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We employ micromagnetic simulations to model the effect of pore-type microstructural defects on the mag-
netic small-angle neutron scattering cross section and the related pair-distance distribution function of spherical
magnetic nanoparticles. Our expression for the magnetic energy takes into account the isotropic exchange
interaction, the magnetocrystalline anisotropy, the dipolar interaction, and an externally applied magnetic field.
The signatures of the defects and the role of the dipolar energy are highlighted and the effect of a particle-size
distribution is studied. The results serve as a guideline to the experimentalist.

DOI: 10.1103/PhysRevB.107.014416

I. INTRODUCTION

Magnetic small-angle neutron scattering (SANS) is the
method of choice for studying spin structures on a meso-
scopic length scale of typically 1–100 nm and inside the
volume of magnetic materials [1,2]. A growing number of
experimental investigations on magnetic nanoparticles, in par-
ticular using polarized neutrons, unanimously suggest that
the encountered spin configurations are highly complex and
exhibit a variety of nonuniform, canted, or core-shell-type
textures (see, e.g., Refs. [3–16] and references therein). How-
ever, a problem arises since the prototypical magnetic SANS
data analysis is largely based on structural form-factor-type
models for the cross section. These are borrowed from nu-
clear SANS and do not properly account for the existing
spin inhomogeneity inside magnetic nanoparticles. On the
other hand, analytical as well numerical computations of
the magnetic SANS cross section [17–27] strongly suggest
that for the analysis of experimental magnetic SANS data
the spatial nanometer scale variation of the orientation and
magnitude of the magnetization vector field must be taken
into account, and that macrospin-based models—assuming a
uniform magnetization—are not adequate.

Theoretical descriptions of magnetic SANS are based on
Brown’s static equations of micromagnetics [28], which are
a set of nonlinear partial differential equations for the mag-
netization along with complex boundary conditions on the
sample’s surface [29]. Therefore, closed-form analytical re-
sults for the SANS cross section are restricted to special
limiting cases such as the approach-to-saturation regime,

*evelyn.sinaga@uni.lu
†andreas.michels@uni.lu

where the governing equations can be linearized [17,21–
23,26,27]. Recently, we have carried out numerical micro-
magnetic computations to study the magnetic SANS cross
section of microstructural-defect-free spherical nanoparticles
during their transition from the single-domain to the multido-
main state [30,31]. The results for the magnetic SANS signal
and correlation function have revealed pronounced differences
as compared to the superspin model and provided guidance for
the experimentalist to identify nonuniform vortex-type spin
structures inside nanoparticles.

In this work, we extend the numerical micromagnetic ap-
proach to include the effects of microstructural pore-type
defects and of a particle-size distribution function. Defects in
nanoparticles (e.g., surface anisotropy, vacancies, antiphase
boundaries) have been known for a long time to give rise
to spin disorder and in this way influence the macroscopic
magnetic properties (see, e.g., Refs. [15,32–35]). Therefore,
finding their signature in the magnetic SANS cross section and
correlation function is highly desirable. Since the vast ma-
jority of magnetic SANS experiments are still carried out on
spherical nanoparticles, we have chosen this particular shape
for our study. However, a growing number of magnetic SANS
investigations (see, e.g., Refs. [4,7,8,10,22,30,36,37]) focus
on nonspherical shapes such as nanocubes, circular cylinders
and dots, dumbbells, or nanoflowers. Such shapes can be
straightforwardly implemented into the micromagnetic SANS
framework.

The article is organized as follows: In Sec. II, we display
the expressions for the magnetic SANS cross section and for
the pair-distance distribution function. In Sec. III, we provide
information on the micromagnetic simulations and on the
implementation of the microstructural defects. In Sec. IV,
we present and discuss the results, with Sec. IV A focusing
on the real-space spin structures, the magnetization, and the
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FIG. 1. Sketch of the scattering geometry assumed in the mi-
cromagnetic simulations. The applied magnetic field H0 ‖ ez is
perpendicular to the wave vector k0 ‖ ex of the incident neutron beam
(k0 ⊥ H0). The momentum-transfer or scattering vector q is defined
as the difference between k0 and k1, i.e., q = k0 − k1. SANS is
usually implemented as elastic scattering (k0 = k1 = 2π/λ), and the
component of q along the incident neutron beam, here qx , is much
smaller than the other two components, so that q ∼= {0, qy, qz} =
q{0, sin θ, cos θ}. This demonstrates that SANS probes predomi-
nantly correlations in the plane perpendicular to the incident beam.
The angle θ = ∠(q, H0 ) is used to describe the angular anisotropy
of the recorded scattering pattern on the two-dimensional position-
sensitive detector. For elastic scattering, the magnitude of q is given
by q = (4π/λ) sin(ψ/2), where λ denotes the mean wavelength of
the neutrons and ψ is the scattering angle.

SANS observables and Sec. IV B discussing the effect of a
particle-size distribution function. Finally, Sec. V summarizes
the main findings of this study and provides an outlook on
future challenges.

II. MAGNETIC SANS CROSS SECTION AND
PAIR-DISTANCE DISTRIBUTION FUNCTION

The quantity of interest is the elastic magnetic differ-
ential scattering cross section d�M/d�, which is usually
recorded on a two-dimensional position-sensitive detector.
For the most commonly used scattering geometry in magnetic
SANS experiments, where the applied magnetic field H0 ‖ ez

is perpendicular to the wave vector k0 ‖ ex of the incident
neutrons (see Fig. 1), d�M/d� (for unpolarized neutrons) can
be written as [1]

d�M

d�
= 8π3

V
b2

H(|M̃x|2 + |M̃y|2 cos2 θ + |M̃z|2 sin2 θ

− (M̃yM̃∗
z + M̃∗

y M̃z ) sin θ cos θ ), (1)

where V is the scattering volume, bH = 2.91 × 108 A−1 m−1

is the magnetic scattering length in the small-angle regime
(the atomic magnetic form factor is approximated by 1,
since we are dealing with forward scattering), M̃(q) =
{M̃x(q), M̃y(q), M̃z(q)} represents the Fourier transform of the
magnetization vector field M(r) = {Mx(r), My(r), Mz(r)}, θ

denotes the angle between q and H0, and the asterisk “∗”
marks the complex-conjugated quantity. Note that in the per-
pendicular scattering geometry the Fourier components are
evaluated in the plane qx = 0 (compare Fig. 1).

For a noninteracting (dilute) set of Np uniformly magne-
tized spherical particles with their saturation direction parallel

to ez, i.e., Mx = My = 0, Eq. (1) reduces to

d�M

d�
= Np

V
(�ρ)2

mag 9V 2
p

(
j1(qR)

qR

)2

sin2 θ, (2)

where Vp = 4π
3 R3 is the sphere volume, (�ρ)2

mag = b2
H(�M )2

is the magnetic scattering-length density contrast, and j1(qR)
is the first-order spherical Bessel function. The well-known
analytical result for the homogeneous sphere case, Eq. (2), and
its correlation function [see Eq. (4) below] serve as a reference
for comparison to the nonuniform case.

The pair-distance distribution function p(r) can be com-
puted from the azimuthally averaged magnetic SANS cross
section according to

p(r) = r2
∫ ∞

0

d�M

d�
(q) j0(qr)q2dq, (3)

where j0(qr) = sin(qr)/(qr) is the spherical Bessel function
of zero order; p(r) corresponds to the distribution of real-
space distances between volume elements inside the particle
weighted by the excess scattering-length density distribution;
see the reviews by Glatter [38] and by Svergun and Koch
[39] for detailed discussions of the properties of p(r). Apart
from constant prefactors, the p(r) of the azimuthally averaged
single-particle cross section [Eq. (2)], corresponding to a uni-
form sphere magnetization, equals (for r � 2R)

p(r) = r2

(
1 − 3r

4R
+ r3

16R3

)
. (4)

We also display the correlation function c(r), which is related
to p(r) via

c(r) = p(r)/r2. (5)

As we will demonstrate in the following, when the parti-
cles’ spin structure is inhomogeneous, the d�M/d� and the
corresponding p(r) and c(r) differ significantly from the ho-
mogeneous case [Eqs. (2) and (4)]. Due to the r2 factor,
features in p(r) at medium and large distances are more pro-
nounced than in c(r).

The magnetic SANS cross section d�M/d� [Eq. (1)] de-
pends on both the magnitude q and the orientation θ of the
scattering vector q on the two-dimensional detector. The ori-
gin of its angular anisotropy (θ dependence) is twofold [20]:
(i) the trigonometric functions in Eq. (1) are due to the dipolar
interaction between the magnetic moment of the neutron and
the magnetization of the sample, while (ii) the Fourier com-
ponents M̃x,y,z may additionally depend on the angle θ via the
intrinsic dipolar interaction between the magnetic moments
comprising the sample. Variation of the external magnetic
field strength changes the relative contributions of the M̃x,y,z

to d�M/d� and also their angular anisotropy [compare, e.g.,
Eq. (2)].

III. DETAILS ON THE MICROMAGNETIC SIMULATIONS

The micromagnetic computations of the spin structure
of a single spherical nanoparticle were performed using
the GPU-based open-source software package MuMax3
(version 3.10) [40,41]. This code allows the calculation of the
space- and time-dependent magnetization of nano- and

014416-2



MICROMAGNETIC SIMULATION OF NEUTRON … PHYSICAL REVIEW B 107, 014416 (2023)

FIG. 2. Discretization of the spherical simulation volume V into
cubical cells with a size of typically 2 × 2 × 2 nm3 (particle size:
D = 40 nm). The black squares mark the randomly chosen “defect”
cells with Ms = 0.

micron-sized ferromagnets. MuMax3 is based on a finite-
difference discretization scheme of space using a two-
dimensional or three-dimensional grid of orthorhombic cells.
In the micromagnetic simulations we have taken into account
all four standard contributions to the total magnetic Gibbs free
energy, i.e., Zeeman energy EZ in the external magnetic field
H0, dipolar (magnetostatic) interaction energy ED, energy of
the (cubic) magnetocrystalline anisotropy Eani, and isotropic
and symmetric exchange energy Eex. The expressions for
these energies are the following:

EZ = −μ0

∫
V

M · H0 dV, (6)

ED = −1

2
μ0

∫
V

M · HD dV, (7)

Eani =
∫

V
K1

(
m2

xm2
y + m2

ym2
z + m2

xm2
z

)
dV, (8)

Eex =
∫

A[(∇mx )2 + (∇my)2 + (∇mz )2]dV, (9)

where m(r) = M(r)/Ms denotes the unit magnetization vec-
tor with Ms the saturation magnetization, H0 ‖ ez is the
(constant) applied magnetic field, HD(r) is the magne-
tostatic self-interaction field, K1 is the first-order cubic
anisotropy constant, A is the exchange-stiffness constant,
μ0 = 4π × 10−7 Tm/A, and the integrals are taken over
the volume of the sample. In the simulations, we used the
following material parameters for iron (Fe): saturation magne-
tization Ms = 1700 kA/m, exchange-stiffness constant A =
1.0 × 10−11 J/m, and a first-order cubic anisotropy constant
of K1 = 47 kJ/m3. These values result in a critical single-
domain diameter of Dsd

cr ∼ 72
√

AK1/(μ0M2
s ) = 13.6 nm [42],

in a magnetostatic exchange length of lex = √
2A/(μ0M2

s ) =
2.3 nm, and in a domain-wall parameter of lK = √

A/K1 =
14.6 nm.

Figure 2 displays the model used in the micromagnetic
SANS simulations. The sphere volume is first discretized into

cubical cells with a size of 2 × 2 × 2 nm3 (finite-difference
method). This cell size is motivated by the above values for
lex and lK and by the aim to resolve spatial variations in
the magnetization that are smaller than these characteristic
length scales (see the discussion in Refs. [43,44]). Next, we
randomly assign defects into this structure, which are per def-
inition cells with a saturation magnetization of Ms = 0. This
might model, e.g., nonmagnetic pore-type defects. Assuming
a simple cubic lattice with a lattice constant of 0.3 nm, such
a hole comprises about 300 atoms and represents, thus, a
very strong perturbation in the magnetic nanoparticle struc-
ture. All simulations were carried out by first saturating the
nanoparticle by a strong external field H0, and then the field
was decreased (in steps of typically 5 mT) following the
major hysteresis loop. For a given volume concentration of
defects (xd ∼ 0%–20%), we perform, at each value of H0,
micromagnetic simulations for typically N ∼ 100 random
orientations between the magnetic easy axis of the parti-
cle and H0; for each random particle orientation, the defect
distribution was randomly selected. All data shown in this
paper, except the spin structures in Fig. 3, correspond to
an ensemble of randomly oriented particles. Simulations on
10-nm-sized single-domain particles (data not shown) yield
the well-known values for the reduced remanence and coer-
civity predicted by the Stoner-Wohlfarth model [45].

For each step of H0 and for each particular random
easy-axis angle, we have obtained the equilibrium spin
structure Mx,y,z(x, y, z) by employing both the “Relax” and
“Minimize” functions of MuMax3. The former solves the
Landau-Lifshitz-Gilbert equation without the precessional
term and the latter uses the conjugate-gradient method to find
the configuration of minimum energy. The translational in-
variance of the grid obtained with the finite-difference method
enables the usage of the fast Fourier transformation technique
for the computation of the Cartesian Fourier components
M̃x,y,z(qx, qy, qz ) of Mx,y,z(x, y, z). We have used the FFTW
library [46] to compute and analyze the Fourier components
of our nanoscopic magnetic configurations. More specifically,
we used a mesh size of 128 × 128 × 128 nm3, which was dis-
cretized into cubic cells with a size of 2 nm, resulting in 643

values for the Fourier components. The default convergence
criteria set by FFTW were employed, and the results of the
fast Fourier transform procedure were benchmarked by com-
parison to the analytically known cases and to the outcome of
a direct Fourier transform algorithm. The Fourier components
were then evaluated in the plane qx = 0 (corresponding to
the scattering geometry shown in Fig. 1) and used in Eq. (1)
to compute the magnetic SANS cross section d�M/d�

according to

d�M

d�
=

N∑
i=1

d�M,i

d�
, (10)

where d�M,i/d� represents (for fixed xd and H0) the mag-
netic SANS cross section of a spherical particle with diameter
D and with a particular random easy-axis orientation “i”.
Equation (10) implies that interparticle-interference effects
are ignored in the simulations. Likewise, the effect of tem-
perature has also not been taken into account.
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(d)(a) (c)(b)

1

-1

0

FIG. 3. Spin structures (snap shots) of 40-nm-sized Fe spheres with defect concentrations of (a) xd = 0%, (b) xd = 5%, and (c) xd = 15%.
(d) Spin structure of a defect-free Fe sphere (xd = 0%) without taking into account the dipolar interaction in the energy minimization procedure
(ED = 0). Applied magnetic field is μ0H0 = 0.02 T in (a)−(d); initially all structures were saturated. In the actual SANS simulations, the
magnetic easy axis of the particle was randomly selected relative to H0. Here, in order to illustrate the effect of the defects, the easy axis was
chosen the same in (a)−(d).

IV. RESULTS AND DISCUSSION

A. Spin structure, magnetization, and magnetic
SANS observables

Figure 3 depicts the spin structures of 40-nm-sized Fe
spheres for several defect concentrations xd and at an applied
magnetic field of μ0H0 = 0.02 T (H0 ‖ ez). While the defect-
free case [Fig. 3(a)] exhibits a vortex-type spin configuration
(reproducing the results from [31]), increasing xd results in
the progressive disordering (randomization) of the structure
[Figs. 3(b) and 3(c)]. For the here-considered particle size of
D = 40 nm, which is larger than the single-domain size of Fe
(Dsd

cr
∼= 13.6 nm), the vortex structure in Fig. 3(a) is clearly a

consequence of the dipolar interaction. Leaving out the dipo-
lar energy in the simulations (i.e., setting ED = 0) results in a
quasi-single-domain state [Fig. 3(d)]. For xd = 0% and small
applied fields, the vortex structure appears for particle sizes
D � 20 nm. Overall, we see that (for D = 40 nm) adding
defects changes the vortex-type spin structure significantly
toward more disordered spin configurations.

The vortex structure exhibits relatively large variations
in the angle between neighboring simulation cells at its
core region [compare Fig. 3(a)]. For a 40-nm-sized particle
with a cell size of 2 nm, this entails a rotation angle of
roughly 9◦ between cells, so that the validity of the micro-
magnetic continuum approach, which assumes a smoothly
varying spin density, might be questioned. However, it is
well known in the micromagnetic literature that replacing
a discrete Heisenberg-type exchange Hamiltonian, which in
the quasiclassical approximation is valid for arbitrary angles
between spins, by the sum of squared magnetization gradients
[compare Eq. (9)], which in MuMax3 is implemented by a
small-angle finite difference scheme, leads to accurate results
if the angle between neighboring cells is below about 20◦
(see, e.g., Fig. 5 in Ref. [40]). This criterion is fulfilled in our
simulations.

In Fig. 4, we show the reduced hysteresis curves mz(H0) =
Mz(H0)/M∗

s for various xd ∼ 0%–20%. We note that the
magnetization is here normalized by the defect concentra-
tion, according to M∗

s = (1 − xd )Ms. As expected, increasing
xd results in a reduction of the magnetization, in particular
around the remanent state and in the approach-to-saturation
regime [compare Figs. 4(b) and 4(c)]. To be more quantitative,
the reduced remanence decreases from ∼0.11 at xd = 0%

to ∼0.04 at xd = 20%, and the coercivity decreases from
35 mT at xd = 0% to 18 mT at xd = 20%. The saturation
field also increases from ∼0.48 T for xd = 0% to ∼0.53 T
for xd = 20%. The inset in Fig. 4(a) depicts the effect of the
dipolar interaction (for xd = 0%). For ED = 0, the shape of
the mz(H0) loop is rectangular and agrees with the predic-
tions of the Stoner-Wohlfarth coherent-rotation model; i.e.,
we find a reduced remanence of ∼0.83 and a coercivity
of 0.33 × 2K1/Ms

∼= 18 mT [45]. With dipolar interaction,
two regions with a large hysteresis are seen, one at around
0.5 T [Fig. 4(c)], which corresponds to the first deviation
from the single-domain state, and one around the remanent
state [Fig. 4(b)], which corresponds to the nucleation of the
vortex-type structure. In the following discussion of the SANS
observables [d�M/d�, p(r), c(r)], we concentrate on the
remanent state and on the high-field “pocket” at 0.5 T.

FIG. 4. (a) Normalized magnetization curves mz(H0) of 40-nm-
sized Fe spheres for different defect concentrations xd (see inset).
(b) Zoom of mz(H0) around H0 = 0 and (c) around μ0H0 = 0.6 T.
The inset in (a) compares the magnetization curves of a defect-free
40-nm sphere with and without the dipolar interaction energy ED.
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FIG. 5. (a) Two-dimensional Fourier components |M̃x|2, |M̃y|2, |M̃z|2, CT = −(M̃yM̃∗
z + M̃∗

y M̃z ), and magnetic SANS cross sec-
tion d�M/d� (in units of cm−1) of 40-nm-sized Fe spheres at μ0H0 = 0 T. Upper row: Defect concentration xd = 0%. Lower row: Defect
concentration xd = 15%. H0 ‖ ez is horizontal in the plane. Logarithmic color scales are used except for the CT s, which are displayed using a
linear color scale. Note that the respective Fourier components are multiplied with the constant 8π3V −1b2

H (in order to have the same unit as
d�M/d�), but not with the trigonometric functions in the expression for d�M/d� [compare Eq. (1)]. (b) Same as (a), but for μ0H0 = 0.5 T.

The two-dimensional magnetic SANS cross sections along
with the Fourier components for xd = 0% and xd = 15% are
shown in Fig. 5(a) at the remanent state and in Fig. 5(b) for
μ0H0 = 0.5 T. The d�M/d� in the remanent state are both
horizontally elongated [Fig. 5(a)], and the Fourier components
exhibit only little variation with the defect concentration,
e.g., regarding their angular anisotropy. The functions |M̃x|2,
|M̃y|2, and |M̃z|2 are (at 0 T) of comparable magnitude. Near
saturation at 0.5 T [Fig. 5(b)], d�M/d� is dominated by
the isotropic |M̃z|2 Fourier component and exhibits the sin2 θ

anisotropy which is characteristic for an essentially saturated
microstructure [compare Eq. (1)]. The contribution of the
transversal Fourier components |M̃x|2 and |M̃y|2 to d�M/d�

is much weaker than the longitudinal |M̃z|2 contribution.
When increasing the defect concentration xd from 0% to 15%,
|M̃x|2 at 0.5 T changes its angular anisotropy, from isotropic
to horizontally elongated, while the clover-leaf-type pattern of
|M̃y|2 becomes more pronounced. The CT s change their sign
at the borders between the quadrants on the detector; e.g., in
Fig. 5(a) we see that CT < 0 for 0◦ < θ < 90◦, CT > 0 for
90◦ < θ < 180◦, and so on. We note that the CT needs to be
multiplied with sin θ cos θ in order to obtain the correspond-
ing contribution to the magnetic SANS cross section [compare

Eq. (1)]. We also emphasize that the CT sin θ cos θ contribu-
tion to d�M/d� can be negative, in contrast to the other three
contributions, which are strictly positive. Using the inequality
|M̃y cos θ − M̃z sin θ |2 � 0, it is easily seen that the contribu-
tion CT sin θ cos θ is, however, always smaller than the sum
of the other terms (as it must be). The results in Fig. 5 under-
line that, generally, the Fourier components in the magnetic
SANS cross section [Eq. (1)] are anisotropic functions of the
angle θ .

The angular anisotropy of the magnetization Fourier com-
ponents is caused by the dipolar interaction [47], which is a
long-range, nonlocal, and anisotropic magnetic energy term.
Figure 6 compares, at remanence, results for d�M/d� with
and without the dipolar energy ED. It is seen that d�M/d� is
highly anisotropic (elongated along the horizontal direction)
when ED is included in the computations [Fig. 6(a)], while
it becomes weakly anisotropic (slightly elongated along the
vertical direction) when ED = 0 [Fig. 6(b)]. For ED = 0,
the spin structure remains essentially uniform throughout the
magnetization process [compare inset in Fig. 4(a) and related
text] and one observes the analytical sphere form factor re-
sults (thin black lines) for the azimuthally averaged d�M/d�

[Fig. 6(c)] and the pair-distance distribution function p(r)
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FIG. 6. Effect of the dipolar interaction on the SANS observ-
ables for D = 40 nm, xd = 2%, and μ0H0 = 0 T. (a) d�M/d� with
ED (logarithmic color scale), (b) d�M/d� for ED = 0 (logarithmic
color scale), (c) azimuthally averaged d�M/d� (log-log scale), and
(d) pair-distance distribution function p(r). The thin black lines
in (c) and (d) are the analytical results for uniformly magnetized
spheres [Eqs. (2) and (4)].

[Fig. 6(d)]. The results in Fig. 6 emphasize the importance of
considering complex dipolar-field-induced nonuniform spin
textures for the understanding of magnetic SANS patterns. We
emphasize, however, that the dipolar energy might be of mi-
nor relevance for smaller-sized (nearly uniformly magnetized)
nanomagnets and in the presence of the Dzyaloshinskii-
Moriya interaction, which may give rise to flux-closure-type
magnetization patterns [48,49].

The results for the (2π ) azimuthally averaged d�M/d�

and for the correlation functions p(r) and c(r) are displayed
in Fig. 7 and corroborate the behavior found from the anal-
ysis of the two-dimensional SANS cross sections, namely

a weak dependence on xd. The signature of the vortex-type
real-space spin structure in Fig. 3(a) is an oscillatory p(r)
[see, e.g., Figs. 6(d) and 7(b)], which appears to be rather
stable against spin perturbations that are induced by hole-
type defects. Regarding the negative values of p(r), these are
related to the vortex structure, which gives rise to “anticorre-
lations”. The vortex is characterized by large variations in the
spin orientation, so that when one autocorrelates a vortex one
may find a situation, at a certain distance r, where one spin
points upward and the other one points downward, yielding a
net negative contribution to p(r). Since p(r) = r2c(r), these
negative features are more pronounced in p(r) than in c(r)
[compare Figs. 7(b) and 7(c)].

Related to the observation of a vortex-type spin struc-
ture is the absence of a Guinier behavior at low momentum
transfers q and for small fields [see, e.g., Fig. 7(a)]. Only
with increasing field strength (more uniform spin structure)
is a Guinier-type behavior recovered. This becomes also vis-
ible in Fig. 8(a), where the field dependence of d�M/d� is
shown for xd = 15%. The emergence of internal spin disorder
leads to a shift of the characteristic form-factor oscillations
to larger q (smaller structures) and to the smearing of these
features, in this way mimicking the effect of a particle-size
distribution and/or instrumental resolution [compare also to
Figs. 6(c) and 7(a)]. With increasing field, the p(r) and c(r)
in Fig. 8 approach the analytical expressions for uniformly
magnetized spheres [Eqs. (4) and (5)]. However, regarding
the last statement, one should be cautious and keep in mind
that the microstructure of the defect-rich nanoparticles re-
sembles a porous structure (defect cells have a volume of
2 × 2 × 2 nm3; see Fig. 2). Such magnetic holes represent
a severe defect in the microstructure with a large jump in
the saturation magnetization and associated stray-field torques
producing spin disorder. Therefore, at large fields when the
defect-rich nanoparticles are approaching a uniform magne-
tization state, it is not surprising that their c(r) at small and
intermediate r deviate slightly from the purely uniform case
[compare Figs. 7(c) and 8(c)]. In particular the feature at small
r is better resolved in c(r) than in p(r); compare to Fig. 7(b),
where at 0.5 T the overall p(r) shape is preserved and only
the maximum is reduced at increased xd.
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FIG. 7. (a) Azimuthally averaged magnetic SANS cross section d�M/d� (log-log scale), (b) pair-distance distribution function p(r), and
(c) correlation function c(r) for different applied magnetic fields [0 T and 0.5 T; see inset in (c)] and defect concentrations (D = 40 nm).
Dashed lines are for xd = 0%, dotted lines are for xd = 15%, and the thin black lines correspond to the analytically known defect-free uniform
case [azimuthally averaged version of Eq. (2) for d�M/d� and Eqs. (4) and (5) for, respectively, p(r) and c(r)].
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FIG. 8. Field dependence [see inset in (c)] of (a) d�M/d� (log-log scale), (b) p(r), and (c) c(r) for a defect concentration of xd = 15%
(D = 40 nm).

The behavior of the correlation function c(r) in the limit
of r → 0 is generally an interesting question, which provides
information on the nature of the scattering contrast (see the
discussion by Ciccariello, Goodisman, and Brumberger [50]).
When sharp interfaces in a sample separate homogeneous
regions with a uniform (constant) scattering length density,
then the correlation function exhibits a finite slope at the
origin [compare Eqs. (4) and (5) for uniformly magnetized
nanoparticles]. This is the content of the well-known Porod
law, which predicts a characteristic asymptotic q−4 depen-
dency of the SANS cross section [51]. By contrast, structures
with a nonuniform scattering length density profile, such as
the smoothly varying magnetization profiles M(r) of micro-
magnetics, are characterized by a c(r) that exhibits a zero
slope at r = 0 and concomitant steeper power-law exponents
of the SANS cross section [2]. In the present case, we are
dealing with a system with a potentially nonuniform magne-
tization on one side of the interface (inside the particle) and
a zero magnetization on the other side of the interface. The
behavior of c(r) at small distances also depends on the spin
distribution in the vicinity of the surface and, therefore, on the
surface anisotropy and the related boundary conditions for the
magnetization. This question deserves a separate considera-
tion and is beyond the scope of the present paper.

In line with the magnetization results (Fig. 4), which ex-
hibit a reduced magnetization at increased defect density
xd, the magnetic SANS signal is also reduced at the origin
of reciprocal space, q = 0, when xd is increased [compare
Fig. 7(a)]. As is well known, the quantity d�M

d�
(q = 0) is

directly proportional to the static susceptibility χ (q = 0) (as it
can be measured with a magnetometer), which itself is propor-
tional to the mean-square fluctuation of the magnetization per
atom [52]. In Fig. 9, we plot d�M

d�
(q = 0) as a function of xd for

applied fields of 0 T and 0.5 T. As expected, the increase in
xd reduces d�M

d�
(q = 0) at a given field value, although the pre-

cise analytical dependence d�M
d�

(q = 0, xd ) remains unknown.

B. Effect of a particle-size distribution function

In SANS experiments on nanoparticles one always has to
deal with a distribution of particle sizes and shapes. The size
of a particle has an important effect on its spin structure; e.g.,
smaller particles generally tend to be uniformly magnetized,
whereas larger particles may exhibit inhomogeneous spin

structures [14]. It is therefore also of interest to study the influ-
ence of a distribution of particle sizes on the magnetic SANS
observables [d�M/d�, p(r), c(r)]. This has been done using
a log-normal distribution function, which is defined as [53]

f (D) = 1√
2πD log σ

e− 1
2 ( log D−log D0

log σ
)2

, (11)

where D0 denotes the median and σ the variance of the
distribution with

∫ ∞
0 f (D)dD = 1. For the above function,

the mean particle size D [first moment of f (D)] is related

to the parameters of the distribution as D = D0e
(log σ )2

2 . For
given xd and B0, randomly averaged magnetic SANS cross
sections were computed for particle diameters D ranging
between 10 nm � D � 100 nm in binning intervals of
�D = 2 nm. The magnetic SANS cross section averaged
over the distribution, 〈d�M/d�〉 f , is then computed as〈

d�M

d�

〉
f

=
∑

k

wk
d�M,k

d�
, (12)

where

wk =
∫ Dk+�D/2

Dk−�D/2
f (D)dD (13)

FIG. 9. Value of the magnetic SANS cross section at the origin
of reciprocal space, d�M

d�
(q = 0), as a function of the defect concen-

tration xd and for applied magnetic fields of 0 T and 0.5 T (see inset)
(D = 40 nm). Lines are a guide to the eye. The data are normalized
by the respective value of d�M

d�
(q = 0) for xd = 0.
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FIG. 10. Effect of a log-normal particle-size distribution on the azimuthally averaged magnetic SANS cross section d�M/d� and on the
correlation functions p(r) and c(r). Upper row [(a)−(c)] is for μ0H0 = 0 T and the lower row [(d)−(f)] is for μ0H0 = 1.0 T. Parameters are
D0 = 40 nm, xd = 0%, and σ varies between 1.1 and 1.6 [see inset in (c)]. For each σ , the p(r) and c(r) were normalized to their respective
maximum value at 0 T and 1.0 T. The inset in (a) displays q−1

max versus σ , where qmax is the position of the maximum of d�M/d� (line is a
guide to the eye). The inset in (f) depicts the used size-distribution function f (D) for D0 = 40 nm and σ = 1.6. For each size class, 40 random
particle orientations were used to compute the averaged magnetic SANS cross section.

denotes the weight of the size class Dk , which can be
computed for given values of D0 and σ ; d�M,k/d� is
the orientationally averaged SANS cross section [compare
Eq. (10)] corresponding to Dk . Particle diameters outside of
the above interval, i.e., smaller than 10 nm and larger than
100 nm, were not considered in our analysis (wk = 0 for
D < 10 nm and D > 100 nm).

Figure 10 depicts the evolution of the azimuthally aver-
aged magnetic SANS cross section d�M/d� and of both
correlation functions p(r) and c(r) with the width σ of the log-
normal distribution at zero field and at 1.0 T (for D0 = 40 nm
and xd = 0%). Note that the p(r) and c(r) are (for each D0

and σ ) normalized to unity after the cross section has been
computed according to Eq. (12). The d�M/d� [Fig. 10(a)]
exhibit the “usual” behavior known, e.g., from the study of in-
strumental broadening, namely a smearing of the form-factor
oscillations with increasing σ . The remaining oscillations of
d�M/d� for small σ are more pronounced in the high-field
regime [Fig. 10(d)] than at remanence [Fig. 10(a)]. It is gen-
erally seen in Figs. 10(b) and 10(e) that the p(r) are more
affected by the variation of σ than the c(r) [Figs. 10(c) and
10(f)], which is related to the r2 factor. For all values of σ

does the oscillatory p(r) behavior remain at zero field, and
one observes a shift of the maximum of d�M/d� to lower
momentum transfers with increasing σ . This is further illus-
trated in the inset of Fig. 10(a), which shows the inverse of the

q value of the maximum in d�M/d�, q−1
max, versus σ . The shift

to smaller q, corresponding to intraparticle real-space correla-
tions on a scale of ∼8 − 14 nm, can be understood by noting
that the magnetic SANS cross section scales with the squared
particle volume [compare Eq. (2)], so that with increasing σ

the larger particle sizes in the distribution gain more weight.
For the materials parameters chosen and a spherical particle
shape, the vortex structure appears at low fields for particle
sizes larger than about D = 20 nm and is present at least up
to D = 100 nm (larger sizes were not taken into account in
our simulations) [31]. This explains why we see an oscillatory
p(r) at zero field for increasing σ ; in other words, at rema-
nence we have a weighted superposition of vortex structures
with different sizes, while at 1.0 T we deal with a weighted
superposition of nearly uniformly magnetized spheres. The
global minimum of p(r) at zero field shifts to larger distances
with increasing σ , from r ∼= 29 nm for σ = 1.1 to r ∼= 50 nm
for σ = 1.6. For xd = 0, the behavior of the d�M/d�, p(r),
and c(r) are qualitatively similar, demonstrating the rather
robust character of the oscillatory low-field feature in p(r).

The present micromagnetic simulations, as well as experi-
mental SANS data reduction procedures, involve a number of
averaging processes, for instance, an average over the random
easy-axis orientations of the particles, an average over the
particle-size distribution function, the projection of the com-
puted three-dimensional SANS cross section into the plane
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of the two-dimensional detector, and the azimuthal-averaging
procedure to obtain the one-dimensional d�M/d�. In the
course of these steps, some information on the spin structure
of an individual particle is lost. This may then explain why
in our simulation data there is no characteristic feature (e.g.,
a peak or shoulder-type anomaly) that can be systematically
related to the randomly placed defects. The most prominent
feature seems to be the reduction in the value of the magnetic
SANS cross section at q = 0 (Fig. 9), which is directly related
to the measured remanent magnetization.

V. CONCLUSION AND OUTLOOK

Using micromagnetic computations we have investigated
the effect of pore-type microstructural defects in spheri-
cal magnetic nanoparticles on their magnetic small-angle
neutron scattering cross section d�M/d� and pair-distance
distribution function p(r). The simulations take into account
the isotropic exchange interaction, the magnetocrystalline
anisotropy, the dipolar interaction, and an externally ap-
plied magnetic field. Clearly, the d�M/d� and p(r) of
nonuniformly magnetized nanoparticles cannot be described
anymore with the superspin model, which assumes a ho-
mogeneous spin microstructure. The dipolar interaction is at
the origin of many complex magnetization structures and re-
lated anisotropic scattering patterns. For small applied fields
and a not too small particle size (here, for D � 20 nm), the
dipolar energy results in a vortex-type spin structure and in
a concomitant oscillatory feature in the p(r) function. This
characteristic signature appears to be rather stable against
the here-used pore-type defects. The oscillatory p(r) shape
also remains in the presence of a particle-size distribution
function. At low fields, deviations from the Guinier law and
complicated real-space correlations are encountered. Within
the present modeling approach of defects—representing them

by computational cells with zero saturation magnetization
Ms—their effect on the SANS observables seems to be rela-
tively small. The dominating defect in spherical nanoparticles
appears to be the outer surface of the particles. A more
realistic treatment of defects could be achieved by a more
modest change in the material parameters, i.e., by reducing the
saturation magnetization to a lower, but nonzero value and/or
reducing the exchange interaction between the defect and the
other cells [54]. Moreover, one could consider the inclusion of
the magnetoelastic interaction into the micromagnetic energy
functional. Currently, this interaction is not implemented in
most micromagnetic codes, although recent research activi-
ties go into this direction [55]. Likewise, phenomenological
models for surface anisotropy such as Néel anisotropy, which
give rise to additional boundary conditions on the surface of
the nanomagnet, are also not included in numerical simu-
lations of magnetic SANS. The micromagnetic approach to
magnetic SANS consists of finding, by means of magnetic-
energy minimization, the three-dimensional vector field of
the magnetization M(r). This represents a paradigm shift
and is conceptually very much different than the up-to-now
used approach of finding a scalar function which describes
the structural saturation-magnetization profile Ms(r) of the
particle ensemble.
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