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ABSTRACT
In many studies on disease progression, biomarkers are restricted
by detection limits, hence informativelymissing. Current approaches
ignore the problem by just filling in the value of the detection limit
for the missing observations for the estimation of the mean and
covariance function, which yield inaccurate estimation. Inspired by
our recent work [Liu and Houwing-Duistermaat (2022), ‘Fast Estima-
tors for theMean Function for Functional DatawithDetection Limits’,
Stat, e467.] in which novel estimators for mean function for data
subject to detection limit are proposed, in this paper, we will pro-
pose a novel estimator for the covariance function for sparse and
dense data subject to a detection limit. We will derive the asymp-
totic properties of the estimator. We will compare our method to
the standard method, which ignores the detection limit, via simu-
lations. We will illustrate the new approach by analysing biomarker
data subject to a detection limit. In contrast to the standardmethod,
our method appeared to provide more accurate estimates of the
covariance. Moreover its computation time is small.
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1. Introduction

Technological advances resulted in a growing number of datasets containing tempo-
ral observations, either dense or sparse. For analysis of these data, functional data
analysis (FDA) methods have been developed, see, for example Ramsay and Silver-
man (2005), Ferraty and Vieu (2006), Horváth and Kokoszka (2012) and Kokoszka and
Reimherr (2017) for dense data and Yao, Müller, and Wang (2005), Peng and Paul (2009),
Li and Hsing (2010), Wang, Chiou, and Müller (2016) and Zhang and Wang (2016) for
sparse data. These methods assume that there is no missing data. However, in practice,
we may have data subject to detection limits. Recently, several methods for the estimation
of the mean function have been proposed and investigated when the data are subject to
detection limits, namely the global method by Shi, Dong, Wang, and Cao (2021) and sev-
eral local methods by Liu andHouwing-Duistermaat (2022). However, an estimator for the
covariance has not yet been developed, which is the topic of this paper.
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When levels of a specific marker in a sample have to be determined in a laboratory,
we often deal with detection limits. The amount of the marker might be too low to be
detected. This results in too many zeros in the dataset and an observed ‘zero’ might be
a true zero or just very small. Also on the other extreme of the distribution, detection
limits might occur, since measurement techniques are often optimised for a certain range
of values and values above and below a certain threshold cannot be accurately measured.
Detection limits are not restricted to laboratory measurements. Devices which measure
certain characteristics (number of steps for example) might be out of charge yielding an
underestimation of the characteristic per day (e.g. the true number of steps for a day is
higher than the measured number of steps if the device was out of charge). For simplicity
in this paper, we only consider detection limits on the lower extreme of the distribution,
i.e. we do not observe values lower than a specific value, instead we observe this specific
value which is also called detection limit (DL).

For observations subject to DL, Shi et al. (2021) proposed a global method. How-
ever, since observations close to the target point t contain more information about the
mean function at t than observations far away from t, local methods as proposed by Liu
and Houwing-Duistermaat (2022) might be more appropriate. The estimator of Liu and
Houwing-Duistermaat (2022) is based on approximations of the likelihood function. For
data subject to DL, the likelihood function is a product of probability density functions for
the observed values and of probability distribution functions for the observations subject to
DL, since for the latter observations we know that the unobserved value is below a known
threshold. To estimate the mean function around observed time points, the authors pro-
posed to use the local polynomial kernel method (Fan and Gijbels 1995, 2018; Beran and
Liu 2014, 2016). Further two weighting schemes for subjects have been considered (Zhang
and Wang 2016; Liu and Houwing-Duistermaat 2022), namely the SUBJ scheme which
assigns the sameweight to each subject and theOBS schemewhich assigns the sameweight
to each observation. The latter schemewill assignmoreweight to subjects withmore obser-
vations. To reduce the computation time, Liu and Houwing-Duistermaat (2022) proposed
linear and constant approximations for the probability distribution functions in the like-
lihood function. The constant approximation is computationally fast especially for dense
data while it only performs slightly less than the exact and linear approximation method.
Note that the global method of Shi et al. (2021) is even more computational inefficient
than the linear approximation for dense data. Therefore, in this paper we will use constant
approximations to obtain an estimator for the covariance function.

We propose a local constant estimator with approximation and derive their asymptotic
behaviour. Via simulations we evaluate their performance in a sparse and a dense setting
under both SUBJ and OBS weighting schemes and compare their performance with the
standard method where the detection limit is used for the missing values. We also investi-
gate the asymptotic behaviour of the estimators via simulations. To illustrate the proposed
method, we apply it to temporal data from a biomarker study. We finish with a conclusion.

2. Methodology

2.1. Functional principal component analysis (FPCA)

We first define the model for functional data subject to a detection limit. Let {X(t) : t ∈
I} be an L2 stochastic process on interval I. Let μ(t) = E[X(t)] and C(s, t) = E[(X(s)−
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μ(s))(X(t)− μ(t))] be the mean and covariance function of X(t), respectively. Then X(t)
can be decomposed into

X(t) = μ(t)+ U(t)

where U(t) is the stochastic part of X(t) which has mean zero, i.e. E[U(t)] = 0 for t ∈ I,
and covariance C(s, t) = E[U(s)U(t)] for all s, t ∈ I. By Karhunen–Loeve expansion and
Mercer’s Theorem, we have

C(s, t) =
∞∑
l=1

λlψl(s)ψl(t)

and

U(t) =
∞∑
l=1

ξlψl(t),

whereψl(t) are eigenfunctions of the covariance operator corresponding toC(s, t), positive
real numbers λ1 > λ2 > · · · are the eigenvalues of the covariance operator corresponding
to C(s, t), and var(ξl) = λl. Note that the functional principal components {ψl(t)} (FPCs)
are an orthonormal basis for L2(I).

Let X1(t), . . . ,Xn(t) be n iid copies of X(t) with t ∈ I. We have observations of
X1(t), . . . ,Xn(t) at discrete time points ti1, . . . , tiNi perturbed by an independent random
error. Here, Ni is the number of measurements for subject i Specifically, let Yij denote the
random variable for the jth time point for subject iwith j = 1, . . . ,Ni and i = 1, . . . , n. We
can model Yij as follows:

Yij = Xi(tij)+ εij = μ(tij)+ Ui(tij)+ εij = μ(tij)+
∞∑
l=1

ξilψl(tij)+ εij (1)

where εij is an independent random measurement error term following a distribution in
the exponential family with mean zero and variance σ 2 that is, εij are independent for any
i and j. We assume further that εij is independent of Ui(t) (or equivalently ξil). Often a
Gaussian distribution is assumed, i.e. we have εij ∼ N (0, σ 2) and ξil ∼ N (0, λl).

Now, not all Yij are observed due to the presence of a DL. Let δij be the missingness
indicator, i.e. δij = 0 ifYij is observed, and δij = 1 ifYij is unobserved. If δij = 1, we assume
that the unobserved Yij has a value smaller than (or equal to) a specific threshold cij. For
the sake of simplicity of notation, we assume the threshold is fixed, i.e. cij = c for all i, j.
Therefore, the observations are

{(tij, yij, δij)}, i = 1, . . . , n, j = 1, . . . ,Ni,

where yij is missing for δij = 1.
The consequence of the presence of a DL is that in the likelihood function the contribu-

tions of the observations subject to the DL are represented by the probability distribution
function instead of the density function. As a consequence the likelihood function is hard
to maximise. Liu and Houwing-Duistermaat (2022) proposed to locally approximate the
probability distributions by a linear function or by a constant resulting in time efficient
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estimators for the mean function. They showed via simulations that the local-linear esti-
mator performed only slightly better than the local-constant estimator, but was less time
efficient. Therefore, in this paper we will only consider the local-constant estimator.

2.2. Locally Kernel weighted log-likelihood estimator for themean function

In this section, we briefly summarise the estimation procedure of themean function which
was developed by Liu and Houwing-Duistermaat (2022). For this section, without loss
of generalisability, we assume that U(t) = 0 in formula (1), i.e. we ignore the covariance
between X(t) at various time points. The loglikelihood function approximated locally by a
constant is as follows (see Liu and Houwing-Duistermaat 2022):

L(β ; h, t) =
n∑
i=1

wi

Ni∑
j=1

[
−0.251δij

(
c − β0

σ

)2
+ 0.8194δij

c − β0

σ

+(0.5 − 0.5δij)
(
yij − β0

σ

)2
]
Kh(tij − t). (2)

where Kh(·) = 1
hK(

·
h ) and K(·) is a kernel function see details in Assumption (A1) and wi

are weights. Two types of weights wi are considered, namely

wSUBJ
i = 1

nNi

and

wOBS
i = 1∑n

i=1 Ni
.

Using loglikelihood function (2), Liu and Houwing-Duistermaat (2022) obtained the
following local constant estimator of the mean function:

μ̂LC(t) = β̂0 = R0
S0

, (3)

where

S0 =
n∑
i=1

wi

Ni∑
j=1
(1 − 0.498δij)Kh(tij − t)

and

R0 =
n∑

i=1
wi

Ni∑
j=1

[−0.8194δijσ + 0.502δijc + (1 − δij)yij
]
Kh(tij − t).

Note that Liu and Houwing-Duistermaat (2022) only derived the asymptotic distribution
of the local linear estimator (see Theorem 2.1 of their paper). The asymptotic distribution
of μ̂LC(t) given in (3) can be obtained in a similar way. In this paper, we derive estimators
for the covariance function C(s, t) using similar ideas.
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2.3. Local Kernel weighted estimation of covariance function

In this section, we assume μ(t) = 0 and ε ∼ N (0, σ 2) (for simplicity of notations). We
propose the following fast local constant kernel weighted estimator of C(s, t):

Ĉ(s, t) = R00
S00

(4)

where

R00 =
n∑

i=1
vi

∑
1≤j�=l≤Ni

Kh(tij − s)Kh(til − t)Cijl

and

S00 =
n∑

i=1
vi

∑
1≤j�=l≤Ni

Kh(tij − s)Kh(til − t)Dijl

with

Cijl = [−0.8194δijσ + 0.502δijc + (1 − δij)yij] · [−0.8194δilσ + 0.502δilc + (1 − δil)yil]

and

Dijl = (1 − 0.498δij)(1 − 0.498δil)

and vi

vOBSi = 1∑
Ni(Ni − 1)

or vSUBJi = 1
nNi(Ni − 1)

.

Remark 2.1: Note that, without DL, the local constant smoother (or NW) for the mean
function is

μ̂(t) = β̂0 = argmin
n∑
i=1

wi

Ni∑
j=1
(yij − β0)

2Kh(tij − t) = R0
S0

with δij = 0 for all i and j in R0 and S0 (in formula (3)), and the local constant smoother
for covariance is

Ĉ(s, t) = β̂0 = argmin
n∑

i=1
vi

∑
1≤j�=l≤Ni

(Cijl − β0)
2Kh(tij − s)Kh(til − t) = R00

S00

with δij = 0 for all i and j in R00 and S00 (in formula (4)).

Remark 2.2: If μ(t) is unknown, it can be estimated by formula (3). Then we can just
replace yij by yij − μ̂(tij) in formula (4) to obtain the estimate of C(s, t).

For the observations yij, we have that they are observed values of a perturbed underlying
continuous function X(t). Now, for δij, we define indicator functions {δi(t), i = 1, . . . , n}
on interval I with range {0, 1} and δi(tij) = δij. For the covariance estimator defined in
Equation (4), Theorem 2.1 holds.
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Theorem 2.1: Under Assumptions B.1–B.3 given in the Appendix, for a fixed interior point
(s, t) ∈ I × I,

(	n,Ni)
−1/2

[
Ĉ(s, t)− C(s, t)− B(s, t)σ 2 − h2

2
σ 2
KD(s, t)+ o(h2)

]
→ N (0, 1)

where

	n,Ni = 1(∑
Ni(Ni − 1)wi2(s, t)f (s)f (t)

)2
×

(∑
(wi1(s, t)− B(s, t)wi2(s, t))2σ 4VI

i (s, t)

+
∑

w2
i4(s, t)σ

2VII
i (s, t)+ 2

∑
wi4(s, t)wi4(t, s)σ 2VIII

i (s, t)

+2
∑

wi2(s, t)wi4(s, t)σVIV
i (s, t)+

∑
w2
i4(t, s)σ

2VII
i (t, s)

+2
∑

wi2(t, s)wi4(t, s)σVIV
i (t, s)+

∑
w2
i2(s, t)V

V
i (s, t)

)
,

B(s, t) =
∑

i Ni(Ni − 1)wi1(s, t)∑
i Ni(Ni − 1)wi2(s, t)

,

D(s, t) = 2∂C(s, t)
∂s

f ′(s)
f (s)

+ 2∂C(s, t)
∂t

f ′(t)
f (t)

+ ∂2C(s, t)
∂s2

+ ∂2C(s, t)
∂t2

,

wi1(s, t), wi2(s, t), wi3(s, t), and wi4(s, t) are coefficient functions which are defined in
Appendix, VI

i (s, t), V
II
i (s, t), V

III
i (s, t), V

IV
i (s, t) and V

V
i (s, t) are covariance functions which

are also defined in Appendix, and notations σ 2
K and f (t) are also defined in Appendix.

Proof: The proof comprises showing that the asymptotic bias and the asymptotic vari-
ance of Ĉ(s, t) are equal to B(s, t)σ 2 + h2

2 σ
2
KD(s, t)+ o(h2) and 	n,Ni respectively. Here,

Assumptions on the kernel (A1), the local polynomial smoothing (B1), (B2) and (B3).
Details are given in Appendix. The additional assumption (C1) assures that the asymp-
totic bias is bounded, and assumption (C2) guarantees that the variance of the estimator
goes to zero. The final step is to prove asymptotic normality of Ĉ(s, t). Note that this
follows from the asymptotic normality of (R00 − E[R00], S00 − E[S00]) by the applica-
tion of the delta method see Theorem 1.12 in Shao (2003). Now, asymptotic normality
of (R00 − E[R00], S00 − E[S00]) follows from the Lyapunov condition and Cramer–Wold
device. Specifically, Lyapunov CLT of S00 and R00 can be achieved by the Lyapunov con-
dition given in Assumption (C3), where the power is 3 (i.e. 2 + δ and δ is 1) using
the notation in Theorem 27.3 in Billingsley (2008). Then the asymptotic joint normal-
ity of (R00 − E[R00], S00 − E[S00]) can be derived via the Cramer–Wold device for the
two-dimension case, see Theorem 29.4 in Billingsley (2008).

This completes the proof. �

Remark 2.3: If there are no observations subject toDL, i.e. δij = 0, for all i, j, thenB(s, t) =
0. Moreover,

	n,Ni = 1
f 2(s)f 2(t)

∑
v2i V

V
i (s, t),
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which corresponds to the results of classic local constant covariance estimator (see Zhang
and Wang 2016).

3. Simulation study

We evaluate the performance of our proposed estimator ofC(s, t) via simulations.We com-
pare its performance with a standard method where the missing observations are replaced
with the DL value (Yao et al. 2005). We compare the methods in terms of bias, efficiency,
asymptotic behaviour and computation time.

We assume thatμ(t) = 0 for simplicity and define the true zero mean random function
X(t) as follows:

X(t) = ξψ(t), t ∈ [0, 1],

where ψ(t) = √
2 cos(4π t), ξ is a normal random variable with mean zero and variance

2, i.e. ξ ∼ N (0, λ) and λ = 2. Therefore the covariance function is

C(s, t) = λψ(s)ψ(t) = 4 cos(4πs) cos(4π t), s, t ∈ [0, 1].

The observed time points tij ∼ U[0, 1] are iid sampled from the continuous uniform dis-
tribution in the interval [0, 1]. Additive errors are sampled from εij ∼ N (0, 1). Then the
response is generated by

Yij = Xi(tij)+ εij = ξiψ(tij)+ εij, i = 1, . . . , n, j = 1, . . . ,Ni.

Finally, the missing data are created with the observations less than DL are replaced by DL,
with DL= {−1, 0}.

We consider two settings, namely a sparse and a dense grid for the observations for
each subject i. We, specifically, sample the number of time points Ni for each trajectory i
as follows:

• Sparse setting: Ni ∼ U{3, 4, 5, 6, 7, 8, 9, 10} i.e. Ni are iid from a discrete uniform distri-
bution in {3, 4, . . . , 10}.

• Dense setting: Ni ∼ U{75, 76, . . . , 100} i.e. Ni iid from a discrete uniform distribution
in in {75, 76, . . . , 100}.

For each setting, we simulate Q = 100 replicates. Each replicate contains information of
n = 100 subjects.

To estimate the covariance functions in the replicates, we consider the following
methods:

• Our estimator based on local constant approximations using either the OBS or the SUBJ
weighting schemes.

• PACE which does not adjust for the detection limit (Yao et al. 2005).

For each replicate, the covariance functions are estimated on 20 equal-distant time points
in [0, 1] × [0, 1]. The variance of εij is estimated as the mean squared error based on the
least-squared fit using all the data (including the values subject toDL).We use theGaussian
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Figure 1. The first 20 of the 100 trajectories in the first replicate of the sparse setting. Left: Data without
a detection limit, middle with a detection limit of 0, right with detection limit of−1.

kernel for the estimation procedure. To select the bandwidth h, the integrated squared error
(ISE) is computed for a dense grid of values, namely h = (2 : 12)/200. The ISE is defined
as follows:

ISE(Ĉ(s, t), h) =
∫ 1

0

∫ 1

0
(Ĉh(s, t)− C(s, t))2 ds dt,

where Ĉh(s, t) is the estimation of C with bandwidth h. The bandwidth which minimises
ISE(Ĉ(s, t), h) is selected as the optimal bandwidth and the corresponding ISE is denoted
with ISEopt(Ĉ(s, t)) (see Fan and Gijbels 2018).

We then calculate themean integrated squared error (MISE) and the standard deviation
of ISE over Q(= 100) replicates:

MISE(Ĉ(s, t)) = 1
Q

Q∑
i=1

ISEopt(Ĉ([i])(s, t)), (5)

SD(Ĉ(s, t)) =
√√√√ 1

Q − 1

Q∑
i=1

(
ISEopt(Ĉ([i])(s, t))− MISE(Ĉ(s, t))

)2
, (6)

where Ĉ([i])(s, t) is the covariance estimation based on the ith replicate.
For the sparse setting, Figure 1 depicts the first 20 of the 100 trajectories in the first repli-

cate without a DL and subject to a DL= {−1, 0}. The proportion of observations subject
to DL is 26.67% and 48.73%, respectively. The corresponding estimates of the covariance
function by the local constant approximation method proposed in this paper under the
OBS and SUBJ weighting schemes and by the PACE method are given in Figure 2.

For these two replicates, the proposed local constant approximation method performs
much better than PACE. For DL = 0, PACE estimates the covariance of all considered time
points larger than zero while the two local constant estimates also have negative values rep-
resenting the true situation. For both values of DL, the OBS scheme seems to capture the
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Figure 2. For replicate 1 of the sparse setting, contour plots with lines of the true and estimated covari-
ance function for a DL of 0 (top layer) and of −1 (bottom layer) using the constant approximation
methods with the OBS and SUBJ weighting schemes (second and third columns) and using PACE (fourth
column). The covariance is estimated at 20 equal-distant points in [0, 1] × [0, 1]. The bandwidth for the
constant approximation method is 0.015.
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Figure 3. The first 20 of the 100 trajectories in the first replicate of the dense setting. Left: Data without
a detection limit, middle with a detection limit of 0, right with detection limit of−1.

true covariance function slightly better in this replicate. Further because of less missing
values, the results for DL = −1 (bottom layers of Figure 2) are better than that for DL = 0
(top layers of these figures). The time needed for calculating the estimate of the covariance
function appeared to be 4.8 seconds for DL = −1 and 5.1 seconds for DL = 0 for the pro-
posed estimators while the computation time for the PACE method was 7.6 seconds for
DL = −1 and 7.9 seconds for DL = 0. Thus our proposed local approximation method is
more time efficient than the PACE method.

For the dense setting, Figure 3 depicts the first 20 of the 100 trajectories in the first
replicate without a DL and subject to a DL of DL = 0 and of DL = −1. The proportions
of observations subject to DL are 50.21% in the replicate with for DL = 0 and 25.61% for
DL = −1. The estimates of the covariance functions by the variousmethods using the data
from these replicates are given in Figure 4.

As in the sparse setting, the proposed local constant approximation method per-
forms better than the existing PACE method for these two replicates. The two weighting
schemes in the local constant approximation methods give similar estimates. The time
needed for calculating the estimated covariance function is 0.03 seconds for DL = −1 and
0.057 seconds for DL = 0 by using the local constant approximation, while for PACE it is
758 seconds for DL = −1 and 773 seconds for DL = 0. Thus our proposed local approx-
imation method is considerably more time efficient than the PACE method for the dense
setting.

Table 1 shows the results of the simulation study based on all replicates. It provides the
MISE and the corresponding standard deviation (SD) for local constant approximation for
the two weighting schemes (SUBJ or OBS) for increasing sample size n. Also the mode of
optimal bandwidth in local constant estimation selected for each replicate is provided. We
did not show the results of the PACE method, as this method appeared to give biased and
inaccurate estimates, see Figures 2 and 4.

Clearly as n increases from 100 to 1000, the MISE and corresponding SD decreases.
The dense case has smaller MISE compared to the sparse case. Comparing DL = −1 with
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Figure 4. For replicate 1 of the dense setting, contour plots with lines of the true and estimated covari-
ance function for a DL of 0 (top layer) and of −1 (bottom layer) using the constant approximation
methods with the OBS and SUBJ weighting schemes (second and third columns) and using PACE (fourth
column). The covariance is estimated at 20 equal-distant points in [0, 1] × [0, 1]. The bandwidth for the
constant approximation method is 0.03 for a DL of 0 and 0.035 for a DL of−1.
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Table 1. Results of the simulation study for the scenarios DL = 0 and DL = −1 and for the sparse and
dense setting.

n = 100 n = 200 n = 500 n = 1000

Dense (DL= 0)
Ĉ (OBS) 0.348(0.147,0.015) 0.305(0.107,0.015) 0.295(0.096,0.015) 0.276(0.050,0.015)
Ĉ (SUBJ) 0.347(0.147,0.015) 0.306(0.107,0.015) 0.296(0.095,0.015) 0.276(0.049,0.015)

Dense (DL= −1)
Ĉ (OBS) 0.145(0.120,0.015) 0.105(0.078,0.015) 0.099(0.076,0.015) 0.080(0.036,0.015)
Ĉ (SUBJ) 0.144(0.120,0.015) 0.107(0.078,0.015) 0.099(0.075,0.015) 0.080(0.035,0.015)

Sparse (DL= 0)
Ĉ (OBS) 1.080(0.307,0.030) 0.771(0.190,0.03) 0.598(0.114,0.03∗) 0.538(0.080,0.03∗)
Ĉ (SUBJ) 1.269(0.682,0.035) 0.881(0.199,0.03) 0.662(0.110,0.03∗) 0.582(0.072,0.03∗)

Sparse (DL= −1)
Ĉ (OBS) 0.769(0.267,0.035) 0.501(0.137,0.03) 0.350(0.100,0.025∗∗) 0.249(0.070,0.025∗∗)
Ĉ (SUBJ) 0.918(0.401,0.035) 0.602(0.142,0.03) 0.421(0.100,0.025∗∗) 0.293(0.061,0.025∗∗)
Note: Reported are MISE (SD, mode of optimal bandwidth of local constant approximation), see formulas (5) and (6) for the
definition of MISE and SD respectively. n is the sample size (100, 200, 500 and 1000). The optimal bandwidth is selected
based on theMISE criteria. The covariance function is estimated at 20 equal-distant time points in [0, 1] × [0, 1]. The num-
ber of replicates is 100.∗Bandwidth is fixed at 0.03, and the reason is the selected optimal bandwidths for cases n = 100
and n = 200 are all 0.03, andwe expect for n = 500 and n = 500 bandwidth does not changemuch and this reduce the
computation time a lot.∗∗Bandwidth is 0.025 or 0.03 selected based on MISE.

DL = 0, MISE is smaller for DL = −1. This can be explained by the fact that there is more
information for DL = −1 and in the dense setting. The optimal bandwidth is very sta-
ble across all settings for both weighting schemes. For the sparse setting, the OBS scheme
performs better than the SUBJ scheme. For the dense setting, the two weighting schemes
perform similar.

4. Data application

We illustrate our method using data from a longitudinal biomarker study of scleroderma
patients. Scleroderma is a heterogeneous disease where the course of the severity varies
among patients. The study comprises 217 patients with hospital visits from 2010 to 2015.
Typically, scleroderma patients visit the hospital every 6 months to check whether the dis-
ease has progressed. However, patients missed their appointments or their data were not
recorded resulting in a sparse unbalanced dataset. The data were collected according to the
ethically approved protocol for observational study HRA number 15/NE/0211.

In Liu andHouwing-Duistermaat (2022), themean functions of two biomarkers subject
to detection limits were estimated, namely aldose reductase (AR) and alpha fetoprotein
(AF). The percentage of missing data for the AF marker is high, namely 75%, which led to
uncertainty in the estimation of the mean function. The percentage of missing data due to
the DL for AR is much lower namely 7.8% observations resulting in a more stable mean
function. For the estimation of the covariance function we use the data on AR.

For data cleaning, we remove observations at time points with no outcomes or no
biomarker values, and some outliers (AR has a value larger than 3 times the standard devi-
ation). Finally, patients with only one observation are dropped. The final dataset comprises
90 patients within total 268 observations. The mean function of AR is estimated using the
local constant approximationmethod under the OBS scheme. The bandwidth was selected
using CV over a fine grid. The observed profiles minus the estimated mean function are
shown in Figure 5.
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Figure 5. The AR observations with estimated mean being subtracted.

The estimate of the covariance function using the local constant method is shown in
Figure 6. Note that the number of patients observed over a large time period is small, hence
the covariance estimations for s or t larger than 0.6 have large uncertainty. For the region
[0, 0.5] × [0.0.5], we observe that at larger distance the covariance decreases. Along the
line s = t for the region [0, 0.5] × [0.0.5], the estimated covariance functions appear to
decrease. This is probably due to a smaller variance (see Figure 5). Finally for the regions
[0.5, 1] × [0.0.5] and [0, 0.5] × [0.5, 1], we observe that the covariance increases when s
and t respectively increase to 1. This may reflect the fact that patients observed over a
longer time range are a specific subset of the patients, namely they are more stable hence
show a large correlation and a large covariance over time.

5. Discussion

We have proposed a novel estimator for the covariance function for sparse and dense tem-
poral data subject to a DL. Our method is based on local smoothing of the covariance
function using kernel functions. We derived the asymptotic properties of the estimator
and evaluated these properties via simulations. We compared our method to the method
which ignores the presence of a DL in the data sample. We showed that our methods per-
formed better in terms of bias and computation time. We also considered two weighting
schemes for the observations, one based on single observations and one based on subjects.
For sparse data, weighting per observation appeared to perform better.

We illustrated themethod using data from a biomarker study. The estimated covariance
for the biomarker first decreased over time and then started increasing again. The latter
might be explained by an increase in variance and/or in correlation. If the biomarker rep-
resents disease severity, the patients who have a longer follow up are likely to be patients
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Figure 6. The covariance estimation for AR by using local constant estimation method.

with a less severe disease course. Thus these results might be explained by non-random
drop out of patients. The development of estimators for the mean and covariance function
for drop out will be future research.

Liu and Houwing-Duistermaat (2022) also proposed a linear approximation instead of
a constant approximation. We did not consider this approach here since for dense data
there is no difference in performance and the linear approximation requires more compu-
tation time. For sparse data, a linear approximationmight perform slightly better. Another
approach is to impute themissing observations and then use PACE for the estimation of the
covariance function. For cross-sectional data, Uh, Hartgers, Yazdanbakhsh, andHouwing-
Duistermaat (2008) studied the performance of imputationmethods. They concluded that
these methods may give biased estimators or underestimated variances. Given the results
of Uh et al. (2008) and the facts that multiple imputations would increase the computation
time and that the computation time of PACE is higher than of our methods, we did not
consider this approach for the estimation of covariance function.

For the selection of the bandwidth, we used cross validation in the data applicationwhile
in the simulation we used ISE where we plug in the true value of the covariance function
C(t, s). We could have used cross validation in the simulation study as well, however, this
would have increased the computation time while we expect that cross validation would
only slightly change individual results and our overall conclusions with regard to the effect
of DL on the estimation of the covariance and the difference between using OBS and SUBJ
weighting would not change.

With the availability of estimators of the mean and the covariance function, models for
temporal data subject to DL can be built. Functional principal component analysis (FPCA)
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can be used to reduce the infinite dimension into finite dimension. For sparse datasets,
FPCA can be used to obtain smooth individual curves. Finally functional regression mod-
els can be developed to investigate the influence of covariates with DL on the outcomes
which might be also subject to DL.
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Appendix

Notations

Notation A.1: Define the following notations:

• Coefficient functions

wi1(s, t) = [(−0.8194 + 0.502[−1, 2])δi(s)] · [(−0.8194 + 0.502[−1, 2])δi(t)] · vi
wi2(s, t) = [1 − 0.498δi(s)] · [1 − 0.498δi(t)] · vi
wi3(s, t) = [1 − δi(s)] · [1 − δi(t)] · viwi4(s, t)

= [(−0.8194 + 0.502[−1, 2])δi(s)] · [1 − 0.498δi(t)] · vi
where 0.502[−1, 2] means the interval [−0.502, 1.004] and therefore wi1(s, t) is a value in an
closed interval for fixed s, t.

• Conditional expectations

E0(s, t) = E[Y1Y2 |T1 = s,T2 = t]

E1(s, t) = E[Y1Y2Y3 |T1 = t,T2 = s,T3 = t]

E2(s, t) = E[Y2
1Y2 |T1 = t,T2 = s]

E3(s, t) = E[Y1Y2Y3Y4 |T1 = s,T2 = t,T3 = s,T4 = t]

E4(s, t) = E[Y2
1Y2Y3 |T1 = s,T2 = t,T3 = t]

E5(s, t) = E[Y2
1Y

2
2 |T1 = s,T2 = t].

Note that since we assume in this section μ(t) = 0, for independent random variables T1 and
T2, we denote E0(s, t) = E[Y1Y2 |T1 = s,T2 = t]; otherwise, E0(s, t) = E[(Y1 − μ(T1))(Y2 −
μ(T2) |T1 = s,T2 = t]. The other notations Ei(s, t), i = 1, 2, . . . , 5 are similar.

• Covariance functions

VI
i (s, t) = Ni(Ni − 1)(1 + Is=t)

‖K‖4
h2

(f (s)f (t)+ o(1))

+ Ni(Ni − 1)(Ni − 2)(1 + Is=t)
‖K‖2
h

(f (s)f 2(t)+ f 2(s)f (t)+ o(1))

+ (Ni(Ni − 1)(Ni − 2)(Ni − 3)− (Ni(Ni − 1))2)(f 2(s)f 2(t)+ o(1)),

VII
i (s, t) = Ni(Ni − 1)Is=t

‖K‖4
h2

(f (s)f (t)E0(t, t)+ o(1))

+ Ni(Ni − 1)(Ni − 2)
‖K‖2
h

(f 2(s)f (t)E0(t, t)+ o(1))

VIII
i (s, t) = Ni(Ni − 1)Is=t

‖K‖4
h2

(f 2(s)E0(s, t)+ o(1))

+ Ni(Ni − 1)(Ni − 2)Is=t
‖K‖2
h

(f 3(s)E0(s, t)+ o(1))
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VIV
i (s, t) = Ni(Ni − 1)(1 + Is=t)

‖K‖4
h2

(f (s)f (t)E2(s, t)+ o(1))

+ Ni(Ni − 1)(Ni − 2)(1 + Is=t)
‖K‖2
h

(f (s)f 2(t)E1(s, t)+ f 2(s)f (t)E2(s, t)+ o(1))

+ Ni(Ni − 1)(Ni − 2)(Ni − 2)(f 2(s)f 2(t)+ o(1))

VV
i (s, t) = Ni(Ni − 1)(1 + Is=t)

‖K‖4
h2

(f (s)f (t)E5(s, t)+ o(1))

+ Ni(Ni − 1)(Ni − 2)(1 + Is=t)
‖K‖2
h

(f (s)f 2(t)E4(s, t)+ f 2(s)f (t)E4(t, s)+ o(1))

+ Ni(Ni − 1)(Ni − 2)(Ni − 2)(f 2(s)f 2(t)E3(s, t)+ o(1))

− (Ni(Ni − 1))2C2(s, t)(f 2(s)f 2(t)+ o(1))

Assumptions

Assumption A.1: Assumptions for the Kernel function:

(A1) Kernel function K(·) is a symmetric probability density function on [−1, 1], and

σ 2
K =

∫
u2K(u) du < ∞

and

‖K‖2 =
∫

K2(u) du < ∞.

Assumption A.2: Assumptions for time points and the true functions:

(B1) Time points {tij, i = 1, . . . , n, j = 1, . . . ,Ni} are iid copies of a random variable T defined on
interval I with density f (·):

0 < mf ≤ min f (t) ≤ max f (t) ≤ Mf < ∞

and f ′′
(t) is bounded.

(B2) X(t) is independent of T, ε is independent of T.
(B3) ∂2C(s,t)

∂s2 , ∂
2C(s,t)
∂s∂s , ∂

2C(s,t)
∂t2 are bounded on I × I.

Assumption A.3: Assumptions for deriving the asymptotic distribution of the estimated covariance
function:

(C1) For k1, k2 = 1, 2, 3, 4, as n → ∞,

h := hn → 0∑
i Ni(Ni − 1)wik1(s, t)wik2(s, t)

h2
→ 0∑

i Ni(Ni − 1)(Ni − 2)wik1(s, t)wik2(s, t)
h

→ 0∑
i
Ni(Ni − 1)(Ni − 2)(Ni − 3)wik1(s, t)wik2(s, t) → 0.
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(C2) For k1, k2 = 1, 2, 3, 4, as n → ∞,

min
k1,k2=1,2,3,4

{
h2∑

i Ni(Ni − 1)wik1(s, t)wik2(s, t)
,

h∑
i Ni(Ni − 1)(Ni − 2)wik1(s, t)wik2(s, t)

,

1∑
i Ni(Ni − 1)(Ni − 2)(Ni − 3)wik1(s, t)wik2(s, t)

}
h6 → 0.

(C3) For k1, k2, k3 = 1, 2, 3, 4, as n → ∞,

max
k1,k2,k3=1,2,3,4

{∑
i Ni(Ni − 1)wik1(s, t)wik2wik3(s, t)

h4
,

∑
i Ni(Ni − 1)(Ni − 2)wik1(s, t)wik2wik3(s, t)

h3
,∑

i Ni(Ni − 1)(Ni − 2)(Ni − 3)wik1(s, t)wik2wik3(s, t)
h2

,∑
i Ni(Ni − 1)(Ni − 2)(Ni − 3)(Ni − 4)wik1(s, t)wik2wik3(s, t)

h
,

∑
i
Ni(Ni − 1)(Ni − 2)(Ni − 3)(Ni − 4)(Ni − 5)wik1(s, t)wik2wik3(s, t)

}/
(∑

i Ni(Ni − 1)wik1(s, t)wik2(s, t)
h2

,
∑

i Ni(Ni − 1)(Ni − 2)wik1(s, t)wik2(s, t)
h

,

∑
i
Ni(Ni − 1)(Ni − 2)(Ni − 3)wik1(s, t)wik2(s, t)

) 3
2

→ 0.

Proof of Theorem 2.1

Proof: The calculation of the asymptotic bias of Ĉ(s, t),

E[S00] =
[
f (s)f (t)+ h2

2
σ 2
KB1(s, t)+ o(h2)

]∑
Ni(Ni − 1)wi2(s, t)

E[R00] =
[
f (s)f (t)+ h2

2
σ 2
KB1(s, t)+ o(h2)

]∑
Ni(Ni − 1)wi1(s, t)σ 2

+
[
C(s, t)f (s)f (t)+ h2

2
σ 2
KB2(s, t)+ o(h2)

]∑
Ni(Ni − 1)wi2(s, t),

where

B1(s, t) = f
′′
(s)f (t)+ f (s)f

′′
(t)

B2(s, t) = C(s, t)f
′′
(s)f (t)+ C(s, t)f (s)f

′′
(t)

+ 2∂C
∂s

f ′(s)f (t)+ 2∂C
∂t

f (s)f ′(t)+ ∂2C
∂s2

f (s)f (t)+ ∂2C
∂t2

f (s)f (t)

= C(s, t)B1(s, t)
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+ 2∂C
∂s

f ′(s)f (t)+ 2∂C
∂t

f (s)f ′(t)+ ∂2C
∂s2

f (s)f (t)+ ∂2C
∂t2

f (s)f (t)

and

σ 2
K =

∫
u2K(u) du.

Therefore, by using the delta method, the asymptotic bias is

E[Ĉ(s, t)] − C(s, t) = E[R00]
E[S00]

− C(s, t)

= B(s, t)σ 2 + h2

2
D(s, t)+ o(h2).

For the asymptotic variance, we need to calculate var(S00), var(R00), cov(R00, S00). This involves the
calculation of E[Kh(T − s)Kh(T − t)] which is equal to ‖K‖2f (t)

h + o( 1h ) if s = t and 0 if s �= t as
h → 0, because the support of K(t) is [−1, 1]. Thus

var(S00) =
∑

w2
i2(s, t)V

I
i (s, t),

var(R00) =
∑

w2
i1(s, t)σ

4VI
i (s, t)+ 2

∑
wi1(s, t)wi2(s, t)C(s, t)σ 2VI

i (s, t)

+
∑

w2
i4(s, t)σ

2VII
i (s, t)+ 2

∑
wi4(s, t)wi4(t, s)σ 2VIII

i (s, t)

+ 2
∑

wi2(s, t)wi4(s, t)σVIV
i (s, t)+

∑
w2
i4(t, s)σ

2VII
i (t, s)

+ 2
∑

wi2(t, s)wi4(t, s)σVIV
i (t, s)+

∑
w2
i2(s, t)V

V
i (s, t)

cov(R00, S00) =
∑[

w2
i2(s, t)C(s, t)+ wi1(s, t)wi2(s, t)σ 2]VI

i (s, t).

Therefore, by using the delta method, the asymptotic variance is

var(Ĉ(s, t)) =

⎛
⎜⎜⎝

1
E[S00]

−E[R00]
E[S200]

⎞
⎟⎟⎠

T (
var(R00) cov(R00, S00)

cov(R00, S00) var(S00)

)⎛
⎜⎜⎝

1
E[S00]

−E[R00]
E[S200]

⎞
⎟⎟⎠

=
(∑

Ni(Ni − 1)wi2(s, t)f (s)f (t)
)−2

×
[∑

(wi1(s, t)− B(s, t)wi2(s, t))2σ 4VI
i (s, t)

+
∑

w2
i4(s, t)σ

2VII
i (s, t)+ 2

∑
wi4(s, t)wi4(t, s)σ 2VIII

i (s, t)

+2
∑

wi2(s, t)wi4(s, t)σVIV
i (s, t)+

∑
w2
i4(t, s)σ

2VII
i (t, s)

+2
∑

wi2(t, s)wi4(t, s)σVIV
i (t, s)+

∑
w2
i2(s, t)V

V
i (s, t)

]
= 	n,Ni .
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