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In the quest to unlock the maximum potential of quantum sensors, it is of
paramount importance to have practical measurement strategies that can esti-
mate incompatible parameters with best precisions possible. However, it is still
not known how to find practical measurements with optimal precisions, even
for uncorrelated measurements over probe states. Here, we give a concrete way
to find uncorrelated measurement strategies with optimal precisions. We solve
this fundamental problem by introducing a framework of conic programming
that unifies the theory of precision bounds for multiparameter estimates for un-
correlated and correlated measurement strategies under a common umbrella.
Namely, we give precision bounds that arise from linear programs on various
cones defined on a tensor product space of matrices, including a particular cone
of separable matrices. Subsequently, our theory allows us to develop an efficient
algorithm that calculates both upper and lower bounds for the ultimate preci-
sion bound for uncorrelated measurement strategies, where these bounds can
be tight. In particular, the uncorrelated measurement strategy that arises from
our theory saturates the upper bound to the ultimate precision bound. Also,
we show numerically that there is a strict gap between the previous efficiently
computable bounds and the ultimate precision bound.

1 Introduction
Quantum sensors, by employing quantum resources, promise to estimate physical parame-
ters with unprecedented precision beyond what is possible using classical resources. Quan-
tum metrology is a research field that studies quantum sensors. Quantum metrology
schemes require the ability to both prepare parameter-dependent quantum probe states
and perform quantum measurements on these states. Armed with the statistics of the
measurement outcomes, one can thereafter estimate the underlying parameters. A cen-
tral question in quantum metrology is to find measurement strategies with the ultimate
precision for these multiparameter estimates. In the simplest scenario of estimating a
single-parameter, the ultimate precision, given by the quantum (CR) Cramér-Rao bound
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[1, 2, 3, 4, 5], along with the corresponding optimal measurement strategy, are efficient
to compute with knowledge of both the probe state and its dependence on the single
parameter.

The theory of multiparameter quantum metrology1 is considerably richer than the sin-
gle parameter setting. For example, parameters can be fundamentally incompatible, as is
often the case in quantum systems. If we want to design the best quantum sensors that can
simultaneously estimate incompatible parameters, we must find optimal practical measure-
ment strategies for multiparameter quantum metrology. However, even after decades of
research, the question of how to determine these optimal measurement strategies remains
unanswered and unknown.

In lieu of determining these optimal measurement strategies, the field has focused
on determining bounds for the ultimate precision of quantum sensors that estimate in-
compatible parameters simultaneously. Since most optimizations for precision bounds
[3, 5, 8, 9, 10, 11, 12] are not based directly on measurement strategies, even if we can
calculate the best precision bounds from these optimizations, we still will not know what
the optimal measurement strategies are.

Regarding the theory of precision bounds, the theory of single parameter estimation
differs substantially from the multiparameter case. Namely, while the CR bound is tight for
both correlated and uncorrelated measurement strategies in single-parameter estimation,
this is not the case for multiple parameters. This is because the SLD Cramér Rao (SLD)
bound does not give the tight bound in the multiple-parameter case nevertheless it gives the
tight bound in the single parameter case. That is, for multiparameter quantum metrology,
the Holevo-Nagaoka (HN) bound [3, 4, 5, 8, 9] is efficient to compute and always tight for
correlated measurement strategies across multiple probe states. Although it is often called
the Holevo Cramér Rao bound, it is called Holevo-Nagaoka bound in this paper and its
reason is explained later. Such correlated measurement strategies however require a large
quantum device across multiple probe states, this bound is not practical. To accomplish
state estimation in a practical way, we need to design uncorrelated measurement strategies
across multiple probe states, using only measurement devices that access individual probe
states. (See Fig. 1.) The Nagaoka-Hayashi (NH) [4, 10, 11, 12] bound is not only efficient
to compute, but also addresses such uncorrelated measurement strategies. However, the
NH bound might not be always tight for uncorrelated measurement strategies. Hence, an
efficient way to determine the ultimate precision bound for uncorrelated strategies remains
unknown.

The ultimate precision bound for uncorrelated strategies in the multiparameter setting,
or simply the tight bound, was formulated more than two decades ago as the optimal
value of an infinite-dimensional optimization program with linear objective and constraint
functions on a topological vector space [13]. The advantage of this formulation of tight
bound is that it is a direct optimization over measurement strategies in contrast to all
other multiparameter precision bounds.

There however remain many outstanding questions pertaining to the tight bound.

(1) How to efficiently determine the tight bound?

(2) How to determine the optimal uncorrelated measurement strategy for multiparameter
quantum metrology that saturates the tight bound?

(3) What is the relationship between the SLD bound, the HN bound, the NH bound, and
the tight bound?

1See [6] and [7, Section V] for a recent review.
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(a) (b)

Figure 1: Measurement strategies in parameter estimation using quantum probe states can be either
correlated (a), or uncorrelated (b) across identical copies of the probe states. In (a), the measurement
device collectively measures the input states. That is, the measurement device needs to access a large
quantum system. In (b) the measurement device individually measures the input states, but classical
feedback is allowed to improve the measurement. This strategy is composed of measurement device to
access a single system.

(4) Is there a gap between the tight bound and the NH bound?

With regards to question (3), we unify the theory of the SLD, HN, NH and tight bounds
under a common umbrella. Remarkably, these bounds can alternatively be formulated as
conic programs with the same linear objective and constraint functions. The only difference
between these programs is the different choices of their cones. Namely, the cone for the
tight bound is a strict subset of the cone for the NH bound, and the cone for the NH bound
is a strict subset of the cone for the HN and SLD bounds. This solves the open problem
(3).

Regarding question (2), using our reformulation of the tight bound, we also construct
an efficient algorithm that calculates the tight bound. From the dual program of our
reformulation of the tight bound, we construct an associated semidefinite program (SDP),
and show how to use its optimal solution to approximately solve the tight bound. Namely,
we provide an efficient algorithm that calculates both upper and lower bounds to the tight
bound, thereby solving open problem (4). Regarding question (4), using our algorithm, we
numerically demonstrate that the tight bound can be strictly tighter than the NH bound.

We also solve questions (1) and (2), where we show concretely how we can efficiently
compute optimal uncorrelated measurement strategies that saturate the tight bound along
with the tight bound.

Our numerically tight estimates to the tight bounds are useful beyond multiparameter
estimation theory. More abstractly, we develop an approach to optimize over the separable
cone for bipartite systems. Hence we expect our theory can pave the way towards gaining
new insights into optimizations over separable bipartite states, which could be useful for
entanglement theory [14, 15] and more general quantum resource theories [16, 17, 18].

Now we sketch the organization of our paper. We also give the structure of our paper
visually in Fig. 2. In Table 2, we list the important notations we used in our paper along
with their meanings. In Section 2 we review various CR-type bounds in multiparameter
quantum metrology and define the tight bound. In Section 3, we answer question (3),
where we unify various CR-type bounds via conic linear programming with various cones
on a space that is the tensor product of real symmetric matrices and complex Hermitian
matrices. Here, we reformulate the tight bound, (i.e.Theorem 2), the HN bound (Theorem
4) and the NH bound (Theorem 4). In Section 4, we develop our theory of how to calculate
upper and lower bounds on the tight bound by applying an SDP with constraints labeled by
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V: constructing WR

IX: discussions

Wrapping up

VIII: applications
A learning Hamiltonian parameters
B 3D field sensing

III: Conic programming
Thm 2: C[G] = S(P1)
Lem 3: C[G] = C[G,d(d+1)n2/2] 
Thm 4: NH bound = S(P2), 

SLD bound = S(P4)
Thm 5: HCR bound = S(P5)
Thm 6: Strong duality: S(Pi) = S(Di)

II Tight CR bound C[G]
C[G] = S(D0)  [Ref 2]

IV: Calculating S(P1)
IVA: upper bound via SDP

IVC: lower bound

IVB: measurement strategy
Thm 9: Estimator attaining S(P1)

SDP depends on set WR
Primal SDP: [P1, WR]
Dual SDP: [D1, WR]

Thm 11:
S[P1, WR] = S[D1, WR] 
S[D1, WR] ≥ S[P1] ≥ S[P1, WR] - n κ
κ depends on the optimal solution 𝑋𝑋∗ = Π(𝒂𝒂∗,𝑺𝑺∗)

of [D1, WR].
IVD: Evaluation of κ (can approach 0)

Lem 12:
κ ≤ function of norm of X* and covering radius δ
Thm 13: Combine Lem 12 and Thm 11
Lem 14: Another upper bound on κ

δ is the covering 
radius of the 
hypersphere

δ=O( 𝑑𝑑/|WR |2/d)

WR : finite subset of the hypersphere

VI: complexity of approximating 
C[G] within additive error 𝜖𝜖

Lem 15: 𝐶𝐶2(𝑎𝑎) ≤||𝑎𝑎|| 𝐶𝐶1
Thm 16: Complexity = O(poly(𝑛𝑛/𝜖𝜖))
Thm 17:||Π 𝒂𝒂∗∗,𝑺𝑺∗∗ ||, ||𝒂𝒂∗∗|| ≤
function of G and SLD matrix

Feasibility of (a,S) in D0

Needs Eq. (23) to hold for all x

Duality

VII: numerical lower bound for S(P1)
Algo makeWR: makes WR

Use Thm 11, approximate κ
numerically
Compare numerical upper, lower 
bounds to S(P1) to S(P2) and S(P4) 
(see Fig 5,6)

Appendices
A: Application of C[G] = S(D0)
AA: 1-parameter case, exact solution.
AB: qubit case, exact solution.
B: Linear Programming with general cone
C: Proof of Thm 6
D: Proof of Thm 7
E: Evaluation of κ used in Sec V
F: Proof of Thm 17

Figure 2: Structure of our paper.

unit vectors from a real vector space. We also derive an SDP with optimal value equal to the
upper bound, and which is directly optimized over uncorrelated measurement strategies.
From the solution for this SDP, we derive a concrete uncorrelated measurement strategy
that has its precision given by our upper bound to the tight bound. Since our two-sided
bounds to the bound can be tight, we therefore have derived a near-optimal measurement
strategy We thereby can compute optimal uncorrelated measurement strategies in the
asymptotic limit, and this answers question (2). In Section 5, we construct a strategic
subset of the above unit vectors from design theory. In Section 6, based on the results of
Section 5, we give the calculation complexity of the tight bound within an additive error
of ϵ. This thereby answers question (1). In Section 7, we answer question (4), where
we describe how we obtain our numerical lower bounds for the tight bound and illustrate
its results. In Section 8, we explain how quantum multiparameter estimation theory is
applicable in learning parameters of Hamiltonian models, and also in 3D-field sensing. In
Section 9, we discuss our results and its implications in more detail.

2 Formulation and review of existing results
2.1 Various lower bounds for tight CR bound
We describe the formulation of quantum state estimation, and briefly review existing results
on quantum parameter estimation. We refer readers to references [2, 3, 19, 20, 21, 22] for
more details.

A quantum system is represented by a Hilbert space H. In the following, when H is
finite-dimensional, we can ignore the word “bounded” and “trace class”, and can replace
“self-adjoint operator” by Hermitian matrix. Let Bsa(H) be the set of bounded self-adjoint
operators on H, which is a real vector space. Let Tsa(H) be the real vector space composed
of set of trace class self-adjoint operators on H. A quantum state ρ is a positive semi-
definite matrix on H with unit trace. The set of all quantum states on H is denoted by
S(H) := {ρ | ρ ≥ 0,Trρ = 1} ⊂ Tsa(H).
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Symbol Meaning

d the number of parameters to be estimated
θ = (θ1, . . . , θd) the parameters’ true value

Θ ⊆ Rd set of all possible parameter vectors
M model {ρθ : θ ∈ Θ}
H the Hilbert space for the quantum probe state
n the number of dimensions H has

Tsa(H) trace-class self-adjoint operators on H
Bsa(H) bounded self-adjoint operators on H
S(H) set of density operators on H

θ̂ = (θ̂1, . . . , θ̂d) an estimator of θ
ρθ, ρ a probe state that is parametrized by θ

Π a POVM, a measurement
Πx positive semidefinite operators in Π

Π̂ = (Π, θ̂) an estimator based on Π and θ̂

Vθ[Π̂], V [Π̂] mean-square error (MSE) matrix of Π̂
l.u.atθ locally unbiased at θ

Cθ[G], C[G] fundamental precision bound: minΠ̂ l.u.at θ TrGVθ[Π̂]
a size d real square matrix
S Hermitian operator on H
D0 Maximization of Tra+ TrS subject to (23) for all x ∈ Rd

(a∗∗, S∗∗) the optimal solution of D0
S(D0) = Tra∗∗ + TrS∗∗ the optimal value of D0, (equal to C[G])

Jθ(Π) Fisher information matrix
X set of labels x corresponding to Πx

Dj = ∂
∂θj ρθ jth partial derivative of ρθ

C[G,m] denotes C[G] when |X | = m and m < ∞
Li SLD corresponding to Di

CS [G] SLD CR bound
CHN [G] Holevo-Nagaoka (HN) bound

CNθ [G], CN [G] Nagaoka bound
CNH [G] Nagaoka-Hayashi (NH) bound

Table 1: Notations for Section 2. We define the quantum parameter estimation problem in terms of a
quantum model M using the notation θ, Θ, H, d and n. The vector θ encapsulates the true value of
the d parameters, and we estimate θ using an estimator θ̂ that is obtained from measurements Π. The
estimator Π̂ encapsulates information about both Π and how to construct θ̂ from the measurements.
For quantum parameter estimation, we like to minimize the MSE Vθ[Π̂]. For uncorrelated measurement
strategies the minimum MSE for locally unbiased Π̂ is given by the optimal value S(D0) of a optimization
program D0. In fact S(D0) is the tight bound C[G], where G denotes the weight matrix for the d-
parameter estimation problem. Evaluating C[G] is non-trivial. There is a plethora of upper bounds to
the tight bound C[G], given by the SLD CR bound, CS [G], the Holevo-Nagaoka (HN) bound CHN [G],
the Nagaoka bound CN [G] and the Nagaoka-Hayashi (NH) bound CHN [G].
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A measurement Π can be represented mathematically as a positive operator-valued
measurement (POVM) which is a set of positive semidefinite matrices Π = {Πx}x∈X that
satisfies a completeness condition. When the set of measurement outcomes is finite, X is a
finite set and the completeness condition is

∑
x∈X Πx = I. When the set of measurement

outcomes is a continuum, such as when X = R, the completeness condition is
∫

X Πxdx = I.
For notational simplicity, for any POVM Π, we employ the notation for discrete-valued
POVMs, and we always use

∑
x∈X Πx = I to represent the completeness condition.

When one performs a POVM Π on ρ, the Born rule

pρ(x|Π) = Tr
[
ρΠx

]
(1)

gives the probability of getting an outcome x ∈ X . We are interested in a model of quantum
parameter estimation given by a parametric family of quantum states on H:

M := {ρθ | θ ∈ Θ} ⊂ S(H), (2)

where Θ ⊂ Rd denotes the set of parameters. Here, d denotes the number of parameters
that we want to simultaneously estimate. To avoid mathematical subtleties, we impose
regularity conditions; we require ρθ to be differentiable sufficiently many times, assume
∂ρθ/∂θi to be linearly independent, and for the sake of clarity only consider full-rank
states here 2.

Now given a measurement Π and an estimator θ̂, we denote Π̂ = (Π, θ̂) as an estimator.
We define the mean-square error (MSE) matrix for the estimator Π̂ as

Vθ[Π̂] =

∑
x∈X

Tr
[
ρθΠx

]
(θ̂i(x) − θi)(θ̂j(x) − θj)


=
[
Eθ

[
(θ̂i(x) − θi)(θ̂j(x) − θj)|Π

]]
. (3)

where Eθ[f(X)|Π] denotes the expectation of a random variable f(X) with respect to the
probability distribution pρθ(x|Π) = TrρθΠx obtained from the Born rule. In multiparam-
eter quantum metrology, the objective is to find an optimal estimator Π̂ = (Π, θ̂) that in
some sense minimizes the MSE matrix.

Since the minimization of an MSE matrix is not properly defined, we seek precision
bounds where we minimize Tr[GVθ[Π̂]], which is the weighted trace of the MSE matrix
according to a given positive matrix G. Here, G is a weight matrix and quantifies the
trade-off between estimating different vector components of the parameter θ. For instance,
when G is the size d identity matrix Id, minimizing TrGVθ[Π̂] corresponds to minimizing
the average variance of estimators.

A problem fundamental to quantum metrology is that of finding the ultimate precision
bound under reasonable assumptions on the estimators we use. We say that an estimator
Π̂ is unbiased if for all θ = (θ1, . . . , θd) ∈ Θ, we have

Eθ

[
θ̂i(X)|Π

]
=
∑
x∈X

θ̂i(x)Tr
[
ρθΠx

]
= θi (∀i = 1, 2, . . . , d).

However, such an unbiased estimator invariably does not exist. Hence one often relaxes
this unbiasedness condition to a locally unbiased condition in the neighborhood of a chosen

2We refer the reader to [23, 24] for problems in the pure-state model.
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point θ. To have the locally unbiased condition to hold, we require that for all parameter
indices i, j ∈ {1, 2, . . . , d}, we have the equations

Eθ

[
θ̂i(X)|Π

]
=
∑
x∈X

θ̂i(x)Tr
[
ρθΠx

]
= θi, (4)

∂

∂θj
Eθ

[
θ̂i(X)|Π

]
=
∑
x∈X

θ̂i(x)Tr
[
∂

∂θj
ρθΠx

]
= δji . (5)

Note that we can derive this condition by applying the Taylor expansion to the usual
unbiasedness condition at a point θ to first order.

Then, we introduce the fundamental precision limit by

Cθ[G] := min
Π̂ :l.u.atθ

Tr
[
GVθ[Π̂]

]
, (6)

where the minimization is carried out for all possible estimators under the locally unbi-
asedness condition, which is indicated by l.u. at θ. In this paper, any lower bound for the
weighted trace of the MSE matrix Vθ[Π̂] is referred to as the CR type bound. When a CR
type bound equals to the fundamental precision limit Cθ[G] as in (6), it is called the tight
CR bound in our discussion. That is, Cθ[G] is called the tight CR bound. In the following,
we discuss some CR type and tight CR bounds.

In fact, the set of MSE matrix Vθ[Π̂] under the local unbiasedness condition is charac-
terized as follows.

{Vθ[Π̂]|Π̂ is l.u.at θ} = {Jθ(Π)−1|Π is a POVM }, (7)

where Jθ(Π) is the Fisher information matrix of the distribution family {Pθ,Π}θ and
Pθ,Π(x) := Tr[ρθΠx] [25, Exercise 6.44].

When multiple copies of the unknown state are prepared, only individual measurements
for each copy are allowed, and the error is measured by weighted sum of mean square error
with the weight matrix G, it is impossible to realize estimation precisions exceeding Cθ[G].
Although the measurement to achieve this bound depends on the true parameter θ, when
classical adaptive improvement for the choice of measurement is allowed, it is possible
to achieve the bound Cθ[G] [26, 27, 28, 29]. Therefore, we can consider that the tight
CR bound Cθ[G] expresses the ultimate precision of the optimal estimator in the asymp-
totic limit of infinitely many probe states when only adaptive individual measurements for
each copy are allowed. This setting corresponds to the strategy A2 in Section 3.2 of [22].
Furthermore, when n copies of the unknown state are given, even when any separable mea-
surement over the n-fold system is allowed, it is impossible to overcome the precision error
Cθ[G] although there exists a separable measurement that requires quantum correlation
over the n-fold system [25, Exercise 6.42].

In the latter discussion, we focus on this problem only at one point θ ∈ Θ. Hence,
we omit the subscript θ later, using C[G] to denote Cθ[G]. Furthermore, we simplify ρθ,
∂
∂θj ρθ, Vθ[Π̂] to ρ, Dj , and V [Π̂], respectively. Further, when H is infinite-dimensional,
ρ and Dj are assumed to be trace-class operators. Note that, even when we remove (4),
the minimum value of Tr[GV [Π̂]] is not changed due to the following reason. Given an
estimator Π̂ = (Π, θ̂) satisfying (5), the new estimator Π̂′ = (Π, θ̂ − Eθ

[
θ̂(X)|Π

]
+ θ)

satisfies the relation V [Π̂] = V [Π̂′]+(Eθ

[
θ̂(X)|Π

]
−θ)(Eθ

[
θ̂(X)|Π

]
−θ)T ≥ V [Π̂′]. Hence,

we ignore the condition (4).
We denote the minimum of (6) when our measurement is limited to measurement with

discrete value and the number of elements in X is m by C[G,m]. Clearly, C[G,m] ≥
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C[G,m′] for m′ ≥ m. In addition, since our interest is the minimization (6), without loss
of generality, we can assume that θ is zero.

To get a CR type bound, we often focus on the SLD Li, which is defined as any
Hermitian matrix that satisfies

Di = 1
2
(
Liρ+ ρLi

)
. (8)

The SLD Fisher information matrix J = (Ji,j) is defined as

Ji,j := 1
2Tr

[
Li
(
Ljρ+ ρLj

)]
. (9)

Here, when ρ is strictly positive, the choice of Hermitian matrix Li is unique. Otherwise,
it is not unique. However, the definition of the SLD Fisher information matrix J in (9)
does not depend on the choice of Hermitian matrix Li under the condition (8). Under the
locally unbiasedness condition at θ, we have SLD CR inequality [2]

V [Π̂] ≥ J−1. (10)

For the proof, see [2, 3], [25, Section 6.6], [22, Appendix B] for more details. When we can
choose SLDs Li for i = 1, . . . , d such that these SLDs Li all commute, the equality in (10)
can be achieved by a local unbiased estimator constructed by their simultaneous spectral
decomposition. In the choice of SLDs Li, extending the Hilbert space is allowed. However,
when ρ is a strictly positive density matrix, it is sufficient to check for the commutativity
of SLDs Li without extending the Hilbert space. In general, there is a possibility that the
equality in (10) be achieved only with an extending Hilbert space.

Taking a weighted trace in (10), we obtain the following bound.

• The SLD CR bound, which is the tight CR bound for any one-parameter model [2]:

CS[G] := Tr[GJ−1], (11)

where J denotes the SLD Fisher information matrix about the model M.

To get a tighter bound than SLD bound, we focus on the vector of self-adjoint operators
Z⃗ = (Z1, . . . , Zd) that satisfies the condition

Tr[DjZ
i] = δji for i, j = 1, . . . , d. (12)

Then, we define the Hermitian matrix Z(Z⃗) whose (i, j) component is TrρZiZj . When an
estimator Π̂ = (Π, θ̂) satisfies the condition:∑

x∈X
θ̂i(x)Πx = Zi, (13)

we have [3, (6.7.73)]

V [Π̂] ≥ Z(Z⃗). (14)

Using this relation, we have [4]

TrGVθ[Π̂] ≥ TrGRe Z(Z⃗) + Tr|G
1
2 Im Z(Z⃗)G

1
2 |, (15)

where the operator |X| is defined as
√
X†X.

Therefore, we obtain the following bound;
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• The Holevo-Nagaoka (HN) bound [3, 4] (Nagaoka [4] derived this bound by using
several formulas obtained in Holevo [3], and called this bound the Holevo bound.
Recently, the reference [30] called this bound the Holevo Cramer Rao bound, and
cited Nagaoka [4] as its formulation. However, this bound does not appear in Holevo
[3]. It should be called Holevo-Nagaoka CR bound. For its detailed history, see the
latest review [31].)

CHN [G] := min
Z⃗=(Z1,...,Zd)

Tr[GRe Z(Z⃗)] + Tr[|G
1
2 Im Z(Z⃗)G

1
2 |], (16)

where the minimization takes the vector of self-adjoint operators Z⃗ = (Z1, . . . , Zd)
to satisfy the condition (12).
Notice that the minimum (16) is achieved when the vector of Hermitian matrices Z⃗
satisfies the condition TrρZi = 0 for i = 1, . . . , d. When the model is composed of
pure states, the equality in inequality C[G] ≥ CHN [G] holds [32].

The HN bound CHN [G] improves the SLD CR bound CS [G], and gives the asymptotic
limit of precision of the minimum estimation error when any quantum correlation is allowed
in measurement apparatus and multiple copies of unknown states are prepared [33, 5, 34,
35, 29].

In addition, the HN bound CHN [G] satisfies the additivity condition, i.e., this value
with the m-copy setting equals the value with the one-copy setting divided by m [5]. The
reference [8, Eq. (11)] derived a calculation formula based on SDP for the bound CHN (G).

When d = 2, the lower bound in (15) is written as

Tr[GRe Z(Z⃗)] + Tr[|G
1
2 Im Z(Z⃗)G

1
2 |]

=G1,1Tr[Z1ρZ1] +G2,2Tr[Z2ρZ2]
+G1,2Tr[ρ(Z1Z2 + Z2Z1)]
+ 2

√
detG|Tr[ρ[Z1, Z2]]|. (17)

To improve the HN bound, Nagaoka [4, 10] derived the following inequality with d = 2:

Tr[GVθ[Π̂]] ≥G1,1Tr[Z1ρZ1] +G2,2Tr[Z2ρZ2]
+G1,2Tr[ρ(Z1Z2 + Z2Z1)]
+ 2

√
detGTr[|ρ1/2[Z1, Z2]ρ1/2|] (18)

when an estimator Π̂ = (Π, θ̂) satisfies the condition (13). Since Tr[|ρ1/2[Z1, Z2]ρ1/2|] ≥
|Tr[ρ[Z1, Z2]]|, the inequality (17) implies (15).

Using (17), we obtain the following bound.

• The Nagaoka bound [4, 10], which is given only in the case with d = 2, and is tighter
than the HN bound.

CNθ [G] := min
Z⃗=(Z1,Z2)

G1,1Tr[Z1ρZ1] +G2,2Tr[Z2ρZ2]

+G1,2Tr[ρ(Z1Z2 + Z2Z1)]
+ 2

√
detGTr[|ρ1/2[Z1, Z2]ρ1/2|], (19)

where the minimization takes the vector of self-adjoint operators Z⃗ = (Z1, Z2) under
the condition (12).
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In the qubit case, the Nagaoka bound CNθ [G] equals the tight CR bound C[G] for a two-
parameter model (d = 2).

To generalize the above improvement, we consider the tensor product between the
Hilbert space H and the real vector space R′ spanned by {|1⟩, . . . , |d⟩}. Then, we define
B′ as

B′ :=
{ d∑
j=1

d∑
k=1

∣∣∣∣|k⟩⟨j| ⊗Xk,j |Xk,j ∈ Bsa(H), Xk,j = Xj,k
}
. (20)

To generalize (17), for the vector of self-adjoint operators Z⃗ = (Z1, . . . , Zd), the paper [11]
focuses on Π(Z⃗) ∈ B′ with components Π(Z⃗)i,j = ZiZj . When an estimator Π̂ = (Π, θ̂)
satisfies the condition (13), the paper [11] derived the inequality

Tr[GVθ[Π̂]] ≥ min
X′∈B′

{Tr[(G⊗ ρ)X ′]|X ′ ≥ Π(Z⃗)}. (21)

Using (17), the paper [12] introduced the following bound.

• The Nagaoka-Hayashi (NH) bound [12], which is tighter than the HN bound.

CNH [G] := min
Z⃗

min
X′∈B′

{Tr[(G⊗ ρ)X ′]|X ′ ≥ Π(Z⃗)}, (22)

where the minimization takes the vector of self-adjoint operators Z⃗ = (Z1, . . . , Zd)
under the condition (12).

The reference [12, (22)] derived a calculation formula based on SDP for the bound CNH(G).
Overall, the HN and NH bounds focused on the relation between the difficulty of joint
measurement and the multiparameter estimation. This kind of relation was also discussed
in the recent paper [36].

2.2 Another expression of tight CR bound by [37, 13]
To get another form of C[G], the papers [37, 13] treated the minimization C[G] as a
minimization with respect to a POVM Π̂ over Rd. In this case, a POVM Π̂ is considered
as an element of convex cone. Then, it focused on the following maximization problem.

For a d × d real matrix a and a self-adjoint operator S on the Hilbert space H, we
consider the condition:

(xTGx)ρ−
∑
i,j

ajix
iDj − S ≥ 0 (23)

for x = (x1, . . . , xd) ∈ Rd. We consider the maximization:

S(D0) := max
a,S

∑
i

aii + TrS, (24)

where the maximization takes the pair (a, S) to satisfy the condition (23). Here, D0 shows
the maximization problem presented in (24), and the maximum value is denoted by S(D0).
Then, the paper [13] showed the following proposition:

Proposition 1 ([13, Theorem 6]).

C[G] = S(D0). (25)
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In fact, the maximization (24) can be regarded as the dual problem when the mini-
mization C[G] is considered as a conic linear programming with respect to a POVM Π̂
over Rd. Hence, we call the maximization (24) the dual problem D0.

To see this, we focus on the relation∫
Rd

Tr
(

(xTGx)ρ−
∑
i,j

ajix
iDj − S)Π(dx)

)
≥ 0, (26)

where x = (x1, . . . , xd) takes values in Rd. Using the above relation, we have∫
Rd

(xTGx)Tr[ρΠ(dx)]

≥
∫
Rd

∑
i,j

ajix
iTr[DjΠ(dx)] +

∫
Rd

Tr[SΠ(dx)]

=
∑
i,j

aji

∫
Rd
xiTr[DjΠ(dx)] + Tr[SΠ(Rd)]

=
∑
i,j

aji δ
i
j + Tr[SI] =

∑
i

aii + TrS. (27)

Hence, we can easily see the inequality ≥ in (25).
To show the opposite inequality, one needs to show the non-existence of the duality

gap, i.e., the minimum of the primal problem equals the maximum of the dual problem in
the framework of a conic linear programming, as explained in Appendix B. Although the
non-existence of the duality gap holds for a conic linear program in a finite-dimensional
vector space, the set of POVMs Π̂ over Rd is a subset of an infinite-dimensional space,
because the number of elements in Rd is not finite, even when H is finite-dimensional.
Hence, the paper [13] showed the non-existence of the duality gap in this problem setting
by discussing a complicated issue related to topological vector space.

In fact, the formula (25) has various merits. Appendix A summarizes its two appli-
cations. For example, use of the relation (25) enables us to derive the minimum MSE
under the locally unbiasedness condition under the one-parameter case. As another ex-
ample, using the relation (25), the papers [37, 13] derived the tight CR bound C[G] for a
three-parameter model (d = 3) in the qubit system.

3 Conic programming with various cones on tensor product
When H is finite-dimensional, Proposition 1 guarantees that the tight CR bound C[G] is
given as the maximum value S(D0) with the variables (a, S) of finite-dimension. However,
even with a finite-dimensional space H, the calculation of the maximum value S(D0) is
not so easy,

To get a more computable form for C[G], we introduce the real vector space R spanned
by {|0⟩, |1⟩, . . . , |d⟩}. Let Mrs(R) be the set of real symmetric matrices on R. The weight
matrix G can be considered as an element of Mrs,+(R) ⊂ Mrs(R), where Mrs,+(R)
denotes the set of positive semidefinite matrices in Mrs(R). Here, we denote G =∑

1≤j,i≤dGi,j |i⟩⟨j|.
This section aims to derive various CR bounds as conic linear programming problems

on the vector spaces B := Mrs(R) ⊗ Bsa(H) and T := Mrs(R) ⊗ Tsa(H). That is, B is
defined as

B :=
{ d∑
j=0

d∑
k=0

|k⟩⟨j| ⊗Xk,j

∣∣∣∣Xk,j ∈ Bsa(H), Xk,j = Xj,k
}
. (28)
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Symbol Meaning

R real vector space spanned by |0⟩, |1⟩, . . . , |d⟩
RC complex vector space spanned by |0⟩, . . . , |d⟩
R′ real vector space spanned by |1⟩, . . . , |d⟩
R′
C complex vector space spanned by |1⟩, . . . , |d⟩

Mrs(R) set of real symmetric matrices on R
Mrs,+(R) positive semidefinite matrices in Mrs(R)

B Equal to Mrs(R) ⊗ Bsa(H)
T Equal to Mrs(R) ⊗ Tsa(H)

B′,B′′ both are extensions of B
B′′
ρ ρ-dependent subspace of B′′

SP ,SSEP cones in B
X = Π(a, S) an operator in T given by (57)

S∗
P ,S∗

SEP dual cones
P1, P2 conic programs with cones SSEP , SP

S3 = S(RC ⊗H)PPT PPT cone
S4 = S(RC ⊗H)P cone S(RC ⊗H)P
Pi, i = 3, 4 conic program with variable in B′′ and Si

P5 conic program with variable in B′′
ρ and S4

S(Pi) optimal value of Pi, for i = 1, 2, 3, 4, 5
Di dual program of Pi for i = 1, 2, 3, 4, 5

Objective function of Di Tra+ TrS
Constraints of Di Π(a, S) lies in appropriate dual cone

S(Di) optimal value of Di, for i = 0, 1, 2, 3, 4, 5
WR a finite set of norm 1 vectors in R
WH a finite set of norm 1 vectors in H

[P1,WR] Primal SDP
[D1,WR] Dual SDP of [P1,WR]
S[P1,WR] optimal value of [P1,WR]
S[D1,WR] optimal value of [D1,WR]
C2(a) real number depending on a, Dj and ρ (see (80))
C1 real number depending on Dj and ρ (see (110))

δ(WR) covering radius of WR

κ related to the covering radius of WR

Table 2: Notations from Section 3 onwards. For our conic programming framework, we consider
primal conic programs P1, P2, P3, P4, P5 and their dual conic programs D1, D2, D3, D4, D5. Primal
programs are minimizations over cones, while dual programs are maximizations over the dual cones
(also cones). There is no duality gap between the primal programs and the dual programs, so Pi has
the same optimal value as Di, so that S(Pi) = S(Di). The optimizations for the primal programs
are over variables of the form X, which are matrices in the tensor product space RC ⊗ H. The primal
conic programs all have objective functions Tr(G⊗ρ)X and the dual conic programs all have objective
functions Tra + TrS, where a is a size d real matrix, and S is a Hermitian matrix. Now S(P1) and
D(P1) are equal to the tight bound C[G], and can be approximated using the semidefinite program
(SDP) [P1,WR], where we can take WR to be a collection of points on a norm-1 hypersphere in a
real vector space. Namely C[G] = S(P1) = D(P1) ≈ S[P1,WR]. The smaller the covering radius
δ(WR), the better S[P1,WR] approximates C[G]. To approximate C[G], for a chosen set WR, we
solve the primal SDP [P1,WR] and the dual SDP [P1,WR], denoting the optimal solutions as X∗

and (a∗, S∗) respectively. Using (a∗, S∗) we can calculate C2(a∗). Then we find that (in Theorem 13)
S[D1,WR] − n∥X∗∥(1 + C2(a∗)2)δ(WR) ≤ C[G] ≤ S[D1,WR].
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T is similarly defined.
Since any real symmetric matrix can be regarded as a Hermitian matrix on the com-

plexified space RC of R, any element of B can be considered as a self-adjoint operator on
RC ⊗ H. Then, we define several cones in the space B as follows. Let Bsa,+(H) be the set
of bounded positive semi-definite operators on H. Then, we define the cone SSEP in B as
SSEP := conv(Mrs,+(R) ⊗ Bsa,+(H)), where conv is the convex hull. Then, we define the
cone S∗

SEP in B as the dual cone of SSEP . That is,

S∗
SEP := {X ∈ T |TrXY ≥ 0 for Y ∈ SSEP }. (29)

In the context of entanglement theory, S∗
SEP is often called entanglement witnesses [38,

39, 40].
Also, we define the cone SP as

SP := {X ∈ B|⟨v|X|v⟩ ≥ 0 for v ∈ RC ⊗ H}. (30)

Then, we have

S∗
P := {X ∈ T |TrXY ≥ 0 for Y ∈ SP }

⊃ {X ∈ T |Tr[X|v⟩⟨v|] ≥ 0 for v ∈ RC ⊗ H}
= {X ∈ T |⟨v|X|v⟩ ≥ 0 for v ∈ RC ⊗ H}. (31)

Hence, when H is finite-dimensional, we have

SP ⊂ S∗
P . (32)

Relaxing the condition of B we extend the space B as

B′′ :=
{ d∑
j=0

d∑
k=0

|k⟩⟨j| ⊗Xk,j

∣∣∣∣Xk,0 ∈ Bsa(H), Xk,j = (Xj,k)†
}
. (33)

We define the set S(RC ⊗ H)P (S(RC ⊗ H)PPT ) of positive semi-definite (positive partial
transpose) self-adjoint operators on RC ⊗ H. Since any component of an element X of SP
is a self-adjoint operator, the element X satisfies the conditions of B′′. Also, the operator
transposed on the system RC ofX is positive. Hence, the elementX satisfies the conditions
of B′′ and S(RC ⊗ H)PPT . Therefore, since the set SSEP is generated by separable pure
states in RC ⊗ H, we find the relations

SSEP ⊂ SP ⊂ S(RC ⊗ H)PPT ∩ B′′ ⊂ S(RC ⊗ H)P ∩ B′′. (34)

To derive various CR bounds as conic linear programming problems on the vector
spaces, we discuss the relation between our estimator and SSEP . For any estimator
(Π, θ̂) := ({Πx}x∈X , θ̂(x)), we define the operator X(Π, θ̂) ∈ SSEP as

X(Π, θ̂)

:=
∑
x∈X

(
|0⟩ +

d∑
i=1

θ̂i(x)|i⟩
)(

⟨0| +
d∑
i=1

⟨i|θ̂i(x)
)

⊗ Πx. (35)

Although the references [41, (2011)] considered a matrix with the separable form from a
POVM, our matrix X(Π, θ̂) with the separable form is different from their matrix with the
separable form in the following point. Their matrix with the separable form is composed
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of the tensor product of the POVM element and the density matrix of their guess. We
consider the tensor product of the POVM element and the one-dimensional operator given
by the superposition of |0⟩ and the parameter of our estimate. The component |0⟩⟨0|
enables us to check the condition for the POVM.

Since Π satisfies the condition of POVM, X(Π, θ̂) satisfies the following condition:

TrR
[
(|0⟩⟨0| ⊗ IH)X(Π, θ̂)

]
= IH. (36)

The condition (5) for a locally unbiased estimator guarantees the following condition:

Tr
[
(1
2(|0⟩⟨i| + |i⟩⟨0|) ⊗Dj)X(Π, θ̂)

]
= δi,j . (37)

Under the above condition, the objective function TrGVθ[Π̂] is rewritten with X(Π, θ̂) as

Tr
[
(G⊗ ρ)X(Π, θ̂)

]
. (38)

In this notation, the components G0,0, G0,j , and Gj,0 are zero. Therefore, we consider the
minimization:

S(P1) := min
X∈SSEP

{
Tr
[
(G⊗ ρ)X

]∣∣∣(36), (37) hold.
}
, (39)

and we denote the above primal conic linear programming problem by P1, and the min-
imum value is denoted by S(P1). Although the above discussion shows the inequality
C[G] ≥ S(P1), we have the following theorem.

Theorem 2. We have

C[G] = S(P1). (40)

The above theorem shows the tight CR bound can be calculated by solving the primal
conic linear programming P1. Since the tight CR bound equals the tight bound, the primal
conic linear programming P1 characterizes the tight bound.

Proof. To show the opposite inequality C[G] ≤ S(P1), we assume that an element X ∈
SSEP satisfies the conditions (36) and (37). X is written as

X =
∑
x∈X

T (x) ⊗Mx =
∑
x∈X1

T (x) ⊗Mx +
∑
x∈X0

T (x) ⊗Mx, (41)

where X0 := {x ∈ X |⟨0|T (x)|0⟩ = 0} and X1 := X \ X0. Then, for x ∈ X0, T (x)|0⟩ = 0
and ⟨0|T (x) = 0. Hence, the second term in (41) does not contribute the conditions (36)
and (37). Thus, the first term in (41) satisfies the conditions (36) and (37). Since

Tr
[
(G⊗ ρ)

∑
x∈X1

T (x) ⊗Mx

]

≤Tr
[
(G⊗ ρ)

( ∑
x∈X1

T (x) ⊗Mx +
∑
x∈X0

T (x) ⊗Mx

)]
=Tr

[
(G⊗ ρ)X

]
, (42)

we have (40).
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When H is finite-dimensional and dim H = n, the dimension of B is d(d+1)
2 ·n2. Due to

Carathéodory’s theorem, any element of SSEP can be written as a convex sum of d(d+1)n2

2 +1
extremal elements of SSEP . Then, we have the following lemma.

Lemma 3. When dim H = n, we have C[G, d(d+1)n2

2 + 1] = C[G].

When we replace the cone SSEP by another cone in the primal conic linear program P1,
we obtain another primal conic linear program. The relation (34) lists various alternative
cones. For instance, when the condition X ∈ SSEP is replaced by X ∈ SP , we denote the
primal conic linear programming problem as P2. In fact, since the cone SP is given as
the set of positive semi-definite matrices in B, P2 can be simply solved by semi-definite
programming.

When the condition X ∈ SSEP is replaced by X ∈ S(RC ⊗ H)PPT ∩ B′′, (X ∈ S(RC ⊗
H)P ∩ B′′), we denote this primal conic linear programming problem as P3 (P4). When
we denote the minimum of the primal conic linear programming problem Pl by S(Pl) for
l = 2, 3, 4. The relation (34) implies

S(P1) ≥ S(P2) ≥ S(P3) ≥ S(P4). (43)

Then, the NH bound CNH [G] and the SLD bound CS [G] can be calculated by solving
S(P2) and S(P4), respectively, as follows.

Theorem 4. We have

CNH [G] = S(P2) (44)
CS [G] = S(P4). (45)

The above theorem shows that the NH and SLD bounds are the optimal values of the
primal conic linear programs P2 and P4. Their difference lies in the choice of their cones.
The cone of P2 is composed of positive semi-definite matrices in B = Mrs(R) ⊗ Bsa(H),
and the cone of P4 is composed of all positive semi-definite matrices on RC ⊗ H that are
also in the cone B′′.

Although the minimizations P2, P3, P4 are defined in cones different from the cone
S(RC ⊗ H)P , these minimizations P2, P3, P4 can be considered as semi-definite program-
ming (SDP) in the cone S(RC ⊗ H)P because their cones are given as linear constraints
in the cone S(RC ⊗ H)P . Hence, the NH and SLD bounds CNH [G] and CS [G] can be
solved by semi-definite programming while the reference [12, (22)] already gave the same
SDP form as S(P2) for CNH(G).

Proof. First, we show (44). For X ′ ∈ B′ and Z⃗ = (Z1, . . . , Zd) satisfying TrZiDj = δij , we
define X(X ′, Z⃗) ∈ B as follows.

X(X ′, Z⃗) := X ′ +
d∑
j=1

(|0⟩⟨j| + |j⟩⟨0|) ⊗ Zj + |0⟩⟨0| ⊗ I. (46)

Since any element in B can be written in the above form due to the definition of B, it is
sufficient to discuss S(P2) to consider the matrix with the form X(X ′, Z⃗).
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Figure 3: P1, P2, P4 and P5 are all conic linear programs on the space of operators B, B′′
ρ , or B′′.

The objective functions of all of these conic programs is the same, and the only difference between
them lies in the constraints that their operator variables must satisfy. The operator spaces for each
of these conic programs are different; P1 is optimized over a bipartite separable space on the tensor
product of R and H. All the other spaces use the complexification of R. The possible choices of X in
the programs P1, P2, P4 and P5 are contained within one another, which we depict visually as nested
rectangles. Because of this, we have S(P1) ≥ S(P2) ≥ S(P5) ≥ S(P4).

Any element of RC ⊗ H can be written as the form |(y, z)⟩ := |y⟩ ⊕ (|0⟩ ⊗ |z⟩) with
|y⟩(:=

∑d
j=1 |j⟩ ⊗ |yj⟩) ∈ R′

C ⊗ H and |z⟩ ∈ H, where |yj⟩ ∈ H. Then, we have

⟨(y, z)|X(X ′, Z⃗)|(y, z)⟩

=⟨y|X ′|y⟩ + ∥z∥2 + ⟨z|
d∑
j=1

Zjyj⟩ + ⟨
d∑
j=1

Zjyj |z⟩

=⟨y|X ′|y⟩ +
∥∥∥z +

d∑
j=1

Zjyj
∥∥∥2

−
∥∥∥ d∑
j=1

Zjyj
∥∥∥2

=⟨y|X ′ − Π(Z⃗)|y⟩ +
∥∥∥z +

d∑
j=1

Zjyj
∥∥∥2
. (47)

Considering the case with z = −
∑d
j=1 Z

jyj , as pointed by [12, (22)], we find the equiva-
lence between the following two conditions for X ′ and Z⃗.

(i) The inequality ⟨(y, z)|X(X ′, Z⃗)|(y, z)⟩ ≥ 0 holds for any |(y, z)⟩ ∈ RC ⊗ H.

(ii) The inequality ⟨y|X ′ − Π(Z⃗)|y⟩ ≥ 0 holds for any |y⟩ ∈ R′
C ⊗ H.

Since the condition (i) is the conditions for P2 and the condition (ii) is the conditions for
the NH bound CNH [G], the desired statement is obtained.

Next, we proceed to the proof of (45). We choose X ′ as an element of S(R′
c ⊗ H)P ∩

B′′. When Z⃗ is fixed, the optimum X ′ under the condition X(X ′, Z⃗) ∈ S(RC ⊗ H)P
is the operator Π(Z⃗). In this case, the value of the objective function Tr[(G ⊗ ρ)X] is
Tr[GZ(Z⃗)]. Under the condition (12), we can show Z(Z⃗) ≥ J−1 in the same way as the
SLD Cramér-Rao inequality. When we choose a suitable Z⃗, the above inequality becomes
an equality. Thus, the minimum of Tr[GZ(Z⃗)] under the condition (12) is Tr[GJ−1] =
CS [G]. Therefore, we obtain (45).

To get a relation with HN bound, CHN (G), we introduce a linear constraint to the
operator X ∈ B′′ as

Tr
[
X((|j⟩⟨i| − |i⟩⟨j|) ⊗ ρ)

]
= 0 (48)
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for i, j = 1, 2, . . . , d. Using this linear constraint, we define the subspace B′′
ρ of B′′ as

B′′
ρ := {X ∈ B′′|(48) holds.}. (49)

We consider the minimization:

S(P5) := min
X∈S(RC⊗H)P ∩B′′

ρ

{
Tr
[
(G⊗ ρ)X

]∣∣∣(36), (37) hold.
}

= min
X∈S(RC⊗H)P ∩B′′

{
Tr
[
(G⊗ ρ)X

]∣∣∣(36), (37), (48) hold.
}
. (50)

Since we have the relation

SP ⊂ S(RC ⊗ H)P ∩ B′′
ρ ⊂ S(RC ⊗ H)P ∩ B′′, (51)

we have the following relations

S(P4) ≤ S(P5) ≤ S(P2). (52)

Then, we have the following theorem.

Theorem 5. We have

CHN [G] = S(P5). (53)

The minimization P5 can be considered as an SDP in the cone S(RC ⊗ H)P because
the cone is given as linear constraints in the cone S(RC ⊗ H)P in the same way as the
minimizations P2, P4. Therefore, the tight, NH, SLD, and HN bounds are summarized
as Fig. 3. Although the reference [8, Eq. (11)] derived an SDP form of the HN bound,
their SDP is different from P5. They assumed the finite-dimensional system for H in the
derivation [8, Eq. (11)]. In contrast, we do not require this assumption to derive the
equation (53).

Proof. We show (53) by using the second expression of S(P5) in (50). Since X(X ′, Z⃗) ∈
S(RC ⊗ H)P ∩ B′′, the components of Z⃗ are self-adjoint. First, we fix Z⃗. When the
condition (48) holds, the condition X(X ′, Z⃗) ∈ S(RC ⊗ H)P ∩ B′′ is rewritten as follows.

X ′
∗ :=X ′ −

(
Π(Z⃗) −

( ∑
1≤i,j≤d

Tr
[
ρ[Xi, Xj ]

]
2 |i⟩⟨j|

)
⊗ I

)

≥
( ∑

1≤i,j≤d

Tr
[
ρ[Xi, Xj ]

]
2 |i⟩⟨j|

)
⊗ I. (54)

Since
(

Π(Z⃗)−
∑

1≤i,j≤d
Tr[ρ[Xi,Xj ]]

2 |i⟩⟨j|⊗I
)

satisfies the condition (48), when X ′
∗ satisfies

the condition (48), when X ′ satisfies the condition (48). The pair of the condition (48)
and the condition X(X ′, Z⃗) ∈ S(RC ⊗ H)P ∩ B′′ is rewritten as the pair of the condition
(48) for X ′

∗ and the condition (54).
When X ′

∗ satisfies (54), we have TrHρX
′
∗ ≥

∑
1≤i,j≤d

Tr[ρ[Xi,Xj ]]
2 |i⟩⟨j|. Conversely,

when a d × d symmetric matrix V ′ satisfies the condition V ′ ≥
∑

1≤i,j≤d
Tr[ρ[Xi,Xj ]]

2 |i⟩⟨j|,
X ′

∗ = V ′ ⊗ I satisfies (54).
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Since Tr
[
(G⊗ ρ)X ′

∗

]
= Tr

[
G(TrHρX

′
∗)
]
, our minimization with fixed Z⃗ is rewritten as

min
V ′:symmetric

{
TrGV ′

∣∣∣∣V ′ ≥
∑

1≤i,j≤d

Tr
[
ρ[Xi, Xj ]

]
2 |i⟩⟨j|

}
= min
V ′:symmetric

{
TrGV ′

∣∣∣V ′ ≥
√

−1Im Z(Z⃗)
}
, (55)

which equals Tr
[
|G

1
2 Im Z(Z⃗)G

1
2 |
]
.

Since

Tr
[
(G⊗ ρ)

(
Π(Z⃗) −

( ∑
1≤i,j≤d

Tr
[
ρ[Xi, Xj ]

]
2 |i⟩⟨j|

)
⊗ I

)]
=Tr

[
(G⊗ ρ)Π(Z⃗)

]
= Tr

[
GRe Z(Z⃗)

]
, (56)

the minimum value of the objective function with fixed Z⃗ is Tr[GRe Z(Z⃗)]+Tr[|G
1
2 Im Z(Z⃗)G

1
2 |].

Since the condition for Z⃗ is the same as the HN bound, we obtain (53).

Now, for a d × d real matrix a and a self-adjoint operator S on the Hilbert space H,
let us define the operator as an element of T :

Π(a, S) :=G⊗ ρ− 1
2

( ∑
1≤i,j≤d

aji (|0⟩⟨i| + |i⟩⟨0|) ⊗Dj

)
− |0⟩⟨0| ⊗ S. (57)

The dual problem D1 of P1 is given as the following maximization:

S(D1) := max
(a,S)∈Rd×d×Tsa(H)

{∑
i

aii + TrS
∣∣∣∣Π(a, S) ∈ S∗

SEP

}
. (58)

Also, the dual problem D2 of P2 is given as the following maximization:

S(D2) := max
(a,S)∈Rd×d×Tsa(H)

{∑
i

aii + TrS
∣∣∣∣Π(a, S) ∈ S∗

P

}
. (59)

In the same way, the dual problems D3 and D4 of P3 and P4 are given as the following
maximizations:

S(D3)

:= max
(a,S)∈Rd×d×Tsa(H)

{∑
i

aii + TrS
∣∣∣∣

Π(a, S) ∈ (S(RC ⊗ H)PPT ∩ B′′)∗
}
. (60)

S(D4)

:= max
(a,S)∈Rd×d×Tsa(H)

{∑
i

aii + TrS
∣∣∣∣

Π(a, S) ∈ (S(RC ⊗ H)P ∩ B′′)∗
}
. (61)

S(D5)

:= max
(a,S)∈Rd×d×Tsa(H)

{∑
i

aii + TrS
∣∣∣∣

Π(a, S) ∈ (S(RC ⊗ H)P ∩ B′′
ρ)∗
}
. (62)
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Since the minimizations P1, . . . , P5 are conic linear programmings, we have the following
theorem.

Theorem 6. We have

S(Pl) = S(Dl) (63)

for l = 1, 2, 3, 4, 5.

For its proof, see Appendix C. When H is a finite-dimensional space, the conic linear
programing problems appearing in Theorem 6 are conic linear programing problems on
finite-dimensional vector spaces.

Also, as shown in Appendix D, the following theorem holds.

Theorem 7. We have

S(D0) = S(D1). (64)

The combination of Theorems 2, 6, and 7 implies Proposition 1. The combination of
Theorems 2, 6, and 7 implies another proof of Proposition 1.

4 Calculation of S(P1)

4.1 Upper bound
Although the minimization problem P2, i.e., the NH bound CNH [G] can be solved by semi-
definite programming, the cone in the primal conic linear programming P1 is the separable
cone SSEP , which is different from the set of positive semi-definite matrices. Hence, the
primal conic linear programming P1 is still not so easy even with a finite-dimensional space
H. In fact, this type of problem appears in the membership problem of the separable cone
SSEP , which appears in the decision problem of the existence of entanglement [14, 15]
and in generalized robustness of entanglement [17]. Also, the reference [42, Proposition
2] showed that the communication value can be calculated as a conic linear programming
with the separable cone SSEP .

In this section, we consider an efficient algorithm to solve S(P1). Although we present
our algorithm for the conic linear programming S(P1), this algorithm can be applied to
a general conic linear programming with the separable cone SSEP including the problem
presented in [42, Proposition 2]. To solve this problem, we choose a finite set WR :=
{|ws⟩}ms=1 composed of several normalized vectors in Rd+1. Then, we choose a subset
S(WR) := {

∑m
s=1 |ws⟩⟨ws| ⊗Xs|Xs ∈ Tsa,+(H)} ⊂ SSEP . Replacing SSEP by S(WR), we

consider the minimization:

S[P1,WR] := min
X∈S(WR)

{
Tr
[
(G⊗ ρ)X

]∣∣∣(36), (37) hold.
}
. (65)

The inclusion relation S(WR) ⊂ SSEP implies the relation

S[P1,WR] ≥ S(P1). (66)

We illustrate the relationship between P1 and the SDP [P1,WR] in Fig. 4. To calculate
S[P1,WR], we define the set of block diagonal matrices T (WR) := {

∑m
s=1 |s⟩⟨s|⊗Xs|Xs ∈

Tsa,+(H)} on the vector space Cm ⊗ H. Identifying an element
∑m
s=1 |ws⟩⟨ws| ⊗ Xs ∈
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Figure 4: Relationship between P1 and [P1,WR]. To convert the problem P1 to an SDP, we have
introduced a subset S(WR) of SSEP . The inclusion relation S(WR) ⊂ SSEP implies the relation
S[P1,WR] ≥ S(P1). Also, due to the construction of S(WR), S[P1,WR] can be solved by an SDP.

S(WR), Xs ∈ Tsa,+(H) with a block diagonal matrix
∑m
s=1 |s⟩⟨s| ⊗Xs ∈ T (WR), we have

another form of S[P1,WR]:

S[P1,WR]

= min
X=(Xs)∈T (WR)


m∑
s=1

⟨ws|G|ws⟩TrXsρ

∣∣∣∣∣∣C[P1,WR] holds.

 , (67)

where the condition C[P1,WR] is defined as

m∑
s=1

⟨ws|0⟩⟨0|ws⟩Xs = I, (68)

1
2

m∑
s=1

⟨ws|(|0⟩⟨i| + |i⟩⟨0|)|ws⟩Tr[XsDj ] = δji . (69)

We call the above problem [P1,WR]. This problem can be considered as an SDP with
d2 + n2 constraints with block diagonal matrices, which is a typical case of sparse SDP.

We define the number δ(WR) as

δ(WR) := max
x∈Rd+1:∥x∥=1

min
w∈WR

∥|x⟩⟨x| − |w⟩⟨w|∥1. (70)

We consider a sequence WR,n such that δ(WR,n) → 0. As shown in Theorem 13, we have

lim
n→∞

S[P1,WR,n] = S(P1). (71)

Hence, we can use SDP for this problem.
Many existing algorithms for SDP work well for sparse positive semi-definite matrices.

The paper [43] studied the calculation complexity for generic primal-dual interior-point
method for SDP. When we apply their analysis for the calculation complexity to the case
with block diagonal matrices, as explained in Remark 8, we find that the calculation
complexity of S[P1,WR] is

O(m((d2 + n2)n3 + (d2 + n2)2n2))
=O(m(n6 + d2n3 + d4n2)). (72)

Remark 8. To get (72), we explain how to apply the analysis by the reference [43]. In the
reference [43], m is the number of constraint, and n is the dimension of the vector space to
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define the positive semi-definite matrix. In their analysis for generic primal-dual interior-
point method for SDP, the dominant part of the calculation complexity is given as the
calculation of B′ and r′ in Eq. (8’) of [43]. When the matrices are given as block diagonal
matrices, the number of blocks is n1 and size of each block is n2, the calculation complexity
of B′ is O(mn3

2n1 + m2n2
2n1) and the calculation complexity of r′ is O(n3

2n1 + mn2
2n1).

Therefore, the total calculation complexity is given as O(mn3
2n1 +m2n2

2n1). Applying this
estimation to our setting, we obtain (72).

4.2 Estimator attaining upper bound
Here, we explain how to construct an estimator to attain the upper bound S[P1,WR] with
WR = {|ws⟩}ms=1, where |ws⟩ =

∑d
j=0w

j
s|j⟩. For the optimal solution X∗

1 , . . . , X
∗
m to the

SDP [P1,WR], we can define the positive semi-definite matrix

Ms := |w0
s |2X∗

s . (73)

The first condition (68) implies

m∑
s=1

Ms =
m∑
s=1

|w0
s |2X∗

s =
m∑
s=1

⟨ws|0⟩⟨0|ws⟩X∗
s = I, (74)

which shows that {Ms} satisfies the condition of POVM. For each outcome s, we define
θ̂(s) ∈ Rd as

θ̂i(s) := wis
w0
s

+ θi (75)

so that the pair ({Ms}, θ̂) forms an estimator. The second condition (69) implies

m∑
s=1

θ̂i(s)TrMsDj =
m∑
s=1

wis
w0
s

Tr|w0
s |2X∗

sDj +
m∑
s=1

θiTr|w0
s |2X∗

sDj

=1
2

m∑
s=1

⟨ws|(|0⟩⟨i| + |i⟩⟨0|)|ws⟩TrX∗
sDj + θiTrIDj = δji + 0. (76)

Therefore, the estimator ({Ms}, θ̂) satisfies the locally unbiasedness condition. Its weighted
mean square error is calculated as

∑
i,j

Gi,j

m∑
s=1

(θ̂j(s) − θj)(θ̂i(s) − θi)TrMsDj (77)

=
∑
i,j

Gi,j

m∑
s=1

wjs
w0
s

wis
w0
s

Tr|w0
s |2X∗

sDj =
m∑
s=1

⟨ws|G|ws⟩TrX∗
sρ. (78)

Therefore we have the following result.

Theorem 9. Let us use the optimal solution of [P1,WR] to construct Ms according to (73)
and θ̂ according to (75). Then the estimator ({Ms}, θ̂) attains the upper bound S[P1,WR].
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4.3 Lower bound
Since the solution S[P1,WR] of the SDP gives an upper bound of S(P1), we need to derive
a lower bound for S(P1). However, it is not easy to derive an lower bound of S(P1) from
the solution S[P1,WR]. In the following, we present a lower bound of S(P1) under the
algorithm presented in the above section. Although the algorithm and the upper bound
presented in the above section work with a general conic linear programming with the
separable cone SSEP , the following lower bound does not necessarily work with a general
conic linear programming with the separable cone SSEP because the lower bound depends
on the form of the conic linear programming S(P1) with the separable cone SSEP .

To derive its lower bound, we denote the optimum a and S of the dual problem [D1,WR]
of [P1,WR] by a∗ =

∑
i,j a

∗
i,j |i⟩⟨j| and S∗.

Namely, we define the dual problem [D1,WR] as

maximize
(a, S) ∈ Rd×d × Tsa(H)

∑
i

aii + TrS (79a)

subject to
m∑
s=1

|s⟩⟨s| ⊗ ⟨ws|Π(a, S)|ws⟩ ≥ 0 (79b)

with optimal value S[D1,WR] :=
∑
i(a∗)ii + TrS∗.

Then, we define the real number

C2(a) := 1
2

∥∥∥∥∑
j

(
ρ−1/2(

∑
j′

aj
′

j Dj′)ρ−1/2
)2∥∥∥∥1/2

. (80)

for a d× d matrix a. Using this value, we define

X∗ := Π(a∗, S∗) (81)
κ := − min

v∈H:∥v∥=1
min

y:∥y∥≤C2(a∗)
⟨(1, y), v|X∗|(1, y), v⟩. (82)

Then, we have the following lemma.

Lemma 10. A pair (a, S) satisfies the condition (23) if and only if the relation

∥y∥2ρ+
∑
j

(ay)jDj − S ≥ 0 (83)

holds for y ∈ Rd with ∥y∥ ≤ C2(a).

Proof. In this proof, (cj)j expresses the vector whose components are c1, . . . , cd. A pair
(a, S) satisfies the condition (23) if and only if any y ∈ Rd and |ϕ⟩ ∈ H satisfy

∥y∥2⟨ϕ|ρ|ϕ⟩ +
∑
j,j′

ajj′y
j′⟨ϕ|Dj |ϕ⟩ − ⟨ϕ|S|ϕ⟩ ≥ 0. (84)

The LHS is rewritten as

⟨ϕ|ρ|ϕ⟩
∥∥∥∥y −

( 1
2⟨ϕ|ρ|ϕ⟩

∑
j′

ajj′⟨ϕ|Dj′ |ϕ⟩
)
j

∥∥∥∥2

− ⟨ϕ|S|ϕ⟩ − 1
4⟨ϕ|ρ|ϕ⟩

∥∥∥∥(∑
j′

ajj′⟨ϕ|Dj′ |ϕ⟩
)
j

∥∥∥∥2
. (85)
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That is, when |ϕ⟩ is fixed, the minimum of the LHS for y is realized when y =
(

1
2⟨ϕ|ρ|ϕ⟩

∑
j′ a

j′

j ⟨ϕ|Dj′ |ϕ⟩
)
j
.

Therefore, the range of y ∈ Rd in the condition (84) can be limited to the set
{
y ∈ Rd

∣∣∣∣∥y∥ ≤

max|ϕ⟩

∥∥∥∥( 1
2⟨ϕ|ρ|ϕ⟩

∑
j′ a

j′

j ⟨ϕ|Dj′ |ϕ⟩
)
j

∥∥∥∥}.

Since we have ∥∥∥∥( 1
2⟨ϕ|ρ|ϕ⟩

∑
j′

aj
′

j ⟨ϕ|Dj′ |ϕ⟩
)
j

∥∥∥∥2

=
∑
j

( 1
2⟨ϕ|ρ|ϕ⟩

∑
j′

aj
′

j ⟨ϕ|Dj′ |ϕ⟩
)2

=
∑
j

( 1
2⟨ϕ|ρ|ϕ⟩

⟨ϕ|
∑
j′

aj
′

j Dj′ |ϕ⟩
)2
, (86)

using |ϕ′⟩ := ρ1/2|ϕ⟩, we have

max
|ϕ⟩

∥∥∥∥( 1
2⟨ϕ|ρ|ϕ⟩

∑
j′

aj
′

j ⟨ϕ|Dj′ |ϕ⟩
)
j

∥∥∥∥2

= max
|ϕ′⟩

∑
j

( 1
2⟨ϕ′|ϕ′⟩

⟨ϕ′|ρ−1/2(
∑
j′

aj
′

j Dj′)ρ−1/2|ϕ′⟩
)2

= max
|ϕ′⟩

∑
j

1
4⟨ϕ′|ϕ′⟩2

(
⟨ϕ′|ρ−1/2(

∑
j′

aj
′

j Dj′)ρ−1/2|ϕ′⟩
)2

= max
|ϕ′⟩:∥ϕ′∥=1

∑
j

1
4

(
⟨ϕ′|ρ−1/2(

∑
j′

aj
′

j Dj′)ρ−1/2|ϕ′⟩
)2

≤ max
|ϕ′⟩:∥ϕ′∥=1

∑
j

1
4⟨ϕ′|

(
ρ−1/2(

∑
j′

aj
′

j Dj′)ρ−1/2
)2

|ϕ′⟩

= max
|ϕ′⟩:∥ϕ′∥=1

1
4⟨ϕ′|

∑
j

(
ρ−1/2(

∑
j′

aj
′

j Dj′)ρ−1/2
)2

|ϕ′⟩

=1
4

∥∥∥∥∑
j

(
ρ−1/2(

∑
j′

aj
′

j Dj′)ρ−1/2
)2∥∥∥∥ = C2(a)2. (87)

Hence, the range of y ∈ Rd in the condition (84) can be limited to the set
{
y ∈ Rd

∣∣∣∥y∥ ≤

C2(a)
}

. Thus, we obtain the desired statement.

Then, for the lower bound of S(P1), we have the following theorem.

Theorem 11. We have the following relation.

S[D1,WR] =S[P1,WR] ≥ S(P1) = S(D1)
≥S[D1,WR] := S[D1,WR] − nκ, (88)

where n is the dimension of Hilbert space H. In particular, (94) holds with equality in the
limit δ → 0.
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When we calculate a lower bound of S(P1) from S[P1,WR], we have knowledge for a∗

and X∗ in a real numerical calculation. Hence, it is possible to calculate κ by applying
Theorem 11.

Proof. It is sufficient to show that the pair (a∗, S∗−κI) satisfies the condition (23) because
in this case, the corresponding objective function of [D1,WR] is Tra∗ + Tr(S∗ − κI). Due
to Lemma 10, it is sufficient to show that the pair (a∗, S∗ − κI) satisfies

∥y∥2ρ+
∑
j

(a∗y)jDj − S∗ + κI ≥ 0 (89)

for y ∈ Rd with ∥y∥ ≤ C2(a∗).
For y ∈ Rd with ∥y∥ ≤ C2(a∗) and v ∈ H with ∥v∥ = 1, we have

⟨v|
(

∥y∥2ρ+
∑
j

(a∗y)jDj − S∗ + κI

)
|v⟩

=⟨(1, y), v|X∗|(1, y), v⟩ + ⟨v|κI|v⟩
=⟨(1, y), v|X∗|(1, y), v⟩ + κ ≥ 0, (90)

which implies (88).

4.4 Theoretical Evaluation of κ

When we derive a lower bound of S(P1) in our numerical calculation, we can calculate κ
numerically, and can directly use Theorem 11. However, when we estimate the calculation
complexity to get the tight CR bound within additive error ϵ, we need to evaluate κ
theoretically. For this aim, we define

δ(WR) := max
x∈Rd+1:∥x∥=1

min
|w⟩∈WR

∥|x⟩⟨x| − |w⟩⟨w|∥1. (91)

Then, the following lemma gives an upper bound of κ.

Lemma 12. The quantity δ(WR) gives an upper bound of κ.

κ ≤ ∥X∗∥(1 + C2(a∗)2)δ(WR). (92)

Proof. For y ∈ Rd with ∥y∥ ≤ C2(a∗) and δ = δ(WR), we have

⟨(1, y)|X∗|(1, y)⟩
≥(1 + ∥y∥2)⟨w|X∗|w⟩ − ∥X∗∥∥|(1, y)⟩⟨(1, y)|

− (1 + ∥y∥2)|w⟩⟨w|∥1I

≥(1 + ∥y∥2)⟨w|X∗|w⟩ − ∥X∗∥(1 + ∥y∥2)δI
≥(1 + ∥y∥2)⟨w|X∗|w⟩ − ∥X∗∥(1 + C2(a∗)2)δI
≥ − ∥X∗∥(1 + C2(a∗)2)δI, (93)

which implies (92).

Combining Theorem 11 and Lemma 12, we have the following theorem.

Theorem 13.

S[D1,WR] = S[P1,WR] ≥ S(P1) = S(D1)
≥S[D1,WR] − n∥X∗∥(1 + C2(a∗)2)δ(WR). (94)
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Considering the structure of κ, we have another evaluation of κ. For this aim, we define

δ(s,WR) := max
x=(cos θ,(sin θ)z),z∈Sd−1

min
|w⟩∈WR

∥|x⟩⟨x| − |w⟩⟨w|∥1, (95)

with θ = tan−1 s. Then, the following lemma gives another upper bound of κ.

Lemma 14. Using the quantity δ(s,WR), we have the following upper bound of κ.

κ ≤ ∥X∗∥ max
s∈[0,C2(a∗)]

(1 + s2)δ(s,WR). (96)

Proof. For y ∈ Rd with ∥y∥ ≤ C2(a∗), we have

⟨(1, y)|X∗|(1, y)⟩
≥(1 + ∥y∥2)⟨w|X∗|w⟩

− ∥X∗∥∥|(1, y)⟩⟨(1, y)| − (1 + ∥y∥2)|w⟩⟨w|∥1I

≥(1 + ∥y∥2)⟨w|X∗|w⟩ − ∥X∗∥(1 + ∥y∥2)δ(∥y∥,WR)I
≥(1 + ∥y∥2)⟨w|X∗|w⟩ − ∥X∗∥ max

s∈[0,C2(a∗)]
(1 + s2)δ(s,WR)I

≥ − ∥X∗∥ max
s∈[0,C2(a∗)]

(1 + s2)δ(s,WR)I. (97)

5 Construction of WR

5.1 Quantum t-design
To implement the proposed method, we need to construct the subset WR ⊂ Rd+1. For
this aim, we like to pack m points uniformly on a d-sphere of radius 1, such that any point
on the sphere is as close to some point as possible. As one possible choice, we randomly
generate pure states |w1⟩⟨w1|, . . . , |wl⟩⟨wl| on the system H subject to the Haar measure.
Another choice for WR is a quantum t-design.

A subset WH of normalized vectors on the finite-dimensional Hilbert space H is called
a quantum t-design on H when

∑
w∈WH

1
|WH |

|w⟩⟨w|⊗t =
∫

|x⟩⟨x|⊗tµH(dx), (98)

where µ is the Haar measure on the set of pure states on H [44] [45, Section 4.5]. A subset
WR of normalized vectors on R is called a quantum t-design on R when

∑
w∈WR

1
|WR|

|w⟩⟨w|⊗t =
∫

|x⟩⟨x|⊗tµR(dx), (99)

where µ is the Haar measure on the set of pure states on R.
For a good choice of WR and WH , we can consider a quantum t-design because a quan-

tum t-design has a symmetric property. For example, the paper [46] discusses approximate
construction of quantum t-designs.
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5.2 Spherical t-design
A quantum t design has not been sufficiently studied, but a spherical t-design has been
well studied [47]. The references [48, 49, 50] study a spherical t-design. Fortunately, a
quantum t-design can be constructed from a spherical t-design [44].

A subset V of Sd−1 is called a spherical t-design when the relation∑
x∈Sd−1

f(x) =
∫
f(x)µSd−1(dx) (100)

holds any polynomial f with degree t, where µSd−1 is the Haar measure on Sd−1.
Given a spherical 2t-design V ⊂ S2d−1, we define a subset VH of pure states on H = Cd

as follows. For x ∈ S2d−1, we define the normalized vector w(x) ∈ H as w(x)j := x2j−1 +
x2ji. As shown below, the set VH := {w(x)}x∈V is a quantum t-design. For any sequences
e1, . . . , et and f1, . . . , ft, we have

∑
x∈V

1
|V|

Tr
[
|w(x)⟩⟨w(x)|⊗t|e1, . . . , et⟩⟨f1, . . . , ft|

]

=
∑
x∈V

1
|V|

t∏
j=1

t∏
j′=1

w(x)ejw(x)fj′

=
∫ t∏

j=1

t∏
j′=1

w(x)ejw(x)fj′µS2d−1(dx)

=
∫

Tr
[
|w(x)⟩⟨w(x)|⊗t|e1, . . . , et⟩⟨f1, . . . , ft|

]
µS2d−1(dx)

=
∫

Tr
[
|x⟩⟨x|⊗t|e1, . . . , et⟩⟨f1, . . . , ft|

]
µH(dx). (101)

Hence, we have

∑
x∈V

1
|V|

|w(x)⟩⟨w(x)|⊗t =
∫

|x⟩⟨x|⊗tµH(dx). (102)

which shows that the set VH := {w(x)}x∈V is a quantum t-design. In the same way, given
a spherical t-design V ⊂ Sd−1, the set V is a quantum t-design on R = Rd.

5.3 Construction reflecting structure of κ

Since the lower bound of S(D1) depends on the value κ, we may construct W by reflecting
the structure of κ as follows. We choose a subset S ⊂ Sd−1, which can be a spherical
t-design. Then, we define a subset S(ϕ) := {(cosϕ, sinϕy)}y∈S . We choose ϕ0 > 0 as
tanϕ0 = C2(a∗). Using k, we choose WR as ∪kj=0S(ϕ0j

k ).
We can modify this construction as follows. That is, to construct S(ϕ0j

k ), depending
on j, we choose a subset Sj ⊂ Sd−1, which also may be a spherical t-design. We define a
subset S(ϕ0j

k ) := {(cos ϕ0j
k , sin

ϕ0j
k y)}y∈Sj . We choose ϕ0 > 0 as tanϕ0 = C2(a∗). Using k,

we choose WR as ∪kj=0S(ϕ0j
k ).

Indeed, when d = 2, the choice of S is very easy because we can choose S as {(cos 2πl
N , sin 2πl

N )}Nl=1.
In this case, we find that δ(S) = ∥(1, 0) − (cos 2π/N, sin 2π/N)∥ =

√
2 − 2 cos 2π/N .

Appendix E discusses the theoretical evaluation of κ in these choices while it is better
to directly calculate κ from the obtained data a∗ and X∗ in a real numerical calculation.
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5.4 Another construction
First, we construct the real discrete subset Dn,d ⊂ Sd, where Sd is the d-dimensional sphere
in Rd+1. We define Dn,1 as

Dn,1 :=
{(

cos 2πj
n
, sin 2πj

n

)}n−1

j=0
(103)

Then, we inductively define Dn,d as

Dn,d :=
{(

cos 2πj
n
v, sin 2πj

n

)∣∣∣∣v ∈ Dn,d−1,R, j = 0, . . . , n− 1
}
. (104)

Then, |Dn,d| = nd. We have

F (Dn,1) := min
ψ1∈S2

max
ψ2∈Dn,2,R

|⟨ψ1|ψ2⟩| = cos π
n
. (105)

In general, we have

F (Dn,d) = min
ψ1∈Sd

max
ψ2∈Dn,d

|⟨ψ1|ψ2⟩| = cosd π
n
. (106)

This can be inductively shown as follows.

F (Dn,d) = min
ψ1∈Sd

max
ψ2∈Dn,d

|⟨ψ1|ψ2⟩|

= min
θ

min
ψ1∈Sd−1

max
j=0,...,n−1

max
ψ2∈Dn,d−1

∣∣∣∣⟨ψ1|ψ2⟩ cos θ cos 2πj
n

+ sin θ sin 2πj
n

∣∣∣∣
= min

θ
min

ψ1∈Sd−1
max

j=0,...,n−1
max

ψ2∈Dn,d−1

∣∣∣∣⟨ψ1|ψ2⟩
(

cos θ cos 2πj
n

+ 1
⟨ψ1|ψ2⟩

sin θ sin 2πj
n

)∣∣∣∣
= min

θ
min

ψ1∈Sd−1
max

ψ2∈Dn,d−1
|⟨ψ1|ψ2⟩|

(
max

j=0,...,n−1

∣∣∣∣ cos θ cos 2πj
n

+ 1
⟨ψ1|ψ2⟩

sin θ sin 2πj
n

∣∣∣∣)
≥ min

θ
min

ψ1∈Sd−1
max

ψ2∈Dn,d−1
|⟨ψ1|ψ2⟩|

(
max

j=0,...,n−1
max

(∣∣∣∣ cos θ cos 2πj
n

+ sin θ sin 2πj
n

∣∣∣∣,∣∣∣∣ cos θ cos 2πj
n

− sin θ sin 2πj
n

∣∣∣∣))
= min

θ
min

ψ1∈Sd−1
max

ψ2∈Dn,d−1
|⟨ψ1|ψ2⟩|

(
max

j=0,...,n−1
max

(∣∣∣∣ sin(2πj
n

+ θ)
∣∣∣∣, ∣∣∣∣ sin(2πj

n
− θ)

∣∣∣∣))
=
(

min
θ

max
j=0,...,n−1

max
(∣∣∣∣ sin(2πj

n
+ θ)

∣∣∣∣, ∣∣∣∣ sin(2πj
n

− θ)
∣∣∣∣)( min

ψ1∈Sd−1
max

ψ2∈Dn,d−1
|⟨ψ1|ψ2⟩|

)
≥ cos π

n
F (Dn,d−1) = cosd π

n
. (107)

Therefore,

δ(Dn,d) = max
|y⟩∈R:∥x∥=1

min
|x⟩∈Dn,d

∥|y⟩⟨y| − |x⟩⟨x|∥

=2
√

1 − F (Dn,d)2 = 2
√

1 − cos2d π

n
. (108)

Thus, when δ(Dn,d) = δ, we have

1 − δ2

4 = cos2d π

n
= (1 − sin2 π

n
)d ≥ (1 − π2

n2 )d ≥ 1 − dπ2

n2 . (109)

Hence, |Dn,d| = nd ≤ (2π)ddd/2

δd .
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6 Calculation complexity of tight CR bound within additive error ϵ

Now, we evaluate the calculation complexity of tight CR bound within additive error ϵ
under the choice of WR given in Section 5.4.

For further evaluation, we introduce the quantity:

C1 := 1
2

∥∥∥∥∑
j

(ρ−1/2(Djρ)ρ−1/2)2
∥∥∥∥1/2

, (110)

Then, we have the following lemma;

Lemma 15.

C2(a) ≤ ∥a∥C1. (111)

Proof. We define Aj = ρ−1/2(Djρ)ρ−1/2. Then, since ∥a∥2I ≥ a†a, we have

∥a∥2
d∑
j=1

A2
j = ∥a∥2(A1, . . . , Ad)I


A1
...
Ad



≥(A1, . . . , Ad)a†a


A1
...
Ad

 =
d∑
j=1

(
d∑

j′=1
aj

′

j Aj′)2. (112)

Then, we have

∥a∥2C2
1 = ∥a∥2

∥∥∥∥ d∑
j=1

A2
j

∥∥∥∥ ≥
∥∥∥∥ d∑
j=1

(
d∑

j′=1
aj

′

j Aj′)2
∥∥∥∥ = C2(a)2. (113)

When the pair a∗, S∗ is the optimal solution of S[D1,WR] with a weight matrix W , we
define ξ := n∥Π(a∗, S∗)∥(1 + ∥a∗∥2C2

1 ). Then, Theorem 13 and Lemma 15 guarantee that
the error ϵ is upper bounded by ξδ(WR). Using this fact, we have the following theorem

Theorem 16. Suppose that we choose WR as Dn,d with ϵξ−1 = δ(Dn,d). Then, the
calculation complexity of the tight CR bound for probe states of size n within additive
error ϵ is

O

(
ξddd/2

ϵd
(n6 + d2n3 + d4n2)

)
. (114)

Proof. We consider how |WR| relates to the additive error of the CR bound. From Theorem
13, our lower bound to O(D0) depends on the covering radius of |WR. When the relation
ϵ ≥ ξδ holds, Lemma 15 and (94) guarantee that the error of CR bound is upper bounded
by ϵ.

Since ϵξ−1 = δ, we have m = |WR| ≤ (2π)ddd/2

δd = (2πξ)ddd/2

ϵd
. Hence, substituting the

above value to m in (72), the overall complexity of the algorithm is

O

(
ξddd/2

ϵd
(n6 + d2n3 + d4n2)

)
. (115)
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Since Theorem 16 evaluates the calculation complexity of the tight CR bound within
additive error ϵ by using the value x, we need to evaluate the quantity ∥Π(a∗∗, S∗∗)∥,
where (a∗∗, S∗∗) denotes the optimal solution of D0. The following theorem gives its upper
bound.

Theorem 17. We denote the SLD Fisher information matrix by J . We have

∥Π(a∗∗, S∗∗)∥

≤∥G∥ + d

2
√

TrG1/2J−1G1/2
+ d

4TrG1/2J−1G1/2 , (116)

and

∥a∗∗∥ ≤ Tra∗∗ ≤ d

2
√

TrG1/2J−1G1/2
. (117)

Finally, we evaluate the calculation complexity of the tight CR bound within additive
error ϵ by Theorems 16 and 17. Since a∗∗, S∗∗ are close to a∗(WR), S∗(WR), ∥a∗(WR)∥
and ∥Π(a∗(WR), S∗(WR))∥ have the same order as ∥a∗∗∥ and ∥Π(a∗∗, S∗∗)∥, respectively.
We assume that G is the identity matrix. Combining Theorems 16 and 17, we find that

ξ = O

(
nC2

1 ( d

2
√

TrJ−1
)2( d

2
√

TrJ−1
+ d

4TrJ−1 )
)
. (118)

Hence, the calculation complexity is upper bounded as

O

((nC2
1 ( d

2
√

TrJ−1 )2( d

2
√

TrJ−1 + d
4TrJ−1 )

)d
dd/2

ϵd
(n6 + d2n3 + d4n2)

)
. (119)

For simplicity, we consider the case when J is the identity matrix. The value TrJ−1 is
d. The above value is simplified as

O

(
(nC2

1d
3/2)ddd/2

ϵd
(n6 + d2n3 + d4n2)

)

=O
(

1
ϵd
ndC2d

1 d2d(n6 + d2n3 + d4n2)
)
. (120)

7 Numerical lower bound for S(D1)
Here we numerically find a lower bound for S(D1). Here n denotes the dimension of H,
and d is the number of parameters that we estimate. Here, we consider the metrology
problem with probe state

ρ = In/n, (121)

where In denotes an identity matrix of size n. We set the number of parameters to estimate
to be and d = 2. Now let us define the algorithm MakeRandomDs(n) that generates size n
random traceless matrices D1 and D2.

Algorithm MakeRandomDs
[D1, D2] =MakeRandomDs(n)
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1. For i = 1, 2:

2. Make a random matrixM of size n, with each matrix element chosen independently
from the uniform distribution on [0, 1].

3. Set D = M †M.

4. Set Di = D − TrD/n.

We can interpret this as corresponding to a quantum model with true parameters θ1 and
θ2, where if x is in the neighborhood of θ = (θ1, θ2), we have ρ((x1, x2)) ≈ In/n+D1(x1 −
θ1) +D2(x2 − θ2). Physically, this could correspond to quantum parameter estimation on
a set of states that are close to maximally mixed, which describes the scenario where noise
dominates the quantum system.

Now we describe how we make the set WR. First we make the algorithm circlepoints(N)
which takes as input a positive integer N , and returns a set calS.

Algorithm circlepoints
calS = circlepoints(N)

1. Set calS = a matrix with N rows and two columns, with every entry equal to zero.

2. For j = 1 : N

3. Set θ = 2πj/N

4. Set calS(j, 1) = cos(θ)

5. Set calS(j, 2) = sin(θ)

Next, we make WR using the following algorithm. 3

Algorithm makeWR
WR = makeWR(N)

1. Set N = 70, k = 100 and ϕ0 = 1.2.

2. Set WR = ∅

3. for idx = 1 : (k + 1)

4. Set currN = max(⌈(idx/k)1/4N⌉, 20)

5. Set calS = circlepoints(currN)

6. Set j = idx − 1

7. Set ϕ = ϕ0j/k

8. Set 1 as a column vector of ones that has the same number of rows as calS

9. Set W as the matrix with three columns [cos(ϕ)1, sin(ϕ)calS] with N rows.

10. Add every row of W into the set WR.

3We export information about WR in a csv file WR.csv available on request.
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We find that WR has 5750 points.
For each n = 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, we run Algorithm MakeRandomDs

50 times, and use the same WR. For each (ρ,D1, D2) that we obtain, we

1. calculate the NH bound, the HN bound, S[D1,WR] and S[D1,WR].

To find S[D1,WR] and S[D1,WR], we first solve [D1,WR] and find its optimal solution
(a∗, S∗). The optimal value is S[D1,WR] = Tra∗ + TrS∗, and this is our upper bound
to S(D1). To evaluate S[D1,WR], which is our lower bound to S(D1), we first evaluate
X∗ = Π(a∗, S∗)(81). Next, we evaluate c2 = C2(a∗) (80) and ϕ∗

0 = tan−1(c2). Our next
step is to numerically approximate κ as defined in (82).

We implement our approximation of κ in Theorem 11 by the following method.

1. Set myrange = {−c2 + 2c2j/999|j = 0, . . . , 999}. (We can implement this in MatLab
using linspace(−c2, c2, 1000)).

2. Set κ = −∞.

3. For x in myrange:

4. For y in myrange:

5. Set w = (1, x, y) as a column vector.

6. If ∥(x, y)∥ ≤ c2:

7. Set m = λmin(⟨w|X∗|w⟩), where λmin(·) gives the minimum eigenvalue of a
Hermitian matrix.

8. If m < −κ, set κ = −m.

This subroutine evaluates the smallest eigenvalue of the matrices ⟨(1, y)|X∗|(1, y)⟩ amongst
the no more than 106 points of y ∈ R2, and ∥y∥ ≤ c2. Then we set our lower bound to
S(D1) to be S[D1,WR] = Tra∗ + TrS∗ − nκ. If S[D1,WR] > S(P2), we set isgap = 1.
Otherwise, we set isgap = 0.

Since (D1, D2) is generated randomly by MakeRandomDs, isgap is a binary random
variable. We define fn as the probability that isgap takes the value 1. Since fn is an
unknown parameter, we estimate fn from our 50 numeric experiments that independently
generates (D1, D2), which determines isgap in the above method. Let gn be the number of
times isgap = 1 out of the 50 experiments. We plot the values of gn along with their error
bars in in Fig. 5.

For fixed n, we plot the largest values of S[D1,WR]/S(P2) among our 50 experiments
in Fig. 6. Values of S[D1,WR]/S(P2) that are strictly larger than 1 illustrate a positive
gap between S(P1) and S(P2). We also plot the corresponding values of S(P4)/S(P2) in
Fig. 6.

As expected, when n = 3, S[D1,WR] is never greater than the NH bound given by
S(P2). However, for n = 4, 5, 6, 7, 8, 9, in the majority of our numerical experiments,
S[D1,WR] exceeds the NH bound.

8 Applications
8.1 Learning parameters of Hamiltonian models
When one has a physical system on many qubits, the underlying Hamiltonian can always
be written as H =

∑
k akPk where Pk are multiqubit Pauli operators. The Pauli operators
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Figure 5: For each value of n = dim(H), we randomly generate 50 independent pairs of derivatives
of probe states (D1, D2) according to Algorithm MakeRandomDs. Let βn count how many of the
50 independent pairs (D1, D2) have S[D1,WR]/S(P2) > 1. Then set gn = βn/50. Here gn is a
maximum likelihood estimator of fn which is the asymptotic fraction of experiments which would have
S[D1,WR]/S(P2) > 1. When gn is close to 1, this indicates that it is very likely that all random
derivatives of probe states have a C[G] > S(P2). Hence, the numerical evidence show that there
is very often a gap between the tight bound and the NH bound, demonstrating the benefit of using
the tight bound over the NH bound. We calculate the 99% confidence interval of our estimator gn

according to the Clopper–Pearson method (using the function binofit in MatLab.)

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

S[D1,WR]/S(P2)

S[D1,WR]/S(P2)

S(P2)/S(P2) = 1

S(P5)/S(P2)

Figure 6: For each of our 50 numerical experiments for n = dim(H) = 4, 5, . . . , 16, 17, we find the
maximum S[D1,WR]/S(P2) and plot it. We also plot the corresponding values of S[D1,WR]/S(P2)
and S(P5)]/S(P2). In Fig. 5, we see that there is very often a gap between the tight bound and the
NH bound. Here, this figure shows us what the magnitude of this gap is. Since the gap is quite small,
we can see that there is numerical evidence that the NH bound is a good approximation to the tight
bound.
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Pk are known, but often, we do not know the precise values of ak. In a physical system
with n qubits, there are up to 4n coefficients for ak to determine. However, in realistic
physical systems comprising of qubits, the predominant interactions are between pairs of
qubits, and the interaction strength decreases as the separation of the qubits increases.
When the interaction between the qubits is dominated by nearest-neighbor interactions,
and the qubits are arranged in a 2D or 3D array, the vast majority of the coefficients ak have
absolute values close to zero. In fact in this case, the number of unknown coefficients ak that
we like to estimate will be polynomial in n. This can arise for instance in physical systems
where only spatially adjacent qubits have a non-negligible interaction. For example, we
could have Heisenberg model with qubits interacting according to low-dimensional graph
[51], and the goal is to find the coefficients of the non-negligible interaction terms.

In general, given the Hamiltonian H =
∑d
k=1 akPk, we like to estimate the parameters

a1, . . . , ad using a initial n-qubit probe state ρ. After we initialize the physical system as
the probe state ρ, we allow the physical system to naturally evolve with time according
to the quantum channel Na1,...,ad

. In the noiseless setting, the quantum channel Na1,...,ad

describes evolution of quantum systems according to the Schrödinger equation, and is given
by

Na1,...,ad
(ρ) = exp(−i

d∑
k=1

akPk)ρ exp(i
d∑

k=1
akPk). (122)

In more realistic scenarios however, the quantum channel Na1,...,ad
that models the evolu-

tion of the initial probe state, is not necessarily a unitary channel. In general, Na1,...,ad

can be described using Lindblad’s formalism [52], where the channels are generated by
exponentiating Liouville operators. Such models have been considered for instance in Ref
[53]. We can see that in both settings with and without noise, the channel Na1,...,ad

is
differentiable with respect to the parameters a1, . . . , ad. In the language of multiparameter
quantum estimation, we can define the model

M = {Na1,...,ad
(ρ) : a1, . . . , ad ∈ R}, (123)

which is differentiable set of quantum states. The task at hand is then to find the optimal
quantum estimator that lets us learn the values of a1, . . . , ad while also minimizing the
sum of the mean squared errors of a1, . . . , ad.

Matsumoto [32] showed that when the model M is a set of pure states, then the
corresponding tight bound is in fact equivalent to the HN bound. Since the noiseless
setting corresponds to having Na1,...,ad

as a unitary channel, having the initial probe state
to be a pure state would make the model M comprise of only pure states. In this case,
we can simply evaluate S(P4), the HN bound, and know that S(P4) is equal to the tight
bound.

Now, if we consider the case where Na1,...,ad
is a non-unitary channel which is generated

by exponentiating Liouville operators, even if the initial probe state ρ is pure, the model
M need not be a set of only pure states. In this scenario, we have no guarantee that the
tight bound is equal to the HN bound. To find the optimal quantum estimator, we can
nonetheless use our method for finding the asymptotically for the tight bound.

As a concrete example, consider a two-qubit Hamiltonian Ha,b = aX ⊗ X + bY ⊗ Y ,
where X and Y are the usual single qubit Pauli operators. Such a Hamiltonian Ha,b models
an XY Heisenberg interaction between a pair of qubits, and such interactions are ubiquitous
in nature. Being able to estimate a and b is essential to characterize such Hamiltonians.
We also consider having some dissipative jump operators Lj that describe noise in the
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physical system. In this case, the Liouville operator is given by La,b, where

La,b(ρ) = −i[Ha,b, ρ] +
∑
j

γj

(
LjρL

†
j − 1

2{L†
jLj , ρ}

)
, (124)

[Ha,b, ρ] = Ha,bρ − ρHa,b, {L†
jLj , ρ} = L†

jLjρ + ρL†
jLj , and γj are real numbers. The

quantum channel is

Na,b(ρ) = eLa,b(ρ), (125)

and the corresponding model is M = {exp(La,b(ρ)) : a, b ∈ R}. Our method can address
such problems. As Section 7 illustrates, we are able to calculate tight two-sided bounds
on the tight bound for such models with two-parameter estimation. We are also able to
obtain corresponding near-optimal quantum estimators for the tight bound. Hence, for this
example, we are able to determine the optimal uncorrelated measurement strategy to esti-
mate a and b with the minimum mean-square error, which will be useful in characterizing
interactions in spin-systems.

8.2 3D field sensing
The mathematical structure of the Hamiltonian learning problem in Section 8.1 also allows
us to discuss the multiparameter quantum metrology of field sensing.

In the research area of ‘field sensing’ [54], we have a classical field that interacts with
a physical system comprises of qubits, and the classical field interacts with each qubit in
exactly the same way. The classical field is a 3D-vector (x, y, z) with three real components.
The interaction Hamiltonian on n qubits is given by

n∑
j=1

(xXj + yYj + zZj), (126)

where Xj , Yj and Zj denote multiqubit Pauli operators that apply the Pauli X,Y and
Z respectively on the jth qubit, and apply the identity operator on all other qubits. For
example when we have only two qubits, the Hamiltonian is

H = x(X ⊗ I + I ⊗X) + y(Y ⊗ I + I ⊗ Y ) + z(Z ⊗ I + I ⊗ Z). (127)

Just as in Section 8.1, we consider the evolution operator to be generated by a Liouville
operator L, to take into account the effects of noise in the quantum system. Namely, we
consider L of the same form as (124), except that we replace the Hamiltonian H with what
we consider in (127). In this case, the model is

M = {eL(ρ) : x, y, z ∈ R}, (128)

where ρ is a fixed two-qubit density matrix. We could for example consider ρ as a GHZ
state. Then we can numerically calculate upper and lower bounds on the tight bound
for such models, and furthermore also also obtain corresponding near-optimal quantum
estimators for the tight bound. Hence, it is possible to use our algorithm for determin-
ing optimal estimators in multiparameter quantum metrology for the extremely practical
problem of field sensing.

Accepted in Quantum 2023-08-21, click title to verify. Published under CC-BY 4.0. 34



9 Discussion
To summarize our results, we have presented a unified viewpoint to understand existing
bounds for the Cramer-Rao bound from the viewpoint of conic linear programming. How-
ever in general, existing bounds such as the NH bound and HCR bound, are not the tight
Cramer-Rao bound. Therefore, we proposed an algorithm to calculate the tight bound
by using conic linear programming. Therefore, the main contribution of our paper is to
propose an algorithm to calculate the tight bound. Our method also enables us to find the
optimal POVM for the parameter estimation.

In more detail, we have characterized three types of bounds, HN bound, NH bound,
and the tight bound as the solution of conic linear program with different cones in the
same linear space. Their size relationship is characterized as the inclusion relation among
their corresponding cones. Since the conic linear programing corresponding to the HN and
NH bounds are given as an SDP, they can be efficiently solved. However, since the cone
corresponding to the tight bound is the separable cone SSEP , i.e., the cone composed of
positive semi-definite operators with separable form over a bipartite system, it is hard to
solve the corresponding conic linear programing. In the second part of this paper, we have
tackled the problem, i.e., how to efficiently solve this conic linear programing. For this
aim, we have proposed a method to convert the conic linear programing with the separable
cone SSEP to an SDP with constraints labeled by unit vectors from a real vector space. We
have derived upper and lower bounds on the tight bound by using the solution of the above
converted SDP. From the optimal solution of the SDP, we give a concrete way to derive
a corresponding uncorrelated measurement strategy which is asymptotically optimal. In
addition, we have proposed the method to choose a strategic subset of the above unit
vectors from design theory. Then, we have given the calculation complexity of the tight
bound within an additive error of ϵ when the above method is applied. Then, we have
numerically applied our method to our examples. In these examples, we have numerically
shown that the tight bound is strictly larger than the NH bound, which shows the existence
of the gap between the tight bound and the NH bound.

In fact, several problems of quantum information can be written with the separable
cone SSEP . For example, the communication value can be calculated as a conic linear
programming with the separable cone SSEP [42, Proposition 2]. Also, the existence of
entanglement can be written as a problem by using the separable cone SSEP [14, 15].
We can expect that our method to approximately solve conic linear programing with the
separable cone SSEP can be extended to the above problems, and other similar problems
[17, 18]. Such extensions are interesting for future study.

Further, after completing this research, the reviewer informed us about the method
discussed in the reference [55] to calculate the conic linear programing with separable
cone. The comparison between our method and this approach is an interesting topic, but
beyond the scope of this paper. Also, as another application of our method includes the
simultaneous estimation of phase and dephasing which was discussed in [56]. There is a
possibility that our presented approach provides a new insight into this problem. This
kind of research is another interesting future study.

Another open problem is whether our conic programming framework can also be used
to unify multiparameter quantum metrology problems where instead of minimizing the
mean square error, one minimizes a different regret function. For instance in the reference
[36], minimization of an information regret function was considered. It will be interesting
to see if our framework also applies in that setting.
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A Applications of C[G] = S(D0) (25)

A.1 One-parameter case
To consider how to choose a and S, we focus on the one-parameter case based on the
idea by [37, 13]. Let L be the SLD, and J be the SLD Fisher Information. We simplify
(AB +BA)/2 by A ◦B Assume that g(x, x) = x2. The condition (23) can simplified as

0 ≤x2ρ− axL ◦ ρ− S

=(x− a

2L)ρ(x− a

2L) − a2

4 LρL− S. (129)

Hence, we have

−a2

4 LρL ≥ S (130)

Now, we choose S = −a2

4 LρL. The value to be minimized is a − Tra2

4 LρL = a − a2

4 J =
−(

√
J

2 a− 1√
J

)2 + 1/J . When a = 2
J , the maximum 1/J is realized.

Indeed, the LHS of (26) is zero when M is the spectral decomposition of the Hermitian
matrix a

2L. Hence, we can find that this measurement achieves the minimum value 1/J .
However, in the general case, there is no simultaneous spectral decomposition of all

SLDs. Hence, the problem is very difficult.

A.2 qubit case
Next, we focus on the qubit case based on the idea by [37, 13]. We choose the coordinate
such that the SLD Fisher information matrix is identical. By applying suitable orthogonal
transformation on the parameter space, the matrix G is a diagonal matrix such that Gi,j =
gjδi,j with gi ≥ 0. Let Li be the SLD of the i-th parameter. Under the above condition,
in the qubit case, we can check the following condition, as shown later:

1
2(LiρLj + LjρLi) = I − ρ. (131)

Since only the condition (131) is essential in the discussion of this section, the discussion
of this section can be extended to the case of GPT (general probability theory) based on
Lorentz cone [57, Appendix F].
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We set aji = a
√
gjδ

j
i and S = −a2

4 (I − ρ). The condition (23) can simplified as∑
j

gj(xj)2ρ− a
∑
j

√
gjx

jLj ◦ ρ− S

=

√∑
j

gj(xj)2 − a

2
√∑

j gj(xj)2

∑
j

√
gjx

jLj

ρ
·

√∑
j

gj(xj)2 − a

2
√∑

j gj(xj)2

∑
j

√
gjx

jLj


≥0. (132)

Hence, the objective value of the dual problem is Tra + TrS = a
∑
j

√
gj − a2

4 = −1
4(a −

2
∑
j

√
gj)2 + (

∑
j

√
gj)2. Hence, we find that (

∑
j

√
gj)2 is a lower bound for CR bound.

Moreover, we expect that (
∑
j

√
gj)2 is the solution with a = 2

∑
j

√
gj .

This expectation can be checked by constructing a locally unbiasd estimator to realize
the equality.

We denote the spectral decomposition of Lj as
∑
k sj,kEj,k. Define the vector x(j, k) ∈

Rd as follows. It has only non-zero element in the j-th entry. Its j-th entry is sj,k
∑

j′
√
gj′

√
gj

Then, we define the locally unbiasd estimator as follows. It takes the outcomes in the set
{x(j, k)}j,k. The POVM {Mj,k} is defined as Mj,k :=

√
gj∑

j′
√
gj′
Ej,k. Here, we multiply

the probabilistic factor
√
gj∑

j′
√
gj′

in the POVM element. Hence, to satisfy the locally unbi-

asedness condition, we need to multiply its inverse
∑

j′
√
gj′

√
gj

in the measurement outcome.
Hence, we can check that this POVM satisfies the condition for the locally unbiasedness
condition.

In fact, when x = x(j, k),√∑
j

gj(x(j, k)j)2

−
2
∑
j′

√
gj′

2
√∑

j gj(x(j, k)j)2

∑
j

√
gjx(j, k)jLj

=

(√
gjsj,k

∑
j′

√
gj′

√
gj

)
−
(∑

j′

√
gj′

)
sgn sj,kLj


=(sgn sj,k)

(∑
j′

√
gj′

)(
sj,k − Lj

)
. (133)

Hence, we find that

0 =
∑
j,k

Tr

∑
j

gj(x(j, k)j)2ρ

− a
∑
j

√
gjx(j, k)jLj ◦ ρ− S

Mj,k. (134)

This equation shows the lower bound (
∑
j

√
gj)2 is attainable.
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Proof of (131). We choose σi as

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (135)

Without loss of generality, we can assume that ρ = 1
2(I + α(µ)σ3) with 0 ≤ a ≤ 1.

Notice that the SLD Fisher information matrix is identical. The condition (131) is
covariant. That is, if the condition (131) under a coordinate, it holds even with another
coordinate converted from orthogonal transformation. Hence, it is sufficient to check the
condition (131) only under a specific coordinate.

Now, we consider the case that

L1 = σ1, L2 = σ2, L3 = 1√
1 − α(µ)2 (−α(µ)I + σ3). (136)

In this case, the SLD Fisher information matrix is identical, and the condition (131)
holds.

B Linear programming with general cone
We consider conic linear programming (EP) with a general cone. Let X and Z be topo-
logical real vector spaces. Let P ⊂ X be a cone. Let A be a linear function from X to Z.
Given c ∈ X ∗ and b ∈ Z, we consider the following minimization.

EP := min
x∈P

{c(x)|Ax = b}. (137)

As the duality problem, we consider the following maximization.

EP ∗ := max
w∈Z∗

{w(b)| −A∗w + c ∈ P∗} (138)

When the pair of x ∈ P and w ∈ Z∗ satisfy the constraints, we have c(x) − w(b) =
(−A∗w + c)(x) ≥ 0. Hence, the inequality

EP ≥ EP ∗ (139)

holds. The difference EP −EP ∗ is called the duality gap, and its existence/non-existence
is not trivial in general. To discuss this problem, we define two sets:

F :={(c(x), Ax)}x∈P (140)
E :=R × {b}. (141)

Since F ∩ E ⊂ F ∩ E and F ∩ E is a closed set, we have the inclusion relation

F ∩ E ⊂ F ∩ E . (142)

The opposite inclusion relation is not trivial, and is related to the duality gap as follows.

Theorem 18 ([58, Proposition 4.2]). When

F ∩ E = F ∩ E , (143)

we have

EP = EP ∗ (144)

When X and Z are finite-dimensional, the relation (142) holds. Hence, there is no
duality gap.
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C Proof of Theorem 6
This appendix aims to show the non-existence of the duality gap in the respective problems
Pl for l = 1, 2, 3, 4, 5 by using Theorem 18 based on the notations given in Appendix B.
Since the condition (143) holds in the finite-dimensional case, Theorem 6 immediately
follows from Theorem 18. This point is in contrast with the proof of Proposition 1 by
the paper [13] because the paper [13] had to manage a difficulty in the possibility of the
existence of the duality gap even with a finite-dimensional space H. The difficulty in [13]
was caused by handling the space of POVMs with Ω = Rd as an infinite-dimensional linear
vector space. Hence, in our proof, we encounter the difficulty related to the potential
existence of the duality gap only with an infinite-dimensional space H.
Step 1: Preparation and structure of this proof.

We define X as the set of bounded operators on Rd+1 ⊗ H. We define Z as the tensor
product of Rd2 and the set of bounded operators on H. Then, the linear map A is defined
as the left sides of (36) and (37). The element b ∈ Z is defined as the right sides of (36)
and (37). The element c ∈ X ∗ is defined as (38). Then, for l = 1, we choose P as SSEP .
For l = 2, we choose P as SP . For l = 3, we choose P as S(RC ⊗ H)PPT ∩ B′′. For l = 4,
we choose P as S(RC ⊗ H)P ∩ B′′. For l = 5, we choose P as S(RC ⊗ H)P ∩ B′′

ρ . We
consider the operator norm in the space F when H is infinite-dimensional.

We denote the SLD Fisher information matrix by Ji,j , and its inverse matrix by J i,j .
We define Lj :=

∑
i J

i,jLi. Hence, we have

TrLjDj = δji . (145)

Due to Theorem 18, it is sufficient to show (143). In the following, we show (143).
Given an element s ∈ R with the condition (s, b) ∈ F ∩ E , we choose a sequence {Xn} in
X such that {(c(Xn), AXn)} converges to (s, b). It is sufficient to show that there exists
a sequence {Ẋn} in P such that AẊn = b and c(Ẋn) converges to s, which shows that
F ∩ E ⊂ F ∩ E .
Step 2: Definition of a new element Ẋn ∈ P.

We define the d× d matrix a(n) with component a(n),i
j := Tr(1

2(|0⟩⟨i| + |i⟩⟨0|) ⊗Dj)Xn

and the operator Bn := TrR|0⟩⟨0| ⊗ IHXn on H. We define

X̂n := (IR ⊗B−1/2
n )Xn(IR ⊗B−1/2

n ) ∈ P (146)

for any l = 1, 2, 3, 4, 5. Then, we have TrR|0⟩⟨0| ⊗ IHX̂n = IH. The convergence AXn → b
implies the relations a(n) → IR and Bn → IH in the sense of the operator norm. We define
the d × d matrix â(n) by the components, â(n),i

j := Tr(1
2(|0⟩⟨i| + |i⟩⟨0|) ⊗ Dj)X̂n. Since

Bn → IH in the sense of the operator norm, B−1/2
n DjB

−1/2
n → Dj in the sense of the trace

norm. Thus, we have

â(n) → IR, (147)
c(X̂n) → s. (148)

We define the vector ȧ(n),i ∈ Rd as ȧ(n),i
j := â

(n),i
j − δji . We define ϵn := maxi ∥ȧ(n),i∥.

The relation (147) implies

ϵn → 0. (149)

For i = 1, . . . , d, we denote the spectral decomposition of the operator

Yn,i := − 1
ϵn

∑
j

ȧ
(n),i
j Lj (150)
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by
∑
u xuEu.

Then, we define the matrix Xn,i :=
∑
u

∑
i′′,i′ θ̂

i′(u)θ̂i′′(u)|i′′⟩⟨i′| ⊗ Eu ∈ P, where
θ̂i

′(u) = δi′,i(1 − δi′,0)u+ δi′,0 i.e.,

θ̂i
′(u) =


u for i′ = i
1 for i′ = 0
0 otherwise.

(151)

Then, we have

Xn,i =
∑
i′′,i′

|i′′⟩⟨i′| ⊗
(
δi′,i(1 − δi′,0)Yn,i + δi′,0IH

)
·
(
δi′′,i(1 − δi′′,0)Yn,i + δi′′,0IH

)
. (152)

We define

Ẋn := (1 − dϵn)TnX̂nTn + ϵn

d∑
i=1

Xn,i (153)

where

Tn := 1
1 − dϵn

(I − |0⟩⟨0| ⊗ IH) + |0⟩⟨0| ⊗ IH. (154)

Since Xn,i belongs to P, X̂n,i belongs to P for any l = 1, 2, 3, 4. Hence, TnX̂nTn belongs
to P for any l = 1, 2, 3, 4. Thus, Ẋn belongs to P for any l = 1, 2, 3, 4.
Step 3: Asymptotic behavior of new element Ẋn ∈ P.

For i = 1, . . . , d, the relations (145), (150), and (152) imply

Tr
[
(1
2(|0⟩⟨i′| + |i′⟩⟨0|) ⊗Dj)Xn,i

]
= − 1

ϵn
ȧ

(n),i
j δi,i′

TrR
[
(|0⟩⟨0| ⊗ IH)Xn,i

]
= IH

Tr
[
(|i′⟩⟨i′′| ⊗ ρ)Xn,i

]
= δi,i′′δi,i′

1
δn

∑
k,k′

Jk,k
′
ȧ

(n),i
k ȧ

(n),i
k′ . (155)

Hence,

Tr
[
(1
2(|0⟩⟨i′| + |i′⟩⟨0|) ⊗Dj)Ẋn

]
= 1 − dϵn

1 − dϵn
â

(n),i
j − ϵn

ϵn

∑
i

ȧ
(n),i
j δi,i′ = δi′,j , (156)

TrR
[
(|0⟩⟨0| ⊗ IH)Ẋn

]
= (1 − dϵn)IH + dϵnIH = IH, (157)

Tr
[
(|i′⟩⟨i′′| ⊗ ρ)Ẋn

]
= (1 − dϵn)2

1 − dϵn
Tr
[
(|i′⟩⟨i′′| ⊗ ρ)X̂n

]
+ ϵn

∑
i

δi,i′′δi,i′
1
δn

∑
k,k′

Jk,k
′
ȧ

(n),i
k ȧ

(n),i
k′

= (1 − dϵn)Tr
[
(|i′⟩⟨i′′| ⊗ ρ)X̂n

]
+ ϵn

∑
i

δi,i′′δi,i′
1
δn

∑
k,k′

Jk,k
′
ȧ

(n),i
k ȧ

(n),i
k′ . (158)
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Using (158), we have

c(Ẋn) =
∑
i′,i′′

Gi′,i′′Tr
[
(|i′⟩⟨i′′| ⊗ ρ)Ẋn

]
=
∑
i′,i′′

Gi′,i′′

(
(1 − dϵn)Tr(|i′⟩⟨i′′| ⊗ ρ)X̂n

+ ϵn
∑
i

δi,i′′δi,i′
1
δn

∑
k,k′

Jk,k
′
ȧ

(n),i
k ȧ

(n),i
k′

)

=(1 − dϵn)c(X̂n) + 1
ϵn

∑
i

Gi,i
∑
k,k′

Jk,k
′
ȧ

(n),i
k ȧ

(n),i
k′ . (159)

Since

0 ≤ 1
ϵn

∑
i

Gi,i
∑
k,k′

Jk,k
′
ȧ

(n),i
k ȧ

(n),i
k′ ≤ d

ϵn
∥G∥∥J∥ max

i
∥ȧ(n),i∥2

=d∥G∥∥J∥ϵn → 0, (160)

using (148), (149), and (159), we have

c(Ẋn) → lim
n→∞

c(X̂n) = s. (161)

Since Ẋn belongs to P, the relations (156) and (157) guarantee (c(Ẋn), b) ∈ F ∩ E . Thus,
(161) implies (s, b) ∈ F ∩ E . Hence, we obtain (143) for any l = 1, 2, 3, 4.
Step 4: Case of l = 5.

Now, we discuss the case of l = 5. We define the d× d antisymmetric matrix en as

en,ij :=Im Tr
[
(|i⟩⟨j| ⊗ ρ)Ẋn

]
= 1

(1 − dϵn)2 Im Tr
[
(|i⟩⟨j| ⊗ ρ)X̂n

]
= 1

(1 − dϵn)2 Im Tr
[
(|i⟩⟨j| ⊗B−1/2

n ρB−1/2
n )Xn

]
(162)

for i, j = 1, . . . , d. Since Bn → IH in the sense of the operator norm, B−1/2
n ρB

−1/2
n → ρ

in the sense of the trace norm. Since Xn ∈ P, Im Tr(|i⟩⟨j| ⊗ ρ)Xn = 0. Since ϵn → 0, the
above discussions imply en,ij → 0. That is, we have

TrG|e(n)| → 0. (163)

We define the operator X̃n as

X̃n := Ẋn + (|e(n)| −
√

−1e(n)) ⊗ IH. (164)

Since |e(n)| −
√

−1e(n) ≥ 0 and Ẋn ∈ S(RC ⊗ H)P ∩ B′′, the operator X̃n belongs to
P = S(RC ⊗ H)P ∩ B′′

ρ .
Since the (0, 0) and (0, j) components of |e(n)| −

√
−1e(n) are zero for j = 1, . . . , d, the

relation (156) implies

Tr
[
(1
2(|0⟩⟨i′| + |i′⟩⟨0|) ⊗Dj)X̃n

]
=Tr

[
(1
2(|0⟩⟨i′| + |i′⟩⟨0|) ⊗Dj)Ẋn

]
= δi′,j , (165)
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and the relation (157) implies

TrR
[
(|0⟩⟨0| ⊗ IH)X̃n

]
= TrR

[
(|0⟩⟨0| ⊗ IH)Ẋn

]
= IH. (166)

Since c(X̃n) = c(Ẋn) + TrG|e(n)|, the combination of (161) and (163) implies

c(X̃n) → s. (167)

Since Ẋn belongs to P, the relations (165) and (166) guarantee (c(Ẋn), b) ∈ F ∩ E . Thus,
(167) implies (s, b) ∈ F ∩ E . Hence, we obtain (143) for l = 5.

D Proof for Theorem 7
The reference [13, Theorem 6] spends long pages to show Proposition 1 because the conic
linear programming P0 is given as a conic linear programming in an infinite-dimensional
space. However, due to Theorems 2 and 6, we can show Proposition 1 by showing the
relation S(D0) = S(D1).

Theorem 19. We have

S(D0) = S(D1). (168)

Proof. The condition for D0 can be rewritten as

min
y∈H

min
x∈Rd

(xTGx)y†ρy −
d∑

i,j=1
ajix

jy†Djy − y†Sy

 ≥ 0

subject to y†y = 1.

For x ∈ Rd, we define v(x) ∈ R as v(x) :=
∑d
j=1 xj |j⟩ + |0⟩. Then, the condition (169) is

rewritten as

0 ≤Tr
[
|v(x)⟩⟨v(x)| ⊗ |y⟩⟨y|(

G⊗ ρ− 1
2

∑
1≤i,j≤d

aji (|0⟩⟨i| + |i⟩⟨0|) ⊗Dj − |0⟩⟨0| ⊗ S

)]
(169)

for y ∈ H and x ∈ Rd. This condition is rewritten as

0 ≤Tr
[
|v⟩⟨v| ⊗ |y⟩⟨y|(

G⊗ ρ− 1
2

∑
1≤i,j≤d

aji (|0⟩⟨i| + |i⟩⟨0|) ⊗Dj − |0⟩⟨0| ⊗ S

)]
(170)

for y ∈ H and v ∈ R to satisfy ⟨v|0⟩ ≠ 0.
When (170) holds for y ∈ H and v ∈ R to satisfy ⟨v|0⟩ ̸= 0, it holds for y ∈ H and

v ∈ R because of the following reason. We choose v ∈ R such that ⟨v|0⟩ = 0. Then, we
choose a sequence vn such that vn → v and ⟨vn|0⟩ ≠ 0. Since (170) holds with vn, by
taking the limit, (170) holds even with v.

Therefore, the condition for D0 can be rewritten as the condition that the inequality
(170) holds with any y ∈ H and any v ∈ R. This condition is equivalent to (58). Hence,
we conclude that the two dual problems D0 and D1 are equivalent.
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E Evaluation of κ based on WR constructed in Section 5.3
Since the lower bound of S(D1) depends on the value κ, it is better to construct W
by reflecting the structure of κ. Hence, we choose WR as follows. We choose a subset
S ⊂ Sd−1. We define a subset S(ϕ) := {(cosϕ, sinϕy)}y∈S . We choose ϕ0 > 0 as tanϕ0 =
C2(a∗). Using k, we choose WR as ∪kj=0S(ϕ0j

k ).
Indeed, when d = 2, the choice of S is very easy because we can choose S as {(cos 2πl

N , sin 2πl
N )}Nl=1.

In this case, we find that δ(S) = ∥(1, 0) − (cos 2π/N, sin 2π/N)∥ =
√

2 − 2 cos 2π/N .
In this case, to evaluate the quantity κ, we employ Lemma 14. In this method, we need

to evaluate the quantity δ(s,WR). For this aim, we define

δ̄(S) := max
x∈Rd:∥x∥=1

min
|w⟩∈S

∥|x⟩ − |w⟩∥ (171)

δ̄(s,WR) := max
x=(cos tan−1 s,(sin tan−1 s)z),z∈Sd−1

min
|w⟩∈WR

∥|x⟩ − |w⟩∥. (172)

To consider the relation between δ̄(s,WR) and δ(s,WR), we focus on the relations

∥|0⟩⟨0| − (cos θ|0⟩ + sin θ|1⟩)(cos θ⟨0| + sin θ⟨1|)∥1

=2| sin θ| (173)

∥|0⟩ − (cos θ|0⟩ + sin θ|1⟩)∥ =
√

2(1 − cos θ) ∼= | sin θ|. (174)

Then, we define function η :
√

2(1 − cos θ) 7→ 2| sin θ|. When t > 0 is small, the relations
(173) and (174) implies η(t) ∼= 2t. This function connects two quantities δ̄(s,WR) and
δ(s,WR) as δ(s,WR) = η(δ̄(s,WR)). Then, we have the following lemma.

Lemma 20. Under the above construction of WR, for s = tan θ, we have

δ̄(s,WR)

≤ min
j∈{0,1,...,k}

(
(cos θ − cos ϕ0j

k
)2

+
(

| sin θ|δ̄(S) +
∣∣∣∣ sin θ − sin ϕ0j

k

∣∣∣∣)2) 1
2
. (175)

This lemma implies that

δ(s,WR)

≤ min
j∈{0,1,...,k}

η

((
(cos θ − cos ϕ0j

k
)2

+
(

| sin θ|δ̄(S) +
∣∣∣∣ sin θ − sin ϕ0j

k

∣∣∣∣)2) 1
2
)
. (176)

Combining (176) and Lemma 14, we have

κ

≤∥X∗∥ max
s∈[0,C2(a∗)]

(1 + s2) min
j∈{0,1,...,k}

η

((
(cos θ − cos ϕ0j

k
)2

+
(

| sin θ|δ̄(S) +
∣∣∣∣ sin θ − sin ϕ0j

k

∣∣∣∣)2) 1
2
)
, (177)

where s = tan θ.
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Proof. Using the definition of the set S, we get

δ̄(s,WR)

= max
x=(cos θ,sin θz),z∈Sd−1

min
0≤j≤k

min
y∈S

∥∥∥∥|x⟩ − (cos ϕ0j

k
, sin ϕ0j

k
y)
∥∥∥∥

= max
z∈Sd−1

min
0≤j≤k

min
y∈S

∥∥∥∥(cos θ, sin θz) − (cos ϕ0j

k
, sin ϕ0j

k
y)
∥∥∥∥

= max
z∈Rd

∥z∥=1

min
0≤j≤k

min
y∈S

∥∥∥∥(cos θ, sin θz) − (cos ϕ0j

k
, sin ϕ0j

k
y)
∥∥∥∥

≤ min
0≤j≤k

max
z∈Rd

∥z∥=1

min
y∈S

∥∥∥∥(cos θ, sin θz) − (cos ϕ0j

k
, sin ϕ0j

k
y)
∥∥∥∥

= min
0≤j≤k

max
z∈Rd

∥z∥=1

min
y∈S

(
(cos θ − cos ϕ0j

k
)2

+
∥∥∥∥ sin θz − sin ϕ0j

k
y

∥∥∥∥2) 1
2
, (178)

where the inequality follows from the max-min inequality.
Now note that for ∥y∥ = 1,∥∥∥∥ sin θz − sin ϕ0j

k
y

∥∥∥∥
=
∥∥∥∥ sin θz − sin θy + sin θy − sin ϕ0j

k
y

∥∥∥∥
≤∥ sin θz − sin θy∥ +

∥∥∥∥ sin θy − sin ϕ0j

k
y

∥∥∥∥
=| sin θ|∥z − y∥ +

∣∣∣∣ sin θ − sin ϕ0j

k

∣∣∣∣. (179)

Hence

δ̄(s,WR)

≤ min
0≤j≤k

max
z∈Rd

∥z∥=1

min
y∈S

(
(cos θ − cos ϕ0j

k
)2

+
(

| sin θ|∥z − y∥ +
∣∣∣∣ sin θ − sin ϕ0j

k

∣∣∣∣)2) 1
2

= min
0≤j≤k

(
(cos θ − cos ϕ0j

k
)2

+
(

| sin θ|δ̄(S) +
∣∣∣∣ sin θ − sin ϕ0j

k

∣∣∣∣)2) 1
2
. (180)

In the previous choice of WR, we use the same subset of Sd−1 to construct S(ϕ). We
modify this construction. That is, to construct S(ϕ0j

k ), depending on j, we choose a subset
Sj ⊂ Sd−1. We define a subset S(ϕ0j

k ) := {(cos ϕ0j
k , sin

ϕ0j
k y)}y∈Sj . We choose ϕ0 > 0 as

tanϕ0 = C2(a∗). Using k, we choose WR as ∪kj=0S(ϕ0j
k ).

Then, we can show the following lemma in the same way as Lemma 20.
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Lemma 21. Under the above construction of WR, for s = tan θ, we have

δ̄(s,WR)

≤ min
j∈{0,1,...,k}

(
(cos θ − cos ϕ0j

k
)2

+
(

| sin θ|δ̄(Sj) +
∣∣∣∣ sin θ − sin ϕ0j

k

∣∣∣∣)2) 1
2
. (181)

This lemma implies that

δ(s,WR)

≤ min
j∈{0,1,...,k}

η

((
(cos θ − cos ϕ0j

k
)2

+
(

| sin θ|δ̄(Sj) +
∣∣∣∣ sin θ − sin ϕ0j

k

∣∣∣∣)2) 1
2
)
. (182)

Combining (182) and Lemma 14, we have

κ

≤∥X∗∥ max
s∈[0,C2(a∗)]

(1 + s2) min
j∈{0,1,...,k}

η

((
(cos θ − cos ϕ0j

k
)2

+
(

| sin θ|δ̄(Sj) + | sin θ − sin ϕ0j

k
|
)2) 1

2
)
, (183)

where s = tan θ.

F Proof of Theorem 17
F.1 Proof of (116)
Lemma 22. For an Hermitian matrix X, we have∥∥∥∥(1

2(Xρ+ ρX)
)2∥∥∥∥ ≤ TrXρX. (184)

Proof. We choose a normalized vector |ϕ⟩ to satisfy∥∥∥∥(1
2(Xρ+ ρX)

)2∥∥∥∥ = ⟨ϕ
(1

2(Xρ+ ρX)
)2

|ϕ⟩. (185)

We choose another normalized vector |ψ⟩ as a constant times of
(

1
2(Xρ+ρX)

)
|ϕ⟩. Then,

we have

⟨ϕ
(1

2(Xρ+ ρX)
)2

|ϕ⟩ = |⟨ψ
(1

2(Xρ+ ρX)
)

|ϕ⟩|2

=
∣∣∣∣Tr
(1

2(Xρ+ ρX)
)

|ϕ⟩⟨ψ|
∣∣∣∣2. (186)
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We apply Schwartz inequality to the inner product ⟨X,Y ⟩ := Tr
[

1
2(Xρ+ ρX)

]
Y †. Then,

we have ∣∣∣∣Tr
[1

2(Xρ+ ρX)
]
|ϕ⟩⟨ψ|

∣∣∣∣2
≤Tr

[(1
2(Xρ+ ρX)

)
X†
]

· Tr
[(1

2(|ψ⟩⟨ϕ|ρ+ ρ|ψ⟩⟨ϕ|)
)

|ϕ⟩⟨ψ|
]

≤Tr
[
XρX

]1
2Tr

[
|ψ⟩⟨ϕ|ρ|ϕ⟩⟨ψ| + |ϕ⟩⟨ψ|ρ|ψ⟩⟨ϕ|)

]
=Tr

[
XρX

]1
2(⟨ϕ|ρ|ϕ⟩ + ⟨ψ|ρ|ψ⟩) ≤ Tr

[
XρX

]
. (187)

We define

S(a) := argmax
S

{TrS|(a, S) satisfies the condition (23).} (188)

Lemma 23. Then, for a real number t, we have

S(ta) = t2S(a). (189)

Also, we have

−S(a) ≥ 0. (190)

Proof. The condition (23) with x = 0 implies (190).
Eq (189) can be shown as follows.
The condition (23) for (ta, S) is written as follows. Any vector x ∈ Rd satisfies

(yTGy)ρ−
∑
i,j

aji tx
iDj − S ≥ 0. (191)

By using a vector y = t−1x ∈ Rd, (191) is rewritten as

t2(yTGy)ρ−
∑
i,j

aji t
2yiDj − S ≥ 0. (192)

That is, it is rewritten as

(yTGy)ρ−
∑
i,j

ajiy
iDj − t−2S ≥ 0, (193)

which implies (189).

In the following, we assume that G is the identity matrix.

Lemma 24. For a real number t, we have

−TrS(a) ≥ 1
d

TraTJa. (194)
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Proof. The condition (23) for (a, S(a)) is written as follows.

0 ≤(xi − 1
2

d∑
j=1

ajiLj)ρ(xi − 1
2

d∑
j=1

ajiLj)

+
∑
i′ ̸=i

(
(xi′)2ρ+

∑
j

aji′t
2xi

′
Dj

)

− 1
4(

d∑
j=1

ajiLj)ρ(
d∑

j′=1
aj

′

i Lj′) − S(a). (195)

We take the diagonalization as 1
2
∑d
j=1 a

j
iLj =

∑
k ck|ϕk⟩⟨ϕk|. We choose xi′ = 0 for i′ ̸= i

and xi = ck in (195). Then, we have

0 ≤(ck − 1
2

d∑
j=1

ajiLj)ρ(cik − 1
2

d∑
j=1

ajiLj)

− 1
4(

d∑
j=1

ajiLj)ρ(
d∑

j′=1
aj

′

i Lj′) − S(a)
)
. (196)

Hence, we have

⟨ϕk|
(

− 1
4(

d∑
j=1

ajiLj)ρ(
d∑

j′=1
aj

′

i Lj′) − S(a)
)

|ϕk⟩

(a)= ⟨ϕk|
(

(ck − 1
2

d∑
j=1

ajiLj)ρ(cik − 1
2

d∑
j=1

ajiLj)

− 1
4(

d∑
j=1

ajiLj)ρ(
d∑

j′=1
aj

′

i Lj′) − S(a)
)

|ϕk⟩

(b)
≥0, (197)

where (a) follows from the fact that ck is the eigenvalue of 1
2
∑d
j=1 a

j
iLj with the vector

ϕk. Also, (b) follows from (196).
Taking the sum with respect to k, we have

− Tr1
4(

d∑
j=1

ajiLj)ρ(
d∑

j′=1
aj

′

i Lj′) − TrS(a)

=
∑
k

⟨ϕk|
(

− 1
4(

d∑
j=1

ajiLj)ρ(
d∑

j′=1
aj

′

i Lj′) − S(a)
)

|ϕk⟩ ≥ 0. (198)

Since (198) holds for i = 1, . . . , d, we have

−TrS(a) ≥ 1
d

d∑
i=1

Tr1
4(

d∑
j=1

ajiLj)ρ(
d∑

j′=1
aj

′

i Lj′) = 1
d
atJa. (199)

Lemma 25.

∥X(a, S(a))∥ ≤ ∥G∥ + (−dTrS(a))1/2 − TrS(a). (200)
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Proof. We have∥∥∥∥1
2

∑
1≤i,j≤d

aji (|0⟩⟨i| + |i⟩⟨0|) ⊗Dj

∥∥∥∥2

=
∥∥∥∥(1

2
∑

1≤i,j≤d
aji (|0⟩⟨i| + |i⟩⟨0|) ⊗Dj

)2∥∥∥∥
=

∥∥∥∥∥∥1
4

|0⟩⟨0| ⊗
( d∑
i=1

(
d∑
j=1

ajiDj)2
)

+
d∑

i′=1
|i′⟩⟨i′| ⊗ (

d∑
j=1

aji′Dj)2

∥∥∥∥∥∥
(a)=
∥∥∥∥ d∑
i=1

(
d∑
j=1

ajiDj)2
∥∥∥∥ ≤

d∑
i=1

∥∥∥∥( d∑
j=1

ajiDj)2
∥∥∥∥

(b)
≤

d∑
i=1

Tr
[
(
d∑
j=1

ajiLj)ρ(
d∑
j=1

ajiLj)
]

= TraTJa
(c)
≤ −dTrS(a), (201)

where (a), (b), and (c) follow from the inequality (
∑d
j=1 a

j
i′Dj)2 ≤

∑d
i=1(

∑d
j=1 a

j
iDj)2 for

i′ = 1, . . . , d, Lemma 22, and Lemma 24, respectively.
Hence,

∥X(a, S(a))∥

≤∥G⊗ ρ∥ +
∥∥∥∥1

2
∑

1≤i,j≤d
aji (|0⟩⟨i| + |i⟩⟨0|) ⊗Dj

∥∥∥∥
+ ∥|0⟩⟨0| ⊗ S(a)∥

≤∥G∥ +
∥∥∥∥1

2
∑

1≤i,j≤d
aji (|0⟩⟨i| + |i⟩⟨0|) ⊗Dj

∥∥∥∥+ ∥S∥

(a)
≤∥G∥ + (−dTrS(a))1/2 − TrS(a), (202)

where (a) follows from (190) and (201).

Lemma 26. We have

−TrS(a∗∗) ≤ d

4TrJ−1 (203)

and

Tra∗∗ ≤ d

2TrJ−1 . (204)

Proof. We have

max
(a,S)

{Tra+ TrS|(a, S) satisfies the condition (23).}

= max
a

Tra+ TrS(a)

= max
t

max
a

{Trta+ TrS(ta)|Tra = 1}
(a)= max

t
max
a

{t+ t2TrS(a)|Tra = 1}

= max
a

{max
t
t+ t2TrS(a)|Tra = 1}

= max
a

{ −1
4TrS(a) |Tra = 1}, (205)
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where (a) follows from Lemma 23.
In particular, when t equals ta := − 1

2TrS(a) , the maximum maxt t+t2TrS(a) is realized.
Then, since TrS(taa) ≤ 0, due to Lemma 23, we have

−TrS(taa) = −t2aTrS(a) = −1
4TrS(a) . (206)

Also, due to (205), using

a∗ := argmax
a

{ 1
4(TrS(a))2

∣∣∣∣Tra = 1
}
, (207)

we have

a∗∗ = ta∗a∗. (208)

Hence, we have

− TrS(a∗∗) (a)= −TrS(ta∗a∗) (b)= −1
4TrS(a∗)

(c)= max
a

{ −1
4TrS(a)

∣∣∣∣Tra = 1
} (d)

≤ max
a

{
d

4Tr[aTJa]

∣∣∣∣Tra = 1
}
, (209)

where (a), (b), and (c) follow from (208), (206), and (207), respectively. In addition, (d)
follows from the inequality

−1
4TrS(a) ≤ d

4Tr[aTJa] , (210)

which is shown by Lemma 24.
We consider the inner product ⟨a, b⟩ := Tr[abT ]. Schwartz inequality for J1/2a and

J−1/2 implies that

TrJ−1Tr[aTJa] ≥ |Tr[J−1/2J1/2a]|2 = |Tra|2. (211)

The equality holds when a is a constant times of J−1. Therefore, we have the relation

max
a

{
d

4Tr[aTJa]

∣∣∣∣Tra = 1
}

= d

4TrJ−1 . (212)

The combination of (209) and (212) yields (203).
Also, (204) is shown as

Tra∗∗ (a)= ta∗
(b)= − 1

2TrS(a∗)
(c)
≤ d

2Tr[aT∗ Ja∗]
(d)
≤ d

4TrJ−1 , (213)

where (b), (c), and (d) follows from the definition of ta, (210), and (212), respectively. In
addition, (a) follows from (208) and the relation Tra∗ = 1.

Proof of (116). When G is the identity matrix, (116) follows from Lemmas 25 and 26.
When G is a general positive semidefinite matrix, we choose a new parameter η =

G1/2θ. Under the new parameter η, the weight matrix is the identity matrix, and the
Fisher information matrix is G−1/2JG−1/2. Since (G−1/2JG−1/2)−1 = G1/2J−1G1/2, we
obtain (116) with a general weight matrix G.
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F.2 Proof of (117)
Lemma 27. When G is the identity matrix, a∗∗ is a positive semi-definite matrix.

Proof. Assume that (a, S) satisfies the condition (23). We choose the polar decomposition
of a as a = |a|o with an orthogonal matrix o. Then, we have

∥y∥2ρ+
∑
j

(|a|oy)jDj − S ≥ 0 (214)

for y ∈ Rd. We choose y′ = oy. Then, we have

∥y′∥2ρ+
∑
j

(|a|y′)jDj − S ≥ 0. (215)

Hence, (|a|, S) also satisfies the condition (23) and Tr|a| ≥ Tra. In fact, the equality of
the above inequality holds if and only if a is a positive semi-definite matrix. Therefore,
we can conclude that the optimizer a∗∗ is a positive semi-definite matrix.

Proof of (117). Assume that G is the identity matrix. Theorem 17 and Lemma 27 guar-
antee that ∥a∗∗∥ ≤ Tra∗∗ ≤ d

2
√

TrJ−1 . Hence, we obtain (117).
When G is a general positive-semi definite matrix, we choose a new parameter η =

G1/2θ. Then, in the same way as (116), we obtain (117).
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