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Self-focusing of a spatially modulated beam within the Paraxial Complex
Geometrical Optics framework in low-density plasmas
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Accurate modelling of ponderomotive laser self-focusing may represent a key for the success of inertial confine-
ment fusion, especially within the shock ignition approach. From a numerical point of view, implementation of
a paraxial complex geometrical optics (PCGO) method has improved the performance of the hydrodynamics
code CHIC, but i) overestimating ponderomotive speckle self-focusing in reduced two-dimensional geometry,
and ii) not accounting for speckle intensity statistics. The first issue was addressed in our previous work [A.
Ruocco et al., Plasma Phys. Control. Fusion 61 115009 (2019)]. Based on those results, here we propose
a novel PCGO scheme for modelling spatially modulated laser beams by i) creating Gaussian speckles, and
ii) emulating the realistic speckle intensity statistics. Self-focusing of spatially modulated beams in a homo-
geneous stationary plasma with this method is studied. This investigation evidences that plasma smoothing
does not reduce the speckle intensity enhancement at long time scales when the average beam intensity is
twice above the speckle critical intensity. Comparison against electromagnetic simulations confirms that this
approach improves the description of self-focusing of high-intensity speckles within the PCGO model.

Keywords: laser-plasma interaction, hydrodynamics codes, ponderomotive force, inertial confinement fusion,
optical smoothing, geometrical optics

I. INTRODUCTION

In inertial confinement fusion1,2 (ICF), nanosec-
ond, high-energy laser beams are used to compress a
multi-layer capsule to trigger nuclear reactions of the
Deuterium-Tritium gas to obtain a net energy gain. In
the direct-drive approach, high-intensity lasers directly
irradiate the capsule, leading to its implosion. The
laser intensities are such that the thresholds of nonlinear
laser-plasma coupling such as ponderomotive laser self-
focusing and parametric instabilities can be overcome.
These processes may break the symmetry of target illumi-
nation, reducing the capsule implosion uniformity. Non-
linear phenomena are of a high concern in spike pulse-
plasma interaction within the direct-drive shock ignition
(SI) approach3,4. In SI, a low intensity pulse drives a
slow implosion, whereas a spike pulse launches an inward-
propagating strong shock wave that triggers the ignition
of the capsule core. Despite SI promises ignition at a
lower laser energy than conventional hot-spot schemes5–7,
it presents some intrinsics issues related to hot electron
production due to nonlinear laser-plasma interaction dur-
ing the intense spike pulse5,8–10.

To mitigate nonlinear phenomena and improve the
laser-target coupling, optical smoothing techniques are
employed in ICF experiments. Phase plates placed af-
ter the beam focusing lens break the spatial coherence of
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the incident beam and create in the far-field small-scale
spatial modulations, known as speckle pattern11–13. The
speckles intensity follows a statistical distribution.14,15

Although it has been demonstrated that under certain
conditions, spatial smoothing improves the quality of
laser-plasma coupling16, nonlinear phenomena may still
occur in the high-intensity tail of this distribution, even
though the average laser intensity is below the nonlinear
processes threshold17–19.

Nonlinear effects and more sophisticate laser modelling
must be included in radiation-hydrodynamics codes in
order to enhance their performances. Laser propagation
and energy deposition are often modelled in a simplified
way by using ray-tracing (RT) techniques20. In this ap-
proach, laser beam is split in several rays each of them
carrying a fraction of the total power and depositing it in
plasma according the law of collisional absorption. How-
ever, ray tracing cannot account for: i) speckled laser
beams, ii) collisionless laser energy absorption and iii)
nonlinear laser-plasma coupling processes. In order to
include these aspects, advanced methods of geometri-
cal optics have been developed with applications in the
domains of magnetic21–24 and inertial confinement fu-
sion25–27 .These methods provide the possibility for eval-
uation of the wave amplitude along the ray trajectory,
but they require significant computation resources and
do not properly model smoothed beam intensity distribu-
tions. In this work, we concentrate on the module imple-
mented in the radiation-hydrodynamics code CHIC28, re-
lying on the paraxial complex geometrical optics (PCGO)
equations29 in two-dimensional (2D) planar geometry27.
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The beamlet represents the basic element of the PCGO
description: it stands for a ray with a defined width
and Gaussian-like intensity profile, whose centroid obeys
the standard geometrical optics laws. This approach has
opened the possibilities for modelling of nonlinear laser-
plasma coupling and implementation of optical smooth-
ing techniques30. In case of spatial smoothing, laser in-
tensity fluctuations are produced by randomly distribut-
ing the focal spots of several beamlets in the focal volume.
Combination of beamlets allows to create the speckle pat-
tern in the far-field. To be computationally efficient and
compatible with the hydrodynamics spatial resolution,
the beamlets phases are not evaluated when they over-
lap and give rise to a speckle. For this reason, a PCGO
speckle is several times larger than a real speckle. On the
other hand, the total beam intensity is preserved in or-
der to correctly reproduce large scale intensity-dependent
laser-target interaction processes such as target ablation,
target compression and hot-electron production. More-
over, randomly-propagating beamlets generate speckles
of uncontrolled shape, further inducing an error in the
development of ponderomotive effects compared to the
real Gaussian speckle pattern. Then, whereas the total
beam intensity in PCGO coincides with the real beam
intensity, the probability distribution of the speckle in-
tensities does not have the expected shape14,15. As a
consequence of these considerations, speckle ponderomo-
tive self-focusing may be incorrectly described.

To properly account for ponderomotive self-focusing
in the hydrodynamics codes along with laser speckle pat-
tern, it is then necessary to develop a method which i)
permits to have a better control of speckle shape and its
self-focusing process and ii) include the correct speckle in-
tensity statistics. The first objective has been already ac-
complished in our previous work31, where a single PCGO
speckle was created by superposing three PCGO beam-
lets whose positions and intensities are chosen such that
the speckle has a given Gaussian intensity profile.

In the present work, we extend the single speckle
method31 to a multi-speckle case, where each speckle ex-
hibits a Gaussian profile obtained by overlapping three
beamlets. Furthermore, the speckle pattern is built
such that the distribution of the speckles intensities
follow an exponential-like law such as exp (−Is/〈I〉),
where Is and 〈I〉 are the speckle and average beam in-
tensity, respectively. Such a method is referred to as
semi-deterministic algorithm, in contrast to the standard
PCGO method in the following referred to as random al-
gorithm. We show here that the semi-deterministic ap-
proach improves the description of laser-plasma coupling
in regimes where ponderomotive effects develop. Our
new method shows a good agreement with simulations
performed with an electromagnetic code for similar laser
and plasma conditions32, especially for the high-intensity
tail of the speckle distribution.

The paper is organized as follows: guiding theoreti-
cal considerations on self-focusing in paraxial approxi-

mation, description of PCGO-based algorithms and our
previous results on self-focusing of a single PCGO speckle
are presented in Sec. II. In Sec. III, we introduce the
new semi-deterministic algorithm for speckle patterns in
PCGO-CHIC formalism. Study of self-focusing of the
spatially modulated beam within the semi-deterministic
algorithm is illustrated in Sec. IV. A comparison to pre-
vious results and to the random algorithm is discussed in
Sec. V. The summary of our results is given in Sec. VI.

II. PONDEROMOTIVE SELF-FOCUSING AND
DESCRIPTION OF PCGO-BASED ALGORITHMS

A. Ponderomotive beam self-focusing in paraxial
approximation

In the paraxial approximation, the following set of
equations governs the laser-plasma coupling33 :

[
∂

∂t
+ vg

∂

∂x
− i c

2

2ω0
∇2
⊥ − i

ω0

2

δn

nc

]
E = 0. (1)

∂ne
∂t

+∇ (nevp) = 0 (2)

ne

[
∂

∂t
+ (vp · ∇)

]
vp = −∇PT −∇Up (3)

The first equation describes the spatiotemporal evolution
of the laser electric field E. The second and third equa-
tions describe the plasma dynamics within the fluid the-
ory: the equations represent the continuity equation and
the fluid equation of motion, respectively. Here ne is the
electron density, whereas vp is the fluid velocity of the
plasma. The coordinate x corresponds to the direction of
laser beam propagation, δn = ne−ne0 is the electron den-
sity perturbation with respect to the initial electron den-
sity ne0, nc = meε0ω

2
0/e

2 is the plasma critical density, c
and ω0 are the speed of light in vacuum and the laser fre-
quency, respectively, ε0 is the vacuum dielectric permit-
tivity, e and me are the elementary charge and electron
mass, vg = c

√
1− ne/nc is the light group velocity in

the plasma. In Eq. (1), ∇2
⊥ = ∂2y + ∂2z is the transverse

Laplacian in Cartesian coordinates, which accounts for
the beam diffraction, whereas the fourth term is responsi-
ble for beam refraction on self-induced density perturba-
tion. In Eq. (3), Up = nee

2|E0|2/4meω
2
0 = ne/(2cnc)I0

is the ponderomotive pressure, I0 = vgε0|E0|2/2 being
the laser intensity, and PT = ni(ZTe+γTi) is the thermal
plasma pressure, where ni = ne/Z is the ion density in
the quasi-neutral approximation, and Z is the ion charge.
Here γ represents the heat capacity ratio. All along this
work, we take γ = 3, which corresponds to one degree of
freedom as ion motion is transverse to the laser propaga-
tion direction. The last terms in Eqs. (1) and (3) link the
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electric field variation to the plasma density perturbation
driven by the the ponderomotive force Fp = −∇Up.

Ponderomotive self-focusing affects the beam propa-
gation when the beam power, or equivalently the beam
intensity, overcomes a critical value. The beam power is
a geometry-dependent quantity, whereas the intensity is
geometry-independent. Considering a beam of a Gaus-
sian profile, the critical intensity reads34–36

I0c = 1.8× 8
nc(Te + 3Ti/Z)c2vg

ω2
pew

2
b

, (4)

where ω2
pe = e2ne/(meε0) is the electron plasma fre-

quency and wb is the beam width. The critical power
in different geometries can be recovered from Eq. (4).
In case of Gaussian beams of cylindrical geometry, the
beam critical power reads P 3D

c = (π/2)w2
bI0c. Consid-

ering that the critical intensity I0c goes as ∼ 1/w2
b , the

critical power in this geometry does not depend on the
beam waist. In two-dimensional planar geometry, such
as in PCGO-CHIC, the power of a Gaussian beam reads
P 2D
c =

√
π/2hwbI0c, where h is the unity length in the

artificial third dimension added to preserve energy defi-
nition in 2D. Unlike in cylindrical geometry, the critical
power P 2D

c in 2D planar geometry goes as ∼ 1/wb. Then,
2D larger PCGO speckles are more prone to ponderomo-
tively self-focus. In our previous work, we have compen-
sated this overestimation of self-focusing effects by build-
ing speckles whose critical power is twice larger than the
critical power of a Gaussian beam (see Sec. II C 2).

B. Spatially modulated beams and related plasma-induced
incoherence

In ICF beamlines, the speckle pattern in the far-field
is generated by a phase plate, which breaks the beam
spatial coherence as each element of the plate induces a
random phase variation to different parts of the beam.
The size and the number of speckles are related to the
laser wavelength and the focal length: in vacuum, the
transverse size of spatial modulations is14,15

ws =
2fλ

πD
, (5)

where λ = 2πc/ω0 is the laser wavelength, f is the focal
length and D is the lens diameter; the longitudinal size
of a speckle is

xs =
πw2

s

λ
(6)

Defining Ns as the number of speckles in the far-field,
geometrical and optical considerations14 estimate that
Ns ' (D/L)3, where L is the characteristic size of the
phase plate element. Ns is typically of the order of 103-
104. It is then convenient to characterize the speckles

intensity by using a statistical approach: the number of
speckles of intensity Is with respect to the average beam
intensity 〈I〉 is represented by14,15:

M(Is) = f (Is/〈I〉) exp

(
− Is
〈I〉

)
, (7)

where f (Is/〈I〉) is a slowly varying function. This shape
is typical of a pattern where speckles have a Gaussian
form. The high-intensity speckles may be a source of
nonlinear laser-plasma coupling.

The inter-speckle coupling gives rise to the plasma-
induced smoothing: this phenomenon consists in a reduc-
tion of the degree of spatial and temporal coherence of the
beam due to beam scattering on small-scale laser-driven
density fluctuations32,37–39. A signature of this process
is angular and spectral broadening of the forward scat-
tered light. Plasma-induced incoherence is caused by in-
terference of plasma waves produced inside a self-focused
speckle with fluid plasma waves excited in other speckles.
Depending on the speckle-plasma dynamics and on the
laser intensity, these multiple interactions may lead to a
stabilization of speckle self-focusing, or to a modification
of the speckle statistics. In Sec. IV C we study plasma
smoothing by means of PCGO-CHIC simulations.

C. CHIC code and PCGO methods

CHIC is a radiation-hydrodynamics code solving the
single fluid equations (2) and (3) on a Lagrangian or ar-
bitrary Lagrangian-Eulerian mesh. The model includes
also two equations accounting for energy conservation of
both electron and ion species28. In its standard version,
laser beam propagation and energy deposition are mod-
eled by ray-tracing. To improve laser-plasma coupling, a
method based on the paraxial complex geometrical op-
tics (PCGO)29 has been implemented in two-dimensional
(2D) planar geometry: such a model is referred to as the
thick-ray model27. In this approach, a ray is represented
by a beamlet with a Gaussian intensity profile Ib(τ, q)
given by

Ib(τ, q) = I0(τ)e
−2 q2

w2
b , (8)

where τ is the ray curvilinear coordinate, q is the trans-
verse coordinate normal to τ , wb = wb(τ) is the beamlet
spatial width, I0(τ) = w0I0/wb(τ) is the beamlet inten-
sity on the centroid, and w0 and I0 are the initial beam-
let waist and the initial peak intensity, respectively. The
beamlet trajectory rb = rb(τ) obeys the ray equation

d2rb
dτ2

=
c2

2
∇N2 , (9)

where N2 = 1−ne/nc is the local refractive index of the
plasma. The beamlet waist wb is related to the complex
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wavefront curvature B: wb(τ) =
√

2ω0/(c ImB). The
wavefront curvature B is found along the ray trajectory
according to an ordinary Riccati-type differential equa-
tion:

1

c

dB

dτ
+B2 = − 3

4Reεc

(
∂Reεc
∂q

)2

+
1

2

∂2Reεc
∂q2

, (10)

where εc is the complex permittivity of the plasma
around the beamlet centroid. By solving Eqs. (9) and
(10), one finds the beamlet intensity as in Eq. (8). The
beamlet intensity is then projected onto the hydrody-
namics grid. In Cartesian coordinates. The pondero-
motive force is calculated as an external force acting on
plasma through the term Fp = −∇Up in Eq. (3).

1. Spatially modulated beams in PCGO-CHIC: the
random method

The thick-ray method has provided the possibility to
create beams with spatial modulations via overlapping
several beamlets40. When the code calculates the beam-
lets intensity envelope, the phase variation along the
beamlet trajectory is not considered and beamlets are
propagated from the simulation boundaries to the far-
field in three steps. The first step concerns the definition
of the initial beam characteristics: the beam width in the
far-field wB , the beam power PB , the order of the super-
Gaussian profile n and the beam focal position (xB , yB).
The average beam intensity 〈I〉 is a posteriori computed
through the relation

〈I〉 =
PB

h
∫ ly
−ly e

−2
∣∣∣ y
wB

∣∣∣n
dy

, (11)

where ly is a length few times larger than wB . The sec-
ond step, beam-splitting, consists in the division of the
laser beam into Nb beamlets of equal width wb at the
beam entry boundary such as the intensity beamlets en-
velope reproduces the incident laser beam profile at the
near-field. The final stage consists in propagating the
beamlets from their origin to their focal spot positions,
which are randomly chosen inside a focusing box in the
far-field. The dimension of the focusing box is related
to the longitudinal speckle size xs, defined by Eq. (6),
the speckle waist ws, defined by Eq. (5), and the to-
tal beam width wB . Each PCGO beamlet propagates
according to Eq. (9), and with an intensity profile de-
fined by Eq.(8). Thus, the local laser intensity in plasma
I(x, y) is calculated as a sum of Nb neighbor beamlets
intensities Ibj(τj(x, y), qj(x, y))27,40:

I(x, y) =

Nb∑
j=1

Ibj(τj(x, y), qj(x, y)), (12)

FIG. 1: Laser intensity in the far-field normalized to the
average intensity realized with the random algorithm.
The laser comes from the left side. The spatial coor-
dinates are in laser wavelength units.

where (x(τj), y(τj)) is ray coordinate corresponding to
the closest distance between the trajectory of the beam-
lets and the observation point (x, y): only a limited num-
ber of beamlets passing at a distance of the order of the
beamlet width contribute to the local intensity. Local
intensity maxima are formed where two or more beam-
lets cross each others, representing then the speckles. To
save computational time, the beamlet interference is ne-
glected in the local laser intensity calculation. This gives
rise to larger speckles, whose individual self-focusing has
been already studied31. The ponderomotive pressure in
plasma is evaluated as sum of the ponderomotive pres-
sures locally induced by the beamlets.

Figure 1 shows the result of one realization by em-
ploying the random algorithm: the color bar corresponds
to the initial laser intensity distribution normalized to
the average intensity 〈I〉 in the far-field. The beam fo-
cal position is located at (500λ, 500λ). The red zones
represent local intensity maxima, i.e. the speckle pat-
tern. The speckles present an irregular intensity profile
created according to Eq. (12), which is a consequence
of the beamlets’ random inclination and random choice
of beamlets’ focal positions. For each realization, the
speckle intensity distribution does not reproduce the dis-
tribution given by Eq. (7) as it is not included in the algo-
rithm. The exponential-like form of the speckle intensity
distribution can be realized by repeating the same sim-
ulation several times: for example, to obtain the speckle
intensity statistics for 1000 speckles, one may perform 50
runs when considering a number of PCGO speckles equal
to 20 for each run. Such method of speckle initialization
limits the applicability of PCGO for investigating the
ponderomotive effects in a spatially modulated beam be-
cause the speckle intensity statistics cannot be controlled
in a single realization.

In Sec. III, we present the PCGO method developed
to create a spatially modulated beam of Gaussian-like
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speckles where the distribution function Eq. (7) is in-
cluded. From Sec. IV then, we study the interaction of
high-intensity speckles with the plasma when pondero-
motive self-focusing operates, a feature independent of
the overall beam shape.

2. Self-focusing of a PCGO speckle: modification of the
critical intensity

In this paragraph, we recall the main result obtained in
our previous work31. Since its conception30, the PCGO-
based method has been developed to preserve the laser
intensity, but considering speckles several times larger
than real speckles. As it follows from Sec. II A, the criti-
cal power in 2D geometry depends on the transverse size
of the speckle. For this reason, PCGO large speckles
can be more prone to ponderomotive effects compared to
real ones. This characteristics stands for an undesired
downsize of PCGO description of nonlinear laser-plasma
processes. Then, one PCGO beamlet cannot represent
a single real speckle. As demonstrated in our work31,
ponderomotive effects are reduced when three beamlets
are overlapped in such a way that their intensity enve-
lope creates a desired Gaussian intensity profile31. A
parameter measuring this behaviour is the aspect ratio
xsλ/(w

2
bπ), where wb is the instantaneous beam width

minimum, whereas xs is the speckle Rayleigh length, i.e.
the longitudinal distance from the speckle intensity max-
imum to the position where the intensity decreases by a
factor of

√
2. For Gaussian beamlets, this aspect ratio is

preserved during the beamlet dynamics and is equal to
1. Instead, we have found that in three-beamlet speck-
les, the aspect ratio changes in time and its time average
is twice larger than the aspect ratio of a single beamlet.
Comparing aspect ratios for different intensities and the
related peak intensity dynamics, we observed that the
three-beamlet speckle acts as a Gaussian beamlet of a
half of power. This consideration has lead us to a new
definition of the critical intensity for the three-beamlet
speckle I3b0c when compared to a single Gaussian beamlet
of similar shape:

I3b0c = 2I0c, (13)

where the factor of 2 is related to the increased aspect
ratio in a three-beamlet speckle when it self-focuses. In
the following, we extend this approach to spatially mod-
ulated beams.

III. THE SEMI-DETERMINISTIC SPECKLE PATTERN

The semi-deterministic method allows to control the
speckle intensity distribution, which is crucial for includ-
ing self-focusing effects in PCGO-CHIC simulations. The
algorithm is based on our previous results recalled in Sec.
II C 2, and it has been developed by starting from two

FIG. 2: Semi-deterministic speckle pattern: laser inten-
sity normalized to the average intensity in the far-field.
The yellow points stand for the beamlet focal positions.
The laser comes from the left side. The spatial coordi-
nates are in laser wavelength units.

principles: i) every speckle is composed of three beamlets,
creating a Gaussian intensity profile, and ii) the proba-
bility distribution of the speckle statistics follows an ex-
ponential law Eq. (7) with f (Is/〈I〉) = const. Other dis-
tribution functions can be explored by varying f (Is/〈I〉).

The algorithm operates as follows: once defined the
speckle width ws and the beam width wB , the number
of speckles Ns is computed:

Ns =
wB
ws

. (14)

This allows to cover the beam area in the far-field with
Ns speckles, whose area is 4wsxs. In order to be compat-
ible with the the hydrodynamics grid, the speckle width
has to be in the range ws = 15λ − 60λ, depending on
the laser wavelength. That sets an upper limit to the
number of speckles, which spans between 15 and 50. At
the second step, the algorithm confers to each speckle a
random intensity value within a range such that the en-
semble of speckle intensities obeys Eq. (7). Despite the
number of speckles created within the PCGO algorithm
is smaller than the number of real speckles, the speckle
intensity distribution covers the range [0.1,4]〈I〉, which is
representative of a real speckle intensity distribution15.

By spatially varying the beamlet configuration, differ-
ent spatial speckle patterns can be explored: for instance,
patterns where inter-speckle distance is randomly varied,
or speckles with arbitrary inclinations with respect to the
laser beam axis. In the design used throughout this pa-
per, the beamlets are initialized to form parallel speck-
les with a constant transverse distance between them:
considering that the beam focal positions is located at
(xB , yB), the transverse coordinate yjs of the jth speckle
is:
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yjs = yB + (Ns − 2j)ywws, (15)

where yw is a numerical factor permitting to increase
or decrease the focusing box area. The longitudinal
spot coordinate xjs of the jth speckle is randomly cho-
sen in the interval [xB − xs;xB + xs]. At the third step,
the speckle-splitting process is introduced: around each
speckle focal position, three beamlets are initialized by
starting with their focal positions. These beamlets are lo-
cated such that the central one has the same coordinates
as the relative speckle, whereas the two outer beamlets
are shifted to (xjs ± 0.15xs, y

j
s ± ws/2), respectively31.

The beamlets have the same width, equal to the speck-
les width. Only one degree of freedom on the longitudi-
nal beamlets focal positions is considered in this version
of semi-deterministic method. This could be eventually
extended to two spatial degrees of freedom, longitudi-
nal and transverse. At the next step, the speckle inten-
sity Is is equally divided over the three beamlets, thus
Ib = Is/3. Similarly to the random method, the last
step consists in the evaluation of the beamlet characteris-
tics at the simulation boundary, from which the beamlets
are injected in the simulation region. At the end of the
initialization, the beam presents small-scale modulations
in form of Gaussian-like three-beamlet speckles, each of
them having a Gaussian transverse and longitudinal in-
tensity profile31. This semi-deterministic beamlets distri-
bution produces the speckle pattern as displayed in Fig.
2: here the color bar represents the beam intensity nor-
malized to the average beam intensity 〈I〉. The speckle
pattern is clearly recognizable: each speckle consists of
three-regularly focused beamlets with prescribed focus-
ing spots (yellow dots) parallel to the beam axis. This
regular pattern is due to the appropriate choice of beam-
lets’ inclination and focal position. The speckle intensity
profile is then created according to Eq. (12). The beam
parameters are similar to the ones in Fig. 1: the beam fo-
cal position is (500λ, 500λ), and its width is wB ≈ 350λ.
Despite having the same parameters, it is evident that the
semi-deterministic routine allows to create a more regu-
lar speckle pattern where all the parallel speckles have
the same shape, i.e. same waist and longitudinal length,
unlike the random algorithm speckle pattern, where the
random choice of beamlets’ angle of incidence and focal
position create speckles of different shape and with arbi-
trary inclination. As a consequence, random speckles are
usually shorter than semi-deterministic speckles.

It is interesting to compare other features of spatially
modulated beams produced by the random and semi-
deterministic algorithm: Fig. 3 shows the speckle abun-
dance M , normalized such that

∫
M(u)du = Ns, where

u = Is/〈I〉, as a function of speckle intensity normal-
ized to the average beam intensity. The dashed blue line
refers to the exponential speckle abundance described by
Eq. (7) with f (Is/〈I〉) = const, the solid red line refers
to one run realized with the semi-deterministic approach,
the green lines refer to two different realizations by us-

FIG. 3: Initial speckles abundance M : analytic for-
mula (blue dashed line), one realization with semi-
deterministic pattern for a single realization (red line)
and two realizations with a random pattern (dashed and
dotted green line). The abundanceM is defined such that∫
M(g)dg = Ns, where g = (Is/〈I〉). Here, Ns = 15.

ing the random algorithm. Since the semi-deterministic
method is principally built by assigning a certain inten-
sity to the speckles such that their intensities obey Eq.
(7), the speckle abundance reproduces quite well the ana-
lytic formula. Instead, two different realizations with the
random algorithm correspond to two different intensity
abundances: the speckle statistics varies in each run and
significantly departs from the exponential shape.

IV. SELF-FOCUSING OF A SEMI-DETERMINISTIC
SPATIALLY MODULATED BEAM

In this section, we present the results of self-focusing
of a spatially modulated beam generated with the semi-
deterministic algorithm. The beam propagates into a ho-
mogeneous CH plasma (Z = 3.5) with density ne0/nc =
0.1 and temperature Te = 3Ti = 1 keV. We have
found in test studies (not shown here) that speckle self-
focusing takes place in a zone near and beyond the fo-
cal point over a length shorter than the Raleigh length
xs = 1200λ. Consequently, for the studies presented in
this paper we have chosen the plasma size of 1500λ and
put the beamlet’s focal point at the distance of 300-750λ
from the entrance. The transverse dimension is 1000λ,
which is about three times larger than the beam width:
wB = 350λ. The speckle pattern is shown in Fig. 2:
the speckle width is ws ≈ 20λ, and it is equal to beam-
lets waist wjb . The beam is composed by 15 equidistant
speckles, whose distance is larger than ws, as displayed
in the figure. With these parameters, the Gaussian beam
critical intensity from Eq. (4) is I0c = 5.2× 1014 W/cm2

for the laser wavelength of 0.35 µm. The red line in
Fig. 3 represents the speckles intensity abundance for all
the cases considered. The plasma conditions and speckles
size are comparable to our previous work31.

The speckle pattern behavior is explored by consider-
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(a) (b) (c)

FIG. 4: Plasma perturbation δn/ne0 for 〈I〉/I0c = 1.7 as a function of the normalized spatial coordinates for (a)
t = 100 ps and (b) t = 210 ps and c) for 〈I〉/I0c = 4 at t = 210 ps. The color bar stands for the amplitude of the
density perturbation δn/ne0 (%). The spatial coordinates are in units of the laser wavelength λ. The laser enters
from the left side.

ing different average laser intensities. We have performed
6 simulations lasting tf = 550 ps, which is several times
longer than the traveling time of a plasma perturbation
through a speckle. The goal is to investigate individual
speckle self-focusing at short time-scales along with inter-
speckle interaction due to interference of plasma waves
for long time-scales. Table I shows the list of the average
beam intensities 〈I〉 considered normalized to the criti-
cal intensity I0c: the first column refers to the average
beam intensity, the second column refers to the intensity
of the most intense speckle and the third column refers
to the intensity of the less intense speckle. These cases
range from the one where only one speckle has an inten-
sity able to trigger self-focusing effects, i.e. 〈I〉/I0c = 0.4
to the one where more than 80% of the speckles have an
intensity at least equal to the critical intensity, as for the
case 〈I〉/I0c = 5. In Sec. IV A we study how the plasma
perturbation forms inside the speckle area, in Secs. IV B-
IV C we consider speckles self-focusing at short and long
time scales, respectively. Section IV D is dedicated to the
study of the variation of the speckle intensity abundance.

〈I〉/I0c Imax
s /I0c I

min
s /I0c

0.4 1 0.032
1 2.4 0.14

1.7 4.2 0.2
2.5 6 0.3
4 10 1
5 12 1.3

TABLE I: Average laser intensities for PCGO-CHIC sim-
ulations with semi-deterministic approach. First column:
laser beam average intensity considered in the simula-
tions. Second column: intensity of the most intense
speckle. Third column: intensity of the less intense
speckle. All the intensities are normalized to the criti-
cal intensity.

A. Plasma dynamics

In this section, we analyze the plasma response induced
by a regular speckle pattern. Figure 4 shows the plasma
perturbation δn/ne0 for 〈I〉/I0c = 1.7 as a function of the
normalized spatial coordinates for (a) t = 100 ps and (b)
t = 280 ps. The color bar stands for the amplitude of the
density perturbation δn/ne0 (%). The evolution of the
density perturbation shows how the plasma waves gener-
ated inside the speckles transversely propagate outside of
it: Fig.4(a) refers to a time when the plasma waves have
not left yet the speckles, whereas Fig.4(b) displays the
effect of plasma waves interference, which occurs when
the plasma waves cover a distance that corresponds to
time 2ws/cs ∼ 180 ps. We notice that this time-scale is
related to the particular choice of constant inter-speckle
distance. A different or a variable inter-speckle distance
is expected to affect only the time-history of the dynam-
ics, but not the overall long-time behavior.

Reduction of the maximum amplitude when comparing
Fig. 4(b) to Fig. 4(a) is due to decrease of ponderomotive
effects induced by plasma smoothing. By analyzing the
evolution of plasma response with time and laser inten-
sity, we find out that density perturbations with ampli-
tude above 1% lead to strong modification of the intensity
distribution in plasma, which occurs for 〈I〉/I0c > 1. For
these cases, the plasma density appears strongly modi-
fied, as shown in Fig. 4(c) for 〈I〉/I0c = 4 at t = 210 ps.
Behind the main self-focusing area placed at x > 1250λ,
the density channels are distorted. This behavior is due
to two phenomena: firstly, the amplitude of plasma per-
turbation is sufficiently large to create high-amplitude
density variation, inducing a strong plasma modification
even in low-intensity speckles which self-focus. As a side
effect, a larger amount of speckles is deformed, losing
their Gaussian shape because beamlets significantly de-
viate from their initial direction of propagation due to
refraction in deep density channels. Both effects are an-
alyzed in more details in the forthcoming sections.

Figure 5(a) displays the spatial Fourier transform of
the density perturbation δn/ne0 as a function of the
transverse coordinate at x = 1700λ and t = 75 ps for:
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FIG. 5: Spatial Fourier transform of the transverse line-outs of density perturbation δn/ne0 at x = 1700λ: a)
〈I〉/I0c = 0.4 (black curve), 〈I〉/I0c = 1.7 (green curve) and 〈I〉/I0c = 4 (gray curve) at t = 75 ps; b) for 〈I〉/I0c = 1.7
at t = 150 ps (solid green curve) and 300 ps (dotted green line); c) for 〈I〉/I0c = 4 at t = 150 ps (solid gray curve)
and 300 ps (dotted gray line). In all panels, the wave vectors ky are normalized to the laser wave vector k0 = ω0/c

〈I〉/I0c = 0.4 (black curve), 〈I〉/I0c = 1.7 (green curve)
and 〈I〉/I0c = 4 (gray curve). As expected, the maxi-
mum of density amplitude occurs around ky ∼ 0.06k0,
which corresponds to the speckle width ws ∼ 20λ. The
amplitude of these modes increases with the laser in-
tensity, as more speckles undergo self-focusing. Other
modes with different wave vectors ky are produced since
self-focusing may induce density variation at smaller and
larger spatial scale, especially at larger laser intensities:
the wave vector cut-off moves towards larger |ky| when in-
creasing the laser intensity. Furthermore, the larger and
shorter modes can be enhanced by nonlinear interaction
of plasma waves.

Figures 5(b) and 5(c) show evolution of density per-
turbation spectrum for t = 150 ps (solid lines) and
t = 300 ps (dotted lines) for 〈I〉/I0c = 1.7 (green curves)
and 〈I〉/I0c = 4, respectively. The time t = 150 ps
refers to independent speckle self-focusing, i.e. when
plasma waves interference has not occurred yet, whereas
at t = 300 ps, the plasma waves have already propa-
gated a distance larger than inter-speckle distance. As a
consequence, plasma waves interference and mode mix-
ing can affect the speckles dynamics at long temporal
scales. For the case 〈I〉/I0c = 1.7, the density perturba-
tion peak at around ky = 0.06k0 at shorter time (solid
green line in Fig. 5(b)), consistently with the previous
observations. This peak decreases at later time (dotted
green line) because of plasma smoothing. Three other
peaks in the range of ky = [0.02 − 0.05]k0 with smaller
amplitudes in Fig. 5(b) are due to mixing of ion acoustic
waves travelling across the speckles. This creates density
perturbations with spatial scales larger than the typical
speckle waist. For 〈I〉/I0c = 4 (Fig. 5(c)) and at time
t = 150 ps, the ky = 0.06k0 peak is 5 times larger than
the peak observed in the case 〈I〉/I0c = 1.7. This is due
to a stronger speckle self-focusing for higher laser inten-
sity. At later time of 300 ps, the dotted grey line in
Fig. 5(c) shows an almost equal distribution of density
perturbations over the interval 0.01k0 < ky < 0.15k0.
This broad spectrum of plasma waves is joint effect of

wave steepening and mixing and beamlet divergence, as
the density channels loss their initial Gaussian symmetry
due to strong self-focusing (see also Fig. 4(c)) and most
speckles undergo important intensity enhancement. This
confirms a strong nonlinearity of the density perturba-
tions at a high beam intensity. The beamlet divergence
is studied in Sec. IV C

B. Independent speckles self-focusing: short time-scales

The dynamics of each speckle can be considered in-
dependently before plasma waves excited in different
speckles interact between each other, then the individ-
ual speckle self-focusing can be studied by evaluating

FIG. 6: Speckle intensity enhancement on short time-
scales as a function of the speckle intensity normalized to
three-beamlet critical intensity I2c = Is/I

3b
0c . The black

line refers to the time-averaged intensity enhancement
for a single three-beamlet case. These results are taken
from our previous work31. The black dots stand for the
intensity enhancement of several three-beamlet speckles
composing the multi-speckle pattern, presented without
error bars for the sake of clarity.
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FIG. 7: a) Ratio between the intensity enhancement of the most intense and less intense speckle i as a function of the
beam intensity with the respective standard deviation of the mean. The blue curve refers to the intensity enhancement
at t = 150 ps, whereas the black line to the time-average for t > 150 ps. b) Time-average of the beamlets average

divergence 〈θ̂〉t as a function of the average beam intensity.

short time dynamics, i.e. for time up to t ∼ 150 ps.
At a this time-scale, one expects to retrieve the single
three-beamlet speckle behavior31. Figure 6 shows the in-
tensity enhancement at the stationary state of a single
three-beamlet speckle presented in our previous work31

(black line), and of several three-beamlet speckles of a
multi-speckle beam (black dots) as a function of the nor-
malized intensity I2c = Is/I

3b
0c , where I3b0c is defined by

Eq. (13). The error bars refer to the standard deviation
of the time-averaged mean. The black dots stand for the
intensity enhancement of three-beamlet speckles compos-
ing a multi-speckle pattern averaged over a time interval
of t = [135−185] ps around t = 150 ps. These points are
recovered from the six simulations: as the plasma condi-
tions are similar for every case, the speckle critical inten-
sity is equal for each speckle. Then we sample speckles
from each simulation in order to represent speckles with
I2c = 1, 2, 3, 4, 5, and investigate their dynamics before
inter-speckle interaction occur. The dots do not present
any error bars for the sake of clarity of the graph. The
figure shows that in the multi-speckle pattern the single
speckle behavior at a short time is very close to the sin-
gle three-beamlet speckle for speckle intensities less than
four, and that this feature does not depend on a par-
ticular multi-speckle case. When the speckle intensity
exceeds (4-5)I2c, the intensity of all beamlets exceeds
at least 4 times their own critical intensity, the beam-
lets strongly refract, spreading out from the speckle area
and breaking the speckle symmetry. Given this refrac-
tion behind the self-focusing position, beamlets can leave
the speckle and interact with beamlets in other speck-
les. This perturbs the single-speckle behavior and may
explain why at higher speckle intensity, the intensity en-
hancement of a speckle in a semi-deterministic pattern is
less important than the single three-beamlet speckle in-
tensity enhancement. This stands for a limitation of the
multibeamlet approach in creating the speckle pattern.
However, the comparison is still satisfactory as we know

that PCGO gives the best results for speckle intensity
regime up to I2c = 4− 5 on short time scales31.

In conclusion, the semi-deterministic method recov-
ers our precedent results on single three-beamlet dynam-
ics in terms of intensity enhancement when ion-acoustic
waves generated by speckles self-focusing do not couple to
each other, and for intensities up to 4-5 times the three-
beamlet critical intensity. In the next section, we discuss
the outcomes of the hydrodynamic-driven inter-speckle
interaction.

C. Long time dynamics

At longer time, large amplitude plasma waves pro-
duced in high intensity speckles may interact with the
less intense speckles leading to intensity amplification in
the latter ones, which may be comparable to what is ob-
served in the most intense speckles. In order to compare
ponderomotive effects in the most and the less intense
speckles of the speckle pattern, we calculate a ratio be-
tween the intensity enhancement of the most and less
intense speckle for a given average beam intensity. This
ratio is denoted by i. The dependence of this ratio on the
multi-speckle beam intensity is presented in Fig. 7(a):
the blue line refers to the value of time-averaged i at
around t = 150 ps, when the hydrodynamic inter-speckle
coupling has not occurred yet. The black line refers to i
averaged over the rest of the simulation (150 ps < t < 550
ps). The error bars stand for the standard deviation of
the mean. For 〈I〉/I0c = 1, a difference between the most
and less intense speckle in terms of intensity enhancement
is very small; this is due to the fact that the amplitude
of plasma perturbation is very weak, and there is no in-
tensity enhancement in the less intense speckles. On the
contrary, a strong difference between the short time and
long time behavior is observed for 〈I〉/I0c = 1.7, where
the most intense speckle experiences the effect of mixing
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of density perturbations: a combination of linear den-
sity perturbations reduces the intensity enhancement of
the most intense speckle. Consequently, the ratio i de-
creases over a long time. For 〈I〉/I0c = 2.5 instead, we
observe that the ratio i is slightly different when con-
sidering error bars of the short time (blue curve) and
the long time (black curve) dynamics. In this intensity
range, at short time, the intensity enhancement of the
most intense speckles is saturated given that the speckle
breaks due to beamlets divergence, and the less intense
speckles have an initial power sufficient to develop self-
focusing, although weaker than the most intense speckles.
At longer times, the ratio i remains close to the short time
value as evidenced by the error bars, indicating satura-
tion of speckles self-focusing conditioned by individual
beamlet behavior. When increasing the beam intensity
up to 〈I〉/I0c = 5, the differences in speckles intensity
enhancement are minimal: this diminution is due to a
combination of the speckle intensity enhancement satu-
ration in the most intense speckle and a larger intensity
enhancement in the less intense speckle. We notice that
this saturation has not a physical origin, but it is due to
the limitation of the ray-based method when calculating
the local beamlet intensity (see Sec. II C 1). Although
this is an important issue, we show in the next sections
that the semi-deterministic algorithm allows to describe
basic features of speckle self-focusing in a limited inten-
sity range.

Figure 7(b) shows the time-averaged total beamlets de-
viation with respect to the initial straight beamlet tra-

jectories for several cases. The angle 〈θ̂〉t measures the
beamlets divergence, and it characterizes the beamlet
spreading behind the speckle self-focusing position. The
divergence increases with the average laser intensity, as
speckles deviate from their initial Gaussian profile. This
is particularly true for 〈I〉/I0c > 1, where the average
beamlet divergence above one degree is measured. This
effect is due to the fact that the speckle envelope emerges
from an uncorrelated sum of Gaussian beamlets intensi-
ties and highlights how high-intensity speckles undergo
symmetry breaking. This fact links the saturation of the
self-focusing in most intense speckles to the single beam-
let behavior: the larger is the beamlets deviation, the
less the speckle is Gaussian-shaped. Consequently, the
speckle loses its symmetry and ponderomotive effects sat-
urate, i.e. the intensity enhancement does not longer in-
crease with the speckle intensity. This speckle behaviour
is a feature of PCGO speckles only as the beamlets phase
is neglected when evaluating PCGO beamlets’ intensity
overlapping. In real speckle pattern instead, beamlets
interference cannot be neglected.

D. Time-integrated speckles behavior

In this section, we analyze the overall beam dynam-
ics by considering the time-averaged speckle intensity
distribution. All the cases considered are initialized

with the exponential speckle statistics Eq. (7) with
f (Is/〈I〉) = const. Ponderomotive self-focusing can sub-
stantially change the relation between the speckle abun-
dance and their intensity, as shown in Fig. 8. In this set
of figures, in log-linear scale, the dashed red lines corre-
spond to the reference initial speckle intensity distribu-
tion, the solid blue lines refer to the speckle abundance
time-averaged over all the simulation and with the rela-
tive standard deviation of the mean represented by the
error bars, the dotted green lines refer to the exponential
fit of the data obtained in simulations, whereas the dot-
ted black lines refer to the fit by a power function. The
solid red line in Fig. 8(a) stands for the fit of the initial
statistics. Table II displays the coefficients of the linear
fit of the logarithm of the data ln(M) = m (Is/〈I〉) + q
and relative errors ∆m and ∆q, respectively. The log-
linear plot permits to compare the slope variation of the
data fit. The coefficients α and β and relative errors

∆α and ∆β refer to the power law fit M = α (Is/〈I〉)β .
The errors are calculated as a square root of the diagonal
value of the covariance matrix. The row Initial refers to
the fit of the initial exponential distribution (see red line
in Fig. 3).

Figure 8(a) shows the case 〈I〉/I0c = 0.4, where only
the most intense speckle has an intensity comparable to
the speckle critical intensity. In this case, no appreciable
change of the speckle statistics is evidenced, and the in-
tensity does not change respect to the initial distribution
as reported in Table II. Given this trend, no power law fit
has been performed for this case. Figure 8(b) displays the
case 〈I〉/I0c = 1.7, where around 20% of speckles have a
intensity above the three-beamlet critical intensity. Here,
self-focusing effect and plasma smoothing play an im-
portant role in the beam dynamics, but the exponential
fit still holds closely to the initial shape demonstrating
that the plasma-induced smoothing dominate the laser-
plasma interaction. However, the high-intensity tail de-
viates from this behaviour, but this represents a negli-

〈I〉/I0c m ∆m q ∆q α ∆α β ∆β

Initial -1.1 0.1 2.4 0.2
0.4 -1.15 0.01 2.31 0.03
1.7 -0.89 0.07 2.21 0.03 9.5 0.4 -2.1 0.2
2.5 -0.73 0.9 2 2 7 2 -1.6 0.3
4 -0.37 0.04 1.6 0.1 5 1 -0.9 0.2

TABLE II: Coefficients for the exponential fit M =
exp (mg + q) and the power fit M = αgβ + γ of the
speckle probability distribution. ∆a and ∆b represent
the uncertainties of fit parameters a and b, whereas ∆α
and ∆β are the uncertainties of fit parameters α and β.
The row Initial refers to the linearized fit of the initial
exponential distribution (see red line in Fig. 3). For all
cases,

∫
M(g)du = Ns, where g = Is/〈I〉. The errors are

calculated as a square root of the diagonal value of the
covariance matrix.
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FIG. 8: Logarithm of abundance of speckles M as a function of speckle intensity normalized to the average beam
intensity for a) 〈I〉/I0c = 0.4, b) 〈I〉/I0c = 1.7, c) 〈I〉/I0c = 2.5 and d) 〈I〉/I0c = 4. The dashed red lines correspond
to the reference initial speckle intensity distribution, the solid blue lines refer to the time-averaged speckle abundance
with the relative standard deviation of the mean represented by the error bars, the dotted green lines refer to the the
exponential fit of the data obtained in simulations, whereas the dotted black lines refer to the fit by a power function.
The solid red line in Fig. 8(a) stands for the fit of the initial statistics.

gible amount of the speckle intensity distribution. The
abundance is modified for 〈I〉/I0c = 2.5 as illustrated in
Fig. 8(c), where the number of speckles having intensity
above the multi-beamlet critical intensity is around 40-
50%. Here, the speckle-plasma interaction and beamlets
divergence play an important role. The speckle statistics
is affected in both low- and high-intensity domains, but
an exponential fit is preserved, even though the slope is
different compared to the initial case. Here the number
of high intensity speckles not following an exponential fit
starts to become more relevant. The case of intensity
〈I〉/Ic = 4, where 80% of speckles have intensity above
the critical intensity is shown in Fig. 8(d): here, the log-
arithm of data can be interpolated with a line of a slope
of −0.37. The first part of the distribution can be also
approximated by a power law with an exponent of −0.9.
Thus the distribution does not longer preserve a pure
exponential behaviour. Furthermore, the speckle abun-
dance of the central and tail of the distribution are almost
comparable. With the increasing of the laser intensity
then, it is expected that the exponential distribution will
be strongly modified. Therefore, the high intensity tail
is enhanced and the low-intensity portion of the speckle
abundance is reduced.

In order to give more indication of the approximations
accuracy, we test the goodness of exponential and power
law fits: we calculate the dispersion of the points evalu-

ated by the exponential fit and by the inverse power fit
compared to the data points. This is done by evaluating
the reduced chi-square value for both fits:

χ2 =
1

N − s
Σj

(data[j]− fit[j])2

σ2[j]
. (16)

Here j = Is/〈I〉 represents the abscissa of the point
(Is/〈I〉, M), N = 8 is the number of bins, s = 2 is the
number of fitting parameters, and σ are the errors mea-
sured in each bins. The index j lies in the interval [1:6].
Accurate fitting means a χ2 ≈ 1, whereas χ2 > 1 and
χ2 < 1 indicate poor or over fitting, respectively. Table
III summarises the results for each case: the subscript
exp refers to the exponential fit, whereas the subscript
IP to the inverse power law function. As expected, the
intensity distribution for low intensity cases show a χ2

exp

close to 1. By increasing the beam intensity, the expo-
nential fit becomes less accurate, and at 〈I〉/I0c = 4,
both exponential and power law can approximate the re-
sults. The speckle statistics substantially changes from
the initial exponential shape and a larger probability for
intense speckles is observed. Plasma smoothing is no
longer efficient to reduce ponderomotive effects at these
intensities: high average beam intensity implies a com-
plicate interplay between nonlinear hydrodynamics and
strong speckle self-focusing leading to an important mod-



12

ification of the speckle intensity distribution function.
In conclusion, as a general trend, the fitting proce-

dure demonstrates a depart from the initial statistics
as the high intensity tail becomes more populated. We
can identify two regimes of self-focusing of multi-speckle
PCGO beams: a low and high intensity regime. The first
one concerns beam intensities 〈I〉/I0c below 1.7: here
the time-averaged speckle intensity statistics presents an
exponential trend close to the initial speckle distribu-
tion. In this case, plasma-induced smoothing dominates
and speckles do not reach a large intensity enhancement
over all the time of simulation. For 〈I〉/I0c larger than
2.5, ponderomotive effects overcome the plasma smooth-
ing: the speckle statistics shows higher intensity speckles,
which is not possible to fully include in the interpolation.
Given the poor statistics, it is not possible to clearly as-
sess which fit power or exponential approximates better
the results. One needs a larger number of speckles for
that.

In the next section, relation between PCGO and real
spatially modulated beams is assessed by comparing
PCGO results to HARMONY simulations.

V. COMPARISON TO PCGO RANDOM METHOD AND
ELECTROMAGNETIC SIMULATIONS

In this section, we compare the semi-deterministic
method to previous works and to PCGO-CHIC runs per-
formed with the random algorithm.

PCGO-CHIC simulations are performed by employing
the random method for the plasma and laser conditions
as detailed in Sec. IV for the case 〈I〉/I0c = 4: the in-
cident beam of wB ≈ 350λ is split in 45 beamlets near
the plasma boundary. These beamlets are then focused
inside the plasma in a box of comparable size to the semi-
deterministic case with focal position at (500λ, 500λ).
In this way, a pattern similar to the semi-deterministic
case is created: the number of speckles is in average
12-15, with 3-4 beamlets per speckle. Also the average
transverse speckle size is approximately the same as in
the semi-deterministic pattern (compare Figs. 1 and 2),
whereas the longitudinal average size is slightly smaller

〈I〉/I0c χ2
exp χ2

IP

0.4 0.94 -
1.7 1.35 2.05
2.5 1.8 4.2
4 0.63 1.4

TABLE III: Results of the goodness-of-fit test: the first
column refers to the simulation case, the second and third
columns refer to the χ2 calculated with exponential and
power fit, respectively. Here the subscript exp refers to
the exponential fit, whereas the subscript IP to the in-
verse power law function.

FIG. 9: Transverse line-outs of laser intensity in plasma
normalized to the initial beam intensity distribution at
t = 150 ps for simulations performed with the semi-
deterministic algorithm (red line) and random algorithm
(green line) showing the difference in intensity enhance-
ment between the two cases.

as a consequence of random inclination of beamlets.
Figure 9 illustrates the transverse line-outs of the laser

intensity for t = 150 ps and at x = 500λ for semi-
deterministic algorithm (red line) and one random al-
gorithm run (green line). The intensity is normalized to
the initial beam intensity distribution in order to easily
identify the intensity amplification of the speckles: for
instance, a peak value of six means an intensity amplifi-
cations of six times the initial speckle intensity located at
the given position. Weaker intensity enhancements are
observed in speckles built within the random method.
Such a reduction is due to beamlets crossing at uncon-
trolled random angles and consequently, short interaction
length. Furthermore, the speckle-plasma coupling arising
from collective effects is inhibited because the probability
of beamlets overlapping around their maximum intensi-
ties is low. Then each beamlet affects the plasma dynam-
ics almost independently, around its peak intensity. This
suppresses the collective beamlets self-focusing and arbi-
trarily reduces the overall speckle intensity enhancement.
As we show below, the random method fails to reproduce
self-focusing of realistic speckles in two-dimensional ge-
ometry.

To demonstrate this point, we compare our results
against electromagnetic simulations with the code HAR-
MONY41 under similar plasma and laser conditions32.
The authors performed 2D simulations to study the vari-
ation of the speckle statistics in a homogeneous plasma.
HARMONY solves Eq. (1) for the electric field in the
paraxial approximation, whereas the plasma is described
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by the fluid equations. The code accounts for the speckle
self-focusing and for near forward stimulated Brillouin
scattering. The speckle size is approximately equal to
the size of real speckles, that is, a few times of the laser
wavelength. For the case under discussion, the number
of speckles is around 2000, with an intensity abundance
following the Eq. (7), and an initial speckle intensity
ranging from 0.1 to 10 〈I〉. The average beam intensity
corresponds to a half of the critical intensity I0c. HAR-
MONY simulation results are presented in Fig. 10 of Ref
[32], describing the time-averaged speckle abundance of
the high-intensity tail Is/〈I〉 = [4, 11].

When comparing our simulations against HARMONY
results, we need to consider the following aspects: i)
PCGO does not account for the beamlets phases, and
cannot describe forward Brillouin scattering. Conse-
quently, we chose the HARMONY simulation related to
the strongest ion acoustic damping, where the role of
Brillouin scattering is expected to be minimal. This cor-
responds to the case 〈G〉 = 0.5 of Fig. 10 in Ref. [32]. ii)
The speckle abundance is normalized to the total number
of speckles in each simulation, i.e. Ns = 2000 for HAR-
MONY and Ns = 15 for PCGO. iii) Since PCGO and
real speckles have a different critical intensity (see Eq.
(13)) and ponderomotive effects depend on the relative
critical intensity, it is appropriate to normalize intensity
to the corresponding critical intensity, that is, u = Is/I0c
for HARMONY and u = Is/I

3b
0c for PCGO. iv) Accord-

ing to latter point, HARMONY results cover the range of
u = [2, 5]. Given a larger speckle statistics, one PCGO
realization cannot reproduce all the results. We then
consider the PCGO case which most approach the HAR-
MONY u intensity interval with a sufficient statistics.
This is the case of 〈I〉/I0c = 2.5, which covers the inter-
val u = Is/I

3b
0c = [0.1, 5].

Figure 10 shows the logarithm of the speckle abun-
dance as a function of the intensity range u = [2, 5]
for three cases: HARMONY 〈I〉/I0c = 0.5 (blue line),
PCGO semi-determinsitic method (dotted red line) and
random method (dashed black line) with 〈I〉/I0c = 2.5.
Compared to the HARMONY results, the random al-
gorithm (dashed black line) allows to recover the low-
intensity speckle abundance but fails to follow the HAR-
MONY trend in the high tail due to a low intensity
cut-off. This is due to the fact that randomly initial-
ized beamlet inclinations create irregular speckle inten-
sity profile, reducing the total longitudinal speckle size.
The semi-deterministic algorithm (dotted red line) in-
stead shows an overall good agreement with the electro-
magnetic simulation results up to five times the PCGO
speckle critical intensity. This is in agreement on what
found in our previous paper for a single speckle be-
haviour31.

We have demonstrated that speckle pattern built with
the PCGO random algorithm exhibits too weak pondero-
motive effect since beamlets are projected in the plasma
box with a random inclinations, thus creating asymmet-
ric speckles with a non-Gaussian statistics. The semi-

FIG. 10: Logarithm of the speckle abundance as a func-
tion of the speckle intensity bins u for three cases: HAR-
MONY 〈I〉/I0c = 0.5 (blue line), and semideterminis-
tic and random PCGO-CHIC simulations 〈I〉/I0c = 2.5
(dashed red and dotted black lines, respectively). Pa-
rameter u refers to speckle intensity normalized to the
related critical intensity: u = 〈I〉/I0c for HARMONY
simulations, and 〈I〉/I3b0c for both PCGO-CHIC simula-
tions.. The HARMONY data are taken from S. Hüller et
al., New J. Physics 15, 025003 (2013)32.

deterministic algorithm is more appropriate for describ-
ing ponderomotive self-focusing of Gaussian-like speckles
once accounted for the appropriate intensity normaliza-
tion.

VI. CONCLUSION

In this paper, we have improved the description of pon-
deromotive self-focusing effects when considering multi-
speckle beams. The new PCGO-based approach, called
semi-deterministic method, consists in dividing the laser
beam in Gaussian-shaped speckles with a correct speckle
intensity statistics. Each speckle contains three beam-
lets located at given positions such that to produce a
Gaussian profile. This kind of speckles has a critical in-
tensity twice larger than a 2D Gaussian beam, which
accounts for the overestimation of ponderomotive effects
in 2D geometry31. The semi-deterministic method has
the following assumptions: i) it considers only one spa-
tial degree of freedom, fixing the number of speckles and
their transverse position, ii) the inter-speckle distance is
the same for each speckle, and iii) the distribution of the
speckle intensities is simplified by imposing f (Is/〈I〉) =
const. The self-focusing of a semi-deterministic multi-
speckle beam in a homogeneous plasma is then explored
for average laser intensities ranging from 〈I〉/I0c = 0.4
to 5: different regimes of plasma-speckles coupling and
hydrodynamic-like inter-speckle interaction has been ex-
plored at short and long time scales.

At a short time-scale, independent speckle self-focusing
is observed in agreement with results for a single three-
beamlet speckle31: the three-beamlet speckles behave
as a Gaussian beamlet having a critical intensity twice
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higher than the Gaussian beam critical intensity.

At longer time-scales, density perturbations produced
in neighbor speckles interfere. At moderate intensities,
e.g. around 〈I〉/I0c = 2, this reduces the intensity en-
hancement in already self-focused speckles, and it trig-
gers self-focusing in less intense speckles. For 〈I〉/I0c > 2,
ponderomotive effects are saturated in the most intense
speckles due to speckle symmetry breaking caused by the
predominance of the individual beamlets behavior.

The analysis of time-integrated speckle abundance al-
lows us to define two regimes of multi-speckle beam self-
focusing: for a low average intensity 〈I〉/I0c < 2, no
appreciable changing in speckle self-focusing is induced
since the amplitude of plasma perturbations remains low,
i.e. of the order of 10% of the initial density, and the
plasma-induced smoothing reduces the strong speckle in-
tensity amplification. Thus the intensity statistics pre-
serves the exponential shape. For 〈I〉/I0c >2, speckle
self-focusing dominates in the most intense speckles,
whereas the highly nonlinear plasma perturbation trig-
gers an intensity enhancement in less intensity speckles.
As a consequence, the speckle statistics shape changes
because the number of intense speckles increases and the
relation between the speckle abundance and the speckle
intensity fit is not clearly defined. Therefore, by increas-
ing the beam intensity of one order of magnitude from
〈I〉/I0c = 0.4 to 〈I〉/I0c = 5, the speckle-plasma coupling
gradually becomes nonlinear, where the intensity inter-
val 〈I〉/I0c = 1.7 − 2 represents an indicative threshold
between the linear and nonlinear regime.

For intense speckles, the tail of the speckle inten-
sity distribution strongly varies, as it has been al-
ready reported in electromagnetic simulations32. Our
PCGO-CHIC simulations reproduce the modification of
the speckle distribution tail observed in two-dimensional
electromagnetic simulations once accounted for electro-
magnetic and PCGO speckle differences and when us-
ing the present semi-deterministic approach over the ran-
dom method. Thus, our results demonstrate that shap-
ing Gaussian speckle by overlapping three beamlets and
imposing the correct speckle intensity abundance allow
to describe ponderomotive self-focusing in the ray-based
PCGO framework. These results agree with single three-
beamlet speckle simulations31, where we have found that
the PCGO method can be applied to speckles with an in-
tensity up to 4-5 times larger than the critical intensity.

In future work, immediate improvements based on
this method should account for i) extending the semi-
deterministic approach to more general conditions found
in spatially modulated beams, e.g. random inter-speckle
distance and/or different statistics, ii) including other
properties of spatially modulated beams such as beam
contrast, and iii) implementing a temporal variation of
speckle positions at the end of a certain time interval to
mimic temporal smoothing.
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