering applications that require to mimic the me-

chanical behaviour of the joint. For instance, replace-

ment of the articular disc has been proposed as a clinical

solution for a large number of patients suffering from

TMJ disc disorders [2].

The articular disc is a fibrocartilage made up of an

extracellular matrix and variable amounts of cells. The

matrix is composed of macromolecules (mainly type II

collagen and proteoglycans) and interstitial fluid, repre-

senting 65− 85% of the wet weight of the disc [3]. Pro-

teoglycans are hydrophilic molecules and, thus, cause

an impedance to the fluid flow through the extracel-

lular matrix. Fibrocartilage contains less proteoglycans

than hyaline cartilage, thus facilitating the fluid flow.

This fact allows simulating the behaviour of the first

one with a viscoelastic model instead of more complex

formulations like poroelastic or biphasic models, which

rely upon modelling the drag force between the fluid

and the solid matrix [4]. It is precisely the simplicity of

viscoelastic models what makes them more interesting
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than poroelastic models for modelling purposes and this

is the principal aim of this paper: to propose a simple

mechanical model and check whether it can still capture

the behaviour of the TMJ disc.

The mechanical behaviour of the TMJ disc has been

characterized in many studies. However, the test con-

ditions varied greatly, including different species, strain

rates and levels of strain or stress. Particularly, Chin

et al. [5] evaluated the viscoelastic properties of human

articular discs in compression by comparing the elastic

moduli obtained at two different loading rates. They

obtained an elastic modulus of 0.2 and 0.5 MPa for

the loading rates of 0.04 mm/min and 0.08 mm/min,

respectively. Beek et al. [6], performed dynamic inden-

tation tests in human discs, at 3 positions in the an-

teroposterior axis, obtaining elastic moduli between 20

and 60 MPa depending on the analysed region. Later,

del Pozo et al. [7] evaluated the viscoelastic properties

of bovine discs in five areas, obtaining similar average

moduli: anterior (17.4 MPa), central (15.7 MPa), pos-

terior (16 MPa), lateral (14.7 MPa) and medial regions

(14.4 MPa).

Several authors adjusted the relaxation curve ob-

tained in compressive stress relaxation tests to a Kelvin

model. For example, Tanaka et al. [8] did that in ca-

nine discs, obtaining the following mean values: instan-

taneous modulus E0 = 30.9 MPa, relaxed modulus

E∞ = 15.8 MPa and relaxation time τ1 = 31.2 s. In

bovine discs, del Pozo et al. [7] obtained the following

ranges: E0 = 14.6÷ 17.3 MPa, E∞ = 1.12÷ 2.32 MPa

and τ1 = 6.2÷44.1 s. Allen and Athanasiou [4] obtained

the following ranges in porcine discs: E0 = 0.4 ÷ 1.9

MPa, E∞ = 0.10 ÷ 0.17 MPa and τ1 = 32.5 ÷ 64.5 s,

with a great influence of the studied region. But, the

region cannot explain by itself the great differences be-

tween their results and those obtained by the previous

authors. The strain rate could also be behind such dif-

ferences. For instance, del Pozo et al. [7] obtained higher

elastic moduli than Allen and Athanasiou [4], but using

higher strain rates.

This strain rate refers to the slope of the ramp ap-

plied in the relaxation test. Theoretically, a relaxation

test imply the application of an instantaneous (Heavi-

side or step) strain. However, applying a step strain is

impossible from a practical point of view, and even re-

placing the step by a very fast ramp is impractical since

“transient stress waves will be induced in the specimens

and a recording of the stress response will be confused

by these elastic waves”, as Fung states [9]. Instead, a

ramp with a finite (though high) strain rate must be ap-

plied. The problem of doing this is that the viscoelastic

constants could depend on the strain rate. That would

reveal the necessity of a non-linear viscoelastic model

and would be the case of the articular disc as appears

from the referred results.

The strain rate is not the only influencing factor.

Chin et al. [5] used strain rates much lower than Allen

and Athanasiou [4], but obtained similar elastic mod-

uli. This could be due to the non-linearity of the stress-

strain relation and the different strain levels applied

in the respective experiments. Such non-linearity, not

considered by those authors, is another important fac-

tor to be addressed in the material model of articu-

lar discs. For example, Koolstra et al. [10] proposed a

four-mode Maxwell model with the elastic part follow-

ing a Mooney-Rivlin model and fitted the constants of

the model from the shear dynamic tests performed by

Tanaka et al. [11]. Lamela et al. [12] performed uncon-

fined compression in porcine articular discs and fitted

the results with Prony series in which the relaxation

moduli were functions of the strain.

These previous results highlight the necessity of us-

ing nonlinear viscoelastic models to simulate the be-

haviour of articular discs. The aforementioned works

used simple nonlinear viscoelastic models, as an alter-

native to the complex fully nonlinear models. Another

alternative is the quasi-linear viscoelastic (QLV) model,

proposed by Fung [9] and widely applied to soft tis-

sues [9, 13–15], but not yet to TMJ discs, as far as

we know. The advantage of the QLV model is that its

constants can be fitted from relatively simple experi-

ments, such as uniaxial compression. However, for the

QLV model to be appropriate for a certain material, the

constants fitted from experimental tests must be inde-

pendent of the strain input (strain rate and maximum

strain). In a previous work [16], it was seen that the

maximum strain applied in stress relaxation tests did

not affect those constants in the case of articular disc

of pigs. However, the dependence of the QLV constants

on the loading rate has not been checked yet.

The objective of this work is to describe the vis-

coelastic behaviour of the articular disc of pigs by per-

forming stress relaxation tests at different strain rates.

More precisely, the aim is to check the validity of a QLV

model for that tissue, by showing the independence of

its constants on the strain rate. Moreover, different hy-

perelastic models will be tried for the elastic part of the

QLV model in order to choose the most appropriate one

for this particular tissue.

2 Materials and methods

2.1 Extraction of samples

The articular discs were taken from large white pigs

(aged from 8 months to 1 year) immediately after slaugh-
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ter. A single cylindrical sample was extracted from the

central region of each disc, where the thickness is more

uniform (see figure 1). The samples were extracted in

two phases: 1) using a hollow punch of 10 mm in di-

ameter to allow the relaxation of prestresses, which de-

formed the sample, and 2) with a hollow punch of 5 mm

to get an approximately circular cross section [17]. Af-

ter extraction, the samples were photographed to mea-

sure their area through imaging techniques, so provid-

ing an equivalent diameter (ϕeq), given in table 1. The

thickness of the samples was measured using optic mi-

croscopy at 8 points equally spaced over the periphery

plus the middle point of each sample [17] (see fig. 2).

The average of these 9 measurements were taken as the

sample’s thickness (L) and the difference between the

maximum (Lmax) and minimum thickness (Lmin) was

used to characterize the variation in thickness,∆L. This

variation must be small to ensure a uniaxial stress state,

as established in a previous work [17]. In this work a

criterion was established to reject those samples with

an excessive ∆L, as a function of the diameter and the

average thickness. This criterion was followed to finally

accept 45 out of the 70 extracted samples.

Anterior

φ = 5 mm

Posterior

L
at
er
al

M
ed
ia
l

1 cm

Fig. 1 Porcine articular disc of the temporomandibular joint,
superior view. The region selected to extract the sample is
indicated in dashed line.

Table 1 Dimensions (mean± SD) of the cross sectional area,
diameter, average thickness and variation in thickness mea-
sured in samples of porcine articular discs.

Area (mm2) ϕeq(mm) L (mm) ∆L (mm)
17.98 ± 1.81 4.78 ± 0.24 2.14 ± 0.43 0.53 ± 0.28

After extraction, the samples were individually: 1)

wrapped in saline-soaked gauze, 2) enveloped in a plas-

tic film and introduced in hermetic vials to prevent de-
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Fig. 2 Left: scheme of the testing device. (A) loading cell,
(B) inferior platen, (C) upper platen; (D) temperature con-
trolling system, (E) acquisition system. Right: schematic ge-
ometry of a real sample (solid line): lateral and upper view.
The dots represent the points where the thickness of the sam-
ple was measured.

hydration and 3) frozen at −20◦C until testing. Based

on previous studies, the viscoelastic properties of the

samples are not affected by freezing if kept under these

conditions [18,19].

2.2 Test protocol

Apart from the uniformity of thickness, other test con-

ditions with an influence on the stress state in the sam-

ple were studied in a previous work [20]: the portion of

the specimen fixed to the platen and the friction coeffi-

cient between the platen and the non-fixed areas of the

sample. The samples were fixed to the inferior platen

with a circular piece of double-faced adhesive of 1 mm

in diameter, stuck to the center of the sample. This size

is small enough to achieve a stress state close to uniaxial

in samples of diameter 5 mm [20]. In addition, vaseline

was spread on the surface of both platens to reduce the

friction in the non-fixed areas, as recommended in [20].

A servo-hydraulic testing machine (858 Mini Bionix II,

MTS) was used for the tests. In figure 2 a schematic

representation of the testing device is shown.

The samples were tested the day after extraction.

First, they were submerged in saline solution at room

temperature and allowed to thaw. Next, they were fixed

to the inferior platen of the testing machine while sub-

merged in a recipient containing saline at 37 ± 1 ◦ C.

This temperature was controlled with a heater and ther-

mostat. Before starting the test, the sample was allowed

to reach that temperature during 15 minutes. Follow-

ing, the upper platen was slowly lowered, approaching

the sample, until the distance between the platens was

equal to the average thickness of the sample, measured

after extraction. The relative displacement was zeroed

this position. A preconditioning was applied to each

sample: 20 cycles from 0% to 10% strain at 1 Hz, like

in [4]. The preconditioning was followed by a ramp from

0% to 50% strain and this final strain was maintained
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for 15min, for stress relaxation (see fig. 3). Stresses

were recorded during the ramp and stress relaxation.

Three different strain rates of the loading ramp were

tested: 30, 40 and 50% strain per second [4], testing 15

samples in each case.

λ

t

0.9

0.5

50%/s

40%/s

30%/s

20 cycles

at 1Hz

relaxation 15 min

Fig. 3 Scheme of the compression, λ, applied in the relax-
ation tests.

2.3 Material model

The QLV formulation proposed by Fung [9] was used

to model the tissue’s mechanical behaviour. In it, the

stress response to a step of stretch (or compression)

λ = λ0 · H(t) (with H(t) the Heaviside function) is

factorized in a reduced relaxation function, G(t) and

an elastic response function, T (e)(λ):

σ(λ, t) = G(t) T (e)(λ) (1)

For a general stretch history, λ = λ(t), the stress is

given by (see [20] for further details):

σ(t) =

∫ t

0

G(t− τ)
dT e[λ(τ)]

dλ

dλ(τ)

dτ
dτ (2)

This stretch history could be the test performed in the

present work (see fig. 3): a ramp of finite strain rate

followed by the stress relaxation (the preconditioning

cycles will not be considered). With the algorithm ap-

plied here to fit the model constants (developed in [20])

the stress relaxation occuring during the ramp is also

taken into account and the ramp needs not be very fast

to resemble an ideal relaxation test with a step strain.

On the contrary, finite and moderate strain rates, of the

same order than in1 physiological loads, can be applied.

A fifth-term Prony series was used for G(t), like in

[12]:

G(t) = g∞ +

5∑
i=1

gi e
−t/τi (3)

normalized such that:

g∞ +

5∑
i=1

gi = 1 (4)

The relaxation time constants were taken in decades:

τ1 = 0.01 s, τ2 = 0.1 s, τ3 = 1 s, τ4 = 10 s and

τ5 = 100 s [10], fixed a priori to ensure the uniqueness

of the fitted function G(t) [21].

The elastic response, T (e)(λ), provides the instanta-

neous stress response to a uniaxial stretch λ and is for-

mulated here using incompressible hyperelastic models.

Three models were tried: neo-Hookean (T
(e)
NH), Mooney-

Rivlin (T
(e)
MR) and an exponential form of the strain en-

ergy function (T
(e)
Expo):

T
(e)
NH = 2C10(λ

2 − 1

λ
) (5a)

T
(e)
MR = 2C10(λ

2 − 1

λ
) + 2C01(λ− 1

λ2
) (5b)

T
(e)
Expo = 2 A B eB(λ2+ 2

λ−3)(λ2 − 1

λ
) (5c)

The experimental Cauchy stress was estimated assum-

ing uniaxial compression from the applied force, F ,

recorded during the test, as:

σ(t) =
F (t) λ(t)

A0
, λ(t) = 1 +

u(t)

L
(6)

where A0 is the initial cross-sectional area of the sam-

ple, u(t) is the displacement of the upper platen, and L

is the average thickness.

The evolution of the force applied by the platen,

F (t), recorded during the loading ramp in one of the

samples is shown in green in figure 4. The typical toe

region of soft tissues is seen for small deformations,

together with some fluctuations due to the fact that

the relative displacement was zeroed when the distance

between the platens was equal to the sample’s aver-

age thickness. At that moment, the upper platen might

not be in full contact with the sample, resulting in a

spurious toe region. To solve this problem the signal

was filtered using a moving average (red dashed line).

Nonetheless, the initial slope of the filtered curve was

still zero or even positive in some samples. This pro-

duced certain numerical problems in the fitting of the

experimental stresses to the QLV model. For this rea-

son, an algorithm was developed (see figure 5) to elim-

inate that spurious toe region.

Placing the upper platen at the average thickness

and applying this algorithm was preferred to placing the

platen at the minimum thickness, given that it could

produce an undesired precompression of the sample.
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Fig. 4 Comparison of the raw force record (green), the fil-
tered record (red dashed) and the final record after treated
with the proposed algorithm to eliminate the spurious toe
region (black).
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Fig. 5 Algorithm proposed to eliminate the spurious toe re-
gion.

With the proposed method, no precompression was in-

duced and the elimination of the spurious toe region,

due to an initial lack of contact, was guaranteed.

Once the raw stress record, σ, was filtered and the

spurious toe region removed, the resulting stress record,

named here σ̃, was fitted to the analytical stress record,

σ, given by equation (2) using a least squares method,

that minimize the following quadratic error:

e =

N∑
i=1

(
σ̃(ti)− σ(ti)

)2

(7)

where N is the total number of points recorded dur-

ing the relaxation test and ti is the instant of a certain

point. See [20] for further details of how this method

was implemented. This least squares method is sensi-

tive to the initial guess in nonlinear problems like this.

For this reason, the optimization was performed in two

steps. First a genetic algorithm was used to find a min-

imum of the quadratic error, e, which was used as the

initial guess in the second step: the least squares op-

timization. The genetic algorithm starts with a set of

randomly selected potential minima, and makes them

evolve by iteratively applying a set of stochastic opera-

tors, known as selection, crossover and mutation. This

guarantees that the minimum is searched in the entire

domain, not only locally. However, genetic algorithms

are heuristic methods and the minimum does not nec-

essarily fulfill the optimality condition. This condition

was met in the second step, which is a local search

around the minimum found in the first step. The good-

ness of the least squares fitting was evaluated by means

of the coefficient of variation, CV :

CV (%) =

√√√√∑N
i=1

(
σ(ti)− σ̃(ti)

)2

N

µσ̃
× 100 (8)

where µσ is the average of the temporal record σ̃(ti).

3 Results

3.1 Elastic response function

The proposed algorithm was used to fit the QLV model

(with different elastic response functions, see eqs. (5))

to the filtered experimental stress record, σ̃, of the 45

tested samples. Figure 6 compares a typical experimen-

tal stress record with the fitted ones. Figure 7 shows

a detail of the stresses during the loading ramp. The

stress relaxation was fitted quite accurately in all the

cases, though a little better with the exponential model.
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The average coefficient of variation, CV , evaluated for

the entire record was: 33.35% with the neo-Hookean,

24.90% with the Mooney-Rivlin and 10.52% with the

exponential model. However, the loading ramp was highly

dependent on the elastic response function. So, when

evaluated just in the loading ramp CV was: 96.25%

with the neo-Hookean, 74.79% with the Mooney-Rivlin

and 25.04% with the exponential model. It can be no-

ticed that the stress increase obtained with the neo-

Hookean and Mooney-Rivlin models (as opposed to the

exponential model) was not as steep as the real one, re-

sulting in a considerable underestimation of the stress

peak. The short term relaxation was also influenced

by the elastic response function, indirectly through the

stress peak.
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Fig. 6 Example of an experimental stress record fitted with
different hyperelastic models.

3.2 Validity of QLV

Once it has been shown that the exponential function

is more suitable for the elastic response, it has been

used in the rest of the paper to show the validity of the

QLV approach. As stated before, this must be done by

checking that the fitted model constants are indepen-

dent of the strain rate (given that the independence

of the strain level was already checked [16]). Figure 8

shows the filtered stress records obtained in three spec-

imens tested at different strain rates.

To check that the material constants are indepen-

dent upon the strain rate, a multivariate analysis of

variance (MANOVA) was performed, where the inde-

pendent categorical variable was the strain rate with
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Fig. 7 Detail of figure 6 in the loading ramp.
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Fig. 8 Example of the experimental stress for each strain
rate.

three levels: 30%/s, 40%/s and 50%/s; and the depen-

dent continuous variables (DVs) were the eight QLV

constants: A,B,g1,g2,g3,g4,g5,g∞.

Prior to MANOVA, multivariate outliers were de-

tected. For this purpose, the Mahalanobis distance (MD)

was evaluated for each individual. The critical value of

this distance is the 99.9% quantile of the χ2
k, where the

number of degrees of freedom (k = 8) is the number

of DVs. The only individual with MD ≥ χ2
0.999,k =

26.12 was removed from the sample. Next, multinor-

mality was checked using the test developed by Cardoso

de Oliveira and Ferreira [22]. This test was significant

(p < .001) and, thus, multinormality was violated, mak-

ing it necessary to perform a non-parametric MANOVA

(NMANOVA).
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Table 2 Mean ± standard deviation of the QLV constants using the exponential model for different loading rates.

Loading rate A (MPa) B g1 g2 g3 g4 g5 g∞

30%/s
1.097 2.547 0.613 0.220 0.114 0.041 0.010 0.003
± 1.716 ± 1.907 ± 0.190 ± 0.109 ± 0.059 ± 0.020 ± 0.006 ± 0.005

40%/s
1.416 2.547 0.510 0.290 0.134 0.045 0.014 0.007
± 1.989 ± 2.698 ± 0.208 ± 0.145 ± 0.048 ± 0.020 ± 0.006 ± 0.009

50%/s
1.358 1.959 0.558 0.243 0.131 0.051 0.012 0.005
± 1.835 ± 1.130 ± 0.174 ± 0.089 ± 0.047 ± 0.030 ± 0.008 ± 0.013

MANOVA is indicated if the dependent variables

are not correlated. This is not the case for all the vari-

ables in this study. For example, A and B are strongly

(and negatively) correlated (Spearman R = −0.772),

and, thus, they can be regarded as the same variable

for statistical purposes. The same occurs with g1, g2
and g3, on the one hand, and g4, g5 and g∞ on the

other hand. These variables can be grouped. For in-

stance, g1 + g2 + g3 and g4 + g5 + g∞ can be, respec-

tively, interpreted as the importance of the short-term

and long-term relaxation, in view of (3) and the nor-

malization made in (4). Moreover, those sums are not

independent, because of (4). In conclusion, two DVs

were compared in the NMANOVA: A and g1 + g2 + g3.

The NMANOVA test performed was a multivariate ex-

tension of the Kruskal-Wallis test, developed by Katz

and McSweeney [23]. This test found no significant dif-

ferences among the three groups compared (p = .283).

Additionally, a Kruskal-Wallis test was performed on

each DV to confirm that conclusion for each of them in-

dividually. No significant differences were found in this

case either: A (p = .702), B (p = .578), g1 (p = .203), g2
(p = .302), g3 (p = .313), g4 (p = .538), g5 (p = .070),

g∞ (p = .052). Therefore, the hypothesis that the strain

rate has no influence on the QLV constants cannot be

rejected, at least in the tested range of strain rate.

4 Discussion

During the loading phase of the test, the typical stress-

time curve exhibited a toe region followed by a rapid

increase of stresses and an approximately linear section.

The stress increase was very steep, what made the expo-

nential function the best choice for the elastic response

function. The stress relaxation was very quick, with the

largest percentage of relaxation occurring in the first 30

seconds and remaining only 0.04% (in average) of the

stress peak after one minute. This relaxation rate was

much faster and significant than that reported in other

soft tissues. In ligaments for example, a maximum re-

laxation of 31.9% of the stress peak was reported after

60 minutes [24] and in aortic valve leaflets, 55% of re-

laxation occurred after approximately 30 minutes [13].

Nonetheless, other authors have found the same pattern

of quick relaxation for the tissue studied here. Allen and

Athanasiou [4] reported a reduction of 75% in the elas-

tic modulus after 30 to 60 seconds in porcine articular

disc, though they did not consider the relaxation occur-

ring in the loading ramp, so underestimating the total

relaxation.

The fast relaxation resulted in high values of the

short-term coefficients, g1, g2 and g3 (see table 2), which

weight the importance of relaxation in τ1 = 0.01 s,

τ2 = 0.1 s and τ2 = 1 s, respectively. It must be recalled

that the loading ramp spanned from 0 to 1.75 seconds,

depending on the loading rate. Therefore, the stress re-

laxation was significant during the loading ramp mak-

ing the experiment at those strain rates to be far from

an ideal stress relaxation test. Under those conditions

it is very important to consider the relaxation during

the loading ramp, as the proposed fitting algorithm

does [20]. Otherwise, the stiffness of the material would

have been strongly underestimated.

Glycosaminoglycans (GAG) content of the porcine

TMJ disc is only 1 to 5% of the dry weight [25]. This is

quite low compared to articular cartilage. The proteo-

glycan side chains of many GAGs are hydrophilic. This

characteristic can increase the hydrostatic pressure of

the interstitial fluid and translate into a higher com-

pressive stiffness. The lack of a significant GAG content

in the TMJ disc may be the reason for such short relax-

ation times. With the sparse scattering of hydrophilic

proteoglycans in the extracellular matrix (ECM), inter-

stitial fluid is allowed to flow throughout the ECM with

little impedance. The application of compressive strain

would pressurize the fluid within the tissue sample. This

pressurized fluid initially resists compressive strain and

then quickly flows out of the primary collagenous ECM.

Mechanically, this would translate into an initial peak

load, followed by a fast relaxation represented by low

values of τi, as obtained here.

The influence of the strain rate on G(t) and the con-

stants of the elastic response function was analysed. No

statistically significant differences were found in the ma-
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terial constants fitted from the tests at different strain

rates, at least in the range 30 − 50%/s. No significant

differences were found either in the constants obtained

with different strain levels (25, 30 and 35% strain), as

reported in a previous work [16]. Both conclusions sup-

port the validity (or, at least, do not lead to a rejection)

of the QLV model to describe the viscoelastic behaviour

of the disc in the range of strain level and strain rate

tested, which include the physiological ranges. More-

over, the exponential strain energy function was much

more appropriate for the elastic response function than

the neo-Hookean or the Mooney-Rivlin models.

The main limitation of this study is the use of an

isotropic model for the articular disc. Certainly, the disc

is anisotropic due to its oriented network of collagen

fibers. Most of them run in the anteroposterior direc-

tion [25], so that they are stretched (contributing with

their stiffness) when the disc is compressed in the verti-

cal direction. Under tension, the fibers would be short-

ened, so not contributing to the overall stiffness. In gen-

eral, under loads in different directions, the anisotropic

behaviour of the disc would be revealed, thus, raising

the necessity of an anisotropic model. Nonetheless, this

limitation has only a marginal effect, given that the

vertical compression applied in the tests is also the pre-

dominant type of load during mastication [26, 27], so

that the isotropic model fitted from those tests would

be valid to characterize the behaviour of the disc during

masticatory tasks.

Finally, it must be said that a general validation of

the QLV for the TMJ disc would have required the use

of a much wider range of strain rates. However the aim

of this paper was to show the validity of the QLV model

for the physiological range, which is of the same order

of magnitude as the strain rates tested here. Indeed,

the distance from the condyle to the articular fossa is

reduced during mastication between 10 to 20% of the

disc’s thickness, as estimated in previous FE simula-

tions [28], while the chewing frequency is between 1

and 2 Hz [29].

5 Conclusion

The quasi-linear viscoelastic theory has been widely ap-

plied to describe the behavior of ligaments and tendons,

since it is a model easier to implement than fully vis-

coelastic models. However, to the authors’ knowledge, it

had not been used to describe the behaviour of fibrocar-

tilage. The validity of this model relies on the fulfillment

of certain conditions: the independence of the QLV con-

stants on the strain rate (checked in this work) and the

strain level (checked in a previous work). Additionally,

the strong non-linearity of the observed stress-strain

relation, made the exponential strain energy function

proposed by Humphrey and Yin for passive cardiac tis-

sue [30] more appropriate for the hyperelastic part of

the QLV model than other (simpler) models like neo-

hookean and Mooney-Rivlin.

Another contribution of this work is the algorithm

proposed to eliminate the spurious toe region (fig. 5).

The toe region is a characteristic feature of the stress-

strain curve of soft tissues, but it must be properly

captured, because sometimes it can be mixed up with

a loss of contact between the sample and the platens.

The methodology proposed here has worked correctly

to overcome this difficulty.
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