
Vol.:(0123456789)1 3

European Radiology 
https://doi.org/10.1007/s00330-023-10235-9

CHEST

External validation, radiological evaluation, and development of deep 
learning automatic lung segmentation in contrast‑enhanced chest CT

Krit Dwivedi1,2   · Michael Sharkey3 · Samer Alabed1 · Curtis P. Langlotz4 · Andy J. Swift1 · Christian Bluethgen4

Received: 28 April 2023 / Revised: 25 June 2023 / Accepted: 24 July 2023 
© The Author(s) 2023

Abstract
Objectives  There is a need for CT pulmonary angiography (CTPA) lung segmentation models. Clinical translation requires 
radiological evaluation of model outputs, understanding of limitations, and identification of failure points. This multicentre 
study aims to develop an accurate CTPA lung segmentation model, with evaluation of outputs in two diverse patient cohorts 
with pulmonary hypertension (PH) and interstitial lung disease (ILD).
Methods  This retrospective study develops an nnU-Net-based segmentation model using data from two specialist centres 
(UK and USA). Model was trained (n = 37), tested (n = 12), and clinically evaluated (n = 176) on a diverse ‘real-world’ cohort 
of 225 PH patients with volumetric CTPAs. Dice score coefficient (DSC) and normalised surface distance (NSD) were used 
for testing. Clinical evaluation of outputs was performed by two radiologists who assessed clinical significance of errors. 
External validation was performed on heterogenous contrast and non-contrast scans from 28 ILD patients.
Results  A total of 225 PH and 28 ILD patients with diverse demographic and clinical characteristics were evaluated. Mean accu-
racy, DSC, and NSD scores were 0.998 (95% CI 0.9976, 0.9989), 0.990 (0.9840, 0.9962), and 0.983 (0.9686, 0.9972) respectively. 
There were no segmentation failures. On radiological review, 82% and 71% of internal and external cases respectively had no 
errors. Eighteen percent and 25% respectively had clinically insignificant errors. Peripheral atelectasis and consolidation were 
common causes for suboptimal segmentation. One external case (0.5%) with patulous oesophagus had a clinically significant error.
Conclusion  State-of-the-art CTPA lung segmentation model provides accurate outputs with minimal clinical errors on evalu-
ation across two diverse cohorts with PH and ILD.
Clinical relevance  Clinical translation of artificial intelligence models requires radiological review and understanding of 
model limitations. This study develops an externally validated state-of-the-art model with robust radiological review. Intended 
clinical use is in techniques such as lung volume or parenchymal disease quantification.
Key Points 
• Accurate, externally validated CT pulmonary angiography (CTPA) lung segmentation model tested in two large heteroge-

neous clinical cohorts (pulmonary hypertension and interstitial lung disease).
• No segmentation failures and robust review of model outputs by radiologists found 1 (0.5%) clinically significant 

segmentation error.
• Intended clinical use of this model is a necessary step in techniques such as lung volume, parenchymal disease quantification, 

or pulmonary vessel analysis.
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Abbreviations
AI	� Artificial intelligence
ASPIRE	� Assessing the Severity of Pulmonary Hyper-

tension In a Pulmonary Hypertension REferral 
Centre

CT	� Computed tomography
CTPA	� Computed tomography pulmonary 

angiography
DLCO	� Diffusing capacity of carbon monoxide
DSC	� Dice score coefficient
FEV1	� Forced expiratory volume in 1 second
FVC	� Forced vital capacity
GDPR	� General Data Protection Regulation
HIPPA	� Health Insurance Portability and Accountabil-

ity Act
HRCT​	� High-resolution computed tomography
HU	� Hounsfield units
ILD	� Interstitial lung disease
IPAH	� Idiopathic pulmonary arterial hypertension
NSD	� Normalised surface distance
PAH	� Pulmonary arterial hypertension
PFT	� Pulmonary function test
PH	� Pulmonary hypertension
PH-CLD	� Pulmonary hypertension secondary to chronic 

lung disease

RadSeg	� Radiological segmentation score
RHC	� Right heart catheterisation
WHO	� World Health Organisation

Introduction

Lung segmentation in computed tomography (CT) imaging 
is the detection and extraction of the anatomical lung bound-
ary on each slice of the study. Automated lung segmenta-
tion is an important and necessary step in almost all chest 
CT clinical artificial intelligence (AI) applications such as 
lung nodule detection or lung parenchymal disease severity 
quantification. Accurate segmentation allows for detection 
of the region of interest (lung parenchyma) and removal 
of confounders (cardiac and mediastinal structures) and is 
important as any segmentation error propagates throughout 
the rest of the data analysis pipeline. Manual segmentation 
is time-consuming, arduous, and has significant inter- and 
intraobserver variability [1, 2]. It is impractical for radi-
ologists to perform segmentation during routine clinical 
reading.

Within the domain of lung segmentation, a vast range of 
techniques exist for non-contrast chest CT, from traditional 
computer vision methods approaches to newer machine 
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and deep learning approaches using convolutional neural 
networks, which have surpassed the performance of older 
methods [1, 3–6]. However, the vast majority of studies in 
this domain focus on technical developments with advances 
in underlying network architectures or processing techniques 
[3]. Computed tomography pulmonary angiography (CTPA) 
involves administration of intravenous contrast which ena-
bles assessment of the pulmonary vasculature in addition to 
other structures on chest CT. It is performed routinely for 
patients with suspected pulmonary embolism (PE) and pul-
monary hypertension (PH). A known limitation of current 
deep learning segmentation algorithms is failure to segment 
high-density objects such as subpleural consolidation [3, 7, 
8]. There are significant differences in the attenuation of the 
lung parenchyma between CTPA and non-contrast imaging 
due to parenchymal uptake of contrast. To the best of our 
knowledge, no study has trained a lung segmentation algo-
rithm in PH or CTPA imaging and externally tested it in a 
heterogeneous mixed cohort of chest CT protocols.

This study develops a 3D deep learning CTPA lung seg-
mentation algorithm using the state-of-the-art nnU-Net 
method [9]. The study aims are to:

1.	 To develop a novel state-of-the-art nnU-Net-based 3D 
lung segmentation model in CTPA imaging.

2.	 To clinically evaluate and score segmentation outputs by 
review from expert subspeciality thoracic radiologists, 
then perform failure analysis on cases with suboptimal 
performance.

3.	 To deploy and externally validate the algorithm in a het-
erogeneous patient cohort at another centre.

Materials and methods

This retrospective study uses data from two patient 
cohorts—Sheffield, UK, and Stanford, USA. All patient 
data was de-identified as per GDPR and HIPAA-compliant 
local guidelines. Ethical approval was granted by the Insti-
tutional Review Board at both centres and approved by the 
UK National Research Ethics Service (16/YH/0352).

Study cohorts

Sheffield (reference dataset)

Patients were selected from the ASPIRE registry, the details 
of which have been previously reported [10, 11]. The reg-
istry prospectively includes comprehensive clinical and 

radiological data on patients referred with suspected pul-
monary hypertension (PH) to a tertiary referral centre. A 
total of 225 patients with a heterogeneous mix of normal 
and abnormal chest CT findings formed the study cohort. All 
scans were performed on two General Electric (GE) scan-
ners with the patient in a supine position. Scanning param-
eters included multiple doses and kernels. All patients had 
thin-slice volumetric scans with contrast in the CTPA proto-
col. Patients had a diagnosis of either idiopathic pulmonary 
arterial hypertension (IPAH) or pulmonary hypertension 
secondary to chronic lung disease (PH-CLD).

Stanford (external dataset)

To evaluate the model’s generalisation performance 
on external data, an additional test set of CT scans was 
selected from a mixed cohort of patients evaluated for 
interstitial lung disease at Stanford Hospital and Clinics 
in a tertiary care setting. From a total of 2300 CT scans 
from 1330 patients, 28 scans were randomly selected. 
Scans were acquired using Siemens (n = 21), GE (n = 6), 
or Toshiba CT scanners (n = 1) and reconstructed with a 
variety of convolutional kernels. All scans were performed 
with the patient in a supine position. Twenty-five (89.3%) 
CT scans were non-enhanced, two (7.1%) of the scans 
were obtained using a CTPA protocol, and one scan (3.5%) 
was obtained using a CTA protocol. The underlying ILD 
diagnostic groups were connective tissue disease-related 
ILD (11 (39.3%)), exposure-related ILD (7 (25%)), idi-
opathic interstitial pneumonia (6 (21.4%)), post-infectious 
scarring of the lung parenchyma (1 (3.5%)), and IPAH (1 
(3.5%)). No signs of ILD were seen in two scans (7.1%).

A STROBE flow diagram for the Sheffield and Stanford 
cohorts is presented in Fig. 1.

Model development

Dataset structure

The dataset is structured at the patient level, with each 
patient having a unique single corresponding CT scan. The 
Sheffield dataset (n = 225) was divided into a model devel-
opment (n = 49) and a radiological evaluation (n = 176) 
dataset. This was done to separate cases in which clini-
cally the radiological performance is evaluated from those 
used for technical development. The model development 
dataset is further divided into training (n = 29), validation 
(n = 8), and testing (n = 12) datasets. ‘Training’ is defined 
as data on which the model is initially fit. ‘Validation’ is 
unbiased testing of the initial model fit with regularisation 
and early stopping to prevent overfitting. The ‘test’ dataset 
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is an unseen unbiased dataset on which the final model is 
evaluated. The training cohort sample size was based on 
recent studies in which similarly sized cohorts utilising 
3D segmentation approaches demonstrated high techni-
cal performance [3, 13]. In the internal dataset, the  CT 
scans were volumetric acquisitions with a mean pixel size 
of 0.75 × 0.75 × 0.625 mm. Images were acquired with a 
512 × 512 matrix with the number of slices ranging from 
389 to 548. The model was tested in an external heterog-
enous dataset.

Manual ground truth segmentation

MIM (MIM Software) was used to label and generate ground 
truth lung segmentation masks for all 49 cases in the model 
development cohort. A workflow was developed which used 
built-in operators to create an initial mask, and each step 
was continually reviewed by a certified radiologist. The 
RegionGrow tool was used to segment the lungs and airways 
from the trachea, manually checking for errors. Thresholds 
were − 350 to − 4000 Hounsfield units (HU). Tendril diam-
eter was 4.0, with ‘fill holes’ set to none and smoothing 
enabled. The workflow was continuously manually evalu-
ated, with appropriate technical parameters adjusted to 
improve performance. After achieving this baseline result, 
the scan was then manually adjusted and contoured on a 

slice-by-slice level by the radiologist to ensure correct seg-
mentation of the lung border.

Automated CTPA segmentation model

The state-of-the-art nnU-Net method is used for CTPA lung 
segmentation. nnU-Net is a landmark open-source deep learn-
ing–based segmentation method, which automatically con-
figures the preprocessing, network architecture, training, and 
post-processing for a given task [9]. A major advantage of 
using nnU-Net is its open-source architecture, which is adapt-
able and generalisable unlike traditional highly task-focused 
U-Nets which can struggle with generalisability [9, 12].

Preprocessing steps included truncating the HU range 
to − 1024 to 2500 then normalisation using SD (199 HU) 
and mean (− 761 HU) of the segmented lung region across 
all training images. A two-stage cascade 3D nnU-Net has 
been trained on volumetric CT data to enable 3D segmenta-
tion at close to the native resolution and to allow the model 
to learn context about the 3D shape of the lungs. A single-
fold training approach was used, consisting of 1000 epochs 
with 250 mini-batches per epoch. Data augmentation during 
training was used with random rotation (− 30° to 30° about 3 
axes, p = 0.2), scaling (0.7 to 1.4, p = 0.2), gamma correction 
(0.7 to 1.5, p = 0.3), and mirroring about 3 axes (p = 1). A 
two-stage cascade was used where the output segmentation 

Fig. 1   STROBE diagram showing patient selection in both internal reference datasets (Sheffield, ASPIRE cohort) and external datasets (Stanford 
ILD cohort). Patient groups per study stage (model development and clinical segmentation scoring) are also shown
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from the first stage was passed to the second stage. During 
training, the output from the first stage has augmentations 
to randomly remove connected pixels and conduct morpho-
logical operations to enlarge/shrink the output to reduce 
co-adaptation. For the first stage, the training images are 
resampled to a mean pixel size of 1.01 × 1.01 × 0.84 mm 
and a 380 × 380 × 346 matrix, with a mean pixel size of 
0.75 × 0.75 × 0.625 and 512 × 512 × 467 matrix for the sec-
ond stage. A patch size of 256 × 224 × 224 with a batch size 
of 2 was used with a learning rate of 1 × 10−3. A diagram 
of the nnU-Net architecture utilised is presented in Fig. 2. 
Dice’s similarity coefficient (DSC), accuracy, and normal-
ised surface distance (NSD) were calculated by comparing 
manual to deep learning segmentations for each case in the 
test cohort. Hardware used was a NVIDIA A6000 48 GB 
GPU, 32 Core 64 thread processor, 256 GB RAM. Post-
processing steps involved the removal of regions < 250 ml 
in volume.

Clinical segmentation scoring system: RadSeg

Segmentation outputs were clinically reviewed by two radi-
ologists (K.D. and C.B.) with 4 and 7 years of experience in 

interpreting thoracic CT scans. An ordinal score (RadSeg 
score) was given to each segmentation output, scored as:

0—failed to output a segmentation.
1—lung segmented with clinically significant error.
2—lung segmented with minor clinically insignificant 
error.
3—full lung segmented without any clinically significant 
errors.

One radiologist reviewed all 176 cases from the Sheffield 
cohort. The 28 Stanford external cases were reviewed by 
two radiologists. Cases with differing scores were reviewed 
together and a consensus RadSeg score was given.

Statistical analysis

All analyses from Sheffield and Stanford were performed 
separately; the data were not combined. Analyses were per-
formed using R software major version 4. Categorical data 
are presented as number and percentage and continuous 
data as median and interquartile range. Segmentations were 

Fig. 2   Architecture diagram. nnU-Net Architecture showing 3D U-Net with two-stage cascade used for segmentation
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compared using an overlap-based metric (the Dice similarity 
coefficient (DSC)), and a boundary-based metric (normalised 
surface distance (NSD). For NSD, a threshold of 1.5 mm was 
used, as it was felt to be a clinically appropriate threshold. A 
p value of 0.05 or less was considered statistically significant.

Role of the funding source

The funders of the study had no role in study design, data collec-
tion, data analysis, data interpretation, or writing of the report.

Results

Patient clinical characteristics of both cohorts are shown 
in Table 1. Patients had a diverse range of hemodynamic, 
spirometric, and demographic factors.

Technical results

Mean accuracy, DSC score, and NSD across the internal val-
idation cases were 0.998 (95% CI 0.9976 to 0.9989), 0.990 
(95% CI 0.9840 to 0.9962), and 0.983 (95% CI 0.9686 to 
0.9972) respectively. Scores for each patient are shown in 
Appendix Table 1a.

Clinical segmentation scores

Sheffield internal validation

There were no failures (RadSeg score 0) and all cases were 
successfully segmented by the algorithm. One hundred 
forty-six (82%) cases had a full lung segmentation with-
out any clinically significant error (RadSeg score 3) and 31 

Table 1   Patient characteristics for both the Sheffield and Stanford external cohorts

Abbreviations used: WHO World Health Organisation, PFT pulmonary function test, FEV1 forced expiratory volume in 1 s, FVC forced vital 
capacity, DLco diffusing capacity of carbon monoxide, RHC right heart catheterisation

Characteristic Sheffield ASPIRE PH cohort, N = 225 Stanford ILD cohort (external 
validation), N = 28

Training, N = 29 Validation, N = 8 Test, N = 12 Radiological 
evaluation, 
N = 176

Radiological evaluation, N = 28

Demographics
Age at scan 61 (55, 71) 70 (66, 74) 64 (57, 70) 68 (61, 75) 62 (51, 74)
Female gender 13 (45%) 2 (25%) 5 (42%) 86 (49%) 22 (79%)
Body mass index 28.2 (24.1, 34.2) 24.9 (22.8, 26.8) 27.1 (25.6, 28.7) 27.1 (23.9, 31.9) 6 (21%)
WHO functional class
2 6 (21%) 2 (25%) 2 (17%) 20 (11%) N/A
3 19 (68%) 5 (62%) 7 (58%) 95 (54%) N/A
4 3 (11%) 1 (12%) 3 (25%) 60 (34%) N/A
Smoker
Never 9 (56%) 0 (0%) 2 (50%) 15 (27%) 15 (54%)
Ever 7 (44%) 1 (100%) 2 (50%) 40 (73%) 13 (46%)
Pulmonary function tests
FVC % predicted 90 (78, 107) 88 (76, 93) 68 (57, 89) 83 (67, 107) 64 (52, 76)
FEV1% predicted 86 (51, 93) 66 (52, 77) 56 (37, 70) 70 (52, 87) 68 (52, 81)
FEV1/FVC Ratio 71 (61, 76) 54 (52, 75) 61 (51, 69) 68 (53, 76) 79 (75, 84)
DLCO % predicted 42 (31, 64) 31 (29, 45) 33 (28, 56) 27 (19, 42) 63 (58, 68)
Right heart catheterisation pulmonary haemodynamics
Mean right atrial pressure (mmHg) 10.0 (6.0, 16.0) 8.0 (6.8, 10.0) 7.0 (5.0, 10.5) 9.0 (6.0, 14.0) N/A
Mean pulmonary arterial pressure 

(mPAP)
44 (39, 52) 40 (32, 51) 38 (28, 48) 45 (36, 54) N/A

Pulmonary arterial wedge pressure 
(mmHg)

12.0 (9.5, 15.0) 12.0 (10.0, 13.0) 10.5 (9.2, 11.8) 11.0 (9.0, 14.0) N/A

Cardiac index (l/min × m^-2) 2.80 (2.45, 3.30) 2.74 (2.40, 3.14) 3.17 (2.58, 3.40) 2.50 (2.00, 3.25) N/A
Pulmonary vascular resistance (wood 

units)
6.2 (3.9, 7.7) 6.2 (3.7, 8.9) 4.1 (3.1, 9.4) 7.3 (4.7, 10.8) N/A

Mixed venous oxygen saturation 
(SvO2) %

66 (61, 70) 64 (55, 68) 71 (67, 74) 64 (58, 69) N/A
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(18%) had a minor clinically insignificant error (RadSeg 
score 2). No cases were segmented with a clinically signifi-
cant error (RadSeg score 1). The most common reasons for 
segmentation errors were consolidation (9, 29%), atelectasis 
(7, 23%) and pleural effusion (6, 19%). These findings are 
shown in Table 2.

Stanford external validation

There were no failures (RadSeg score 0) and all cases were 
successfully segmented by the algorithm. Twenty (71%) 
cases had a full lung segmentation without any clinically 
significant error (RadSeg score 3) and 7 (25%) had a minor 
clinically insignificant error (RadSeg score 2). The reasons 
for segmentation errors were atelectasis, pleural effusion, 
and basal severe fibrosis.

The one case with a clinically significant error had a 
patulous dilated oesophagus secondary to scleroderma, in 
which the gas-filled oesophagus was included within the 
lung segmentation.

Discussion

This study presents a state-of-the-art 3D lung segmenta-
tion algorithm with clinical validation across two centres 
in distinct well-phenotyped clinical cohorts. The two large 
databases used in this study represent two important patient 
disease cohorts, where CT imaging is routinely used. The 
model achieved high technical precision, indicated by high 

DICE and NSD scores, and clinical utility, indicated by high 
scores on radiological review. To our knowledge, this is the 
first model developed specifically in CTPA imaging and in 
a cohort of PH patients.

The study differs significantly in study design, patient 
cohort, and model evaluation compared to most segmenta-
tion studies currently in the literature. The methods were 
specifically designed to address common limitations that 
make clinical use and translation challenging. These are a 
lack of clinical evaluation of the segmentation output from 
expert radiologists, lack of diverse, heterogenous real-
world clinical cohorts, and external validation. This study 
addresses each limitation by clinically evaluating model 
outputs, and by developing and testing the model on two 
different patient cohorts from two centres.

Importance of radiological review of segmentation 
outputs

The most common parameter used to report and compare 
segmentation performance is the Dice similarity coefficient 
(DSC). However, technical parameters alone are insensitive 
in assessing clinical utility. Almost all studies show DSC 
scores > 0.97, but failure analysis of cases with suboptimal 
performance is rarely reported [13]. DSC itself is known to 
be highly reliant on structure size and provides artificially 
high scores by ignoring missing values [13]. The structure 
size limitation is particularly appropriate in the clinical use 
of lung segmentation, where due to the large lung volume, 
small volume but highly clinically significant segmentation 
errors—such as segmenting the oesophagus or failing to 

Table 2   Clinical evaluation 
of radiological segmentation 
(RedSeg) results and failure 
analysis for suboptimal 
performance in each cohort

1 n (%)

Sheffield reference 
cohort, N = 1761

Stanford 
external cohort, 
N = 281

RadSeg score
  0 (failed to output a segmentation) 0 0
  1 (segmented with clinically significant error) 0 1 (3.6%)
  2 (segmented with minor clinically insignificant error) 31 (18%) 7 (25%)
  3 (segmented without any clinically significant errors) 145 (82%) 20 (71%)

Failure analysis—reasons for RadSeg score 1 or 2
  Consolidation 9 (29%) 0
  Atelectasis 7 (23%) 3 (38%)
  Pleural effusion 6 (19%) 2 (25%)
  Bullous emphysema 3 (9.7%) 0
  Apical scarring 2 (6.5%) 0
  Lung mass/nodule 2 (6.5%) 0
  Fibrosis 0 2 (25%)
  Azygous fissure (thickened) 1 (3.2%) 0
  Collapsed lobe 1 (3.2%) 0
  Patulous dilated oesophagus 1 (12%)
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segment basal ground glass change in interstitial lung dis-
ease—have minimal impact on the reported DSC score.

We therefore propose and utilise a clinical segmenta-
tion scoring system (RadSeg score), which accounts for the 
small volume and clinical significance of errors. Our model 
had no major clinically significant errors when validated 
against scans from the reference centre (Sheffield) and only 
one after deployment in an external centre (Stanford). As 
radiologists are the target users in mind for such AI models, 
their involvement in the development and clinical evalua-
tion of such models, we believe, will help create trust in the 
model’s output and help increase uptake in routine clinical 
practice[14, 15].

Analysis of suboptimal outputs

Transparency of the algorithm limitations and causes of sub-
optimal performance is important to clinical trust. The train-
ing and test cohorts in our study included cases with severe 
parenchymal abnormalities (Fig. 3, panel C), and the majority 
of these accurately segmented. The most common reasons for 
suboptimal segmentation (RadSeg Score 1 or 2) were consoli-
dation and atelectasis. Accurate segmentation of these high-
density parenchymal abnormalities is challenging and is a limi-
tation common to all lung segmentation models and studies[3, 
7]. The causes for suboptimal performance are hard to directly 
compare, as they are often not reported or characterised.

Our model had no failures either in the internal or exter-
nal test sets, with only one clinically significant error in the 

external set. External validation of any AI model is vital 
to test model performance and generalisability. However, 
only 6% of published deep learning studies in the field of 
diagnostics performed external validation [16]. The major-
ity of studies with external validation demonstrate dimin-
ished algorithm performance [17]. Within the domain of 
lung segmentation, Yoo et al [8] found a significant drop off 
(DSC 99.4 in internal test to DSC 95.3 in external test) in 
the performance of their 3D U-Net-based model on exter-
nal validation. This study performs external validation not 
only after deployment in a different centre, but on a different 
clinical cohort of patients, and demonstrates good results 
on clinical evaluation. The external cohort is heterogeneous 
both in containing patients with and without PH, but also a 
random mix of different volumetric chest CT protocols, with 
and without contrast opacification.

Need for heterogeneous ‘real‑world’ clinical cohorts

Our technical results of mean DSC of 0.990 and NSD of 
0.983 compare favourably against other published 3D and 
2D segmentation approaches on non-contrast scans [3, 6, 
8, 18, 19]. This result likely can be attributed to the use 
of a state-of-the-art nnU-Net architecture combined with a 
heterogeneous ‘real-world’ clinical training cohort with a 
mix of pathology. Hofmanninger et al [3] showed that the 
accuracy and reliability of lung segmentation algorithms on 
difficult cases primarily rely on the strength of the train-
ing data, more so than the underlying model architecture. 

Fig. 3   Example of RadSeg 
scores. Examples of cases with 
corresponding RadSeg scores. 
A (Score 1)—example of signif-
icant clinical error (oesophagus 
erroneously included). B (Score 
2)—example of minor clinical 
error (consolidation at left lung 
base partially not included). C 
(Score 3)—example of no clini-
cal error in a difficult case with 
severe lung disease. D (Score 
2)—another example of minor 
clinical error (bullous emphy-
sema partially not included)
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This effect is particularly pronounced on external validation 
against a variety of test sets, with algorithms trained on more 
diverse data being more generalisable. Previous studies have 
been limited by training on relatively homogenous cohorts, 
which is a by-product of utilising public datasets, which 
only contain normal scans or variations of a specific disease 
class [20, 21]. In this study, high technical performance was 
achieved using a relatively small training cohort size. This 
was influenced by similar studies in this domain, which have 
demonstrated excellent performance in organ segmentation 
tasks across modalities [9, 12, 20, 22]. nU-Net was recently 
used in lung 1H-MRI to develop a generalisable segmenta-
tion model robust to pathology and acquisition protocols and 
centres, but this utilised 593 scans [22]. Our study reaffirms 
the importance of heterogenous and well-characterised train-
ing data for the clinical translation of segmentation models.

Implications for practice and intended clinical use

Accurate lung segmentation is a necessity for any quanti-
tative chest CT analysis. We envisage the clinical use of 
this model as the first preprocessing step in quantitative CT 
analysis models such as lung parenchymal disease sever-
ity quantification in PH. There is a clinical need and great 
interest in better characterising the severity and extent of 
lung parenchymal disease in PH [23]. Qualitative routine 
radiological report descriptions of parenchymal disease 
have shown to be prognostic biomarkers [24]. A new IPAH 
phenotype has been identified with distinct radiological and 
clinical characteristics [25]. These clinical scenarios will 
benefit greatly from automated end-to-end lung segmenta-
tion and parenchymal disease quantification models. The 
implications of this work also exist beyond PH, given the 
good performance on the external test cohort. CTPA is one 
of the most commonly performed investigations, mainly for 
the acute diagnosis of PE. Automated lung segmentation 
models can enable further quantitative vessel analysis and 
clot burden estimation [26, 27]. With appropriate transfer 
learning to further improve performance, this model may be 
used as a tool for both contrast and non-contrast imaging.

Limitations

The training set contains only patients with a known diag-
nosis of pulmonary hypertension, and thin-slice volumet-
ric CTPA protocol scans, from a single tertiary centre with 
a predominantly white European population. The range of 
lung disease in this cohort has been previously reported, 
and whilst this represents a realistic heterogeneous clini-
cal cohort of patients, there is a relative skew and bias to 
pathological cases due to a lack of truly ‘normal’ scans 
[24]. A limitation to using real-world clinical data is a 
lack of ‘rare’ cases in the training data which can limit 

performance. Future work will seek to address the limita-
tions of this study by developing and testing the DL model 
in a large cohort of multiethnicity patients. Despite good 
performance in the heterogeneous external test cohort, the 
intended clinical use of the developed model at this stage 
is limited to patients with a suspected diagnosis of PH.

In conclusion, we developed a 3D nnU-Net-based 
model for lung segmentation in CTPA imaging that is 
highly accurate, clinically evaluated, and externally tested 
in well-phenotyped patient cohorts with a spread of lung 
disease. The model is suited to important clinical scenarios 
of lung disease quantification in pulmonary hypertension.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s00330-​023-​10235-9.
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