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EFFICIENT ALGEBRAIC TWO-LEVEL SCHWARZ
PRECONDITIONER FOR SPARSE MATRICES

HUSSAM AL DAAS∗, PIERRE JOLIVET† , AND TYRONE REES†

Abstract. Domain decomposition methods are among the most efficient for solving sparse
linear systems of equations. Their effectiveness relies on a judiciously chosen coarse space. Originally
introduced and theoretically proved to be efficient for positive definite self-adjoint operators, spectral
coarse spaces have been proposed in the past few years for indefinite and non-self-adjoint operators.
This paper presents a new spectral coarse space that can be constructed in a fully-algebraic way,
unlike most existing spectral coarse spaces. We present a theoretical convergence result for Hermitian
positive definite diagonally dominant matrices. Numerical experiments and comparisons against
state-of-the-art preconditioners in the multigrid community show that the resulting two-level Schwarz
preconditioner is efficient , especially for non-self-adjoint operators. Furthermore, in this case, our
proposed preconditioner outperforms state-of-the-art preconditioners.

Key words. Algebraic domain decomposition, Schwarz preconditioner, sparse linear systems,
diagonally dominant matrices.

1. Introduction. In this paper, we develop an algebraic overlapping Schwarz
preconditioner for the linear system of equations

Ax = b,

for a sparse matrix A ∈ Cn×n and a given vector b ∈ Cn. Solving sparse linear
systems of equations is omnipresent in scientific computing. Direct approaches, based
on Gaussian elimination, have proved to be robust and efficient for a wide range of
problems [23]. However, the memory required to apply sparse direct methods often
scales poorly with the problem size, particularly for three-dimensional discretizations
of partial differential equations (PDEs). Furthermore, the algorithms underpinning
sparse direct software are poorly suited to parallel computation, which makes them
difficult to adapt to emerging computing architectures.

Iterative methods for solving linear systems [45] have been an active research
topic since early computing days. Their simple structure, at their most basic level
requiring only matrix-vector multiplication and vector-vector operations, makes them
attractive for tackling large-scale problems. However, since the convergence rate
depends on the properties of the linear system, iterative methods are not, in general,
robust. For the class of iterative methods known as Krylov subspace methods, we
may alleviate this by applying a preconditioner, which transforms the problem into
one with more favourable numerical properties. The choice of the preconditioner is
usually problem-dependent, and a wide variety of preconditioning techniques have
been proposed to improve the convergence rate of iterative methods, see for example
the recent survey [44] and the references therein.

Multilevel domain decomposition (DD) and multigrid methods are widely used
preconditioners [21, 47, 52, 53, 54]. They have proved to be effective on a wide
variety of matrices, but they are especially well suited to sparse Hermitian positive
definite (HPD) matrices arising from the discretization of PDEs. Their efficiency
stems from a judicious combination of a cheap fine-level approximate solver with a
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coarse-space correction. In the last two decades, there has been a great advance in the
development of spectral coarse spaces that yield efficient preconditioners. Spectral
coarse spaces were initially proposed in the multigrid community for elliptic PDEs
with positive definite self-adjoint operators [15, 19, 24, 34], and similar ideas were
later picked up by the DD community for the same kind of problems [2, 3, 4, 7, 32,
33, 40, 48, 49]. The spectral coarse space based on Generalized Eigenvalues in the
Overlap (GenEO) was introduced in [48] to construct a scalable DD preconditioner for
symmetric positive definite matrices arising from the discretization of elliptic PDEs
using the finite element method. The past three years have seen several approaches
to tackle symmetric indefinite systems and non-self-adjoint problems. For example,
spectral coarse spaces for least squares problems and symmetric indefinite saddle-
point systems were proposed in [5, 39], where coarse spaces are proposed for related
Hermitian positive definite matrices. An exciting new development is that a number
of multigrid methods and spectral coarse spaces have been suggested for problems
with indefinite or non-self-adjoint operators [9, 10, 11, 12, 13, 14, 22, 36, 37]. These
coarse spaces are mainly based on heuristics and show efficiency on several challenging
model problems arising from discretized PDEs.

A variety of mathematical tools such as the fictitious subspace lemma [41]
and local Hermitian positive semi-definite (HPSD) splitting matrices [2] are now
available to analyze and propose effective coarse spaces for positive definite self-
adjoint operators. For example, the authors in [2] show that given local HPSD
splitting matrices of an HPD matrix, one can construct a spectral coarse space
such that the condition number of the preconditioned matrix is bounded by a user-
defined number. However, these tools may not be directly used for indefinite or
non-self-adjoint operators. An alternative approach to studying the convergence of
DD methods in the indefinite or non-self-adjoint case is to use Elman’s theory [25] of
GMRES convergence, see for example [8, 10, 18].

In this work, we propose a fully-algebraic spectral coarse space for the two-level
Schwarz preconditioner for general sparse matrices. We review the overlapping DD
framework in section 2, including a summary of the main features of local HPSD
splitting matrices. For each subdomain, we introduce the local block splitting using
lumping in the overlap of a sparse matrix in section 3. The coarse space is then
constructed by solving locally and concurrently a generalized eigenvalue problem
involving the local block splitting matrix and the local subdomain matrix. In the case
where the matrix is HPD diagonally dominant, we prove that the local block splitting
matrices are local HPSD splitting matrices, and in that case, we show that one can
bound the condition number of the preconditioned matrix from above by a user-
defined number. In comparison to the previously introduced HPSD splitting matrices
in [4], the proposed splitting in this paper is significantly cheaper to construct. If ni

is the number of unknowns per subdomain, the proposed splitting can be constructed
in O(ni) operations. The splitting from [4] has a cubic cost O(n3

i ) coming from a
preprocessing step requiring the solution of a subdomain-wise local singular value
decomposition. We heuristically generalize the proposed method for general sparse
matrices.

Unlike most existing spectral coarse spaces, especially those suggested for
non-symmetric matrices, we obtain the matrices involved in the local generalized
eigenvalue problem efficiently from the coefficient matrix; the preconditioner is
therefore fully-algebraic. In order to assess the proposed preconditioner, we provide
in section 4 a set of numerical experiments on problems arising from a wide range
of applications including the convection-diffusion equation and other linear systems



ALGEBRAIC PRECONDITIONER FOR SPARSE MATRICES 3

from the SuiteSparse Collection [20]. Furthermore, we compare our proposed
preconditioner against state-of-the-art preconditioners in the multigrid community.
Finally, we give concluding remarks and future lines of research in section 5.

The contributions we bring in this paper are:
1. we introduce the local block splitting using lumping in the overlap;
2. we show that the resulting splitting corresponds to local HPSD splitting

when the matrix is HPD diagonally dominant, which leads to bounding the
condition number of the preconditioned matrix in this case;

3. we demonstrate empirically the efficiency of the resulting preconditioner for
general sparse matrices.

Notation. Let 1 ≤ n ≤ m and let M ∈ Cm×n be a complex sparse matrix. Let
J1, pK denote the set of the first p positive integers, and let S1 ⊂ J1,mK and S2 ⊂ J1, nK.
M(S1, :) is the submatrix of M formed by the rows whose indices belong to S1 and
M(:, S2) is the submatrix of M formed by the columns whose indices belong to S2.
M(S1, S2) denotes the submatrix formed by taking the rows whose indices belong
to S1 and only retaining the columns whose indices belong to S2. [S1 S2] means
the concatenation of any two sets of integers S1 and S2, where the order of the
concatenation is important. In is the identity matrix of size n, the transpose matrix
of M is denoted M⊤, and the adjoint of M , denoted MH , is the conjugate transpose
of M , i.e., MH = M̄⊤. ker(M) and range(M) denote the null space and the range
of M , respectively.

2. Domain decomposition. Consider G(A + A⊤), the undirected adjacency
graph of the coefficient matrix in (1), and number its nodes, V , from 1 to n. Using
a graph partitioning algorithm, we split V into N ≪ n nonoverlapping subdomains,
i.e., disjoint subsets ΩIi, i ∈ J1, NK, of size nIi. Let ΩΓi be the subset, of size nΓi,
of nodes that are distance one in G(A) from the nodes in ΩIi, i ∈ J1, NK. We define
the overlapping subdomain, Ωi, as Ωi = [ΩIi,ΩΓi], with size ni = nΓi + nIi. The
complement of Ωi in J1, nK is denoted by Ωci.

Associated with Ωi is a restriction (or projection) matrix Ri ∈ Rni×n given by
Ri = In(Ωi, :). Ri maps from the global domain to the overlapping subdomain Ωi. Its
transpose R⊤

i is a prolongation matrix that maps from subdomain Ωi to the global
domain.

We define the one-level Schwarz preconditioner as

(2.1) M−1
ASM =

N∑
i=1

R⊤
i A

−1
ii Ri,

where we assume Aii = RiAR⊤
i is nonsingular for i ∈ J1, NK.

Applying this preconditioner to a vector involves solving concurrent local
problems in each subdomain. IncreasingN reduces the size of the subdomains, leading
to smaller local problems and, correspondingly, faster computations. However, in
practice, preconditioning by M−1

ASM alone is often not enough for the convergence of
the iterative solver to be sufficiently rapid. We can improve convergence, while still
maintaining robustness with respect to N , by applying a suitably chosen coarse space,
or second-level [2, 8, 21, 27].

Let R ⊂ Cn be a subspace of dimension 0 < n0 ≪ n and let R0 ∈ Cn0×n

be a matrix such that the columns of RH
0 span the subspace R. Assuming that

A00 = R0AR
H
0 is nonsingular, we define the two-level Schwarz preconditioner as

(2.2) M−1
additive = RH

0 A−1
00 R0 +M−1

ASM.
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Note that Ri is real valued hence its adjoint is its transpose while R0 may be complex
valued thus its adjoint is its Hermitian transpose. Such preconditioners have been
used to solve a large class of systems arising from a range of engineering applications
(see, for example, [3, 5, 29, 35, 38, 47, 51] and references therein).

We denote by Di ∈ Rni×ni , i ∈ J1, NK, any non-negative diagonal matrices such
that

N∑
i=1

R⊤
i DiRi = In.

We refer to (Di)1≤i≤N as an algebraic partition of unity.
Variants of one- and two-level preconditioners. The so-far presented Schwarz

preconditioners are the additive one-level (2.1) and the additive two-level based on
additive coarse space correction (2.2). It was noticed in [17] that scaling the one-
level Schwarz preconditioner by using the partition of unity usually yields faster
convergence. The resulting one-level preconditioner is referred to as the restricted
additive Schwarz preconditioner and is defined as:

(2.3) M−1
RAS =

N∑
i=1

R⊤
i DiA

−1
ii Ri.

Furthermore, there are a number of ways of how to combine the coarse space with
a one-level preconditioner such as the additive, deflated, and balanced combinations,
see for example [50]. Given a one-level preconditioner M−1

⋆ , where the subscript ⋆
stands for either ASM or RAS, the two-level preconditioner with additive coarse space
correction is defined as

M−1
⋆,additive = RH

0 A−1
00 R0 +M−1

⋆ .

The two-level preconditioner based on a deflated coarse space correction is

M−1
⋆,deflated = RH

0 A−1
00 R0 +M−1

⋆

(
I −ARH

0 A−1
00 R0

)
.

Due to its simple form, the additive two-level Schwarz based on the additive coarse
space correction is the easiest to analyze. However, we observe that the deflated
variant combined with the restricted additive Schwarz preconditioner has better
performance in practice. The theory and presentation in this work employ the additive
two-level Schwarz preconditioner using an additive coarse space correction, however,
all numerical experiments involving the proposed preconditioner employ the restricted
additive two-level Schwarz with deflated coarse space correction so that the two-level
preconditioner used in section 4 reads as

(2.4) M−1
deflated = RH

0 A−1
00 R0 +M−1

RAS

(
I −ARH

0 A−1
00 R0

)
.

Note that the aforementioned variants are agnostic to the choice of partitioning and
the coarse space. That is, once the restriction operators to the subdomains and the
coarse space are set, all these variants are available.

Local HPSD splitting matrices of sparse HPD matrix. A local HPSD matrix
associated with subdomain i is any HPSD matrix of the form

PiÃiP
⊤
i =

 AIi AIΓ,i

AΓI,i ÃΓ,i

 ,
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where Pi = In([ΩIi ΩΓi Ωci], :) is a permutation matrix, AIi = A(ΩIi,ΩIi), AIΓ,i =

A⊤
ΓI,i = A(ΩIi,ΩΓi), and ÃΓ,i is any HPSD matrix such that the following inequality

holds
0 ≤ u⊤Ãiu ≤ u⊤Au, u ∈ Cn.

First presented and analyzed in [2], local HPSD splitting matrices provide
a framework to construct robust two-level Schwarz preconditioners for sparse
HPD matrices. Recently, this has led to the introduction of robust multilevel
Schwarz preconditioners for finite element SPD matrices [3], sparse normal equations
matrices [5], and sparse general SPD matrices [4].

3. Two-level Schwarz preconditioner for sparse matrices. We present
in this section the construction of a two-level preconditioner for sparse matrices.
First, we introduce a new local splitting matrix associated with subdomain i that
uses local values of A to construct a preconditioner which is cheap to set up. In
the special case where A is HPD diagonally dominant, we prove that these local
matrices are local HPSD splitting matrices of A. We demonstrate empirically that
these matrices, when used to construct a GenEO-like coarse space, produce a two-level
Schwarz preconditioner that outperforms existing two-level preconditioners in many
applications, particularly in the difficult case where A is not symmetric.

3.1. Local block splitting matrices of A using lumping in the overlap.

Definition 3.1. Local block splitting matrix. Given the overlapping partitioning
of A presented in section 2, we have for each i ∈ J1, NK

PiAP⊤
i =

 AIi AIΓi

AΓIi AΓi AΓci

AcΓi Aci


Let si be the vector whose jth component is the sum of the absolute values of the jth
row of AΓci, and let Si = diag(si). Define ÃΓi = AΓi − Si. The local block splitting

matrix of A associated with subdomain i is defined to be Ãi = R⊤
i ÃiiRi, where

Ãii =

(
AIi AIΓi

AΓIi ÃΓi

)
.

Note that we only require the sum of the absolute values of each row in the
local matrix AΓci to construct the local block splitting matrix of A associated with
subdomain i. Then, each of these values is subtracted from the corresponding diagonal
entry of the local matrix AΓi. We can therefore construct Ãii cheaply and concurrently
for each subdomain.

The following lemma shows that if A is HPD diagonally dominant, the local
splitting matrices defined in Definition 3.1 are local HPSD splitting matrices.

Lemma 3.2. Let A be HPD diagonally dominant. The local block splitting matrix
Ãi defined in Definition 3.1 is local HPSD splitting matrix of A with respect to
subdomain i.

Proof. First, note that the jth diagonal element of Ãi is

Ãi(j, j) =


A(j, j) if j ∈ ΩIi,

A(j, j)− si(j) if j ∈ ΩΓi,

0 if j ∈ Ωci,
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where si is the vector whose jth component is the sum of the absolute values of the jth
row of AΓci. Therefore, by construction, Ãi is Hermitian diagonally dominant, hence
HPSD. Furthermore, A − Ãi is Hermitian and diagonally dominant, hence HPSD.
By the local structure of Ãi, we conclude it is HPSD splitting of A with respect to
subdomain i.

3.2. Coarse space. In this section, we present a coarse space for the two-level
Schwarz preconditioner. For each i ∈ J1, NK, given the local nonsingular matrix

Aii, the local splitting matrix Ãii = RiÃiR
⊤
i , and the partition of unity matrix Di,

let Li = ker (DiAiiDi) and Ki = ker
(
Ãii

)
. Now, define the following generalized

eigenvalue problem:

find (λ, u) ∈ C× Cni such that

ΠiDiAiiDiΠiu = λÃiiu,
(3.1)

where Πi is the projection on range
(
Ãii

)
.

Given a number τ > 0, the coarse space we propose is defined to be the space
generated by the columns of the matrix

RH
i =

[
R⊤

1 D1Z1 · · · R⊤
NDNZN

]
,

where Zi is the matrix whose columns form a basis of the subspace

(3.2) (Li ∩Ki)
⊥Ki ⊕ span

{
u | ΠiDiAiiDiΠiu = λÃiiu, |λ| ≥

1

τ

}
,

where (Li ∩Ki)
⊥Ki is the complementary subspace of (Li ∩Ki) inside Ki. Note that

the subspace (Li∩Ki)
⊥Ki is spanned by the generalized eigenvectors corresponding to

infinite eigenvalues. In inexact arithmetic, those eigenvalues are close to ε−1, where ε
is the machine precision. Furthermore, for τ > 0, those infinite eigenvalues still satisfy
|λ| ≥ 1

τ . For further analysis of such a generalized eigenvalue problem, we refer the
reader to [5, Section 3.3.2].

In [2], the authors presented a theoretical framework to study spectral coarse
spaces combined with a Schwarz preconditioner. The highlight of the paper is that
finding a local HPSD splitting matrix for each subdomain provides a systematic way
to obtain a spectral coarse space that guarantees a user-provided upper bound on the
condition number of the preconditioned matrix. However, constructing those local
splitting matrices is not a simple task for a general HPD matrix. The proposed local
matrices Ãi may not be local HPSD splitting matrices of A in general (except if A is
HPD diagonally dominant). Nonetheless, they seem to lead to efficient coarse spaces.

Note that in the case where A is sparse HPD diagonally dominant, Ãi is a local HPSD
splitting matrix of A, and the definition of the coarse space matches the one defined
in [2]. Therefore, the two-level Schwarz preconditioner using the coarse space defined
guarantees an upper bound on the condition number of the preconditioned matrix

κ2(M
−1
ASM,additiveA) ≤ (kc + 1)

(
2 + (2kc + 1)

km
τ

)
,

where kc is the number of colours required to colour the graph of A such that every
two neighbouring subdomains have different colours and km is the maximum number
of overlapping subdomains sharing a row of A. Therefore, when A is sparse HPD
diagonally dominant, the upper bound on κ2(M

−1
ASM,additiveA) is independent of N and

can be controlled by using the value τ .
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(a) nxp1, n = 4.1 · 105 (b) CoupCons3D, n = 4.2 · 105 (c) memchip, n = 2.7 · 106

Fig. 1. Nonzero sparsity pattern of some of the test matrices from Table 1.

4. Numerical experiments. In this section, we validate the effectiveness of
the two-level method when compared to other preconditioners. Table 1 presents
a comparison between four preconditioners: M−1

deflated (2.4), BoomerAMG [26],
GAMG [1], and AGMG [42]. Throughout the paper, the default PETSc 3.17
parameters for GAMG and BoomerAMG are used. The results are for the right-
preconditioned GMRES [46] with a restart parameter of 30 and a relative tolerance
set to 10−8. We highlight the fact that our proposed preconditioner can handle
unstructured systems, not necessarily stemming from standard PDE discretization
schemes, by displaying some nonzero patterns in Figure 1. For preconditioners used
within PETSc [6] (all except AGMG), the systems are solved using 256 MPI processes.
After loading them from the disk, their symmetric part AT +A is first renumbered by
ParMETIS [31]. The resulting permutation is then applied to A and the corresponding
linear systems are solved using a random right-hand side. The initial guess is always
zero. The code that implements these steps is given in Appendix A. For our DD
method, we leverage the PCHPDDM framework [30] which is used to assemble spectral
coarse spaces using (3.1). The new option -pc_hpddm_block_splitting, introduced
in PETSc 3.17, is used to compute the local splitting matrices of A from subsection 3.1.
In all experiments, if a threshold τ for the eigenvalues in (3.2) is specified along with
a maximum number of eigenvectors nev to be selected, we compute the eigenvectors
associated with the nev largest eigenvalues (in absolute value). Then, at most nev

eigenmodes (λ, u) are selected and they verify |λ| ≥ 1
τ . At most 300 eigenpairs are

computed on each subdomain and the threshold parameter τ from (3.2) is set to 0.6.
These parameters provided good numerical performance after a quick trial-and-error
approach on a single problem. We did not want to adjust them for each problem
individually, but it will be shown next that they are fine overall without additional
tuning.

Furthermore, a single subdomain is mapped to each process, i.e., N = 256 in (2.3).
Eventually, the exact subdomain and second-level operator LU factorizations are
computed.

4.1. Adaptive preconditioning. Whilst Table 1 highlights that tuning τ
for individual problems is not necessary to successfully solve a range of problems,
it does not validate the ability of our preconditioner to concurrently select the
most appropriate local eigenpairs to define an adaptive preconditioner. To that
end, for problem G3 circuit, we consider the effect of varying the threshold τ on
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Identifier n nnz(A) AGMG BoomerAMG GAMG M−1
deflated n0

light in tissue 29,282 406,084 15 ‡ 53 6 7,230
finan512 74,752 596,992 9 7 8 6 2,591
consph 83,334 6,010,480 93 31,136
Dubcova3 146,689 3,636,643 72 71 7 21,047
CO 221,119 7,666,057 25 26 56,135
nxp1 414,604 2,655,880 † † † 20 19,707
CoupCons3D 416,800 17,277,420 † 26 20 28,925
parabolic fem 525,825 3,674,625 12 8 16 5 24,741
Chevron4 711,450 6,376,412 ‡ † 5 22,785
apache2 715,176 4,817,870 14 11 35 8 45,966
tmt sym 726,713 5,080,961 14 10 17 5 28,253
tmt unsym 917,825 4,584,801 23 13 18 6 32,947
ecology2 999,999 4,995,991 18 12 18 6 34,080
thermal2 1,228,045 8,580,313 18 14 20 26 40,098
atmosmodj 1,270,432 8,814,880 † 8 17 7 76,368
G3 circuit 1,585,478 7,660,826 25 12 35 8 71,385
Transport 1,602,111 23,487,281 18 10 98 9 76,800
memchip 2,707,524 13,343,948 † 15 † 36 57,942
circuit5M dc 3,523,317 14,865,409 † 5 7 8,629

Table 1
Preconditioner comparison. Iteration counts are reported. M−1

deflated is the restricted two-level
overlapping Schwarz preconditioner as in (2.4). No value denotes iteration count exceeds 100.
† denotes either a failure in constructing the preconditioner or a breakdown in GMRES. ‡ denotes
the problem is complex-valued and the preconditioner is unavailable. Matrix identifiers that are
emphasized correspond to symmetric positive definite matrices, otherwise, matrices are non-self-
adjoint.

20 40 60 80 100

10−6

10−4

10−2

1

102

Iteration number

A
b
so
lu
te

re
si
d
u
a
l

M−1
ASM

τ = 0.02
τ = 0.05
τ = 0.1
τ = 0.3
τ = 0.6
τ = 0.9

τ n0 Iterations
0.02 739 75
0.05 1,831 44
0.1 3,608 31
0.3 11,784 18
0.6 34,402 11
0.9 71,385 8

Fig. 2. Influence of the threshold parameter τ on the convergence of preconditioned GMRES
for problem G3 circuit (m = 1,585,478).

the performance of our two-level preconditioner. Figure 2 depicts the history of
the residual norm for different values of τ demonstrating the adaptiveness of the
constructed coarse space. The table on the right of the figure prints the size of the
coarse space corresponding to each selected threshold value τ along with the iteration
count required to reach an unpreconditioned relative residual norm lower than 10−8.
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Dimension k N n
ν

1 10−1 10−2 10−3 10−4

2 1 1,024 6.3 · 106 23 (52,875) 20 (52,872) 19 (52,759) 20 (47,497) 21 (28,235)

3 2 4,096 8.1 · 106 18 (1.8 · 105) 14 (1.8 · 105) 11 (1.6 · 105) 16 (97,657) 29 (76,853)

Table 2
Iteration counts of the proposed preconditioner for solving the two- and three-dimensional

convection-diffusion problem from (4.1) with order k Lagrange finite element space. The number of
subdomains is N and the size of the discrete system is n. After each iteration count for each ν, the
size of the coarse space problem is typeset between parentheses.

4.2. Linear systems arising from a PDE. A convection-diffusion problem
will now be investigated. It reads:

∇ · (V u)− ν∇ · (κ∇u) = 0 in Ω

u = 0 in Γ0

u = 1 in Γ1.

(4.1)

The problem is SUPG-stabilized [16] and discretized by FreeFEM [28]. It is important
to keep in mind that the proposed preconditioner is algebraic, thus there is no specific
transfer of information from the discretization kernel to the solver backend. Still, as
the yielded linear systems are obtained from a standard finite element discretization,
we can relax the selection parameters from those used in Table 1 and set τ = 0.3
and at most 60 eigenmodes computed per subdomain (instead of the previous values
τ = 0.6 and 300 eigenmodes). The domain Ω is either the unit square or the unit
cube meshed semi-structurally to account for boundary layers, see an example of
such a mesh in Figure 3a. The value of ν is constant in Ω. The value of κ is given
in Figure 3b. The value of the velocity field V is either:

V (x, y) =

(
x(1− x)(2y − 1)
−y(1− y)(2x− 1)

)
or V (x, y, z) =

 2x(1− x)(2y − 1)z
−y(1− y)(2x− 1)

−z(1− z)(2x− 1)(2y − 1)

 ,

in 2D and 3D, respectively. These are standard values taken from the literature [43].
The definition of Γ0 and Γ1 may be inferred by looking at the two- and three-
dimensional solutions in Figures 3c to 3e and Figures 3f to 3h, respectively. The
iteration counts reported in Table 2 show that the proposed preconditioner handles
this problem, even as ν tends to zero. In 2D, the operator, resp. grid, complexity is
of at most 1.008, resp. 1.43. In 3D, these figures are 1.02 and 1.7, respectively.

For comparison, GAMG and BoomerAMG iteration counts are also reported
in Table 3 and Table 4, respectively. For these test cases, when it comes to the
algorithmic cost of the proposed methodology, we need to emphasize that when both
algebraic multigrid and domain decomposition methods converge, our preconditioner
is about an order of magnitude slower than multigrid (order of 10 seconds vs. order of a
second). Indeed, for these configurations, subdomains are small, with around 2k (resp.
6k) unknowns per subdomain in 3D (resp. 2D). Setting up the one-level preconditioner
and solving (3.1) has a negligible cost, but the assembly and exact factorization
of the coarse operator become non-negligible. To alleviate this, one could think of
solving inexactly the second-level system, or to reduce the threshold criterion τ , which
would yield a slightly less robust but cheaper-to-assemble preconditioner. Such an in-
depth investigation of the algorithmic performance of the proposed preconditioner
goes beyond the scope of this paper.
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(a) Semi-structured mesh

0.5

1

1.5

2

6 · 10−2

κ

(b) Diffusivity coefficient κ

(c) ν = 1

0 0.2 0.4 0.6 0.8 1

u

(d) ν = 10−2 (e) ν = 10−4

(f) ν = 1 (g) ν = 10−2 (h) ν = 10−4

Fig. 3. (a) Mesh, (b) diffusivity coefficient, and solutions of some of the (c)–(e) two- and
(f)–(h) three-dimensional test cases from Table 2.

Dimension n
ν

1 10−1 10−2 10−3 10−4

2 6.3 · 106 42 48 88 † †
3 8.1 · 106 40 38 65 † †

Table 3
Iteration counts of GAMG for solving the two- and three-dimensional convection-diffusion

problem from (4.1). † denotes either a failure to converge or a breakdown in GMRES.
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Dimension n
ν

1 10−1 10−2 10−3 10−4

2 6.3 · 106 50 49 19 7 †
3 8.1 · 106 12 9 7 † †

Table 4
Iteration counts of BoomerAMG for solving the two- and three-dimensional convection-diffusion

problem from (4.1). † denotes either a failure to converge or a breakdown in GMRES.
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Fig. 4. Strong scaling analysis of the proposed preconditioner for solving (4.1) with ν = 10−2

in 3D and an increasing number of MPI processes. Numbers in parentheses are iteration counts.

Finally, we present a strong scalability experiment of the proposed preconditioner
to assess its computational complexity. We consider the three-dimensional problem
from Table 2 with ν = 10−2, see Figure 3g. Starting with N = 32 subdomains, we
increase N by a factor of 2 up to 16 and show in Figure 4 the runtime on the first
process, as reported by PETSc -log view option. We also plot the ideal linear decrease
with slope −1. The runtime is comprised of both setup and solve times. Setup time
includes generalized eigenvalue problem solving, computing and factoring the coarse
space matrix, and factoring the local one-level subdomain matrix. Solve time accounts
for solving the linear system by using GMRES preconditioned by the two-level method
M−1

deflated. We notice that setup times dominate. However, we observe a linear decrease
in the setup and the overall runtime which behaves similarly to the ideal scaling. For a
larger number of subdomains, a multilevel strategy should be employed so that setup
times remain tractable, but this goes beyond the scope of this paper.

5. Conclusion. We presented in this work a fully-algebraic two-level Schwarz
preconditioner for large-scale sparse matrices. The proposed preconditioner combines
a classic one-level Schwarz preconditioner with a spectral coarse space. The latter is
constructed efficiently by solving concurrently in each subdomain a local generalized
eigenvalue problem whose pencil matrices are obtained algebraically and cheaply
from the local coefficient matrix. Convergence results were obtained for diagonally
dominant HPD matrices. The proposed preconditioner was compared to state-of-the-
art multigrid preconditioners on a set of challenging matrices arising from a wide
range of applications including a convection-dominant convection-diffusion equation.
The numerical results demonstrated the effectiveness and robustness of the proposed
preconditioner, especially for highly non-symmetric matrices.
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Appendix A. Code reproducibility.

1 #include <petsc.h>

static char help[] = "Solves a linear system after having repartitioned its
symmetric part.\n\n";

int main(int argc ,char **args)
6 {

Vec b;
Mat A,T,perm;
KSP ksp;
IS is,rows;

11 PetscBool flg;
PetscViewer vwr;
char name[PETSC_MAX_PATH_LEN ];
MatPartitioning mpart;

16 PetscFunctionBeginUser;
PetscCall(PetscInitialize (&argc ,&args ,NULL ,help));
PetscCall(MatCreate(PETSC_COMM_WORLD ,&A));
PetscCall(PetscOptionsGetString(NULL ,NULL ,"-mat_name",name ,sizeof(name),&flg));
PetscCheck(flg ,PETSC_COMM_WORLD ,PETSC_ERR_USER ,"Missing -mat_name");

21 PetscCall(PetscViewerBinaryOpen(PETSC_COMM_WORLD ,name ,FILE_MODE_READ ,&vwr));
PetscCall(MatLoad(A,vwr));
PetscCall(PetscViewerDestroy (&vwr));
PetscCall(MatPartitioningCreate(PETSC_COMM_WORLD ,&mpart));
PetscCall(MatTranspose(A,MAT_INITIAL_MATRIX ,&T));

26 PetscCall(MatDuplicate(A,MAT_COPY_VALUES ,&perm));
PetscCall(MatAXPY(perm ,1.0 ,T,DIFFERENT_NONZERO_PATTERN));
PetscCall(MatPartitioningSetAdjacency(mpart ,perm)); // partition A^T+A
PetscCall(MatPartitioningSetFromOptions(mpart));
PetscCall(MatPartitioningApply(mpart ,&is));

31 PetscCall(MatDestroy (&perm));
PetscCall(MatDestroy (&T));
PetscCall(MatPartitioningDestroy (&mpart));
PetscCall(ISBuildTwoSided(is ,NULL ,&rows));
PetscCall(ISDestroy (&is));

36 PetscCall(MatCreateSubMatrix(A,rows ,rows ,MAT_INITIAL_MATRIX ,&perm));
PetscCall(ISDestroy (&rows));
PetscCall(MatHeaderReplace(A,&perm)); // only keep the permuted matrix
PetscCall(KSPCreate(PETSC_COMM_WORLD ,&ksp));
PetscCall(KSPSetOperators(ksp ,A,A));

41 PetscCall(KSPSetFromOptions(ksp)); // parse command -line options
PetscCall(MatCreateVecs(A,NULL ,&b)); // vector with a compatible dimension
PetscCall(PetscOptionsGetString(NULL ,NULL ,"-rhs_name",name ,sizeof(name),&flg));
if (!flg) PetscCall(VecSetRandom(b,NULL)); // random right -hand side
else {

46 PetscCall(PetscViewerBinaryOpen(PETSC_COMM_WORLD ,name ,FILE_MODE_READ ,&vwr));
PetscCall(VecLoad(b,vwr)); // right -hand side from file
PetscCall(PetscViewerDestroy (&vwr));

}
PetscCall(KSPSolve(ksp ,b,b)); // in -place solve

51 PetscCall(KSPDestroy (&ksp));
PetscCall(VecDestroy (&b));
PetscCall(MatDestroy (&A));
PetscCall(PetscFinalize ());
return 0;

56 }
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