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Abstract

This paper aims to analyze the behavior of the solutions of a stochastic perturbed system
with respect to the solutions of the stochastic unperturbed system. To prove our stability
results, we have derived a new Gronwall–type inequality instead of the Lyapunov techniques,
which makes it easy to apply in practice and it can be considered as a more general tool
in some situations. On the one hand, we present sufficient conditions ensuring the global
practical uniform exponential stability of SDEs based on Gronwall’s inequalities. On the
other hand, we investigate the global practical uniform exponential stability with respect to
a part of the variables of the stochastic perturbed system by using generalized Gronwall’s
inequalities. It turns out that, the proposed approach gives a better result comparing
with the use of a Lyapunov function. A numerical example is presented to illustrate the
applicability of our results.
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1 Introduction

The stability of stochastic differential equations (SDEs) is a prevalent theme of the current study
in Mathematics and its applications. Stochastic systems are utilized to model problems from the
real world where some sort of randomness or noise is taken into consideration. Noise is used to
destabilize a given stable system whereas it can also be used to stabilize a given unstable system
or to make a given stable system even more stable. The asymptotic behaviors of solutions of
some classes of stochastic systems have been studied by many authors (see [3], [18], [23], [27],
[30], [31]-[33]).

Gronwall inequalities are crucial in the area of ordinary differential equations also in stochas-
tic differential equations to prove results on existence, uniqueness, comparison, perturbation,
boundedness, as well as stability of solutions.

The aim of this paper is twofold. In the first part, we establish some criteria for the global
practical uniform exponential stability of a stochastic perturbed system of the form:

dx(t) = f(t, x)dt+ g(t, x)dB(t),

which may be considered as a perturbation of the deterministic unperturbed system expressed
as follows:

dx(t) = f(t, x)dt.

Different authors consider the stability problem the zero equilibrium point of stochastic differ-
ential equations, see ([14], [16], [19]-[21], [29]).

In the case where the origin is not necessarily an equilibrium point, we can investigate the
asymptotic stability of solutions of stochastic systems in a small neighborhood of the origin
in terms of convergence of solution in probability to a small ball. This property is defined as
practical stability. The literature on practical stability is very extensive, see ([2]–[6], [11], [12],
[22]) and references therein.

Some stochastic models cannot be proved to fulfill stability properties with respect to all the
unknown variables of the system. However, it is very interesting in some practical situations to
analyze if it is still possible to prove some stability properties with respect to some of the variables
in the problem. Consequently, the second part of this paper is mainly devoted to establishing
some criteria for the global practical uniform exponential stability with respect to part of the
variables of a class of nonlinear stochastic perturbed system.

The method of Lyapunov is one of the most powerful tools to study the stability of stochastic
dynamical systems, with the emergence of the second method of Lyapunov: Rymyanstev [25],
Rymyanstev and Oziraner [26] developed the notion of stability with respect to a part of the
variables, and many different authors are well developed the concept of partial stability within
the method of Lyapunov, see [17, 24].

In [7, 8, 9, 10], the practical stability of stochastic differential systems is evaluated within the
method of Lyapunov.
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The qualitative behavior of the solutions of perturbed stochastic systems is generally ana-
lyzed by considering a Lyapunov function candidate for the unperturbed system and using it as
a suitable Lyapunov function candidate for the stochastic system. Yet, unlike the linear case, the
construction of proper Lyapunov function is a difficult task for nonlinear stochastic differential
equations. This motivates us to enquire about the problem of stability of stochastic perturbed
systems by using integral inequalities of Gronwall type under some restrictions on the perturba-
tion term. The usual property of the solutions that can be deduced for such systems is ultimate
boundedness. That means that the solutions remain in some neighborhoods of the origin after a
sufficiently large time, (see [7]-[10]).

The novelty of our work is to analyze the asymptotic behavior of solutions to stochastic
perturbed systems with respect to the solutions of the deterministic unperturbed system based
on non–linear integral inequalities.

The organization of this paper is as follows. In Section 2, we prove a new non–linear integral
inequality which will play a basic role in our study. In Section 3, we introduce some definitions and
results about the global practical uniform exponential stability of stochastic perturbed system
based on Gronwall’s inequalities. Section 4 is devoted to establishing some criteria for global
practical uniform exponential stability of the stochastic perturbed system with respect to a part
of the variables based upon new non–linear integral inequality. In Section 5, a numerical example
is exhibited to show the efficiency and accuracy of the method. Eventually, some conclusions are
included in the last section.

2 Nonlinear integral inequalities

Gronwall–type’s lemmas play a crucial role in the area of integral (and differential) equations.
It is an essential tool to obtain different estimates in the theory of ordinary and stochastic
differential equations. There exist different lemmas which carry the name of Gronwall’s lemma.

The original lemma was first proposed by Thomas Hacon Gronwall [15]; see the following
proposition:

Lemma 2.1. Let z : [η, η+h]→ R be a continuous function that satisfies the following inequality

0 ≤ z(x) ≤
∫ x

η

(A+Bz(s))ds, for x ∈ [η, η + h],

where A, B are nonnegative constants. Then,

0 ≤ z(x) ≤ AheBh, for x ∈ [η, η + h].

Lemma 2.2. [15] Let u(t) be a continuous function defined on the interval [t0, t1], satisfying the
following inequality:

u(t) ≤ a+ b

∫ t

t0

u(s)ds,
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where a, b are nonnegative constants. Then, for all t ∈ [t0, t1],

u(t) ≤ aeb(t−t0).

Bellman [1] extended the above inequality as follows:

Lemma 2.3. Let u(t) and b(t) be nonnegative continuous functions for t ∈ [t0, t1], that satisfy

u(t) ≤ a+

∫ t

t0

b(s)u(s)ds, t ∈ [t0, t1],

where a ≥ 0 is a constant. Then,

u(t) ≤ a exp

(∫ t

t0

b(s)ds

)
, t ∈ [t0, t1].

Lemma 2.4. [13] Let a(t), b(t), c(t), u(t) be continuous functions for t ≥ t0, and b(t) be nonneg-
ative for t ≥ t0, suppose that

u(t) ≤ a(t) +

∫ t

t0

(b(s)u(s) + c(s)) ds, t ≥ t0.

Then,

u(t) ≤ a(t) +

∫ t

t0

(a(s)b(s) + c(s)) exp

(∫ t

s

b(τ)dτ

)
ds, t ≥ t0.

Corollary 2.5. [13] For a(t) ≡ a, we have

u(t) ≤ a exp

(∫ t

t0

b(τ)dτ

)
+

∫ t

t0

c(s) exp

(∫ t

s

b(τ)dτ

)
ds, t ≥ t0.

Now, we introduce the following integral inequality of Gronwall type, which is a slight modi-
fication of the one given by [28].

Lemma 2.6. Let u(t), v(t), ω(t) be nonnegative continuous functions for t ≥ t0, and suppose

u(t) ≤ c+

∫ t

t0

(u(s)v(s) + ω(s)) ds,

where c is a positive constant. Then,

u(t) ≤ e
∫ t
t0
v(s)ds

(
c+

(
e
∫ t
t0
ω(s)ds − 1

))
, ∀t ≥ t0.
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Now, we will generalize the previous lemma. Instead of taking c as a positive constant, we
will consider it a nonnegative differentiable function.

Lemma 2.7. Let u(t), v(t), ω(t) be nonnegative continuous functions for t ≥ t0, and c(t) be a
nonnegative differentiable function for t ≥ t0, suppose that

u(t) ≤ c(t) +

∫ t

t0

(u(s)v(s) + ω(s)) ds.

Then,

u(t) ≤ e
∫ t
t0
v(s)ds

(
c(t) +

(
e
∫ t
t0
ω(s)ds − 1

))
, ∀t ≥ t0. (2.1)

Proof. Noticing the inequality ez ≥ z + 1, we have e
∫ t
t0
ω(s)ds ≥

∫ t

t0

ω(s)ds+ 1.

Thus, we obtain

u(t) ≤ c(t) +
(
e
∫ t
t0
ω(s)ds − 1

)
+

∫ t

t0

u(s)v(s)ds. (2.2)

That is, it follows that

u(t)

(
c(t) +

(
e
∫ t
t0
ω(s)ds − 1

)
+

∫ t

t0

u(s)v(s)ds

)−1
≤ 1.

Multiplying this product by v(·) ≥ 0 yields that

u(t)v(t)

(
c(t) +

(
e
∫ t
t0
ω(s)ds − 1

)
+

∫ t

t0

u(s)v(s)ds

)−1
≤ v(t).

Adding to each part the ensuing quantity:(
ċ(t) + ω(t)e

∫ t
t0
ω(s)ds

)(
c(t) +

(
e
∫ t
t0
ω(t)ds − 1

))−1
≥ 0.

Then, we obtain

u(t)v(t)(c(t) + (e
∫ t
t0
ω(s)ds − 1) +

∫ t

t0

u(s)v(s)ds)−1

+ (ċ(t) + ω(t)e
∫ t
t0
ω(s)ds

)(c(t) + (e

∫ t

t0

ω(s)ds
− 1))−1

≤ v(t) + (ċ(t) + ω(t)e
∫ t
t0
ω(s)ds

)(c(t) + (e
∫ t
t0
ω(s)ds − 1))−1.
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Whence, it immediately follows that,(
u(t)v(t) + ċ(t) + ω(t)e

∫ t
t0
ω(s)ds

)(
c(t) +

(
e
∫ t
t0
ω(s)ds − 1

)
+

∫ t

t0

u(s)v(s)ds

)−1
≤ v(t) +

(
ċ(t) + ω(t)e

∫ t
t0
ω(s)ds

)(
c(t) +

(
e
∫ t
t0
ω(s)ds − 1

))−1
.

Integrating both sides of the above inequality between t0 and t,

ln

(
c(t) +

(
e
∫ t
t0
ω(s)ds − 1

)
+

∫ t

t0

u(s)v(s)ds

)
− ln (c(t0))

≤
∫ t

t0

v(s)ds+ ln
(
c(t) +

(
e
∫ t
t0
ω(s)ds − 1

))
− ln (c(t0)) .

Converting this into exponential form and taking into account inequality (2.2), the inequality
becomes (2.1). That is, one obtains

c(t) +
(
e
∫ t
t0
ω(s)ds − 1

)
+

∫ t

t0

u(s)v(s)ds ≤ e
∫ t
t0
v(s)ds

(
c(t) +

(
e
∫ t
t0
ω(s)ds − 1

))
.

Combining this result together with (2.2), we obtain the desired inequality (2.1). 2

Remark 2.8. Notice that Lemma 2.6 is a particular case of Lemma 2.7.

3 Practical uniform exponential stability of stochastic per-

turbed system

The objective of this section is to state sufficient conditions for global practical exponential sta-
bility of stochastic perturbed systems based on generalized Gronwall’s inequalities.

Consider the following nonlinear differential equation (DE):
dx(t) = f(t, x(t))dt, t ≥ t0 ≥ 0,

x(t0) = x0, t0 ≥ 0,

(3.1)

with initial condition x0 ∈ R, f : R+ × R −→ R.

Assume that some parameters are excited or perturbed by Brownian motion, and the per-
turbed stochastic differential equation (SDE) has the following form:

dy(t) = f(t, y(t))dt+ g(t, y(t))dBt, t ≥ t0 ≥ 0, (3.2)
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with the same initial conditions, g : R+ × R −→ R1×m and Bt = (B1(t), · · · , Bm(t))T is an
m–dimensional Brownian motion defined on a complete probability space (Ω,F ,P).

We assume that both f and g satisfy the following conditions:

|f(t, y)|2 + ||g(t, y)||2 ≤ C1(t)
(
1 + |y|2

)
, for all t ≥ 0, y ∈ R, (3.3)

|f(t, y)− f(t, ỹ)| ∨ ||g(t, y)− g(t, ỹ)|| ≤ C2(t)|y − ỹ|, for all t ≥ 0, y, ỹ ∈ R, (3.4)

where C1(·) and C2(·) are non–negative functions.

Under the precedent assumptions there exists a unique global solution x(t, t0, x0) of DE (3.1)
corresponding to the initial condition x0 ∈ R defined in an interval [t0, T ), and a unique global
solution y(t, t0, y0) of SDE (3.2) corresponding to the initial condition y0 ∈ R defined in an
interval [t0, T ). Or simply x(t) and y(t) to denote a solution to our systems and, as we will
be interested in analyzing the asymptotic behavior of solutions, we assume T = +∞, for extra
details see [10].

Suppose that the origin x = 0 is an equilibrium point for the deterministic unperturbed
system (3.1) and the perturbation g does not vanish at zero, that is g(t, 0) 6= 0, ∀t ≥ 0. Then,
the stochastic perturbed system (3.2) does not possess the trivial solution y(t, t0, 0) = 0.

The study of the exponential stability of solutions of the stochastic perturbed system (3.2)
leads to analyze the stability behavior of a ball centered at the origin:

Br := {y ∈ R : |y| ≤ r} , r > 0.

Definition 3.1.

i) The ball Br is said to be almost surely globally uniformly exponentially stable, if there
exists a pair of positive constants k and γ, such that for all t0 ∈ R+, and all y0 ∈ R, the
following inequality is satisfied:

|y(t, t0, y0)| ≤ k|y0|e−γ(t−t0) + r, a.s., ∀t ≥ t0 ≥ 0.

ii) The stochastic perturbed system (3.2) is said to be almost surely globally practically uni-
formly exponentially stable, if there exists r > 0 such that Br is almost surely globally
uniformly exponentially stable.

Let us now state some assumptions, which we will impose later on:
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(H1) There exist a continuous nonnegative function L(t) and a constant 0 < l < ∞, such
that f(t, x) satisfies the following generalized Lipschitz condition:

|f(t, x)− f(t, y)| ≤ L(t)|x− y|,

with ∫ +∞

0

L(s)ds ≤ l < +∞.

(H2) There exist a continuous nonnegative function λ(t), and a constant 0 < M < ∞, such
that

‖g(t, x)‖ ≤ λ(t)√
ln(t)

, ∀x ∈ R,

with ∫ +∞

0

λ2(s)ds ≤M < +∞. (3.5)

(H3) There exist positive constants λ1 and λ2, such that

|x(t, t0, x0)| ≤ λ1|x0|e−λ2(t−t0),

for all t ≥ t0 ≥ 0, and all x0 ∈ R.

Remark 3.1. From assumption (H3), we infer that the trivial solution of the unperturbed sys-
tem (3.1) is uniformly exponentially stable.

Now, we state and prove our first main result in this section.

Theorem 3.2. Under assumptions (H1)− (H3), the stochastic perturbed system (3.2) is almost
surely globally practically uniformly exponentially stable.

To prove the previous theorem, we need to recall the following lemma.

Lemma 3.3. [21] Let g = (g1, · · · , gm) ∈ L2(R+,R1×m), T, α, β be any positive numbers. Then,
for t0 ≥ 0,

P
(

sup
t0≤t≤T

[∫ t

t0

g(s)dBs −
α

2

∫ t

t0

||g(s)||2ds
]
> β

)
≤ exp(−αβ).

Proof of Theorem 3.2. Let x(t) := x(t, t0, x0) be solution of (3.1) and y(t) := y(t, t0, y0) be
solution of (3.2). Thus, we have

x(t) = x0 +

∫ t

t0

f(s, x(s))ds,
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and

y(t) = y0 +

∫ t

t0

f(s, y(s))ds+

∫ t

t0

g(s, y(s))dBs. (3.6)

Let n = 1, 2, · · · , by Lemma 3.3, we obtain

P
{

sup
t0≤t≤n

(∫ t

t0

g(s, y(s))dBs −
1

2
ln(n)

∫ t

t0

||g(s, y(s))||2ds
)
> 2

}
≤ 1

n2
.

Applying the well–known Borel–Cantelli lemma, we see that for almost all ω ∈ Ω, there exists
an integer n0 = n0(ω), such that if n ≥ n0,∫ t

t0

g(s, y(s))dBs ≤ 2 +
1

2
ln(n)

∫ t

t0

||g(s, y(s))||2ds, for all t0 ≤ t ≤ n.

Then, equality (3.6) becomes, for all t0 ≤ t ≤ n, n ≥ n0,

y(t) ≤ y0 + 2 +

∫ t

t0

f(s, y(s))ds+
1

2
ln(n)

∫ t

t0

||g(s, y(s))||2ds.

As a consequence, we obtain

|y(t)− x(t)| ≤ |y0 − x0|+ 2 +

∫ t

t0

|f(s, y(s))− f(s, x(s))|ds+
1

2
ln(n)

∫ t

t0

||g(s, y(s))||2ds,

for all t0 ≤ t ≤ n, n ≥ n0.

Taking into account assumptions (H1), (H2), and the fact that x0 ≡ y0, it follows that

|y(t)− x(t)| ≤ 2 +

∫ t

t0

L(s)|y(s)− x(s)|ds+
1

2
ln(n)

∫ t

t0

λ2(s)

ln(s)
ds,

≤ 2 +

∫ t

t0

L(s)|y(s)− x(s)|ds+
1

2
ln(n)

∫ t

t0

λ2(s)

ln(n)
ds,

≤ 2 +

∫ t

t0

L(s)|y(s)− x(s)|ds+
1

2

∫ t

t0

λ2(s)ds, for all t0 ≤ t ≤ n, n ≥ n0.

Applying the Gronwall Lemma 2.6, it follows that

|y(t)− x(t)| ≤ e
∫ t
t0
L(s)ds

(
2 +

(
exp

(
1

2

∫ t

t0

λ2(s)ds

)
− 1

))

≤ e
∫+∞
t0

L(s)ds

(
2 +

(
exp

(
1

2

∫ +∞

t0

λ2(s)ds

)
− 1

))

≤ el
(

2 +
(
e

M
2 − 1

))
, for all t0 ≤ t ≤ n, n ≥ n0.
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Thus, we see that

|y(t)− x(t)| ≤ 2el + exp

(
l +

M

2

)
, a.s.

Hence, from assumption (H3), one can deduce that

|y(t)| = |y(t) + x(t)− x(t)|
≤ |x(t)|+ |y(t)− x(t)|

≤ λ1|y0|e−λ2(t−t0) + 2el + exp

(
l +

M

2

)
.

Then, we infer that for all t ≥ t0 ≥ 0,

|y(t)| ≤ λ1|y0|e−λ2(t−t0) + 2el + exp

(
l +

1

2
M

)
, a.s.

Finally, we deduce that the stochastic perturbed system (3.2) is almost surely globally practically

uniformly exponentially stable, with r = 2el + exp

(
l +

1

2
M

)
. 2

Remark 3.4. In [4], Caraballo et al. investigated the practical uniform exponential stability by
using Lyapunov techniques for n–dimensional stochastic differential equation.

Indeed, they have considered the following n–dimensional stochastic differential equation
(SDE):

dx(t) = f(t, x(t))dt+ g(t, x(t))dBt, t ≥ 0, (3.7)

where f : R+×Rn −→ Rn, g : R+×Rn −→ Rn×m, x = (x1, · · · , xn)T andBt = (B1(t), · · · , Bm(t))T

is an m–dimensional Brownian motion defined on a complete probability space (Ω,F ,P).

f and g satisfy the following conditions:

||f(t, x)||2 + ||g(t, x)||2 ≤ K1

(
1 + ||x||2

)
, for all t ≥ 0, x ∈ Rn, (3.8)

||f(t, x)− f(t, y)|| ∨ ||g(t, x)− g(t, y)|| ≤ K2||x− y||, for all t ≥ 0, x, y ∈ Rn, (3.9)

where K1 and K2 are given positive real constant, and they have obtained the following stability
result by using the Lyapunov method.

Theorem 3.5. Assume that there exist a function V ∈ C1.2(R+×Rn,R∗+) and constants p ∈ N∗,
c1 ≥ 1, % ≥ c1, γ ≥ 0 and c2 ∈ R, c3 ≥ 0 such that for all t ≥ t0 ≥ 0, and x ∈ Rn,

1. c1||x||p ≤ V (t, x),

2. LV (t, x) ≤ c2V (t, x) + %,
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3. ||Vx(t, x)g(t, x)||2 ≥ c3V
2(t, x) + γ.

Then,

lim
t→+∞

sup
1

t
ln

(
||x(t, t0, x0)|| −

(
%

c1

) 1
p

)
≤ −(c3 − 2(c2 + 1))

2
, a.s., for all x0 ∈ Rn.

In particular, if c3 > 2(c2 + 1), then the solution of (3.7) is almost surely globally practically

uniformly exponentially stable with r =

(
%

c1

) 1
p

.

Lyapunov’s method is one of the most useful for investigating the stability of stochastic
systems, without knowing the form of explicit solution of the system. However, constructing an
appropriate Lyapunov function is still a challenging task. The novelty of our work is to develop
the problem of the stability of perturbed stochastic systems on the basis of the explicit solution
formed by generalized integral inequalities, however, we have to pay the price of considering only
a differential equation instead of a differential system. We plan to investigate in future how this
technique can be extended to differential systems.

Example 3.6. Let consider the following stochastic system:

dy(t) =
(
−ay(t) + y2(t)

)
dt+

e−ςt√
ln(t)

dBt, a, ς > 0. (3.10)

where y(t) ∈ R and with initial value y0.

The stochastic system (3.10) can be regarded as a perturbed system of:

dx(t) =
(
−ax(t) + x2(t)

)
dt. (3.11)

The unperturbed system (3.11) is almost sure exponential stable, as shown in Fig. 1, for
a = 2.
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Figure 1: Time evolution of the solution of the unperturbed system (3.11)

On the other side, we have

|g(t, y)| = e−ςt√
ln(t)

.

Thus, the function in Theorem 3.2 become: λ(t) = exp(−ςt), which satisfies condition (3.5).
Based on Theorem 3.2 the stochastic perturbed system (3.10) is almost sure globally practically
uniformly exponentially stable, as we can see in Fig. 2, for ς = 5.

Figure 2: Time evolution of the state y(t) of the solution of the stochastic system (3.10)
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4 Practical uniform exponential stability of stochastic per-

turbed system with respect to a part of the variables

Different stochastic systems cannot be proved to fulfill stability properties for all the unknown
variables. Though, it is very impressive in some practical problems to investigate whether it
is even possible to prove some stability properties with respect to some of the variables in the
problem. Consequently, in this section we will study the global practical uniform exponential
stability with respect to a part of the variables for a class of stochastic perturbed systems. The
principal mathematical technique employed is the use of generalized Gronwall’s inequalities.

We consider the following stochastic system:
dy1(t) = f1(t, y1(t), y2(t))dt+ g1(t, y1(t), y2(t))dBt

dy2(t) = f2(t, y1(t), y2(t))dt+ g2(t, y1(t), y2(t))dBt,

(4.1)

with initial condition y(t0) = y0 = (y10, y20) ∈ R× R,

• f1 : R+ × R× R→ R, g1 : R+ × R× R→ R1×m.

• f2 : R+ × R× R→ R, g2 : R+ × R× R→ R1×m.

Assume that both conditions (3.3) and (3.4) ensuring existence and uniqueness of solutions
are satisfied, and y(t, t0, y0) = (y1(t, t0, y0), y2(t, t0, y0)) is the solution of the perturbed system
(4.1).

The stochastic system (4.1) may be regarded as a perturbed system of the following:
dx1(t) = f1(t, x1(t), x2(t))dt

dx2(t) = f2(t, x1(t), x2(t))dt,

(4.2)

where x := (x1, x2) ∈ R× R and with the same initial condition x(t0) = y(t0), and x(t, t0, x0) =
(x1(t, t0, x0), x2(t, t0, x0)) is the solution of the perturbed system (4.1).

Suppose that g(t, 0) is not necessarily zero. Now, we define the exponential stability with
respect to a part of the variables of the stochastic perturbed system (4.1) when the origin is no
longer an equilibrium point. In this case, we will study the stability with respect to a part of the
variables of the stochastic perturbed system (4.1) in a small neighborhood of the origin in terms
of convergence of solution in probability with respect to a part of the variables to the ball:

Br :=
{
y ∈ R2 : ||y|| ≤ r

}
, r > 0.
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Definition 4.1. i) The ball Br is said to be almost surely globally uniformly exponentially
stable with respect to y1, if there exists a pair of positive constants k′ and γ′, such that for
all t0 ∈ R+, and all y0 ∈ R2, the following inequality is fulfilled:

|y1(t, t0, y0)| ≤ k′||y0||e−γ
′(t−t0) + r, a.s., ∀t ≥ t0 ≥ 0.

ii) The stochastic perturbed system (4.1) is said to be almost surely globally practically uni-
formly exponentially stable with respect to y1, if there exists r > 0 such that Br is almost
surely globally uniformly exponentially stable with respect to y1.

Now, we can establish our main result in this section. In fact, we assume that the stochastic
systems (4.1) and (4.2) satisfy the following assumptions:

(H′1) There exist a continuous nonnegative function L1(t), and a constant 0 < l1 < ∞, such
that f1(t, x1, x2) satisfies the following generalized Lipschitz condition on x1:

|f1(t, x1, x2)− f1(t, y1, y2)| ≤ L1(t)|x1 − y1|,

with ∫ +∞

0

L1(s)ds ≤ l1 < +∞.

(H′2) There exist continuous nonnegative functions ϕ(t), ψ(t), and positive constants M ′, ζ,
such that

‖g(t, y1, y2)‖2 ≤
1

ln(t)
(ϕ(t)|y1|+ ψ(t)) ,

with ∫ +∞

0

ϕ(s)ds ≤M ′ < +∞,

and ∫ +∞

0

ψ(s)ds ≤ ζ < +∞.

(H′3) There exist positive constants λ′1 and λ′2, such that

|x1(t, t0, x0)| ≤ λ′1|x0|e−λ
′
2(t−t0),

for all t ≥ t0 ≥ 0, x0 ∈ R.

Remark 4.1. From (H′3) we deduce that the trivial solution of the deterministic unperturbed
system (4.2) is exponentially stable with respect to x1.
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Theorem 4.2. Under assumptions (H′1)− (H′3) the stochastic perturbed system (4.1) is almost
surely globally practically uniformly exponentially stable with respect to y1.

Proof Let x1(t) := x1(t, t0, x0) and y1(t) := y1(t, t0, y0). Thus, we have

x1(t) = x10 +

∫ t

t0

f1(s, x1(s), x2(s))ds,

and

y1(t) = y10 +

∫ t

t0

f1(s, y1(s), y2(s))ds+

∫ t

t0

g1(s, y1(s), y2(s))dBs, (4.3)

where x10 = x1(t0, t0, x0) and y10 = y1(t0, t0, y0).

Let n = 1, 2, · · · , using Lemma 3.3, it yields that

P
{

sup
t0≤t≤n

(∫ t

t0

g1(s, y1(s), y2(s))dBs −
1

2
ln(n)

∫ t

t0

||g1(s, y1(s), y2(s))||2ds
)
> 2

}
≤ 1

n2
.

Applying the Borel–Cantelli Lemma, then for almost all ω ∈ Ω, there exists an integer n0 = n0(ω),
such that if n ≥ n0, we have∫ t

t0

g1(s, y1(s), y2(s))dBs ≤ 2 +
1

2
ln(n)

∫ t

t0

||g1(s, y1(s), y2(s))||2ds, ∀t0 ≤ t ≤ n.

Then, equality (4.3) becomes

y1(t) ≤ y10 + 2 +

∫ t

t0

f1(s, y1(s), y2(s))ds+
1

2
ln(n)

∫ t

t0

||g1(s, y1(s), y2(s))||2ds,

for all t0 ≤ t ≤ n, n ≥ n0 almost surely.

Consequently, it follows that,

|y1(t)− x1(t)| ≤ |y10 − x10|+ 2

∫ t

t0

|f1(s, y1(s), y2(s))− f1(s, x1(s), x2(s))|ds

+
1

2
ln(n)

∫ t

t0

||g1(s, y1(s), y2(s))||2ds, ∀t0 ≤ t ≤ n, n ≥ n0.

From conditions (H′1), (H′2), and the fact that x0 ≡ y0, one obtains

|y1(t)− x1(t)| ≤ 2 +

∫ t

t0

L1(s)|y1(s)− x1(s)|ds+
1

2
ln(n)

∫ t

t0

1

ln(s)
(ϕ(s)|y1(s)|+ ψ(s)) ds,

≤ 2 +

∫ t

t0

L1(s)|y1(s)− x1(s)|ds+
1

2
ln(n)

∫ t

t0

1

ln(n)
(ϕ(s)|y1(s)|+ ψ(s)) ds,

≤ 2 +

∫ t

t0

L1(s)|y1(s)− x1(s)|ds+
1

2

∫ t

t0

(ϕ(s)|y1(s)|+ ψ(s)) ds, ∀t0 ≤ t ≤ n, n ≥ n0.
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Thus,

|y1(t)− x1(t)| ≤ 2 +

∫ t

t0

(L1(s)|y1(s)− x1(s)|+ ω(s)) ds, ∀t0 ≤ t ≤ n, n ≥ n0,

where ω(s) =
1

2
(ϕ(s)|y1(s)|+ ψ(s)) .

Applying Corollary 2.5, we obtain

|y1(t)− x1(t)| ≤ 2e
∫ t
t0
L1(τ)dτds+

∫ t

t0

ω(s)e
∫ t
s L1(τ)dτds

≤ 2e
∫+∞
t0

L1(τ)dτds+

∫ t

t0

ω(s)e
∫+∞
s L1(τ)dτds

≤ 2el1 + el1
∫ t

t0

ω(s)ds, t0 ≤ t ≤ n, n ≥ n0, a.s.

Combining the last inequality with assumption (H′3), it follows that

|y1(t)| = |y1(t)± x1(t)|
≤ |x1(t)|+ |y1(t)− x1(t)|

≤ λ′1‖x0‖e−λ
′
2(t−t0) + 2el1 + el1

∫ t

t0

(ϕ(s)|y1(s)|+ ψ(s))ds.

Since x0 ≡ y0, then we obtain

|y1(t)| ≤ λ′1‖y0‖e−λ
′
2(t−t0) + 2el1 + el1

∫ t

t0

(ϕ(s)|y1(s)|+ ψ(s))ds, a.s.

Thanks now to Gronwall’s lemma (Lemma 2.7), it yields that

|y1(t)| ≤ exp

(
el1
∫ t

t0

ϕ(s)ds

)(
λ′1‖y0‖e−λ

′
2(t−t0) + 2el1 + e

el1
∫ t
t0
ψ(s)ds − 1

)
≤ exp

(
el1
∫ +∞

t0

ϕ(s)ds

)(
λ′1‖y0‖e−λ

′
2(t−t0) + 2el1 + e

el1
∫+∞
t0

ψ(s)ds − 1
)

≤ exp
(
el1M ′) (λ′1‖y0‖e−λ′2(t−t0) + 2el1 + ee

l1ζ
)
.

That is, we obtain

|y1(t)| ≤ λ′1 exp
(
el1M ′) ‖y0‖e−λ′2(t−t0) + exp

(
el1M ′) (2el1 + ee

l1ζ
)
, a.s.

Eventually, we conclude that the stochastic perturbed system (4.1) is globally practically uni-

formly exponentially stable with respect to y1, with r = exp
(
el1M ′) (2el1 + ee

l1ζ
)

. 2
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Remark 4.3. Here we should mention that in our paper [7] we have established sufficient condi-
tions ensuring the practical exponential stability with respect to a part of the variables by using
Lyapunov techniques. Indeed, we have considered the n–dimensional stochastic differential equa-
tion (3.7), where both functions f and g satisfy conditions (3.8) and (3.9), and we have obtained
the following stability result by using the Lyapunov method.

Theorem 4.4. [7] Assume that there exist a function V ∈ C1.2(R+ × Rn,R+) and constants
p ∈ N∗, β1 ≥ 1, γ ≥ β1, ζ ≥ 0 and β2 ∈ R, β3 ≥ 0 such that for all t ≥ t0 ≥ 0, and all
x = (y, z) ∈ Rn,

1. β1||y||p ≤ V (t, x),

2. LV (t, x) ≤ β2V (t, x) + γ,

3. ||Vx(t, x)g(t, x)||2 ≥ %(t)V 2(t, x) + ζ,

where %(t) is a continuous nonnegative function with

lim sup
t→+∞

(∫ t
0
%(s)ds

t

)
≤ β3.

Furthermore, we suppose that z(t, t0, x0) is globally uniformly bounded in probability.

Then,

lim sup
t→+∞

1

t
ln

(
||y(t, t0, x0)|| −

(
γ

β1

) 1
p

)
≤ −(β3 + σ)− 2(β2 + 1)

2
, a.s., for all x0 ∈ Rn,

where σ is a positive constant.

In particular, if (β3 + σ) > 2(β2 + 1), then the system (3.7) is said to be almost surely globally

practically uniformly exponentially stable with respect to y, with r =

(
γ

β1

) 1
p

.

Example 4.5. Consider the following stochastic system:dy1(t) = (−3y1(t) + y31(t))dt+
1√

ln(t)
√
ch(t)

√
y21 + y22

1 + (y21 + y22)
1
4

+
e−t√
ln(t)

dBt

dy2(t) = 3 cos(t)y2(t)dt,

(4.4)

where y(t) = (y1(t), y2(t))
T ∈ R2 and with initial value y0 = (y10, y20).
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The stochastic system (4.4) can be regarded as a stochastic perturbed system of the following
system: {

dx1(t) =
(
−3x1(t) + x31(t)

)
dt

dx2(t) = 3 cos(t)x2(t)dt,
(4.5)

where x(t) = (x1(t), x2(t))
T ∈ R2, with the same initial value x0 ≡ y0.

Figure 3: Time evolution of the component x1(t) of the solution of stochastic unperturbed
system(4.5)

Note that the previous Figure 4.5 shows that the stochastic system (4.4) is almost sure expo-
nential stable with respect to x1.

The solution of the sub–system with respect to the variable x2 is globally uniformly bounded
with probability one. In fact for all ι > 0 (independent of t0), all t ≥ t0 ≥ 0, and all x20 ∈ R
with |x20| ≤ ι, we have ||x2(t)|| ≤ ιe3 sin(t), a.s.
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Figure 4: Time evolution of the components y2(t) of the solution of stochastic perturbed system
(4.4)

On the other side, we have

||g1(t, y)||2 =

(
1√

ln(t)
√

ch(t)

√
y21 + y22

1 + (y21 + y22)
1
4

)2

+
e−2t

ln(t)

≤ 1

ch(t)
||(y1, y2)||+

e−2t

ln(t)
.

Thus, the functions in Theorem 4.2 become:

ϕ(t) =
1

ch(t)
, ψ(t) = e−2t.

It is obvious that, ∫ +∞

0

ϕ(t) < +∞,
∫ +∞

0

ψ(t) ≤ +∞.

Finally, all assumptions of Theorem 4.2 are fulfilled. That is, the stochastic perturbed system
(4.4) is almost surely globally practically uniformly exponentially stable with respect to (y1, y2),
as we can see in Figure 5.
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Figure 5: Time evolution of the components (y1(t), y2(t)) of the solution of stochastic perturbed
system (4.4)

Remark 4.6. Note that, we cannot apply Theorem 3.2 to obtain the practical stability in all
variables for the above example because the solution of the sub-system with respect to the
variable y2 is globally uniformly bounded with probability one but not attractive.

Remark 4.7. We cannot proved the practical uniform exponential stability of the stochastic
perturbed system (4.4) with respect to the variable y1 by using Theorem 4.4. Indeed, Assumption
3 of Theorem 4.4 is not satisfied. Our new Theorem 4.2 allows us to prove the partial uniform
practical exponential stability of system (4.4).

5 Conclusion

In this paper, we tackle the practical exponential stability and practical exponential stability
with respect to a part of the variables of stochastic perturbed systems. The principal technical
tool for deriving our stability results is a generalized Gronwall inequality. A numerical example
has been introduced to prove the accuracy of our developed methods.
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