

This is a copy of the published version, or version of record, available on the publisher’s website. This version
does not track changes, errata, or withdrawals on the publisher’s site.

Published version information

Citation: MF Kasim, S Lehtola and SM Vinko. DQC: A Python program package for
differentiable quantum chemistry. J Chem Phys 156, no. 8 (2022): 084801

DOI: 10.1063/5.0076202

This article may be downloaded for personal use only. Any other use requires prior
permission of the author and AIP Publishing.
This version is made available in accordance with publisher policies. Please cite only
the published version using the reference above. This is the citation assigned by the
publisher at the time of issuing the APV. Please check the publisher’s website for
any updates.

This item was retrieved from ePubs, the Open Access archive of the Science and Technology
Facilities Council, UK. Please contact epublications@stfc.ac.uk or go to http://epubs.stfc.ac.uk/ for
further information and policies.

DQC: A Python program package for differentiable
quantum chemistry

Muhammad F. Kasim, Susi Lehtola, and Sam M. Vinko

https://doi.org/10.1063/5.0076202
mailto:epublications@stfc.ac.uk
http://epubs.stfc.ac.uk/

J. Chem. Phys. 156, 084801 (2022); https://doi.org/10.1063/5.0076202 156, 084801

© 2022 Author(s).

DQC: A Python program package for
differentiable quantum chemistry
Cite as: J. Chem. Phys. 156, 084801 (2022); https://doi.org/10.1063/5.0076202
Submitted: 22 October 2021 • Accepted: 31 January 2022 • Published Online: 22 February 2022

 Muhammad F. Kasim, Susi Lehtola and Sam M. Vinko

ARTICLES YOU MAY BE INTERESTED IN

Chemical physics software
The Journal of Chemical Physics 155, 010401 (2021); https://doi.org/10.1063/5.0059886

Software for the frontiers of quantum chemistry: An overview of developments in the Q-
Chem 5 package
The Journal of Chemical Physics 155, 084801 (2021); https://doi.org/10.1063/5.0055522

Quantum Chemistry Common Driver and Databases (QCDB) and Quantum Chemistry
Engine (QCEngine): Automation and interoperability among computational chemistry
programs
The Journal of Chemical Physics 155, 204801 (2021); https://doi.org/10.1063/5.0059356

https://images.scitation.org/redirect.spark?MID=176720&plid=1735782&setID=378408&channelID=0&CID=634322&banID=520620674&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=9ef36e982c8c81bdfc9703d75224adb1dd2af5d5&location=
https://doi.org/10.1063/5.0076202
https://doi.org/10.1063/5.0076202
https://orcid.org/0000-0002-8748-1737
https://aip.scitation.org/author/Kasim%2C+Muhammad+F
https://orcid.org/0000-0001-6296-8103
https://aip.scitation.org/author/Lehtola%2C+Susi
https://orcid.org/0000-0003-1016-0975
https://aip.scitation.org/author/Vinko%2C+Sam+M
https://doi.org/10.1063/5.0076202
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0076202
http://crossmark.crossref.org/dialog/?doi=10.1063%2F5.0076202&domain=aip.scitation.org&date_stamp=2022-02-22
https://aip.scitation.org/doi/10.1063/5.0059886
https://doi.org/10.1063/5.0059886
https://aip.scitation.org/doi/10.1063/5.0055522
https://aip.scitation.org/doi/10.1063/5.0055522
https://doi.org/10.1063/5.0055522
https://aip.scitation.org/doi/10.1063/5.0059356
https://aip.scitation.org/doi/10.1063/5.0059356
https://aip.scitation.org/doi/10.1063/5.0059356
https://doi.org/10.1063/5.0059356

The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

DQC: A Python program package
for differentiable quantum chemistry

Cite as: J. Chem. Phys. 156, 084801 (2022); doi: 10.1063/5.0076202
Submitted: 22 October 2021 • Accepted: 31 January 2022 •
Published Online: 22 February 2022

Muhammad F. Kasim,1,a) Susi Lehtola,2 and Sam M. Vinko1 ,3,b)

AFFILIATIONS
1 Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
2 Molecular Sciences Software Institute, Blacksburg, Virginia 24061, USA
3Central Laser Facility, STFC Rutherford Appleton Laboratory, Didcot OX11 0QX, United Kingdom

a)Present address: Machine Discovery Ltd., Oxford, United Kingdom. Author to whom correspondence should be addressed:
muhammad @machine-discovery.com
b)sam.vinko@physics.ox.ac.uk

ABSTRACT
Automatic differentiation represents a paradigm shift in scientific programming, where evaluating both functions and their derivatives is
required for most applications. By removing the need to explicitly derive expressions for gradients, development times can be shortened and
calculations can be simplified. For these reasons, automatic differentiation has fueled the rapid growth of a variety of sophisticated machine
learning techniques over the past decade, but is now also increasingly showing its value to support ab initio simulations of quantum systems
and enhance computational quantum chemistry. Here, we present an open-source differentiable quantum chemistry simulation code and
explore applications facilitated by automatic differentiation: (1) calculating molecular perturbation properties, (2) reoptimizing a basis set
for hydrocarbons, (3) checking the stability of self-consistent field wave functions, and (4) predicting molecular properties via alchemical
perturbations.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0076202

I. INTRODUCTION

Automatic differentiation is a collection of techniques used to
evaluate, up to machine precision, the derivative of a function spec-
ified by a computer program. It allows software developers to focus
solely on designing the best model for a given problem, without
having to worry about implementing any derivatives of the model
with respect to its various mathematical parameters. It has already
had a transformative effect in machine learning, enabling the devel-
opment of many new techniques over the past decade, such as
batch normalization,1 attention layers,2 and unique neural network
architectures.3,4

Automatic differentiation is still relatively new in the con-
text of computational sciences but is already showing promise
across a diverse set of applications, including tensor networks,5
computational fluid dynamics,6 and molecular dynamics simula-
tions.7 Automatic differentiation is also growing increasingly pop-
ular in quantum chemistry, where it has been used to optimize

molecular basis sets,8 to calculate higher derivatives of various
exchange–correlation (xc) functionals9 of density functional the-
ory (DFT),10,11 and to determine arbitrary-order nuclear coordinate
derivatives of electronic energies.12

Automatic differentiation is also an essential stepping stone
to enable direct integration of quantum chemistry methods with
machine learning models and their training. In this context, a dif-
ferentiable implementation of DFT was recently used to learn the
xc functional13 from accurate reference calculations within the den-
sity matrix renormalization group approach or from a mixture of
computational and experimental data,14 showing a promising new
approach to developing transferable and robust xc functionals via
deep learning.

Although differentiation in quantum chemistry can be done
via finite-difference schemes, calculating the gradient of a parameter
with respect to some other input parameters can be time consum-
ing as one has to run the simulation as many times as the number of
input parameters. Moreover, finite-difference methods are prone to

J. Chem. Phys. 156, 084801 (2022); doi: 10.1063/5.0076202 156, 084801-1

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp
https://doi.org/10.1063/5.0076202
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0076202
https://crossmark.crossref.org/dialog/?doi=10.1063/5.0076202&domain=pdf&date_stamp=2022-February-22
https://doi.org/10.1063/5.0076202
https://orcid.org/0000-0002-8748-1737
https://orcid.org/0000-0001-6296-8103
https://orcid.org/0000-0003-1016-0975
mailto:muhammad@machine-discovery.com
mailto:sam.vinko@physics.ox.ac.uk
https://doi.org/10.1063/5.0076202

The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

numerical instabilities and are very sensitive to the chosen step-size.
Automatic differentiation addresses these challenges by calculat-
ing the analytical gradient via the chain rule, eliminating both the
need to run the simulation many times and the need for step-size
tuning.

To address the growing need for automatic differentiation in
quantum chemistry, we introduce Differentiable Quantum Chem-
istry (DQC), a DFT and Hartree–Fock (HF)15 simulation code. DQC
is written in Python using PyTorch16 and xitorch.17 While PyTorch
provides gradient calculations for elementary operations, such as
matrix multiplication and explicit eigendecomposition, xitorch pro-
vides gradient calculations for functional operations, such as root
finding, optimization, and implicit eigendecomposition. The use
of PyTorch and xitorch in DQC enables various applications in
quantum chemistry, which would otherwise be far more difficult to
pursue. For example, the work of Kasim and Vinko14 on learning
the xc functional directly from a set of heterogeneous experimen-
tal data and calculated density profiles within the constraints of
Kohn–Sham DFT already mentioned above was enabled by the use
of DQC.

We begin this paper by outlining the basic theory behind DQC
in Sec. II. The implementation is described in Sec. III. Applications
that exemplify the present approach are given in Sec. IV. We dis-
cuss the challenges in the use of automatic differentiation techniques
in computational science in Sec. V and summarize our work in
Sec. VI.

II. METHODS
Quantum chemical calculations of the electronic structure typ-

ically require the evaluation of abstract functionals, such as root
finding for self-consistent field (SCF) iterations, minimization for
geometry optimizations, and the direct minimization approach to
the SCF problem. We discuss the handling of these functionals in
the context of DQC in this section.

A. SCF iterations
DQC is based on the use of a Gaussian basis set within the linear

combination of atomic orbitals (LCAO) approach. For simplicity, we
will only present the theory for the spin-restricted formalism, as the
spin-unrestricted (and restricted open-shell) formalisms are analo-
gous. The SCF iterations proceed in the LCAO approach by solving
Roothaan’s equation18,19

F(D)C = SCE, (1)

where F(D) is the Fock matrix that is a function of the density
matrix D, C is the orbital matrix, S is the overlap matrix, and E
is a diagonal matrix containing the orbital energies. The general-
ized eigenvalue equation in Eq. (1) can be reduced to the normal
form by orthogonalizing the overlap matrix S20 and operating in
the linearly independent basis spanned by the eigenvectors of S
with large enough eigenvalues; any ill-conditioning in the over-
lap matrix can be removed by choosing a well-defined sub-basis
with the help of a pivoted Cholesky decomposition.21 The den-
sity matrix D, required to construct the Fock matrix F, can be
obtained by

D = CNC†, (2)

where N is a diagonal matrix containing the occupation numbers
of the orbitals. As discussed in Ref. 19, the SCF procedure requires
repeatedly solving Eqs. (1) and (2) until self-consistency is achieved.

The Roothaan iteration in Eq. (1) can be written mathemati-
cally as the process of finding a vector y such that

y = f(y, θ), (3)

where f is a function that takes the vector y and other parameters θ
and returns the expected value of vector y. In DQC, the parameter y
is represented by the Fock matrix F, so the function f is the proce-
dure that solves Eq. (1), calculating the density matrix from Eq. (2)
and constructing back the Fock matrix from the density matrix. The
parameters θ represent the other variables involved in the calcula-
tion, such as the overlap matrix S and the occupation number matrix
N. The algorithm and gradient calculation for Eqs. (1) and (3) are
already available in PyTorch and xitorch.

B. Direct minimization
An alternative approach to solving the self-consistent field

equations is to directly find the orbitals that minimize the total
energy E by the use of optimization algorithms.22 The energy E can
be calculated from the density matrix D, which can be obtained in
turn from the orbital coefficients C using Eq. (2). This relation makes
the energy a function of the orbital matrix, E(C). However, as the
orbitals must remain orthonormal, C†SC = I, we introduce a new
variable Q defined in terms of its relation with C as

Q = Q̂R, (4)

C = S−1/2Q̂. (5)

Equation (4) is the QR decomposition of the matrix Q into an
orthogonal matrix Q̂ and an upper triangular matrix R. Equation (5)
involves the inverse square root of the overlap matrix S, which can be
computed using the eigendecomposition of S. The energy can then
be parameterized by Q, reducing the direct minimization problem
to an unbounded optimization problem,

Q∗ = arg min
Q

E(Q). (6)

The gradient of the energy with respect to Q, i.e., ∂E/∂Q, is required
for an efficient solution. It is automatically computed by PyTorch
and xitorch.

Once the optimum Q∗ in Eq. (6) is found, Q∗ can still be dif-
ferentiated with respect to any other variables, such as the nuclear
coordinates or the occupation number matrix N. This is made pos-
sible by the gradient of the optimization functional provided by
xitorch.

We note that our approach of using QR decomposition is
slightly different from common direct minimization techniques that
use the matrix exponential of a skew-Hermitian matrix, such as the
geometric direct minimization algorithm of Ref. 23.

J. Chem. Phys. 156, 084801 (2022); doi: 10.1063/5.0076202 156, 084801-2

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp

The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

C. Automatic differentiation with PyTorch
PyTorch16 is a dynamic automatic differentiation library writ-

ten in Python that provides gradients automatically without having
to implement them explicitly. It works by constructing a com-
putational graph and propagating the graph backward when cal-
culating the gradient. The backward propagation of the compu-
tational graph follows the chain rule of differentiation. It uses
a dynamical approach by default, which means that the com-
putational graph is constructed when the forward calculation is
performed.

For example, let us say we want to calculate a variable L from
two other variables, a and b, with L = f1(a, b) + f2(a) f3(b) for some
functions f1, f2, and f3. If the calculation of L is performed from a
and b, PyTorch will construct the graph that consists of some opera-
tions, as shown in Fig. 1(a). To calculate the gradient, e.g., ∂L/∂a, the
calculations are performed backward in the computational graph.
It starts from ∂L/∂L and propagates through until it reaches the
gradient that we want, as shown in Fig. 1(b).

As it goes through an operation in the backward calculation,
the backward calculation of that operation is performed. For exam-
ple, if the operation is t4 = t2t3 (i.e., the ∗ node in Fig. 1), then the
backward operation is ∂L/∂t2 = ∂L/∂t4t3 and ∂L/∂t3 = ∂L/∂t4t2. If
all the operations in a calculation have the backward calculations
defined, then one can back-propagate the graph to calculate the
gradients.

D. xitorch
PyTorch provides the backward calculations for commonly

used operations, such as multiplication, addition, and matrix mul-
tiplication. However, backward calculations for functionals (such as
root finding) are not available in PyTorch. This is where xitorch17

FIG. 1. The computational graph of calculation L = f1(a, b) + f2(a) f3(b). (a) The
computational graph for the forward calculation. Note that t1–t4 are the temporary
variables in this case. (b) The backward gradient calculation from the computa-
tional graph. For the backward calculation, it starts from ∂L/∂L = 1 at the top and
ends at the bottom. Merging arrows in this backward computational graph means
that the gradients are accumulated.

comes in. xitorch provides backward calculations of functionals, i.e.,
functions that require other functions as their inputs.

One example that is used in writing DQC is equilibrium
finding, i.e., find x such that

x = f(x, θ), (7)

where f is a function and θ is a parameter of that function. If x is
used to calculate a value L and ∂L/∂x is available from another cal-
culation, then the gradient of L with respect to the parameter θ is
given by the adjoint method,24

∂L
∂θ
= ∂L
∂x
(I − ∂f

∂x
)
−1
(∂f
∂θ
). (8)

Using the adjoint method reduces the memory requirements in
computing the gradient, compared to direct backpropagation of the
equilibrium finder calculation as done in Ref. 13 because the latter
method needs to save temporary values calculated in the equilib-
rium finder iterations, while the former requires no such temporary
variables.

The gradient calculation above is provided by xitorch. Other
than equilibrium finding, xitorch also provides the gradient calcu-
lation of other functionals, such as root finding, optimization, and
initial value problem solver.

III. IMPLEMENTATION
DQC is implemented mainly using PyTorch as the automatic

differentiation package and xitorch for differentiating through func-
tionals. Other than those two general purpose libraries, DQC also
uses libxc25 to include exchange–correlation functionals from the
literature and libcint26 for Gaussian-basis integrals. Those libraries
are wrapped with PyTorch to provide the automatic differentiation
capability, where the details can be found in Ref. 14.

DQC implements restricted and unrestricted HF and
Kohn–Sham DFT calculations without periodic boundary condi-
tions. The energy can be minimized either using SCF iterations
with Broyden’s good method27 for Fock matrix updates or with
direct minimization using gradient descent with momentum;28

more elaborate SCF convergence accelerators will be implemented
at a later stage of the project. All parameters are differentiable with
respect to any other parameters present in the calculation, including
the nuclear coordinates, atomic numbers, and electron occupa-
tion numbers, as well as the basis set exponents and contraction
coefficients. The differentiability of these parameters allows for
the exploration of new applications with DQC, a few of which are
presented in what follows.

Although the execution speed is not a top priority for DQC, the
program shows good overall performance. Table I gives the com-
parison of the running times of DQC and PySCF,29 an established
quantum chemistry code. For small systems, we find that DQC is
as efficient as PySCF. However, for moderate-sized molecules (e.g.,
C4H5N), DQC is about 4–6 times slower than PySCF. This slow-
down can be attributed to DQC currently not taking advantage of
the symmetry of the two-electron integral tensor, which can reduce
the tensor size by roughly a factor of 8 when the basis functions are
real-valued. In contrast, DQC is only about 50% slower than PySCF

J. Chem. Phys. 156, 084801 (2022); doi: 10.1063/5.0076202 156, 084801-3

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp

The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

TABLE I. Execution speed comparison between DQC (SCF iterations) and PySCF.

Cases DQC PySCF

H2O (HF/cc-pVDZ) 96 ms 245 ms
H2O (PW92/cc-pVDZ) 530 ms 430 ms
C4H5N (HF/cc-pVTZ) 108 s 17 s
C4H5N (PW92/cc-pVTZ) 101 s 25 s
C4H5N (density fit PW92/cc-pVTZ) 30 s 22 s
C6H8O6 (density fit PW92/cc-pVDZ) 87 s 57 s

for systems with density fitting. The difference is mainly caused
by the higher number of algebraic operations in DQC than PySCF
because DQC has not been primarily optimized for speed. Speed
optimization for DQC is subject to the future work.

IV. APPLICATIONS
A. Direct minimization

The automatic availability of gradients makes it easy to imple-
ment the direct minimization method in DQC. Direct minimization
is known to be more robust than SCF iterations in finding a con-
verged solution19 and is particularly useful in difficult cases, such
as for molecules near their dissociation limits. We illustrate this in
Fig. 2, where we show the PW92/cc-pVDZ30,31 total energy of H+2 as
a function of the internuclear distance. The SCF method does not
converge for internuclear distances greater than around 17 bohrs.
In contrast, the direct minimization method continues to converge
even for substantially larger distances in excess of 40 bohrs.

B. Checking SCF stability
One difficulty in SCF calculations is that the calculation can

converge onto a saddle point, which corresponds to an excited

FIG. 2. Unrestricted PW92/cc-pVDZ30,31 energy for the hydrogen molecule cation
H+2 as a function of the internuclear distance calculated via the SCF (using
Broyden’s method27) and direct minimization approaches. Note that the SCF
iterations do not converge for internuclear distances larger than 17 bohrs.

state.19 If the calculation has converged onto a local minimum, the
Hessian of the energy with respect to orbital rotations must be posi-
tive semidefinite. Saddle point solutions, instead, correspond to one
or more negative eigenvalues of the orbital Hessian. To maintain the
orthonormality of the orbitals, the Hessian is calculated based on the
Q variable. Conveniently, we do not need to derive the expression
for the Hessian matrix ∂2E/∂Q2, as it is automatically obtained by
PyTorch.

Moreover, only the lowest eigenvalue needs to be calculated for
the stability check, so the full Hessian matrix does not need to be
constructed. We obtain the lowest eigenvalue using Davidson’s iter-
ative algorithm,32 as implemented in xitorch. Note that the gradients
of the lowest energy eigenvalue with respect to all other parame-
ters in the calculation are automatically available, which may prove
useful in further future applications.

We listed some examples of SCF stability checks for HF/pc-133

calculations on diatomic molecules in Table II. As can be seen
from the data, the lowest eigenvalues of the orbital Hessian are very
close to zero for the ground state, while the excited states yield
large negative eigenvalues. This illustrates that it is straightforward
to check whether or not a state corresponds to a true minimum
with DQC.

C. Molecular properties
A key advantage of writing quantum chemistry software with

automatic differentiation is that the calculations of molecular prop-
erties can be implemented efficiently: all we need to know is
how a specific property relates to some derivative expressions. For
example, vibrational modes and frequencies of a molecule can be
written as

qvib, ωvib = eig(∂
2E

∂X2), (9)

where X is an n × 3 matrix containing the nuclear coordinates of the
n atoms, eig is the eigendecomposition, qvib is one of the vibrational
modes, and ωvib is its frequency. The expression shown in Eq. (9)
is all that is needed to calculate the vibrational characteristics of
the molecule; the explicit form of the derivative expression is not
required.

Another useful example is the calculation of the electric dipole
and quadrupole moments of a molecule. The electric dipole moment
is given by

TABLE II. Lowest eigenvalues of the HF/pc-1 orbital Hessian matrix. All the
calculations correspond to the stationary points of the HF energy.

Distance Energy Lowest
Molecules (bohrs) (Eh) eigenvalue (Eh)

O2 (ground) 2.0 −149.54 −6 × 10−14

O2 (excited) 2.0 −149.17 −0.73
BeH (ground) 2.5 −15.14 −4 × 10−14

BeH (excited) 2.5 −15.01 −0.25
CH (ground) 2.0 −38.259 −5 × 10−8

CH (excited) 2.0 −38.256 −0.07

J. Chem. Phys. 156, 084801 (2022); doi: 10.1063/5.0076202 156, 084801-4

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp

The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

μ = −∂E
∂E
+∑

i
Zixi, (10)

while the electric quadrupole tensor is given by

M = −2
∂E
∂∇E

+∑
i

ZixixT
i . (11)

In both the expressions, E is the total energy of the molecule, E is the
electric field, Zi is the atomic number of the ith atom, and xi are its
coordinates.

Having these vibrational and electric multipole properties
readily available makes obtaining the Raman vibrational spec-
trum straightforward. For example, the intensity of the infrared
vibrational transition for a normal mode q at a frequency ω is
given by

IIR = ∑
i

⎛
⎝∑jk

∂μi

∂Xjk
qjk
⎞
⎠

2

, (12)

where μ is the electric dipole moment and X is the matrix of atomic
coordinates.

Similarly, the Raman activity at the same frequency and normal
mode is proportional to35

IRaman = 5[tr(α)]2 + 7γ, (13)

αij = ∑
kl

∂2μi

∂Ej∂Xkl
qkl, (14)

γ = ∑
ij
(1 − δij)[

1
4
(αii − αjj)2 + 3

2
α2

ij], (15)

where δij is the Kronecker delta.
The HF/cc-pVDZ perturbation properties of H2O, found using

the expressions above, are displayed in Table III. The values are in
excellent agreement with the data from the computational chemistry
comparison and benchmark database (CCCBDB),34 even though
DQC does not have any explicit code to calculate the gradients
required for these properties.

D. Basis set optimization
The differentiability of DQC with respect to the basis set

parameters enables the optimization of system-specific basis sets.

TABLE III. Perturbative properties of H2O from HF/cc-pVDZ calculations. The mid-
dle column presents the values calculated in DQC, while the last column shows
the CCCBDB values.34 The IR intensities and Raman activities are presented at the
frequency of 1800 cm−1.

Properties DQC CCCBDB

IR intensities (km/mol) 80.69 80.70
Raman activities (A4/amu) 4.79 4.79
Dipole (D) −2.044 −2.044
Quadrupolexx (DA) −7.008 −7.008

Here, we show this capability by optimizing a basis set for hydro-
carbons within Kohn–Sham DFT using the PW92 functional. We
reoptimized the cc-pVDZ basis31 for a training set of molecules con-
sisting of CH (methylidyne), CH3 (methyl radical), CH4 (methane),
C2H2 (acetylene), and C2H4 (ethylene). The accuracy of the reop-
timized basis was then tested on a set of hydrocarbons that were
not included in the training set. The results are shown in Fig. 3.
The reoptimization of the cc-pVDZ basis set leads to a marked
decrease in the total energies of all the molecules in the test set,
as the cc-pVXZ basis set series is designed to capture correlation
energies instead of polarization energies31 and as hydrocarbons are
chemically similar.

E. Alchemical perturbation
One of the differentiable quantities in DQC is the atomic

number, allowing us to perform alchemical perturbation studies to
predict the properties of molecules without actually needing to sim-
ulate them.36,37 As a simple example, we will show here that some
properties of diatomic molecules CO (atomic numbers 6 and 8) and
BF (atomic numbers 5 and 9) can be estimated directly from the
properties of N2 (atomic number 7) and its alchemical perturba-
tions. To do this, we parameterize the atomic number of the atoms in
the diatomic molecule by a continuous variable λ so that the atoms
have atomic numbers Zl = 7 + λ and Zr = 7 − λ. The molecules
N2, CO, and BF, thus, correspond to λ = 0, λ = 1, and λ = 2,
respectively.

The properties we aim to predict are the bond length s∗ and the
energy E∗ at the equilibrium position, which can be mathematically
expressed as

s∗(λ) = arg min
s

E(s, λ), (16)

E∗(λ) = E(s∗, λ). (17)

Performing HF/pc-1 calculations, we evaluate the equilibrium dis-
tance and the energy at the equilibrium position in two ways. The
first way is to optimize the geometry for various fixed values of λ and

FIG. 3. Basis set truncation errors for the cc-pVDZ and cc-pVTZ basis sets for a
range of hydrocarbons, compared with the truncation error for a reoptimized cc-
pVDZ basis set. The reference energies are computed in the cc-pV5Z basis set.
None of the molecules shown in the figure were used in the basis set optimization.

J. Chem. Phys. 156, 084801 (2022); doi: 10.1063/5.0076202 156, 084801-5

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp

The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

calculate the above properties directly. The calculations were per-
formed separately but with the same basis (pc-1 nitrogen basis on all
atoms) for different molecules, in analogy to the procedure used in
Refs. 36 and 37. The second way is to estimate those properties using
a Taylor series expansion to second order in λ,

s∗(λ) ≈ s∗(0) + λ
∂s∗

∂λ
(0) + 1

2
λ2 ∂

2s∗

∂λ2 (0), (18)

E∗(λ) ≈ E∗(0) + λ
∂E∗

∂λ
(0) + 1

2
λ2 ∂

2E∗

∂λ2 (0). (19)

As s∗ and E∗ are calculated at equilibrium, calculating the perturba-
tion terms requires propagating the gradient through the optimiza-
tion process. However, automatic differentiation makes the prop-
agation trivial, as it is automatically handled by the optimization
routine in xitorch.

The results obtained via these two approaches are compared
in Fig. 4. As we can see from these results, the properties of CO
and BF can be estimated accurately from alchemical perturbations
of N2. The estimated equilibrium distances for CO and BF differ by
−0.0004 and 0.024 bohr, respectively, while the estimated equilib-
rium energies deviate by 33 and 587 mEh, respectively. This shows
that the equilibrium position of new molecules can be estimated well
with the alchemical gradient calculated by DQC, without actually
having to calculate those molecules.

FIG. 4. Comparison of the properties of CO and BF obtained via an exact
calculation and an estimation from the second-order gradients via alchemical
perturbations, employing the nitrogen pc-1 basis on all atoms.

V. DISCUSSION
Implementing quantum chemistry with automatic differentia-

tion libraries is a promising way to accelerate simulation workflows
and to enable novel applications. However, the implementation
comes with several challenges. An overarching challenge is that the
automatic differentiation library used here, PyTorch, is primarily
designed for deep learning rather than for scientific computing.
As deep learning only focuses on low-order derivatives, access-
ing high-order gradients that are commonly required for scientific
applications can be difficult.

Detecting numerical instabilities in high-order gradient cal-
culations can also be demanding. Instabilities that produce NaN
(not-a-number) in PyTorch are relatively straightforward to manage
with its debugging feature since version 1.8, but other instabilities
that do not produce NaN can be challenging to detect.

Another challenge is debugging and profiling higher-order gra-
dient calculations. As the gradient is generated automatically, it is
hard to find the slowest part of the code or the part that requires the
most memory because this information is not readily provided by
the available profiling tools.

In addition to higher-order gradient calculations, using auto-
matic differentiation libraries also poses unique challenges in terms
of code optimization. For example, quantum chemistry codes usu-
ally save the two-electron integrals on the disk due to their large
size and process them only in blocks small enough to fit easily into
memory. This scheme can only be used in DQC if the gradients with
respect to the nuclear positions and the basis are not required. To the
best of the authors’ knowledge, there is currently no obvious struc-
ture in PyTorch to allow gradient-propagating operations to work
with large tensors saved on the disk.

Other automatic differentiation libraries developed for deep
learning, such as Tensorflow38 or JAX,39 can also be used to imple-
ment differentiable quantum chemistry. As those libraries have
developed over the years, their features have become similar to each
other. Therefore, differentiable quantum chemistry can also be writ-
ten using those libraries. The choice depends on the preference of
the developers, for instance, which library they are most familiar
with.

VI. CONCLUSIONS
Implementing quantum chemical calculations using automatic

differentiation liberates us from needing to derive analytical gra-
dient expressions. With gradients automatically generated by the
program, software developers can focus on designing better and
more detailed computational models and applying them to prob-
lems at hand. We have shown how automatic differentiation
allows us to easily explore various applications in quantum chem-
istry and are confident that further exploration of this approach
will unveil new applications that have not been considered to
date.

ACKNOWLEDGMENTS
M.F.K. and S.M.V. acknowledge support from the UK EPSRC

(Grant No. EP/P015794/1) and the Royal Society. S.M.V. is a Royal
Society University Research Fellow.

J. Chem. Phys. 156, 084801 (2022); doi: 10.1063/5.0076202 156, 084801-6

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp

The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

AUTHOR DECLARATIONS
Conflict of Interest

The authors have no conflicts to disclose.

DATA AVAILABILITY

The Differentiable Quantum Chemistry (DQC) code can
be found at https://github.com/diffqc/dqc/. The repository that
contains the applications presented in this paper is located at
https://github.com/diffqc/dqc-apps/.

REFERENCES
1S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network train-
ing by reducing internal covariate shift,” in International Conference on Machine
Learning (PMLR, 2015), pp. 448–456.
2A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser,
and I. Polosukhin, “Attention is all you need,” in Advances in Neural Information
Processing Systems, edited by I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R.
Fergus, S. Vishwanathan, and R. Garnett (Curran Associates, Inc., 2017), Vol. 30,
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845
aa-Paper.pdf.
3K. T. Schütt, H. E. Sauceda, P.-J. Kindermans, A. Tkatchenko, and K.-R. Müller,
“SchNet – A deep learning architecture for molecules and materials,” J. Chem.
Phys. 148(24), 241722 (2018).
4O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional networks for
biomedical image segmentation,” in International Conference on Medical Image
Computing and Computer-Assisted Intervention (Springer, 2015), pp. 234–241.
5H.-J. Liao, J.-G. Liu, L. Wang, and T. Xiang, “Differentiable programming tensor
networks,” Phys. Rev. X 9(3), 031041 (2019).
6C. Schenck and D. Fox, “SPNets: Differentiable fluid dynamics for deep neural
networks,” in Conference on Robot Learning (PMLR, 2018), pp. 317–335.
7S. Schoenholz and E. D. Cubuk, “JAX MD: A framework for differentiable
physics,” J. Stat. Mech. 2021, 124016.
8T. Tamayo-Mendoza, C. Kreisbeck, R. Lindh, and A. Aspuru-Guzik, “Automatic
differentiation in quantum chemistry with applications to fully variational
Hartree–Fock,” ACS Cent. Sci. 4(5), 559–566 (2018).
9U. Ekström, L. Visscher, R. Bast, A. J. Thorvaldsen, and K. Ruud, “Arbitrary-
order density functional response theory from automatic differentiation,”
J. Chem. Theory Comput. 6(7), 1971–1980 (2010).
10P. Hohenberg and W. Kohn, “Inhomogeneous electron gas,” Phys. Rev.
136(3B), B864 (1964).
11W. Kohn and L. J. Sham, “Self-consistent equations including exchange and
correlation effects,” Phys. Rev. 140(4A), A1133 (1965).
12A. S. Abbott, B. Z. Abbott, J. M. Turney, and H. F. Schaefer III, “Arbitrary-order
derivatives of quantum chemical methods via automatic differentiation,” J. Phys.
Chem. Lett. 12(12), 3232–3239 (2021).
13L. Li, S. Hoyer, R. Pederson, R. Sun, E. D. Cubuk, P. Riley, and K. Burke, “Kohn-
Sham equations as regularizer: Building prior knowledge into machine-learned
physics,” Phys. Rev. Lett. 126(3), 036401 (2021).
14M. F. Kasim and S. M. Vinko, “Learning the exchange-correlation functional
from nature with fully differentiable density functional theory,” Phys. Rev. Lett.
127, 126403 (2021); arXiv:2102.04229.
15D. R. Hartree, “The wave mechanics of an atom with a non-Coulomb cen-
tral field. Part II. Some results and discussion,” in Mathematical Proceedings of
the Cambridge Philosophical Society (Cambridge University Press, 1928), Vol. 24,
pp. 111–132.
16A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z.
Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M.
Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala,
“PyTorch: An imperatie style, high-performance deep learning library,” in
Advances in Neural Information Processing Systems, edited by H. Wallach,

H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett (Curran
Associates, Inc., 2019), Vol. 32, pp. 8026–8037.
17M. F. Kasim and S. M. Vinko, “ξ-torch: Differentiable scientific computing
library,” arXiv:2010.01921 (2020).
18C. C. J. Roothaan, “New developments in molecular orbital theory,” Rev. Mod.
Phys. 23(2), 69 (1951).
19S. Lehtola, F. Blockhuys, and C. Van Alsenoy, “An overview of self-consistent
field calculations within finite basis sets,” Molecules 25(5), 1218 (2020).
20P.-O. Löwdin, “Quantum theory of cohesive properties of solids,” Adv. Phys.
5(17), 1–171 (1956).
21S. Lehtola, “Curing basis set overcompleteness with pivoted Cholesky
decompositions,” J. Chem. Phys. 151(24), 241102 (2019).
22M. Head-Gordon and J. A. Pople, “Optimization of wave function and geom-
etry in the finite basis Hartree–Fock method,” J. Phys. Chem. 92(11), 3063–3069
(1988).
23T. Van Voorhis and M. Head-Gordon, “A geometric approach to direct
minimization,” Mol. Phys. 100(11), 1713–1721 (2002).
24S. Bai, J. Z. Kolter, and V. Koltun, “Deep equilibrium models,” in Advances
in Neural Information Processing Systems, edited by H. Wallach, H. Larochelle,
A. Beygelzimer, F. d’ Alché-Buc, E. Fox, and R. Garnett (Curran Associates,
Inc. 2019), Vol. 32, https://proceedings.neurips.cc/paper/2019/file/01386bd6d8e
091c2ab4c7c7de644d37b-Paper.pdf.
25S. Lehtola, C. Steigemann, M. J. T. Oliveira, and M. A. L. Marques, “Recent
developments in libxc—A comprehensive library of functionals for density
functional theory,” SoftwareX 7, 1–5 (2018).
26Q. Sun, “Libcint: An efficient general integral library for Gaussian basis
functions,” J. Comput. Chem. 36(22), 1664–1671 (2015).
27C. G. Broyden, “A class of methods for solving nonlinear simultaneous
equations,” Math. Comput. 19(92), 577–593 (1965).
28B. A. Pearlmutter, “Gradient descent: Second-order momentum and saturating
error,” Adv. Neural Inf. Process. Syst. 4, 887–894 (1992).
29Q. Sun, X. Zhang, S. Banerjee, P. Bao, M. Barbry, N. S. Blunt, N. A. Bogdanov,
G. H. Booth, J. Chen, Z.-H. Cui et al., “Recent developments in the PySCF program
package,” J. Chem. Phys. 153(2), 024109 (2020).
30J. P. Perdew and Y. Wang, “Accurate and simple analytic representation of the
electron-gas correlation energy,” Phys. Rev. B 45(23), 13244 (1992).
31T. H. Dunning, Jr., “Gaussian basis sets for use in correlated molecular calcu-
lations. I. The atoms boron through neon and hydrogen,” J. Chem. Phys. 90(2),
1007–1023 (1989).
32E. R. Davidson, “The iterative calculation of a few of the lowest eigenvalues and
corresponding eigenvectors of large real symmetric matrices,” J. Comput. Phys.
17(1), 87–94 (1975).
33F. Jensen, “Polarization consistent basis sets: Principles,” J. Chem. Phys. 115,
9113–9125 (2001).
34NIST Computational Chemistry Comparison and Benchmark Database, NIST
Standard Reference Database Number 101, edited by R. D. Johnson III (Release
on 21 August 2020) (Online), National Institute of Standards and Technology,
Gaithersburg, MD, 2020, available at https://dx.doi.org/10.18434/T47C7Z.
35D. P. O’Neill, M. Kállay, and J. Gauss, “Analytic evaluation of Raman intensities
in coupled-cluster theory,” Mol. Phys. 105(19–22), 2447–2453 (2007).
36R. Balawender, M. Lesiuk, F. De Proft, C. Van Alsenoy, and P. Geerlings,
“Exploring chemical space with alchemical derivatives: Alchemical transforma-
tions of H through Ar and their ions as a proof of concept,” Phys. Chem. Chem.
Phys. 21(43), 23865–23879 (2019).
37G. F. von Rudorff and O. A. von Lilienfeld, “Alchemical perturbation density
functional theory,” Phys. Rev. Res. 2(2), 023220 (2020).
38M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., “TensorFlow: A system for large-scale
machine learning,” in 12th USENIX Symposium on Operating Systems Design and
Implementation (OSDI’16) (USENIX Association, 2016), pp. 265–283.
39R. Frostig, M. J. Johnson, and C. Leary, “Compiling machine learning programs
via high-level tracing,” in Systems for Machine Learning (SysML, 2018).

J. Chem. Phys. 156, 084801 (2022); doi: 10.1063/5.0076202 156, 084801-7

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp
https://github.com/diffqc/dqc/
https://github.com/diffqc/dqc-apps/
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.1063/1.5019779
https://doi.org/10.1063/1.5019779
https://doi.org/10.1103/physrevx.9.031041
https://doi.org/10.1088/1742-5468/ac3ae9
https://doi.org/10.1021/acscentsci.7b00586
https://doi.org/10.1021/ct100117s
https://doi.org/10.1103/physrev.136.b864
https://doi.org/10.1103/physrev.140.a1133
https://doi.org/10.1021/acs.jpclett.1c00607
https://doi.org/10.1021/acs.jpclett.1c00607
https://doi.org/10.1103/PhysRevLett.126.036401
https://doi.org/10.1103/physrevlett.127.126403
http://arxiv.org/abs/2102.04229
http://arxiv.org/abs/2010.01921
https://doi.org/10.1103/revmodphys.23.69
https://doi.org/10.1103/revmodphys.23.69
https://doi.org/10.3390/molecules25051218
https://doi.org/10.1080/00018735600101155
https://doi.org/10.1063/1.5139948
https://doi.org/10.1021/j100322a012
https://doi.org/10.1080/00268970110103642
https://proceedings.neurips.cc/paper/2019/file/01386bd6d8e091c2ab4c7c7de644d37b-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/01386bd6d8e091c2ab4c7c7de644d37b-Paper.pdf
https://doi.org/10.1016/j.softx.2017.11.002
https://doi.org/10.1002/jcc.23981
https://doi.org/10.1090/s0025-5718-1965-0198670-6
https://proceedings.neurips.cc/paper/1991/file/e44fea3bec53bcea3b7513ccef5857ac-Paper.pd
https://doi.org/10.1063/5.0006074
https://doi.org/10.1103/physrevb.45.13244
https://doi.org/10.1063/1.456153
https://doi.org/10.1016/0021-9991(75)90065-0
https://doi.org/10.1063/1.1413524
https://dx.doi.org/10.18434/T47C7Z
https://doi.org/10.1080/00268970701516412
https://doi.org/10.1039/C9CP03935J
https://doi.org/10.1039/C9CP03935J
https://doi.org/10.1103/PhysRevResearch.2.023220

	vinko apv
	5.0076202

