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The band topology of magnetic semimetals is of interest both from the fundamental science point of view and
with respect to potential spintronics and memory applications. Unfortunately, only a handful of suitable topolog-
ical semimetals with magnetic order have been discovered so far. One such family that hosts these characteristics
is the antiperovskites, A3BO, a family of 3D Dirac semimetals. The A=Eu2+ compounds magnetically order with
multiple phases as a function of the applied magnetic field. Here, by combining band structure calculations with
neutron diffraction and magnetic measurements, we establish the antiperovskite Eu3PbO as a new topological
magnetic semimetal. This topological material exhibits a multitude of different topological phases with ordered
Eu moments which can be easily controlled by an external magnetic field. The topological phase diagram of
Eu3PbO includes an antiferromagnetic Dirac phase, as well as ferro- and ferrimagnetic phases with both Weyl
points and nodal lines. For each of these phases, we determine the bulk band dispersions, the surface states, and
the topological invariants by means of ab initio and tight-binding calculations. Our discovery of these topological
phases introduces Eu3PbO as a new platform to study and manipulate the interplay of band topology, magnetism,
and transport.

DOI: 10.1103/PhysRevMaterials.6.114202

I. INTRODUCTION

With the great success of topological band theory for insu-
lators [1–3], recent research efforts have branched out to study
the topological properties of metals and semimetals [3–7].
In contrast to ordinary semimetals, topological semimetals
exhibit Fermi surfaces which are in close proximity to a band
degeneracy formed by a crossing of valence and conduction
bands. These band degeneracies are protected by a nontrivial
topology of the electronic wave functions and give rise to a
number of intriguing physical phenomena, such as ultrahigh
mobility [8,9], Fermi arc or drumhead surface states [10,11],
unconventional magnetoresistance [12–14], and anomalous
transport properties potentially related to quantum anoma-
lies [15–17]. Examples of topological semimetals include
graphene [18], Dirac and Weyl semimetals [19–21], and
nodal-line semimetals [22–25]. Besides these, there exist
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magnetic topological semimetals, which combine long-range
magnetic order with nontrival band topology [26–48]. Unlike
their nonmagnetic counterparts, these magnetic topological
materials are highly tunable by external magnetic fields. In
magnetic Weyl semimetals, for example, one can envision
moving and manipulating Weyl points using applied fields,
which in turn alters their topological transport characteristics.
This property could be exploited for technological applica-
tions, e.g., for the development of next-generation spintronic
devices [49].

Similar to the research on nonmagnetic topological
semimetals there have been great efforts in the study of
systems where magnetism coexists with band topology
[26,27,27–48]. However, despite their promising potential for
applications and many theoretical proposals [27–30], only a
handful of promising topological magnetic Weyl semimetals
has been identified so far [31–33,50]. Unfortunately, sev-
eral magnetic candidate materials for topological semimetals
have additional bands at the Fermi energy, which dilutes the
topological transport properties [34–45]. In other cases, anti-
ferromagnetism (AFM) occurs in centrosymmetric materials,
which leads to (gapped) Dirac points instead of Weyl points
[46–48].

One fundamental reason for the slow progress in finding
ideal magnetic Weyl semimetals is that these are by their very
nature correlated, which makes their theoretical characteriza-
tion more demanding. In fact, ab initio calculations in general
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(b)

FIG. 1. Magnetic phase diagram of Eu3PbO. (a) Magnetization
of a single crystal of Eu3PbO for several applied magnetic field
directions at both 5 K and 20 K. The arrows show the location of
the phase transitions with the roman numerals denoting the phases.
The highest field transition to phase V is outside the field range
at 5 K, but within it at 20 K. (b) The magnetic phase diagram of
Eu3PbO based on powder magnetization data, both as a function of
temperature (purple) and field (blue), and specific heat measurements
(orange) on powder samples. Phase I is antiferromagnetic, phases II
and III ferrimagnetic, phase IV likely ferrimagnetic, and phase V
fully polarized. The star-shaped markers indicate the position of our
neutron scattering experimental datasets. The inset depicts the crystal
structure of Eu3PbO.

cannot predict the magnetic structure, which determines not
only the magnetic symmetries but also the topological prop-
erties of the material. Hence, to characterize the topology
of magnetic semimetals it is essential to combine ab ini-
tio band structure calculations and band topology analysis
with detailed neutron diffraction measurements determining
the magnetic structure. Here, we perform such a combined
investigation to study the interplay of band topology with
magnetism in the cubic antiperovskite Eu3PbO [51,52]. As
a function of magnetic field we observe five magnetically
ordered phases: a noncollinear antiferromagnetic state at zero
field, three ferrimagnetic phases at intermediate fields, and
a fully polarized ferromagnetic order at large fields (Fig. 1).
Using ab initio derived tight-binding models we determine
the topological band degeneracies for each of these phases.
Interestingly, we find that the antiferromagnetic state exhibits
gapped Dirac cones, while the ferrimagnetic and ferromag-
netic phases have Weyl points together with nodal lines. We
derive the topological invariants that protect these band cross-
ings and compute the associated surface states. Because the
Weyl points in the ferri- and ferromagnetic phases act as sinks
and sources of Berry flux, these phases exhibit large Berry
curvatures, which enhances the anomalous Hall current.

It is remarkable that Eu3PbO realizes such a rich variety
of different magnetic topological phases, as a consequence of

which the electronic structure and the band topology can be
tuned and manipulated with an external field. We demonstrate
that this can be achieved in two different ways: (i) by rotating
the magnetization direction within a given phase and (ii) by
driving Eu3PbO across magnetic phase transitions. Through
these mechanisms, it is thus possible to tune the Berry cur-
vature of the valence and conduction bands, which in turn
controls the strength of the anomalous Hall current. Hence,
Eu3PbO represents an ideal platform to study the interdepen-
dence among magnetism, band topology, and transport.

II. RESULTS

Eu3PbO crystallizes in the cubic antiperovskite structure
with space group Pm3̄m (No. 221). In this crystal structure
(inset Fig. 1) six Eu atoms form corner-sharing octahedra,
which surround the oxygen atoms. The Pb atom sits at the cor-
ner of the unit cell, surrounded by twelve Eu atoms forming
a cuboctahedron. We have synthesized Eu3PbO single crys-
tals from stoichiometric amounts of Eu metal together with
PbO [51]. Resistivity measurements confirm the expected
semimetallic character and preliminary Hall conductivity
measurements indicate hole doping consistent with other in-
verse perovskites of this series [53,54]. At zero field, Eu3PbO
orders antiferromagnetically below the Néel temperature
TN = 42 K (see Appendix B for susceptibility, specific heat
and resistivity data) and with increasing applied field un-
dergoes multiple phase transitions. In Fig. 1(a), we show
magnetization traces for a single crystal of Eu3PbO with the
magnetic field oriented along a number of high-symmetry
axes. With increasing field the material undergoes several
metamagnetic transitions (indicated by arrows) and the spins
become fully polarized at the saturation field of approximately
15 T. At 20 K, the transition into the fully polarized phase
is observed at about 12 T, but at 5 K, it is just outside the
experimentally accessible range of magnetic fields. Most im-
portantly, the field at which the magnetic phase transitions
occur is, to first order, orientation independent (although we
note that there is more significant directional dependence for
the phase III-IV and IV-V transitions which is outside the
scope of this current work). This weak orientation dependence
is also of benefit for the powder neutron diffraction measure-
ments in an applied field, with respect to the potential for grain
alignment. The fields at which neutron diffraction datasets
were collected were chosen to ensure that these would cor-
respond to single-phase measurements for the high symmetry
directions shown in Fig. 1(a). Our data allow the reconstruc-
tion of the overall phase diagram, as shown in Fig. 1(b). This
is based on powder measurements of specific heat (orange) as
well as Quantum Design MPMS (purple) and PPMS (blue)
magnetization measurements on a number of samples (see
Appendix B).

The phase diagram contains, aside from the high temper-
ature paramagnetic phase, four magnetically ordered states:
one antiferromagnetic (AFM-I - labeled I) below TN = 42 K
and μ0H = 4.6 T, and three ferrimagnetic within the field
range 4.6–15 T (II, III, and IV), and a ferromagnetically
ordered phase (FM) above approximately 15 T. All phase
transitions have a reasonably strong temperature dependence
as shown in the phase diagram. The metamagnetic transitions
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FIG. 2. (a) Schematic representation of the AFM-I magnetic structure with the magnetic space group PI a3̄. (b) Schematic representation
of the ferrimagnetic Ferri-II structure with the P4/mm′m′ magnetic space group as a superposition of two components, antiferromagnetic (top)
and ferromagnetic (bottom). (c) Schematic representation of the ferrimagnetic Ferri-III structure with the Pm′m′m magnetic space group as
a superposition of two components, antiferromagnetic (top) and ferromagnetic (bottom). In all panels, three Eu sites associated with the 3c
Wyckoff position of the paramagnetic cubic Pm3̄m structure are shown as red, blue, and green spheres, respectively, and the paramagnetic unit
cell is shown for clarity alongside the magnetic cells.

in Eu3PbO are reproducible and consistent between multiple
batches of powder and single crystal samples, confirming their
robust and intrinsic nature.

A. Neutron scattering and magnetic ordering

In order to determine the magnetic structure of the mag-
netic phases of Eu3PbO (excluding phase IV and the fully
polarized phase V which were outwith the field range of the
magnet used) we performed neutron powder diffraction mea-
surements at the WISH beamline of ISIS, Oxfordshire UK.
Above the Néel temperature TN at zero field the refinement
yields the cubic space group Pm3̄m, with lattice parameter
a = 5.0788(5) Å, in full agreement with earlier single-crystal
x-ray diffraction experiments [51]. On cooling below TN, we
observe clear magnetic Bragg peaks, consistent with propaga-
tion vector k = ( 1

2 , 0, 0). Given the extremely large number
of possibilities of magnetic structures in the current case,
the refinement solution underlying our analysis is the highest
symmetry one consistent with the magnetic powder neutron
diffraction data and the magnetic property measurements.
Further details of the magnetic structure solution, along with
powder diffraction patterns and fits, are given in Appendix C.
Solving for the magnetic structure, the magnetic space group
PI a3̄ (No. 205.36, type IV)1 gives a satisfactory solution with
a noncollinear antiferromagnetic spin alignment, correspond-
ing to the action of the full arms of the propagation vector
star, namely ( 1

2 ,0,0), (0, 1
2 ,0), and (0,0, 1

2 ) [see Figs. 2(a) and
3(b) as well as Appendix C]. This structure can be rationalized
with two Eu-Eu interactions: a strong FM interaction through
the oxygen and an AFM direct exchange along the octahedral
edges that leads to a 120◦ structure.

Upon increasing the magnetic field, Eu3PbO goes through
two metamagnetic transitions at μ0H = 4.6 T and μ0H =
6.1 T into the two ferrimagnetic phases labeled II and III

1Here, and in what follows we use the BNS magnetic group type
symbols.

in Fig. 1 (Ferri-II and Ferri-III in Figs. 2 and 3). From
our neutron measurements, we find that the Ferri-II phase
has propagation vectors k = ( 1

2 ,0,0), (0, 1
2 ,0) and (0,0,0).

The latter one is consistent with the development of a fer-
romagnetic moment. Figure 2(b) shows schematically the
antiferromagnetic and ferromagnetic components of the fer-
rimagnetic structure. The moments are collinear and arranged
in (anti)ferromagnetic and ferrimagnetic planes stacked along
the b direction. Assuming that the ferromagnetic component
is aligned with the field direction, a good quality fit of the
magnetic intensities has been achieved in the magnetic space
group P4/mm′m′ (No. 123.345, type III) with the magnetic
structure as drawn in Figs. 2(b) and 3(c). The magnetic space
group derives from the zero field one by the loss of one arm
of the star of k corresponding to the ferromagnetic direction.

At fields above 6.1 T the Ferri-III phase is stabilized, which
has a reduced symmetry with magnetic space group Pm′m′m
(No. 47.252, type III) by the loss of another arm of the star
of k, see Figs. 2(c) and 3(d). This magnetic structure con-
sists of ferromagnetic planes stacked along a in a mixture
of ferromagnetic and antiferromagnetic alignment to result
in a net ferrimagnetic, collinear state. Above the saturation
field μ0H = 15 T, the last arm of the star is removed and
Eu3PbO becomes ferromagnetic with all spins polarized along
the direction of the applied magnetic field.

We note that the identified magnetic structures map well
onto the experimental magnetization data of Fig. 1. The
magnetization jumps would be expected to be approximately
1.3 μB/Eu2+ at each of the 5-T and 8-T transitions, with a
remaining moment ≈ 5.2 μB/Eu2+ to reach the fully polar-
ized state. This is in good agreement with our data. We also
note that there is an approximately linear background to our
magnetization data which may be due to weak spin canting
that we cannot determine based on powder neutron diffrac-
tion. Despite the difficulties of working with polycrystalline
samples in such a high symmetry and magnetically complex
material (for discussion see Appendixes C 2 and C 3) the
magnetic structures determined from our neutron diffraction
data constrain the magnetic structure much more effectively
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FIG. 3. Electronic band structures, magnetic orders, and Brillouin zones of Eu3PbO. The Fermi energies are indicated by the dashed lines
at 0 eV. The positions of the Dirac points, nodal lines, and Weyl points are labeled by D, L, and W, respectively, see Table I. (a) Paramagnetic
phase with Brillouin zone shown in (g). (b) Antiferromagnetic phase. The paramagnetic zone is folded along �-X , �-Y, and �-Z , giving an
eightfold increase in unit cell size. The cubic symmetry is retained and the bands are Kramers degenerate. (c) Ferri-II phase. The blue and
black arrows indicate the orientations of the magnetic moments on the Eu atoms for clarity. The parent zone is backfolded halfway along �-X
and �-Y . The symmetry is lowered to tetragonal. The bands are now singly degenerate except at the Weyl points and nodal lines. (d) Ferri-III
phase with Brillouin zone shown in (f). The bands are back folded along �-Z and the symmetry is lowered to orthorhombic. The degeneracy
loss is the same as for the Ferri-II phase as described above. (e) Fully polarized with field along [110]. This phase has no zone folding but
loss of Kramers degeneracy and splitting of Dirac cones into Weyl points. With the field direction along [110] the symmetry is lowered to
orthorhombic. Note that while in (e) the field is along [110], in all other panels the field is along [100].

than is the case for many other ferrimagnetic Weyl candidate
materials where neutron diffraction studies have not been
carried out.

B. Topological band structure

In the paramagnetic phase, the band structure of
Eu3PbO displays six three-dimensional Dirac cones at
finite momentum along the �-X , �-Y , and �-Z directions that
are gapped by spin-orbit coupling and an admixture of higher
orbitals [54], see Fig. 3(a) and Table I. This is similar to the
nonmagnetic antiperovskite Ca3PbO [55–57], where a linear
Dirac-like dispersion has recently been observed using soft
x-ray ARPES measurements [58]. Indeed, just as in Ca3PbO
[57,59], the paramagnetic state of Eu3PbO is a crystalline
topological insulator characterized by two independent mirror
Chern numbers [57]. This nontrivial topology arises due
to a band inversion of the Eu-d and Pb-p orbitals near the
� point and is protected by the mirror symmetries of the
cubic space group Pm3̄m. At the surface, the nontrivial
band topology manifests itself by the appearance of two
two-dimensional Dirac cone surface states, like in Ca3PbO
[56,57], see Fig. 4(a).

While the PM phase is very similar to the nonmagnetic
antiperovskites, the magnetic phases realize a number of novel
topological states. Indeed, it is expected that the different
magnetic orders have significant effect on the band structure
of Eu3PbO, leading to different topological states. Let us now
discuss the topological band structures of the three different
magnetic phases in detail.

1. Antiferromagnetic phase

Similar to the PM phase, all bands in the AFM-I phase
are twofold degenerate, even though time-reversal symmetry
T is broken. This is because magnetic space group PI a3̄
(No. 205.36) contains a symmetry element T̃ that combines
time-reversal with a half translation along [111] (equivalent to
{1′ | 1

2 , 1
2 , 1

2 }), leading together with inversion P to Kramer’s
degeneracies at every k point. Since the AFM-I phase has
an eight times larger unit cell compared to the PM phase,
the electronic bands are backfolded in all three reciprocal
directions, as seen by comparing Fig. 3(a) with Fig. 3(b).
Backfolding leaves the six gapped Dirac points D1 of the
PM phase mostly unchanged, although they are moved to a
slightly higher energy (cf. Table I). Along the �-X , �-Y , and
�-Z directions the backfolded bands hybridize and a band gap
of about 100 meV opens up. At the time-reversal invariant
momenta X , Y , and Z , however, hybridization is strongly
suppressed by symmetry, giving rise to three (nearly) gapless
Dirac points at the energy E � −0.15 eV [D2 in Fig. 3(b)].2

Notably, the dispersion at these Dirac crossings is linear in
one direction, but quadratic in the other two.

We conclude that the AFM-I phase of Eu3PbO contains
both gapped and gapless Dirac points close to the Fermi

2There exists a very small, but finite hybridization between the Pb-p
and Eu-d orbitals at the X , Y , and Z points, which leads to a small
gap of less than 1 meV, see Appendix D.
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TABLE I. Types of topological band crossings. This table lists
the positions and energies of the topological band crossings in the
first Brillouin zone (BZ) for the paramagnetic phase (PM), the
antiferromagnetic phase (AFM), the ferrimagnetic phases (Ferri-II
and Ferri-III), and the ferromagnetic phase with magnetization in
[110] direction (FM [110]). The positions of the band crossings
k = (kx, ky, kz ) are given in units of 2π/ai, where ai denotes the
lattice constant of the respective real space direction. All energies are
given in eV relative to the Fermi energy. The type of band crossing
is indicated in the fourth column, while the fifth column states the
topological invariant that protects the crossings. The last column
gives the multiplicity of the crossings, i.e., the number of symmetry
related crossings at the same energy.

phase position E (eV) type top. inv. #

PM (0.18,0,0) 0.017 Dirac (D1) mir. Chern 6

AFM-I (0.35,0,0) 0.05 Dirac (D1) mir. Chern 6
AFM-I (π, 0, 0) −0.15 Dirac (D2) – 3
Ferri-II (0,0,0.17) 0.07 WP (W1) Chern 2
Ferri-II (0, 0, 0.18) −0.03 WP (W2) Chern 2
Ferri-II (0, 0, 0.07) −0.27 WP (W3) Chern 2
Ferri-II kxky plane 0.05 Line (L1) Berry 1
Ferri-II kxky plane −0.24 Line (L2) Berry 1

Ferri-III (0.17,0,0) 0.09 WP (W1) Chern 2
Ferri-III (0.16, 0, 0) −0.04 WP (W2) Chern 2
Ferri-III (0.07,0,0) −0.25 WP (W3) Chern 2
Ferri-III kykz plane −0.003 Line (L1’) Berry 1
Ferri-III kykz plane −0.26 Line (L2) Berry 1
Ferri-III kykz plane −0.007 Line (L3) Berry 2

FM [110] (0.23, 0.015, 0) 0.06 WP (W1) Chern 4
FM [110] (0.19, −0.001, 0) −0.12 WP (W2) Chern 4
FM [110] (0.12, 0, 0) −0.32 WP (W3) Chern 4
FM [110] (0.003, 0.003, 0.13) −0.31 WP (W4) Chern 4
FM [110] [110] plane −0.02 Line (L1) Berry 1

energy, within an experimentally accessible energy range. Re-
markably, this is only the second known example of a Dirac
state in an antiferromagnet, the other one being CuMnAs [46].

2. Ferrimagnetic phases

In the ferrimagnetic phases Ferri-II and Ferri-III, the sym-
metry is lowered, which results in a lifting of the Kramer’s
degeneracy of the bands. As a consequence, all bands are in
general singly degenerate, but can form doubly degenerate
Weyl points when they cross. In Table I we list the Weyl
points (WP) that are close to the Fermi energy, see Fig. 3(c)
and 3(d). We observe that the multiplicity of all the Weyl
points is only two, i.e., due to the low symmetry there are
only two Weyl points at the same energy. Such a pair of Weyl
points, which are related by inversion, represents the simplest
kind of Weyl band crossings. The low-energy physics near
these Weyl points is described by magnetic Weyl fermions,
which exhibit a number of exotic phenomena, e.g., topological
(magneto)transport properties due to the chiral anomaly [5,6].
By doping Eu3PbO with, e.g., Eu deficiencies, the Fermi level
could be tuned to these pairs of Weyl points, which would

allow to measure the topological transport signatures in a clear
way.

The Ferri-II and Ferri-III phases exhibit in addition to the
Weyl points also line crossings, where two bands intersect
along a one-dimensional line in the BZ. In the Ferri-II phase
these line crossings appear in the kxky plane and are mapped
onto themselves under inversion, resulting in multiplicity one.
They are protected by the mirror symmetry z → −z and a
π -Berry phase, which is expected to lead to drumhead surface
states [23], whose shape depends on the chosen termination
[60]. In the Ferri-III phase, the line crossings occur in the
kykz-plane and are protected by the mirror symmetry x → −x,
since here the magnetic moments point along the x direction,
rather than the z direction. Contrary to the Ferri-II phase,
the Ferri-III phase also exhibits a pair of nodal lines with
multiplicity two (L3 in Table I). The two nodal lines of this
pair are mapped onto each other by inversion symmetry.

3. Ferromagnetic phase

In the FM phase, all magnetic moments are colinearly
aligned along the direction of the applied magnetic field. As
a consequence, the Kramers degeneracy of the bands in the
PM and AFM-I phases is lifted and the gapped Dirac points
are split up into a collection of Weyl points. For concreteness,
we consider here a field applied along the [110] direction,
which lowers the symmetry to Cmm′m′ (No. 65.486) and leads
to an interesting set of Weyl points and nodal lines (other
field directions are discussed Appendix D). In this case, the
bands near the Fermi energy form four quartets of Weyl points
and one nodal line, see Fig. 3(e) and Table I. The four Weyl
points of the quartets W1, W2, and W3 are located within
the kz = 0 plane and are symmetry related by inversion and
mirror symmetry kx ↔ ky. The four Weyl points of the quartet
W4 lie within the [1̄10] plane and are symmetry related by
inversion and twofold rotation along the z axis combined with
time-reversal. We remark that opposite chirality Weyl points
in the quartets W1, W2, and W3 show significant separation
in momentum space, which results in large arc surface states
(cf. Fig. 4) and, moreover, enhances the topological transport
signatures. Opposite chirality Weyl points in the quartet W4,
on the other hand, are close together in k space, separated
by only δk = 0.008 × 2π/a, see Table I. Besides these Weyl
points, the FM phase with [110] magnetization exhibits also
a line node in the plane perpendicular to the [110] direction,
which is protected by mirror symmetry.

C. Surface states

The surface states in the PM phase of Eu3PbO, which
are shown in Fig. 4(a), are similar to the nonmagnetic
antiperovskites. Like in Ca3PbO [56,57], we observe two-
dimensional Dirac cone surface states, both for the lead and
oxygen terminations.3 These Dirac cone surface states appear
by the bulk-boundary correspondence, as a consequence of the
nonzero mirror Chern numbers that characterize the nontrivial
bulk topology. Since the surface states are singly degenerate,

3Lead (oxygen) termination refers to surfaces that contain besides
europium only lead (oxygen) atoms, cf. Ref. [57].
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FIG. 4. Surface states of Eu3PbO and their spin polarization. Calculated surface density of states (SDOS) and spin polarization for a [001]
slab of Eu3PbO with oxygen and lead termination. The color code represents the SDOS on a linear scale for the five outermost layers, while
the in-plane spin polarization is indicated by the red arrows. (a) and (b) show the SDOS for the paramagnetic and antiferromagnetic phases
at the energy of the upper Dirac points E = 0.017 and 0.05 eV, respectively (cf. Table I). The position of the Dirac points is marked by the
label D1. (c) and (d) display the SDOS for the ferromagnetic phase with magnetization in [110] and [100] directions at the energy of the Weyl
points W1 and W2, respectively. The chiralities and positions of the Weyl points W1 and W2 are indicated in all panels by the green and blue
dots and numbers.

they exhibit a nontrivial spin texture, as indicated by the red
arrows.

In the magnetically ordered phases of Eu3PbO, the ordered
Eu moments cause large changes not only in the bulk bands
but also in the surface states. To exemplify this, we focus on
the surface states of the AFM-I and FM phases.

1. Antiferromagnetic phase

In Fig. 4(b), we present the surface states of the AFM-I
phase with [001] termination. We find that the surface states
are qualitatively similar to the PM phase. For both the lead and
the oxygen termination there appear Dirac cone surface states
with a nontrivial spin polarization. Because of the backfolding
of the BZ, these surface states now cover twice as much area
as in Fig. 4(a). As in the PM phase, the Dirac cone surface
states of the AFM-I phase are guaranteed to exist due to
the bulk-boundary correspondence, which relates them to the
mirror Chern number of the bulk bands.

2. Ferromagnetic phase

In the FM phase, the nontrivial topology of the Weyl points
leads to the appearance of arc surface states, whose stabil-
ity is guaranteed by a nonzero Chern number. The surface
states on the [001] surface of the FM phase with magneti-
zation direction [110] are shown in Fig. 4(c). For the lead
termination we observe four large arc states that connect
opposite chirality Weyl points of the quartets W1 and W2.

Since these arc states extend over nearly half the surface BZ,
they should be readily observable via quasi-particle interfer-
ence in Fourier-transform scanning tunneling spectroscopy
[61]. For the oxygen termination, on the other hand, the arc
states are much shorter, connecting opposite chirality Weyl
points that are located next to each other. Regarding the spin
polarization of the arc states, we find that for the lead termi-
nation the polarization is similar to the one of the Dirac states
in the PM and AFM-I phases. For the oxygen termination,
however, the spin polarization points predominantly along the
direction of the Eu moments. This is because for the oxygen
termination, there are no Pb atoms and twice as many Eu
atoms on the surface compared to the lead termination. Hence,
the surface states on the oxygen termination have mostly Eu-d
orbital character, while for the lead termination they have Pb-p
character. For this reason, the surface states on the oxygen
termination are polarized more strongly by the Eu moments
than on the lead termination.

So far we have assumed that the Eu moments point along
the [110] direction. However, in a single crystal it is possible
to adjust the magnetization direction by aligning the spins
using the external field. This allows us to tune the elec-
tronic structure and band topology of Eu3PbO. To demonstrate
this, let us consider the FM phase with the Eu moments
oriented along the [100] axis. With this magnetization
direction, the Weyl points W2 and W3 are slightly shifted in
energy, while the W1 points are entirely absent (Appendix D).
Correspondingly, the arc surface states show different
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FIG. 5. Intrinsic anomalous Hall conductivity. Calculation of the
intrinsic anomalous Hall conductivity σyz in the ferromagnetic phase
as a function of chemical potential μ, for different magnetization
directions at a temperature of 10 K. Shaded regions highlight broad
features in σyz that are attributed to different Weyl points.

connectivities, see Fig. 4(d). That is, on the [100] surface,
there appears a single arc state that connects the two Weyl
points W2, both for the lead and oxygen terminations. (For
the lead termination there is a secondary surface state feature,
which however has no topological origin.)

D. Anomalous Hall conductivity

The nontrivial band topology of Eu3PbO manifests itself
not only in the surface states but also in anomalous trans-
port characteristics, such as the anomalous Hall effect, the
anomalous Nernst effect [62], or the circular photogalvanic
effect [63]. For instance, the intrinsic anomalous Hall con-
ductivity (AHC) σi j is directly proportional to the momentum
integrated Berry curvature. The AHC shows local extrema
when the chemical potential is tuned to the Weyl point en-
ergies. Moreover, the dependence of the band topology on the
magnetic phase and the magnetization direction is expected to
reflect itself in the AHC. While current single crystal sample
dimensions do not allow for unambiguous experimental de-
termination of the AHC we nevertheless include here a short
discussion of the expected signatures.

To exemplify this, we calculate the intrinsic AHC σyz for
the FM phase with different magnetization directions as a
function of chemical potential μ (Fig. 5). We observe that
the overall magnitude as well as the position of the local
extrema changes with magnetization direction. For small hole
doping at μ � −0.05 eV, the AHC in the FM phase with
[110] and [111] magnetization is about 50 (�cm)−1, while
in the FM phases with [100] magnetization the AHC is three
times larger. This is quite sizable and comparable to the values
of MnSi [64] and Mn3Sn [35]. The broad features in σyz at
μ � +0.05 and μ � −0.15 originate from the Weyl points
W1/W2 and W3/W4, respectively (Appendix E). Interest-
ingly, at μ � +0.05 W1 gives a positive contribution, while
W2 contributes negatively, because these two sets of Weyl
points have opposite chiralities. Due to this cancellation, the
AHC for the [110] and [111] magnetizations is about twice

smaller than for the [100] magnetization, for which the Weyl
points W1 do not exist.

III. SUMMARY AND DISCUSSION

Combining magnetization measurements with neutron
diffraction and electronic structure calculations, we have stud-
ied the interplay between band topology and magnetism in
the antiperovskite Eu3PbO. We have discovered four different
magnetic phases and identified their magnetic structures as
a function of magnetic field. For each of these phases, we
have determined the band topology, thereby uncovering a rich
variety of Weyl points, Dirac points, and nodal lines close to
the Fermi energy. Among the exemplary properties of Eu3PbO
are, for example, (i) the large Weyl point distance of, e.g., 46%
of the Brillouin zone in the ferromagnetic phase, (ii) the large
tunability by magnetic field through the rich phase diagram,
and (iii) the fact that additional band crossings do not mask
the desired physics in, e.g., the anomalous Hall effect.

By the bulk-boundary correspondence, this nontrivial
topology of the bulk bands leads to various types of surface
states, e.g., Dirac cone, Fermi arc, and drumhead surface
states, within an easily accessible magnetic phase diagram in a
single compound. Moreover, from a nontrivial bulk topology,
one may expect unusual transport phenomena, such as anoma-
lous Hall currents [65]. We have calculated the anomalous
Hall conductivity of Eu3PbO in the ferromagnetic phase and
shown that it displays clear fingerprints of the Weyl points.
At the metamagnetic transitions the anomalous Hall current
exhibits sharp singularities, due to the rearrangement of the
magnetic spin texture. Thus the different (noncollinear) mag-
netic orders in Eu3PbO offer the unique opportunity to explore
the sensitivity of the anomalous Hall current on the details of
the magnetic structure.

The four magnetic phases of Eu3PbO with their different
band topologies can be easily accessed and manipulated with
an external field. This allows to tune the electronic structure
and drive it through topological phase transitions. For ex-
ample, the Dirac points of the antiferromagnetic phase can
be split into Weyl points by crossing the phase boundary
into the ferrimagnetic phase. Furthermore, the Weyl points
and line nodes of the ferri- and ferromagnetic phases can
be pair-annihilated or moved in energy and momentum by
adjusting the magnetization direction. This, in turn, modifies
the Berry curvature of the bands, and hence the anomalous
Hall conductivity. In addition nodal lines may gap along
certain directions by broken mirror symmetries (i.e., change
in magnetic field direction) and can substantially contribute
to the anomalous Hall conductivity as discussed by, e.g., K.
Kim et al. [66]. Exploration of the detailed field-angle phase
diagram are of experimental and theoretical interest both for
the magnetism stabilized in Eu3PbO in itself as well as the
impact on the topological properties of the material. Over-
all the rich phase diagram with interdependent magnetism,
topology of the electronic bands, and anomalous transport
properties makes Eu3PbO a potential candidate for new device
applications that rely on magnetic-field induced switching of
topological currents, especially in light of the advances in the
thin film growth of the related compound Sr3PbO [67].
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In closing, we discuss several possible directions for future
experimental and theoretical studies. First, the bulk and sur-
face Dirac cones of the paramagnetic and antiferromagnetic
phases could be measured by ARPES, since these phases have
no net magnetic moment. The bulk Weyl cones and surface
arcs of the ferri- and ferromagnetic phases, on the other hand,
could be observable in Fourier-transform scanning tunneling
spectroscopy. Second, Hall resistivity and magnetoconduc-
tance measurements on single crystals are of high interest,
as these would reveal transport signatures of the Weyl points
and nodal lines. Third, Nernst effect and magnetothermal
transport measurements could provide a direct measure of the
Berry curvature [62]. Furthermore, they could reveal possible
violations of the Wiedemann-Franz law, due to the chiral
anomaly of the Weyl points [68]. We note that single crys-
tals of Eu3PbO are naturally hole doped, such that the Dirac
and Weyl points D2 and W2 should be readily accessible in
transport and ARPES measurements. On the theoretical side,
it would be interesting to investigate the RKKY interactions
among the Eu moments and to study effects of magnetic and
Coulomb interactions and disorder on the band topology. We
hope that our work will inspire future research along these
lines.
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APPENDIX A: OVERVIEW OF METHODS

1. Electronic structure calculations and tight-binding model

The electronic structure of Eu3PbO was computed by a
relativistic linear muffin-tin orbital calculation [69,70] us-
ing the in-house PY LMTO computer code as described in
Ref. [70]. The code is available on demand. As an input for
the DFT calculation we used the experimental crystal struc-
ture of Ref. [51]. The DFT calculations show that the bands
near the Fermi energy originate mostly from Pb-p and Eu-d
orbitals. Guided by these observations, we use the Pb-p and
Eu-d orbitals as a basis set to derive a nine-band tight-binding
model. With this tight-binding model we have computed the
surface states, the Berry curvature, and the topological invari-
ants. The details of the tight-binding model are presented in
Appendix D.

2. Topological invariants, surface states, and
anomalous Hall conductivity

The stability of the Dirac, Weyl, and nodal-line band cross-
ings is guaranteed by nonzero topological invariants. We have
numerically computed these topological invariants using the
tight-binding model, see Appendix E 1. By the bulk-boundary

correspondence a nonzero value of the topological invari-
ant leads to protected surface states. Using the tight-binding
model we have computed the density of states and spin polar-
ization of these surface states, which are presented in Fig. 4.
The anomalous Hall conductivity is obtained from the mo-
mentum integral of the Berry curvature, see Appendix E 2.

3. Crystal growth and sample characterization

Crystals of Eu3PbO were grown in a sealed Ta ampoule as
reported previously in Ref. [51]. Since Eu3PbO is extremely
air sensitive, all experiments were prepared and sealed under
Ar atmosphere. Single crystals for magnetization measure-
ments were covered by a thin layer of Apiezon N grease to
protect it from air during transfer. All magnetization measure-
ments were performed both in a Quantum Design SQUID as
well as with the VSM option in a Quantum Design PPMS
system.

4. Neutron scattering measurements

Neutron scattering measurements were performed at the
WISH beamline of ISIS, Harwell, Oxford. Polycrystalline
Eu3PbO was used for all of the neutron diffraction mea-
surements. Isotope enrichment was not possible due to the
necessity of using Eu as a reagent, rather than Eu2O3. In zero
field, a loose powder was contained in a cylindrical 1 mm
diameter suprasil capillary (sealed under 200 mbar He to pro-
vide exchange gas and prevent sample decomposition) which
was then held in a vanadium can for the measurement. A
pelletized sample was used for the applied field measurements
to prevent grain alignment in applied field, this was contained
in a flattened suprasil ampoule to prevent movement and again
was sealed under He atmosphere. Data were collected at 50 K
and 1.5 K for the loose powder sample and 50 K at 0 T,
1.5 K at 0 T followed by 1.5 K at 5 T and 1.5 K at 8 T
without intermediate warming. For the details on the magnetic
structure determination see Appendix C.

APPENDIX B: SPECIFIC HEAT AND SUSCEPTIBILITY
MEASUREMENTS

Here we briefly present further physical property measure-
ments underlying the phase diagram presented in the main
text. In Fig. 6, we present magnetic susceptibility (top), spe-
cific heat (middle), and resistivity (bottom) data of Eu3PbO.

The magnetic susceptibility was measured on a powder
sample in a field of 100 Oe and shows a clear transition into
the antiferromagnetic phase at ca. 40 K. Above TN a clear
Curie-Weiss behavior is observed corresponding to a magnetic
moment of 7.8 μB consistent with the expected moment for
Eu2+.

Specific heat was measured in zero field on a pressed pellet
in a Quantum Design PPMS system. The transition into the
antiferromagnetic state is clearly observable at TN .

Finally we present resistivity measurements again on a
pressed pellet. While low temperature transport is dominated
by grain boundaries the semi-metallic behavior at higher tem-
peratures as well as the transition into the antiferromagnetic
state is readily discernible. Especially the latter indicates a
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cm
)

FIG. 6. Magnetic susceptibility (top), specific heat (middle), and
resistivity (bottom) of Eu3PbO. For more details see text.

strong coupling of the magnetic order with electronic trans-
port.

APPENDIX C: DETERMINATION OF THE
MAGNETIC STRUCTURES

Polycrystalline Eu3PbO was used for all of the neutron
diffraction measurements. In zero field a loose powder was
contained in a cylindrical 1 mm diameter suprasil capillary
(sealed under 200 mbar He to provide exchange gas and
prevent sample decomposition) which was then held in a vana-
dium can for the measurement. A pelletized sample was used
for the applied field measurements to prevent grain alignment.
This was contained in a flattened suprasil ampoule to prevent
movement under applied field and again was sealed under He
atmosphere. Data were collected at 50 K and 1.5 K for the

FIG. 7. The paramagnetic (50 K) and antiferromagnetic (1.5 K)
phase data from banks 3 and 8 of WISH. The substantial background
is from the quartz ampoule used to contain the sample.

loose powder sample and 50 K at 0 T, 1.5 K at 0 T followed
by 1.5 K at 5 T and 1.5 K at 8 T without intermediate warming.

1. Crystal structure of Eu3PbO

At 50 K in zero field, a good structural refinement
could be obtained in Pm3̄m, in good agreement with pre-
vious powder and single crystal x-ray diffraction studies,
with a = 5.0788(5)Å. The setting with Eu on Wyckoff site
3c (0,1/2,1/2), Pb on site 1a (0,0,0) and O on site 1b
(1/2,1/2,1/2) was used throughout.

2. Zero field magnetic structure

In the 1.5 K data, magnetic Bragg peaks were observed
(see Fig. 7), consistent with a propagation vector of k =
(1/2, 0, 0). The magnetic structure solution began with the
assumption (supported by magnetometry) that a finite or-
dered moment must be present on all Eu sites. The maximal
magnetic subgroups of Pm3̄m1′ for propagation vector k =
(1/2, 0, 0), considering a single arm only, and a magnetic ion
on the 3d site were investigated using the MAXMAGN tool
of the Bilbao Crystallographic Server [71], but none satisfied
the above condition.

Following this, the tool k_Subgroupsmag [72] was used to
determine the subgroups of Pm3̄m1′ which fulfill this condi-
tion. These subgroups were investigated in order of decreasing
symmetry by examination of systematic absences followed by
Rietveld refinement using FULLPROF and JANA2006 of poten-
tial candidates [73,74].

Systematic absences violations excluded Pc4̄c2, Pc4cc, and
Pccc2. Rietveld refinements were performed using magnetic-
only datasets created by subtracting the 50 K paramagnetic

TABLE II. The results of the Rietveld refinement of the 1.5K 0T
Eu3PbO data in magnetic space group Aama2, in the standard setting
where a = √

2ap, b = √
2ap, c = 2ap, and ap is the parent lattice

constant ap = 5.0763(13) Å.

mx my mz

Site x y z (μB/Eu2+) (μB/Eu2+) (μB/Eu2+)

Eu1 0.75 0.25 0.25 7.49(8) ±0.08 0 0
Eu2 0 0 0.0 0 0 2.57 ±0.14
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FIG. 8. The zero-field magnetic structure of Eu3PbO (top) and
spin-only representation (bottom).

data from the 1.5 K data. The scale and absorption factors
were fixed by a refinement of the nuclear phase with the 50 K
dataset. Aama2 (BNS 40.208) with transformation matrix (2c,
-a + b, a + b), origin shift (0,0,1/2) was the only direct sub-
group of Pm3̄m1′ in the tree under consideration found to give
a satisfactory refinement and therefore no further symmetry
lowering was investigated. The results of the refinement can
be found in Table II. The moment obtained for Eu1 is slightly
in excess of the expected ordered moment. In addition, the
moments on the two Eu sites are perpendicular which is not
easily rationalized. Since the different moment sizes as well as
orientation are not reconcilable with physical property mea-
surements we can exclude this single-k solution.

However, the data are consistent with a multi-k structure
with the use of the full arm of the star: k1 = (1/2, 0, 0),
k2 = (0, 1/2, 0), and k3 = (0, 0, 1/2). There are a large num-

TABLE III. The results of the Rietveld refinement of the 1.5K 0T
Eu3PbO data in magnetic space group PI a3̄, in the standard setting
where a = 2ap, b = 2ap, c = 2ap, and ap is the parent lattice constant
a = 10.15638(10) Å.

mx my mz

Site x y z (μB/Eu2+) (μB/Eu2+) (μB/Eu2+)

Eu1 0 0.5 0.25 0 −4.769 ± 0.011 4.769 ± 0.011

ber of possible structures consistent with these vectors, with
differing moment directions relative to the lattice. However,
in the cubic metric this cannot be determined from powder
data. Therefore the highest symmetry option consistent with
the data, PI a3̄ with a single Eu site, was investigated and
found to give a satisfactory fit, with a reasonable ordered mo-
ment. Other cubic magnetic space groups consistent with the
propagation vectors can be ruled out by systematic absence
considerations.

This structure can be rationalized with two Eu-Eu inter-
actions: a strong FM interaction through the oxygen and an
AFM direct exchange along the octahedral edges that leads to
a 120◦ structure, as shown in Fig. 8. The refinement results are
tabulated in Table III, and fitted profiles are shown in Fig. 9.
Since this model gives a reasonable ordered moment for a
single Eu site, and with the current data we cannot distinguish
between single- and multi-k order, we have taken the multi-
k PI a3̄ model as the most appropriate for the zero-field state,
since it can be easily rationalized using the known interactions
of Eu2+.

3. Applied field magnetic structures

The PI a3̄ model allows for a simple evolution of the struc-
ture with applied magnetic field, with the magnetic structure
losing one arm of the star of k at each magnetic transition (we
consider field applied along the c axis). The addition of propa-
gation vector (0,0,0) captures the ferromagnetic moment. For
the first transition at 5 T the propagation vector (0,0, 1

2 ) is
lost (see Fig. 10) and a model in P4/mm′m′ with five Eu
sites, constrained to have equal moment, gives an excellent fit
and reasonable ordered moment (see results in Table IV and

FIG. 9. A portion of the Rietveld refinement for the PI a3̄ struc-
ture (90◦ banks 3 and 8 WISH, magnetic only subtracted pattern)
with the data in blue, calculated pattern in black, difference in gray,
magnetic reflections indicated by black tickmarks.
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(Å) (Å)

FIG. 10. Peak intensity changes as a function of applied field at
T = 1.5 K. Reflection labels are in the notation of the parent unit
cell.

Fig. 11). At the second transition, a further arm of the star,
(0, 1

2 ,0) is lost, resulting in Pm′m′m with 5 sites. With these
sites again constrained to have equal moments an excellent fit
is obtained, the results of which are summarized in Table V
and Fig. 12. The ordered moment obtained is slightly smaller
than the full ordered moment for Eu2+ but considering the
magnetic anisotropy present, it is possible that there is a cer-
tain amount of phase coexistence in this higher-field region,
which the current powder measurements are relatively insen-
sitive to. Therefore the overall phase transition sequence can
be suggested to be PI a3̄ → P4/mm′m′ → Pm′m′m assuming
an applied field along the (0,0,1) direction. This is justified
by the impossibility of determining moment direction in a
metrically cubic material from powder data. The magnetic
structures of the Ferri-II and Ferri-III phases, decomposed into
ferromagnetic and antiferromagnetic components, are shown
in Fig. 2.

Overall, we find this sequence based on the multi-k model
to be the most phenomenologically reasonable and consis-
tent with the known interactions within the system. It is
also consistent with all physical property data, including the
magnitudes of the jumps in magnetization at each magnetic
transition. It should be noted that single crystal measurements
will be required to fully confirm the magnetic space groups
and exact moment directions in all magnetic phases, but in the
meantime a reasonable solution has been obtained.

TABLE IV. The results of the Rietveld refinement of the 1.5K 5T
Eu3PbO data in magnetic space group P4/mm′m′, a = 2ap, b = 2ap,
and c = ap, where ap is the parent lattice constant.

mx my mz

Site x y z (μB/Eu2+) (μB/Eu2+) (μB/Eu2+)

Eu1 0 0.5 0 0 0 6.45 ± 0.06
Eu2 0.25 0 0.5 0 0 −6.45 ± 0.06
Eu3 0.75 0.5 0.5 0 0 6.45 ± 0.06
Eu4 0.5 0.5 0.0 0 0 6.45 ± 0.06
Eu5 0 0 0 0 0 −6.45 ± 0.06
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FIG. 11. A portion of the Rietveld refinement for the 1.5K 5T
structure in P4/mm′m′ (90◦ bank 3 WISH). The unindexed peak at
2.14 Å is from vanadium, the substantial background is from the
quartz ampoule used to contain the sample with the data in blue,
calculated pattern in black, difference in gray, nuclear reflections
indicated by red tickmarks and magnetic in black.

APPENDIX D: TIGHT-BINDING MODEL FOR Eu3PbO

To construct a tight-binding model for Eu3PbO we follow
along the lines of the works by Kariyado and Ogata [56]
and Chiu et al. [57]. In Ref. [57], a nine-band model for
Ca3PbO with three Pb-p orbitals and six Ca-d orbitals was
constructed. This model captures the low-energy physics of
Ca3PbO faithfully. In particular, it exhibits six gapped Dirac
cones along the �-X direction with a nonzero mirror Chern
number, in full agreement with the ab initio DFT calculations.
In the following, we describe how this model can be adapted
to the case of Eu3PbO, both for the paramagnetic phase and
the magnetically ordered phases.

1. Paramagnetic phase

The paramagnetic phase of Eu3PbO can be described by
the same model as in Ref. [57], albeit with different param-
eter values, since its band structure is qualitatively similar
to Ca3PbO. In the absence of spin-orbit coupling, this tight-
binding model is written as HPM = ∑

k ψ
†
kHPM(k)ψk with the

nine-component spinor

ψk = (
Pbpx , Pbpy , Pbpz , Eu1

dy2−z2
,

× Eu2
dz2−x2

, Eu3
dx2−y2

, Eu1
dyz

, Eu2
dzx

, Eu3
dxy

)T

TABLE V. The results of the Rietveld refinement of the 1.5K 8T
Eu3PbO data in magnetic space group Pm′m′m, a = 2ap, b = ap, and
c = ap, where ap is the parent lattice constant.

mx my mz

Site x y z (μB/Eu2+) (μB/Eu2+) (μB/Eu2+)

Eu1 0 0.5 0.5 0 0 5.08 ± 0.06
Eu2 0.25 0 0.5 0 0 −5.08 ± 0.06
Eu3 0.25 0.5 0 0 0 −5.08 ± 0.06
Eu4 0.75 0 0.5 0 0 5.08 ± 0.06
Eu5 0.75 0.5 0 0 0 5.08 ± 0.06
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FIG. 12. A portion of the Rietveld refinement for the 1.5K 8T
structure in Pm′m′m (90◦ bank 3 WISH). The unindexed peak at
2.14 Å is from vanadium, the substantial background is from the
quartz ampoule used to contain the sample with the data in blue,
calculated pattern in black, difference in gray, nuclear reflections
indicated by red tickmarks and magnetic in black.

and the 9 × 9 matrix HPM(k) with block form

HPM(k) =

⎛⎜⎝ Hp V u
d p V l

d p

V u
d p

† Hu
d 0

V l
d p

†
0 Hl

d

⎞⎟⎠. (D1)

The blocks of HPM(k) are given by

Hp =

⎛⎜⎝ep − 2tppc2x 0 0
0 ep − 2tppc2y 0
0 0 ep − 2tppc2z

⎞⎟⎠, (D2)

Hu
d =

⎛⎜⎝ ed −4tdd cxcy −4tdd czcx

−4tdd cxcy ed −4tdd cycz

−4tdd czcx −4tdd cycz ed

⎞⎟⎠, (D3)

and Hl
d = ed13, with 13 the 3 × 3 identity matrix. The cou-

pling matrices between Pb-p and Eu-d orbitals read

V u
d p = 4itpd

⎛⎜⎝ 0 czsx −cysx

−czsy 0 cxsy

cysz −cxsz 0

⎞⎟⎠,

V l
d p = 4itpd

⎛⎜⎝ 0 cxsz cxsy

cysz 0 cysx

czsy czsx 0

⎞⎟⎠, (D4)

where we have used the abbreviations ci = cos ki
2 , si = sin ki

2 ,
and c2i = cos ki.

To lowest order, spin-orbit coupling enters as an on-
site term in the tight-binding Hamiltonian (D1). For
the Pb-p orbitals, the on-site spin-orbit coupling reads

∑
k ψ†

p (k)H p
SO(k)ψp(k) with the spinor

ψp(k) = (Pb↑
px

, Pb↑
py

, Pb↑
pz
, Pb↓

px
, Pb↓

py
, Pb↓

pz
)

and

H p
SO(k) = λp

2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −i 0 0 0 1

i 0 0 0 0 −i

0 0 0 −1 i 0

0 0 −1 0 i 0

0 0 −i −i 0 0

1 i 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The on-site spin-orbit coupling for the Eu-d orbitals is∑
k ψ

†
d (k)Hd

SO(k)ψd (k) with the vector

ψd (k)

= (
Eu1,↑

dy2−z2
, Eu2,↑

dz2−x2
, Eu3,↑

dx2−y2
, Eu1,↓

dy2−z2
, Eu2,↓

dz2−x2
,

× Eu3,↓
dx2−y2

, Eu1,↑
dyz

, Eu2,↑
dzx

, Eu3,↑
dxy

, Eu1,↓
dyz

, Eu2,↓
dzx

, Eu3,↓
dxy

,
)T

,

and

Hd
SO(k) =λdτy ⊗

⎧⎪⎪⎨⎪⎪⎩σx ⊗

⎛⎜⎜⎝
1 0 0

0 0 0

0 0 0

⎞⎟⎟⎠

+σy ⊗

⎛⎜⎜⎝
0 0 0

0 1 0

0 0 0

⎞⎟⎟⎠ + σz ⊗

⎛⎜⎜⎝
0 0 0

0 0 0

0 0 1

⎞⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭,

(D5)

where τβ and σα operate on the d orbital (dx2
i −x2

j
and dxix j ) and

spin (↑ and ↓) degree of freedom, respectively. Combining
these spin-orbit coupling terms with Eq. (D1), we obtain the
full tight-binding Hamiltonian for the paramagnetic phase of
Eu3PbO

H tot
PM(k) =

(
H tot

p (k) Vtot(k)

V †
tot(kÊ ) H tot

d (k)

)
+ μ118, (D6)

with

H tot
p (k) =

(
Hp 0
0 Hp

)
+ H p

SO(k),

H tot
d (k) =

(
σ0 ⊗ Hu

d 0
0 σ0 ⊗ Hl

d

)
+ Hd

SO(k), (D7)

and

Vtot(k) = (
σ0 ⊗ V u

d p σ0 ⊗ V l
d p

)
.

The outermost grading of H tot
p and σ0 in Eq. (D7) corresponds

to the spin grading. In Eq. (D6) a diagonal term μ118 for the
chemical potential has been added.

We have determined the eight parameters of the above
tight-binding model by a fit to the ab initio DFT band
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structure, which yields

ep = 0.0, ed = 2.4, tpp = −0.4, tdd = −0.4,

tpd = −0.4, λp = 0.75, λd = 0.07, μ = 0.87.

2. Magnetic phases

To describe the Eu magnetic moments we introduce the
magnetic splitting derived by the DFT calculations as Zeeman
terms HZee,n for each orbital n into the tight-binding model as

HZee,n =

⎛⎜⎝
⎛⎜⎝σx

σy

σz

⎞⎟⎠ · Bn

⎞⎟⎠|n〉〈n|, (D8)

where |n〉〈n| is the projector onto the orbitals n without spin
degree of freedom. The Pauli matrices σi describe the spin
degree of freedom and Bn is the magnetic splitting energy.

The magnitude of the splitting energy Bn for the differ-
ent orbitals is determined from the DFT calculations of the
ferromagnetic phase. For the other magnetic phases we then
assume that the splitting vector Bn reorients according to
the respective magnetic structure, but does not change its
magnitude. We have checked that this procedure leads to a
tight-binding band structure that is qualitatively similar to the
DFT electronic bands.

a. Ferromagnetic phase

In the ferromagnetic phase, all moments are aligned
collinearly. Therefore Bn points in the same direction B̂ at
all sites and we can write Bn = BnB̂. By comparing to DFT
calculations, we find that the magnetic splitting Bn of the
different orbitals are

BEu = 0.43 eV, BPb = −0.035 eV, (D9)

which corresponds to half the total energy splitting, as read
out from the DFT band structures.

In the ferromagnetic phase, the magnetization direction B̂
can be easily aligned by the external field. As explained in the
main text, the topology of the electronic bands changes with
magnetization direction. In particular, the position of the Weyl
points, both in energy and momentum, as well as their multi-
plicities depend strongly on the magnetization direction. This
is shown in Table VI for the three magnetization directions
[100], [110], and [111], see also Fig. 3 in the main text. Note
that the Weyl points W1 only exist for the [110] and [111]
magnetizations, but are absent for the [100] magnetization.
For the [110] magnetization W1 has multiplicity four, i.e.,
there are two pairs of Weyl points, one close to the kx axis and
another one close to the ky axis. For the [111] magnetization
there are six Weyl points W1, as the symmetry is higher.
That is, there is one pair of Weyl points close to each of
the three mains axis kx, ky, and kz. Similarly, the multiplicity
of the Weyl points W2 and W3 is only four for the [110]
magnetization, while it is six for the [111] magnetization.
For the [110] magnetization, the Weyl points W4 have also
multiplicity four, but now they are located close to the kz axis,
one pair with positive kz and one pair with negative kz.

TABLE VI. Weyl points of the ferromagnetic phase for different
field orientations. This table lists the positions and energies of the
topological band crossings in the first Brillouin zone (BZ) for the
ferromagnetic phase with magnetization in [100], [110], and [111]
direction (FM [100], FM [110], and FM [111], respectively). The
positions of the band crossings k = (kx, ky, kz ) are given in units of
2π/ai, where ai denotes the lattice constant of the respective real
space direction. All energies are given in eV relative to the Fermi
energy. The type of band crossing is indicated in the fourth column,
while the fifth column states the topological invariant that protects
the crossings. The last column gives the multiplicity of the crossings,
i.e., the number of symmetry related crossings at the same energy.

phase position E (eV) type top. inv. No.

FM [100] (0.18, 0, 0) −0.16 WP (W2) Chern 2
FM [100] (0.12, 0, 0) −0.33 WP (W3) Chern 2
FM [100] kykz plane −0.02 Line (L1) Berry 1
FM [100] kykz plane −0.31 Line (L2) Berry 1

FM [110] (0.23, 0.015, 0) 0.06 WP (W1) Chern 4
FM [110] (0.19, −0.001, 0) −0.12 WP (W2) Chern 4
FM [110] (0.12, 0, 0) −0.32 WP (W3) Chern 4
FM [110] (0.003, 0.003, 0.13) −0.31 WP (W4) Chern 4
FM [110] [110] plane −0.02 Line (L1) Berry 1

FM [111] (0.23, 0.008, 0.008) 0.05 WP (W1) Chern 6
FM [111] (0.2, −0.001, −0.001) −0.09 WP (W2) Chern 6
FM [111] (0.13, 0, 0) −0.31 WP (W3) Chern 6

The ferromagnetic phases with [100] and [110] magnetiza-
tion exhibit also nodal lines. These nodal lines are located in
the plane perpendicular to the magnetization direction, i.e., in
the kykz plane and in the [110] plane, respectively. These nodal
lines are protected by mirror symmetry and by a quantized
π -Berry phase.

b. Antiferromagnetic phase

The magnetic space group of the AFM-I phase is PI a3̄
(No. 205.36, type IV). The unit cell is eightfold enlarged as
compared to the paramagnetic phase. That is, it is doubled
in each of the three main axes x, y, and z. This leads to
an eightfold back folding of the bands, and hence the tight-
binding model of the AFM-I phase has 8 × 18 = 144 bands
(including spin). Correspondingly, there are eight times more
orbitals in the tight-binding model, leading to an 144 × 144
tight-binding Hamiltonian. The hopping parameters for this
enlarged Hamiltonian can be determined in an automatized
fashion directly in momentum space from the tight-binding
model of the paramagnetic phase, Eq. (D6). For that pur-
pose, we first perform a unitary transformation of Hamiltonian
(D6) in order to simplify its momentum dependence. This
transformation amounts to multiplying the Pb-p orbitals by
ei(kx+ky+kz )/2, the Eu1-d orbitals by eikx/2, the Eu2-d orbitals by
eiky/2, and the Eu3-d orbitals by eikz/2. With this, all the terms
in Eq. (D6) of the form eikn/2 are transformed into terms with
eikn or terms that are independent of kn. Now, we can start to
construct the tight-binding Hamiltonian for the AFM-I phase,
which has a block structure with 8 × 8 blocks, where each
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block is an 18 × 18 matrix, i.e.,

HAFM(k) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

H000 Hx(k) Hy(k) Hxy(k) Hz(k) Hxz(k) Hyz(k) 0

H100 Hx
y (k) Hy(k) Hz

x (k) Hz(k) 0 Hyz(k)

H010 Hx(k) Hy
z (k) 0 Hz(k) Hxz(k)

H110 0 Hy
z (k) Hz

x (k) Hz(k)

H001 Hx(k) Hy(k) Hxy(k)

H.c. H101 Hx
y (k) Hy(k)

H011 Hx(k)

H111

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (D10)

The 18 × 18 matrices Habc (with a, b, c ∈ {0, 1}) on the
diagonal describe hoppings within each of the eight paramag-
netic unit cells. The off-diagonal entries Hx, Hy, Hz, Hxy, Hxz,
Hyz, Hx

y , Hz
x , and Hy

z describe hoppings that connect different
paramagnetic unit cells. These hopping terms are modified by
exponential factors eikn , since they connect different paramag-
netic unit cells.

So far, Eq. (D10) represents just an artificial increase of
the Hamiltonian, that trivially leads to folded bands. But now,
we introduce the magnetic splitting Bi = BEuB̂i due to the
antiferromagnetically ordered Eu moments. These splitting
energies are added to the diagonal blocks Habc in Eq. (D10)
and have all the same magnitude

BEu = 0.45 eV. (D11)

The orientation of the B̂n vectors on the different Eu sites is
determined by the AFM ordering pattern, as given in the main
text. We can implement this pattern in the following way

B̂Eu1 = 1√
2

(0, (−1)a, (−1)b),

B̂Eu2 = 1√
2

((−1)c, (−1)a, 0),

B̂Eu3 = 1√
2

((−1)c, 0, (−1)b), (D12)

where the indices a, b, c ∈ {0, 1} label the eight different para-
magnetic unit cells.

We note that due to backfolding, the bands in the AFM-I
phase exhibit band crossings at the time-reversal invariant
momenta X , Y , and Z (D2 in Fig. 3(b) of the main text). Hy-
bridization at these points is strongly suppressed by symmetry.
To explain this, we first note that the bands at the X , Y , and
Z points have almost exclusively Pb-p orbital character, with
only very small admixtures of Eu-d orbital character. Now,
due to the combination of inversion and nonsymmorphic time-
reversal symmetry T̃ , the Pb-p orbitals cannot carry a finite
magnetic moment. Hence, the splitting of the bands at the X ,
Y , and Z points is negligibly small, leading to nearly gapless
Dirac points. From our DFT and tight-binding calculations we
find that the gap of these Dirac points is indeed small, namely
smaller than 1 meV. This small gap is caused by a very small,
but finite, admixture of Eu-d orbital character.

APPENDIX E: TOPOLOGICAL INVARIANTS,
ANOMALOUS HALL CONDUCTIVITY,

AND SURFACE STATES

Here, we explain how the Chern numbers, the anomalous
Hall conductivities, and the surface states are computed. We
also give a detailed symmetry analysis of the anomalous Hall
conductivity tensor and determine the contributions of the
different Weyl points to the anomalous Hall conductivity.

1. Chern number

The numerical computation of the Chern number follows
the approach of Fukui et al. [75]. This approach uses the U(1)
link variable Uμ(kl ) on a discretized Brillouin zone to define
the lattice field strength F̃12(kl ), which represents a small
Wilson loop for one eigenstate of the Hamiltonian. The Chern
number is then the sum over all occupied bands and all points
in the two-dimensional Brillouin zone. The link variable and
the lattice field strength are defined as

Uμ(kl ) = 〈n(kl )|n(kl + μ̂)〉
|〈n(kl )|n(kl + μ̂)〉| (E1)

and

F̃12(kl ) = ln
(
U1(kl )U2(kl + 1̂)U1(kl + 2̂)−1U2(kl )

−1),
respectively, where |n(kl )〉 is the eigenstate for the nth non-
degenerate band at point kl in the Brillouin zone. μ̂ as well
as the explicit versions 1̂ and 2̂ denote steps in the discretized
Brillouin zone, which form a basis of the lattice. With this, the
Chern number of the nth band is given by

Cn = 1

2π i

∑
l

F̃12(kl ), (E2)

where the sum is over all kl points in a two-dimensional
Brillouin zone.

To compute the chiralities of the Weyl points in the ferri-
and ferromagnetic phases, we choose a small two-dimensional
sphere that encloses the given Weyl point and then perform
the sum in Eq. (E2) over all kl points on this two-dimensional
sphere. The sign of the resulting integer is equal to the chiral-
ity of the Weyl point.

The mirror Chern number can be calculated in a similar
way, namely, as the Chern number in the subspace of occupied
states with equal mirror symmetry eigenvalue, see Ref. [57].
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2. Anomalous Hall conductivity

Weyl points act as sources and sinks of Berry curvature.
It is well known that in the presence of nonzero Berry curva-
ture a nontrivial electronic response can be expected, i.e., an
anomalous Hall conductivity. That is, the conductivity tensor
σi j , defined by the relation ji = σi jE j between the electrical
current density j and the electric field E , contains a contri-
bution from the anomalous Hall effect. This contribution is
proportional to the momentum integral of the Berry curvature
and can be written as [76]

σi j = −2
e2

h̄

∫
d3k

(2π )3

∑
n

f (En(k))

×
∑
m �=n

�(〈n| ∂H (k)
∂ki

|m〉〈m| ∂H (k)
∂k j

|n〉)
(En(k) − Em(k))2

, (E3)

where En(k) and |n〉 are the eigenenergy and eigenstate of
the n-th band, respectively, and f (En(k)) is the Fermi-Dirac
distribution function. For the numerical evaluation of σi j in
the FM phase, the integral in Eq. (E3) is approximated by its
Riemann sum, i.e.,

∫
d3k

(2π )3 → ∑
k

1
(aN )3 , where a = 5.09 Å is

the lattice constant of Eu3PbO [51] and N is the number of k
points per reciprocal lattice direction.

a. Symmetries of the anomalous Hall conductivity tensor

The anomalous Hall conductivity tensor is an antisymmet-
ric matrix of the form

σgeneral =

⎛⎜⎝ 0 σxy −σzx

−σxy 0 σyz

σzx −σyz 0

⎞⎟⎠, (E4)

where the three components σxy, σzx, and σyz are, in the ab-
sence of symmetries, independent of each other. However,
the magnetic space group symmetries put some constrains on
this expression. To derive these constraints, we first need to
consider how the symmetries act on the Berry curvature

�n
i j (k) =

∑
m �=n

2�(〈n| ∂H (k)
∂ki

|m〉〈m| ∂H (k)
∂k j

|n〉)
(En(k) − Em(k))2

. (E5)

First of all, we note that the Berry curvature is even un-
der inversion, �n

i j (k) = �n
i j (−k), but odd under time-reversal

symmetry �n
i j (k) = −�n

i j (−k), since complex conjugation
switches the sign of the imaginary part in the numerator of
Eq. (E5). Hence, in the paramagnetic phase, where both of
these symmetries are present, the Berry curvature is zero.
In the AFM-I phase, the time-reversal symmetry T is bro-
ken. However, there exists a magnetic symmetry T̃ that
combines time-reversal with a half translation along [111].
Since, the Berry curvature is odd under this symmetry T̃ ,
the Berry curvature is also vanishing in the AFM-I phase.
We conclude that the anomalous Hall conductivity is van-
ishing both in the paramagnetic phase and antiferromagnetic
phase.

In contrast, the ferri- and ferromagnetic phases exhibit
nonzero anomalous Hall conductivities, as in these phases
both T and T̃ are broken. We will now focus on the ferromag-
netic phase and study how its symmorphic unitary symmetries

constrain the form of the anomalous Hall conductivity tensor
(E4). A general unitary symmetry S acts on the tight-binding
Hamiltonian H (k) of the FM phase as

SH (k)S† = H (DSk), (E6)

where DS is the momentum space representation of S. From
Eq. (E6), it follows that for every Bloch eigenstate |n(k)〉
with energy En(k) there is a symmetry related eigenstate
|n′(DSk)〉 = S|n(k)〉 with the same energy, i.e., En(k) =
En′ (DSk). Therefore the band structure is symmetric with re-
spect to the unitary symmetries S, and hence the denominator
of the Berry curvature (E5) is unchanged under the action of S.
The derivative terms in the numerator of Eq. (E5), on the other
hand, are transformed under S as S ∂H (k)

∂ki
S† = ∂H (DSk)

∂ (DSki )
, where

∂/∂ki and likewise ∂/∂ (DSki ) are directional derivatives. With
this, we find that

〈n(k)|∂H (k)

∂kα

|m(k)〉 = 〈n(k)|S†S
∂H (k)

∂kα

S†S|m(k)〉

= 〈n′(DSk)|∂H (DSk)

∂ (DSkα )
|m′(DSk)〉

= 〈n(DSk)|∂H (DSk)

∂ (DSkα )
|m(DSk)〉, (E7)

where in the last line we have assumed, without loss of
generality, that the Bloch eigenstates |n(k)〉 are sorted with
increasing eigenenergies. Combining Eq. (E7) with Eq. (E3),
we see that the summands in Eq. (E3) can be grouped into
symmetry related pairs, namely �n

i j (k) and �n
i j (DSk), whose

contributions differ only by directional derivatives ∂/∂ki/ j

and ∂/∂ (DSki/ j ). If S is a mirror symmetry with mirror
plane perpendicular to the main axes (or a twofold rotation
symmetry about a main axis), we find that DSki/ j = ±ki/ j ,
where the sign depends on whether ki/ j is perpendicular or
parallel to the mirror plane. Since there are two derivative
terms in Eq. (E5), we have �n

i j (k) = −�n
i j (DSk), when, for

example, DSki = +ki but DSk j = −k j , and hence the cor-
responding component of the anomalous Hall conductivity
tensor is vanishing. Similar arguments can also be constructed
for the threefold and fourfold rotation symmetries of the FM
phase.

Applying the above symmetry analysis to the FM phase
with magnetization orientations [100], [110], and [111], we
find that conductivity tensors are of the form

σFM100 =
⎛⎝0 0 0

0 0 


0 −
 0

⎞⎠, (E8)

σFM110 =
⎛⎝ 0 0 −
′

0 0 
′

′ −
′ 0

⎞⎠, (E9)

σFM111 =
⎛⎝ 0 
′′ −
′′

−
′′ 0 
′′

′′ −
′′ 0

⎞⎠, (E10)

for some nonzero 
,
′, 
′′ ∈ R. We observe that for
these high-symmetry magnetization directions, the three
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FIG. 13. Brillouin zone with nodal points (W1–W4) and the
nodal line (L1) of the ferromagnetic phase for magnetic moments
pointing along the [110] direction. The light blue plane corresponds
to the mirror plane normal to direction of magnetic moments, in
which the nodal line L1 is situated.

components of the conductivity tensor (E4) are dependent on
each other.

b. Contributions of the different Weyl points to
the anomalous Hall conductivity

It is known from field theoretical considerations as well as
calculations in lattice systems that the conductivity of a Weyl
semimetal at half-filling is given by [77]

σαβ = −e2

h̄
εαβγ

bγ

2π2
, (E11)

where 2bγ is a component of the vector that connects the
negative chirality Weyl point to the one with positive chirality.
See Fig. 13 for an overview of the nodal crossings in the
phase FM [110]. Note that the heart-shaped nodal line L1
does not contribute to the anomalous Hall conductivity as long
as the mirror symmetry is preserved. While Eq. (E11) allows
us to estimate the largest possible contribution of a pair of
Weyl points to the conductivity, it gives no further information
about how the conductivity depends on the chemical potential,
as shown by the curves in Fig. 5 of the main text. The shape
and width of the extrema of these curves depend on the details
of the band structure, in particular, on how strongly the bands
disperse.

Nevertheless, the location of the extrema in Fig. 5 can be
explained to a large extent by the presence of Weyl points. In
Table VII we list the contributions to the conductivity from
the Weyl points W1, W2, and W3, as given by Eq. (E11). By
comparison to Fig. 5, we can conclude that the different Weyl
point contributions overlap and partially cancel. We observe
that the conductivity peak of W2 spreads over a larger energy
range than W1 and W3. We also note that the large positive
contribution of W1 distinguishes the conductivity of FM [110]
and FM [111] from FM [100].

TABLE VII. Anomalous Hall conductivity of Weyl points. This
table lists the positions and energies of a selection of Weyl points
in the first Brillouin zone (BZ) for the ferromagnetic phase with
magnetization in [100], [110], and [111] direction (FM [100], FM
[110], and FM [111], respectively). The positions of the band cross-
ings k = (kx, ky, kz ) are given in units of 2π/ai, where ai denotes the
lattice constant of the respective real space direction. All energies are
given in eV relative to the Fermi energy. The names of band crossings
are indicated in the fourth column, while the fifth column states the
chirality for the Weyl point at the given position. The last column
gives the respective contribution to the anomalous Hall conductivity
in units of (� cm)−1.

phase position E (eV) name chirality σyz

FM [100] (0.18, 0, 0) −0.16 W2 1 −274
FM [100] (0.12, 0, 0) −0.33 W3 −1 183

FM [110] (0.23, 0.015, 0) 0.06 W1 −1 352
FM [110] (0.19, −0.001, 0) −0.12 W2 1 −289
FM [110] (0.12, 0, 0) −0.32 W3 −1 183

FM [111] (0.23, 0.008, 0.008) 0.05 W1 −1 351
FM [111] (0.2, −0.001, −0.001) −0.09 W2 1 −303
FM [111] (0.13, 0, 0) −0.31 W3 −1 198

3. Surface states and spin texture

To compute the surface state spectra, we perform a Fourier
transform of the Hamiltonian H (k) in the direction perpen-
dicular to the surface, say, the z direction. This yields a
Hamiltonian H (kx, ky, z) that depends on two momenta, kx

and ky, and on one real space coordinate z. We then nu-
merically diagonalize the Hamiltonian H (kx, ky, z) with open
boundary conditions along the z direction, to obtain the eigen-
states ψn(kx, ky) and energies En(kx, ky). From these we can
compute the surface density of states, which is given by

ρ(ω, kx, ky, z) = − 1

N
Im

∑
n

ψ†
n (kx, ky, z)ψn(kx, ky, z)

ω + i�/N − En(kx, ky)
,

ρ(ω, kx, ky) =
∑

z∈surface

ρ(ω, kx, ky, z), (E12)

where N denotes the number of layers perpendicular to the
z direction. Here, � is a phenomenological broadening factor
that takes into account the effects of finite temperature and
disorder. For our numerical calculations we have chosen � =
1 and N = 70. The sum in the second line of Eq. (E12) is
taken over the first five surface layers.

The spin polarization of the surface states is calculated very
similarly by considering the weighted expectation value

ρ(ω, kx, ky)α = − 1

N
Im

∑
n,z

ψ†
n (kx, ky, z)σ̃αψn(kx, ky, z)

ω + i�/N − En(kx, ky)
,

(E13)

where σ̃α is the spin matrix of the 18 band basis for the
α direction, e.g., for α = x, a tensor product between unity
operators in orbital space and the Pauli matrix σx.
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