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Introduction

Nowadays, the magnitude of the global energy demand poses several challenges.
While climate change is dictating the need for a more clean and renewable energy,
the living standards are improving, and the population is expected to grow by
two billions in the next two decades, further increasing the energy consumption.
Currently, fossil fuels still satisfy about 80% of our energy requirements, but ac-
cording to the International Energy Agency (IEA), the rate of investments in clean
energy has risen up to 12% since 2020. Investing in renewable energy technologies
is not only crucial to reach a more sustainable economy, but is also important for
relieving pressure on consumers and gaining independence from other countries.
According to IEA, in 2021, the European Union was the second clean-energy main
investor, after China [1]. A central role in the energy revolution is played by
molecular hydrogen (H2). This molecule is an abundant energy carrier, in fact it
has the highest energy per unit of mass of any fuel. It can be used to generate
electricity or heat, but also for transportation and utilities applications, as well as
commercial use. One of the main challenges we face today is to find high density
storage options that are also cheap and safe. Currently, we are storing hydrogen
in large volume tanks, at low temperatures (liquid form) or high pressure (gaseous
form). But these methods are not particularly indicated for applications in the
field of transportation. It is of primary interest to find more efficient ways to
store molecular hydrogen: while near-term solutions focus on the advancement
of high pressure storage technologies, a possible long term solution is to exploit
the physical adsorption of molecular hydrogen in porous materials, such as Metal
Organic Frameworks (MOFs). Research in the field of porous materials employed
as hydrogen storage solutions is still in its early stages: studies describing the in-
teraction between hydrogen and MOFs are still ongoing and aim to determine the
most ideal characteristics and synthesis methods. When modeling the behaviour
of molecular hydrogen, it is crucial to take into account that this molecule occurs
in two isomeric forms, depending on whether the spins of the two hydrogen atoms
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are parallel or antiparallel. These two modifications, that have very different phys-
ical properties, undergo a conversion from the ortho-states to para-states at low
temperature.

In this thesis I report neutron imaging and neutron transmission measurements
on molecular hydrogen adsorbed by a MOF known as HKUST-1. The purpose of
this work is to model the ortho-para conversion of adsorbed hydrogen, which we
expect to be catalyzed by the adsorbant. Moreover I aim to establish if the bond
between the H2 and the adsorption sites of the MOF hinders the rotation of the
hydrogen molecule.

The first chapter of this work presents an introduction on the main properties
of molecular hydrogen and most common storage techniques, with a particular
focus on metal organic frameworks. Moreover the behaviour of adsorbed hydro-
gen molecules is described, focusing on the ortho-para conversion, as well as a
theoretical model used to describe the hindered rotational states of adsorbed H2.
This model Hamiltonian was introduced by Silvera in 1976 [2]. In this work I
implemented the eigenvalues equation using Wolfram Mathematics, in order to
reproduce the same results. Eigenvalues of the hindered rotor were then used to
construct the ortho- and para- partition functions of the system, which I compared
to the free hydrogen partition functions.

In the second chapter I outline the main properties of neutron imaging and
neutron transmission techniques, underlining the advantages of using neutrons as
probes to investigate matter. Here are also described the two instruments employed
in the experimental part of this work, which are located at the ISIS neutron and
muon source (UK).

The third chapter focuses on the theoretical description of the neutron scatter-
ing cross section. An introduction to neutron differential scattering cross section
is provided, before focusing of the specific case of diatomic molecules.

The experimental part of this work is reported in the fourth chapter. The ex-
periments were performed at the IMAT beamline and VESUVIO beamline, located
at the ISIS neutron and muon source. I personally contributed to data reduction,
analysis and interpretation. In this chapter are described the background noise
corrections that were implemented on imaging and transmission data. Moreover,
analyzing imaging data I was able to determine a characteristic time for the ortho-
para conversion that is significantly lower than that of free hydrogen, therefore
demonstrating that the MOF acts as a catalyst for this reaction. I performed
the analysis on the imaging data on multiple regions of interests, showing that
this technique provides the possibility to explore the spatial distribution of the
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sample, which renders it particularly appealing for industrial and engineering ap-
plications. Processing transmission data acquired at the VESUVIO beamline, I
compared the experimental cross section of adsorbed molecular hydrogen at 30 K,
to theoretical simulations. Results indicate that the three dimensional model is
not suitable to represent adsorbed hydrogen, suggesting that this system could be
better represented by a hindered rotor.
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Chapter 1

Hydrogen storage

Molecular hydrogen (H2) has gained increasing attention in the framework of effi-
cient and green transport technologies. During the last decades a substantial effort
has been directed towards the problem of hydrogen storage: to fully exploit this
resource we need cheaper and more efficient ways to safely store and transport
molecular hydrogen. In this chapter we will briefly discuss the main properties of
molecular hydrogen, as well as different storage techniques. We will then focus on
one of the possible solutions: Metal Organic Frameworks (MOFs).

1.1 Molecular hydrogen

Molecular hydrogen (H2) is composed of two hydrogen atoms, each with a half-
integer nuclear spin. H2 molecules can be found in two possible modifications,
depending on whether their nuclear spins are parallel or antiparallel. When the
spins are parallel the molecule is said to be in the ortho modification. The ortho-
hydrogen state has a total nuclear spin S=1, as a consequence the component
along the z axis can have one of the three values Sz=-1,0,1. These triplet states
are degenerate in absence of a magnetic field, their wave functions are symmetric
and can be written in terms of the spin wave functions of the proton 1 and 2 as:

|ψS,Sz⟩ = α(1)α(2)

|ψS,Sz⟩ = α(1)β(2) + α(2)β(1)

|ψS,Sz⟩ = β(1)β(2)
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Figure 1.1: Ortho- and para-hydrogen modifications, rotational levels are reported for
free hydrogen (3D rotor).

On the other hand, when the spins are antiparallel it is called para-hydrogen,
and has a total nuclear spin S=0. This results in the singlet state with anti-
symmetric wavefunction:

|ψS,Sz⟩ = α(1)β(2)− α(2)β(1) (1.1)

When the hydrogen molecule is free to move in space, its energy can be stored
in multiple degrees of freedom. In fact, free molecular hydrogen can rotate about
its centre of mass, vibrate along its axis and move in the space. Moreover we
can identify electronic and nuclear motions of the two hydrogen atoms. To study
such a complicated system we usually have to perform multiple approximations:
as an example, free hydrogen can be considered an ideal gas, neglecting the inter-
actions between molecules, moreover electronic motion can be treated using the
Born–Oppenheimer approximation. For the purpose of this work, we are more
concerned with molecular motion. Here we can solve the Hamiltonian assuming
that the rotational, vibrational and translational motions are independent from
each other and from molecular spin.

Since protons have nuclear spin equal to 1
2
, the total wavefunction that describes

molecular motion has to be anti-symmetric. While translational, vibrational and
electronic motion have no influence on the symmetry of the nuclear wave function,
rotations and spin flips can change its parity, therefore, to guarantee that the total
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wave function is anti-symmetric, the product of rotational and nuclear spin wave
functions has to be anti-symmetric. It is therefore relevant to discuss the rotational
states of H2.

Rotational states of H2

The theory behind the three dimensional rotor model is here briefly discussed as
we are going to adapt it to the two dimensional case. We describe rotational states
of a hydrogen molecule neglecting vibrational and translational motion, therefore
approximating the molecule as a rigid rotor. In the case of molecular hydrogen,
the rigid rotor is composed of two identical atoms of mass m separated by a mean
distance a, that rotate as a whole around the centre of mass. The moment of
inertia of this system, taken into account that the two atoms have the same mass
m and same distance from the centre of mass a

2
, is:

I =
1

2
ma2 (1.2)

To solve the Schrodinger equation of a rigid rotor we assume the bond length
to be constant (r = a), which means that the partial derivative with respect to r
does not contribute because r does not vary. Writing the Hamiltonian in spherical
coordinates we get:

− h̄
2

2I

[
1

sin θ

∂

∂θ
sin θ

∂

∂θ
+

1

sin2 θ

∂2

∂φ2

]
|Θ(θ)Φ(φ)⟩ = E|Θ(θ)Φ(φ)⟩ (1.3)

Here the wave function is composed of two separate wave functions that depend
only on the variables θ and φ respectively. In order to separate the variables we

can multiply each side by
2I

h̄2
and

− sin2 θ

Θ(θ)Φ(φ)
so that:

1

Θ(θ)ψ(φ)

[
sin θ

∂

∂θ
sin θ

∂

∂θ
+

∂2

∂φ2

]
Θ(θ)Φ(φ) =

−2IE sin2 θ

h̄2
(1.4)

Noticing that
∂

∂θ
only acts on Θ(θ) and

∂2

∂φ2
only acts on Φ(φ), we can separate

variables as:

1

Θ(θ)

[
sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
Θ(θ) +

(
2IE

h̄2
sin2 θ

)
Θ(θ)

]
= − 1

Φ(φ)

∂2

∂φ2
Φ(φ) (1.5)
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Equation 1.5 implies that the two expressions have to be equal for every value
of θ and φ, therefore they must be equal to a constant, that we call m2

J . This
allows us to separate variables obtaining:

sin θ
d

dθ

(
sin θ

d

dθ

)
Θ(θ) +

2IE

h̄2
sin2 θΘ(θ) = m2

JΘ(θ) (1.6)

and

d2

dφ2
Φ(φ) = −m2

JΦ(φ) (1.7)

The second one has immediate solution. Normalizing the eigenfunction and
imposing cyclic boundary conditions, which signify that φ and φ+ 2π have to be
the same angle in the three dimensional space, we find that:

Φm(φ) =
1√
2π
e±imJφ (1.8)

where

mJ = · · · ,−3,−2,−1, 0, 1, 2, 3, · · · (1.9)

On the other hand, the solutions to 1.6 are found to be the associated Legendre
functions, where it is required that:

2IE

h̄2
= J(J + 1) (1.10)

Therefore we can say that equation 1.5 requires the energy to be quantized as:

E = J(J + 1)
h̄2

2I
= J(J + 1)B (1.11)

where B = 7.35 meV (B = 59.3 cm−1) for molecular hydrogen [2]. It is
important to note that every level is (2J+1)-degenerate since it is associated with
values of mJ for which it has to be true that |mJ | ≤ J . The eigenfunctions of
1.5, given by the product of Θ(θ) and Φ(φ) are known as spherical harmonics.
Spherical harmonics are labeled by the quantum numbers J and mJ , in particular
the even states are labeled by even Js and odd states are labeled by odd Js.

As mentioned before the total wave function has to be anti-symmetric, this
means that para-hydrogen will exist in even angular momentum states, J=0, 2,
4, ..., while ortho-hydrogen will have odd rotational states J=1, 3, 5, ...; it can
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be shown that the energy of the singlet is in fact around 15 meV lower than that
of the triplet [3]. As a consequence, the two modifications have different physical
properties.

Thermodynamic properties of ortho- and para- hydrogen

To describe the thermodynamic properties of a system at equilibrium it is useful to
construct its partition function. The total partition function of molecular hydrogen
depends on multiple terms that arise from the different possible motions mentioned
before. If we use the the Born–Oppenheimer, ideal gas, and rigid-rotor harmonic-
oscillator approximations we can write the total partition function decoupling each
degree of freedom as:

Ztot = ZelecZvibZrotZtransZspin (1.12)

In order to focus on the differences between the two hydrogen modifications we
can consider only the ortho- and para- partition functions, which are given by the
product of the spin and rotational partition functions:

Zortho = ZS,tripletZr,odd = 3
∑

J=1,3,5,...

(2J + 1)e−J(J+1)B/kBT (1.13)

and

Zpara = ZS,singletZr,even = 1
∑

J=0,2,4,...

(2J + 1)e−J(J+1)B/kBT (1.14)

While the total partition function of a system containing both modifications
is:

Zrot,S = 1
∑

J=0,2,4...

(2J + 1)e−J(J+1)B/kBT + 3
∑

J=1,3,5,..

(2J + 1)e−J(J+1)B/kBT (1.15)

Knowing these functions, we can calculate the probability that the hydrogen
molecule is in the ortho- or para-state, and therefore their concentrations, as a
function of temperature. The relative concentrations of ortho- and para-hydrogen
calculated using 1.13, 1.14 and 1.15 are shown in figure 1.2. We find that the rel-
ative populations of oH2 and pH2 depend on the temperature at which we observe
the system: at room temperature their concentration depends primarily on the
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singlet to triplet ratio. This means that 75% of the hydrogen molecules will be
in the ortho- modification, and 25% in the para- modification. This changes at
lower temperatures, in fact when approaching the ground state it becomes more
convenient for the oH2 to undergo an “ortho-para conversion” (opC) to the lower
energy state [4].

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

T (K)

C
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n
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n
tr
at
io
n

Ortho
Para

Figure 1.2: Ortho- and para-hydrogen concentration as a function of temperature, cal-
culated for the case of free molecular hydrogen, which can be represented with the 3D
rotor model.

The conversion has been investigated with infrared [5], Raman spectroscopy
[6], thermal conductivity and NMR measurements [7][8], as it is also particularly
interesting for spallation neutron sources. In fact pH2 can be used as a neutron
moderator, to optimize the experimental conditions. Recently, effort has been di-
rected into finding a catalyst to expedite the reaction. It is important to take
into account that the conversion phenomenon has undesired consequences for the
hydrogen-storage industry. In fact, the conversion from oH2 to pH2 is an exother-
mic reaction, that can cause the evaporation of neighboring molecules. This pro-
cess is known as "boil-off" and is relevant to hydrogen storage applications, as well
as space applications [9]. Energy released during boil-off is of 525 kJ/kg at 20 K
[9].

Moreover, using the ortho- and para- partition functions, it is possible to show
that the two modifications have very different rotational, and therefore total, heat
capacities at constant volume. The heat capacity at constant volume is defined
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as:

CV =
∂⟨E⟩
∂T

(1.16)

where:

⟨E⟩ = −∂ lnZrot,S

∂β
(1.17)

Heat capacities at constant volume are shown in figure 1.3.
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Figure 1.3: Ortho- and para-hydrogen rotational heat capacities at constant volume,
normalized by the gas constant R, respectively in blue and cyan. The heat capacity is
also shown for normal hydrogen with a concentration ratio of 3:1 (orange) and for the
ratio given at the specific equilibrium temperature (violet). These are calculated for free
molecular hydrogen, which can be described with a 3D rotor model.

These curves can be calculated by substituting the respective partition func-
tions into equations 1.16 and 1.17.

From figure 1.3 it is possible to notice the difference between the rotational heat
capacities of the two modifications. Moreover the picture shows the heat capacities
for two other systems, composed of both ortho- and para-hydrogen molecules.
The system marked as "equilibrium" has a concentration that varies depending
on the temperature, as shown in figure 1.2, and can be calculated using the total
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partition function. However this curve differs greatly from the experimental data,
which is more similar to the curve marked as "3:1". The latter presents a fixed
concentration ratio, that corresponds to that of room temperature, which means
that the heat capacity is given by:

(CV )rot,S =
3

4
(CV )rot,S(ortho) +

1

4
(CV )rot,S(para) (1.18)

This happens because the ortho-para conversion for free hydrogen in an incredibly
slow reaction (characteristic conversion time of around 79 hours [10]), so when H2

is cooled the ratio continues to be close 3:1 for a long period of time.
Another relevant difference between the two isomers is in their neutron scat-

tering cross section, which will be discussed in depth in chapter 2.

1.2 Hydrogen storage techniques

Recently molecular hydrogen (H2) has gained increasing attention in the field of
efficient and green transport technologies. Because of its high energy density,
hydrogen is currently one of the most promising candidates to replace carbon-
based energy sources. In fact hydrogen has a power density of 33.3 kW h kg−1

while that of methane and gasoline are respectively 13.9 kW h kg−1 and 12.4 kW
h kg−1. In addition, hydrogen is very abundant in nature and non-polluting.

During the last decades a substantial effort has been directed towards the
problem of hydrogen storage: to fully exploit this resource we need cheaper and
more efficient ways to safely store and transport molecular hydrogen. Currently
hydrogen is stored in cryogenic pressurized tanks in the liquid form. The size of
the tank can range between 1.5 m3 and 75 m3. Liquid hydrogen has higher density
compared to the pressurized gas, however liquefaction requires a lot of energy
and can be very expensive. This storage method is currently applied for many
applications but has proved to be particularly unfit for transport technologies. In
fact, cryogenic storage is convenient if large quantities are produced and if the
application requires long storage periods [11].

Especially in the field of transportation, it is obviously impractical and un-
safe to store on a vehicle large pressurized tanks that require daily refilling. For
this reason, the properties of many different materials that have the capacity of
adsorbing hydrogen under specific conditions have been explored. Based on the
way the material interacts with the H2 molecules, one can divide hydrogen storage
materials into two categories: chemisorption-based materials and physisorption-
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based materials. The first category includes all of those materials that chemically
bond with the hydrogen atoms. In this case, the ability to bond, as well as the
stability of the bond, strongly depend on the temperature and pressure of the
system. Moreover those processes could be irreversible, or have a specific adsorp-
tion or desorption activation energy. We can divide chemisorption-based materials
into two classes: on-board reversible hydrides, which are all of those hydrides that
could be recharged on a vehicle, and off-board regenerable hydrides, that present
a more complex mechanism of re-hydrogenation. Examples of on-board reversible
hydrides are interstitial metal hydrides, covalent metal hydrides, complex covalent
hydrides. Off-board regenerable hydride materials are ammonia borane, hydrocar-
bons and alane.

In physisorption-based materials the mechanism that regulates adsorption re-
lates on van-der-Waals forces. In this case the attraction is relatively weak and it
is due to electric forces that do not modify the chemical structure of the hydro-
gen molecule. Therefore the adsorption is easily reversible and the process never
presents an activation energy. Physisorption materials are highly porous materials
such as zeolites clathrates, organic polymers, and metal-organic frameworks. The
storage capacity of these materials depends on the size shape of the pores, as well
as their surface area and chemical composition. The weak intermolecular forces
guarantee fast adsorption and desorption kinetics, which is relevant for on-board
loading, as well as fast fuel availability. However, the weak nature of the bond en-
tails that high storage capacities can only be reached at low temperature and/or
high pressure. In the next section we will discuss one the most promising class of
physisorption materials, underlying their main characteristics as well as the state
of the art in the field of hydrogen storage [12].

1.3 Metal organic frameworks (MOFs)

Metal–organic frameworks (MOFs) are crystalline materials composed of metal
ions linked together by organic ligands, forming a highly microporous network.
While the firsts porous three-dimensional networks dates back to the late 1980s
[13], MOFs were not developed until later, when it was found that aggregating
metal ions with carboxylate rigid organic ligands allowed to produce a crystalline
structure with high stability as well as high porosity. MOFs are in fact composed
of metal–carboxylate subunits which constitute the nodes of the framework, and
some other organic linker, on which depends the structure of the network. The
wide variety of metal ions and organic ligands makes it possible to design many
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different frameworks, which can differ in size of the pores and chemical properties.
MOFs were firstly suggested as hydrogen storage materials in 2003 with Rosi et
al. [14] and Ferey et al. [15]. They firstly showed that hydrogen can be stored
by physisorption processes in MOFs. Rosi et al. reported an hydrogen maximum
uptake of 45 mg per gram of MOF-5 (4.5 weight %) at a temperature of 78 K and
pressure lower than 1 bar. They also reported the uptake at room temperature,
which was found to increase linearly with pressure, giving 1.0 weight % at 20
bar. Rosi points out that, although very sensitive to preparation conditions, the
capacity of MOF-5 at room temperature is comparable to the highest capacity of
carbon nanotubes at cryogenic temperatures. Ferey et al. studied MIL-53 with two
different metal ions Al3+, Cr3+, reporting a storage capacity at 77 K and 1.6 MPa
of 3.8 wt.% and 3.1 wt.% respectively. Those findings firstly showed the potential
of MOFs as hydrogen storage materials, and initiated a cascade of reports on the
subject.

1.3.1 Investigation techniques

Hydrogen adsorption in MOFs is often investigated using vibrational spectro-
scopies, such as Inelastic Neutron Scattering (INS). This technique is particularly
useful to identify hydrogen binding sites and explore the rotational transitions of
adsorbed molecules. Using INS it is possible to show that MOFs present multiple
binding sites, however assigning those sites to specific locations in the framework
structure can be complicated, and it is usually necessary to integrate the results
with computational methods. As an example, Rosewell used INS in 2005 to study
the adsorption of molecular hydrogen in four different MOFs (IRMOF-1, IRMOF-
8, IRMOF-11, and MOF-177) constructed from the same initial unit. All of these
MOFs showed multiple adsorption sites. Implementing Monte Carlo simulations
they were able to identify the strongest binding site of MOF-5 in the corners of
the larger pores, on the faces of the Zn4O(O2C )6 clusters. Despite the similar
structures of the four MOFs, the nature of the hydrogen bonds in each structure
is found to vary considerably, showing that the organic units play a significant
role in the adsorption process [16]. Similar findings for MOF-5 were reported by
Mulder in 2008, who, using INS, identified five adsorption sites instead of the four
found by Rowsell [17]. INS is also particularly useful to investigate the occupation
order of the sites: it is shown that stronger binding sites are always filled first, if
the pressure is increased or the temperature lowered, weaker binding sites are then
filled [18]. Moreover INS allows us to investigate rotational properties of adsorbed
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hydrogen [19][20].
Another technique used to determine hydrogen location inside the MOFs is

neutron powder diffraction. This technique is particularly useful to determine
the distance between constituent elements of the framework as well as between
hydrogen molecules[18][21]. Moreover, Infrared adsorption spectroscopy can be
performed to investigate the nature of the bond, measuring the binding enthalpy
of each adsorption site. This reflects the energy change of the molecule from its
free state to the bound state, which can indicate a stretching [18] [21]. It is shown
by Nijem et al. that the IR shifts do not depend on the binding energy, but on
the chemical environment, specifically H2-H2 interactions [18].

1.3.2 Surface area, pore dimension and open metal sites

MOFs are typically categorized by their surface area and pore dimensions. Their
surface area is usually measured using BET model: this method is conventionally
used in literature even though it is not perfectly appropriate for microporous ma-
terials such as MOFs. Hirscher and Panella report the hydrogen storage capacity
as a function of BET specific surface area for many porous materials. The general
trend shows a linear correlation between storage capacity and surface area. This
indicates that the hydrogen uptake is independent from the material of the frame-
work, but instead depends on its shape [22]. However, at a certain temperature
the maximum uptake is reached at a pressure that depends on the specific material
and on the heat of adsorption of each bond.

The heat of adsorption, which quantifies the strength of the interaction between
adsorbate and adsorbent, is mainly influenced by the pore size. In particular, it
was found that a higher heat of adsorption is associated with smaller pore size [23],
this is because smaller pores allow the molecule to interact with the several atoms
that surround it, instead of only one surface. Monte Carlo simulations contribute
to demonstrate that a higher hydrogen uptake is associated with smaller pores and
higher specific surface area [24]. Even though it is hard to imagine that a MOF will
be able to satisfy the characteristics for room temperature storage, great effort is
being put into synthesizing the MOFs with the best possible properties. Moreover,
a study on Zeolite-like metal-organic frameworks (ZMOFs) demonstrates that the
heat of adsorption is significantly improved by the presence of an electrostatic field
inside the pore [25]. The electrostatic field can be introduced by having a charged
framework, adding cations as in zeolites.

Another possible way to increase the heat of adsorption is to introduce open
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bonds in the structure. MOFs with open metal sites have attracted great interest
in the field of hydrogen storage. Open metal sites are constituted of metal ions
centres with unsaturated bonds. Usually they can be achieved by weakly linking
the metal to a solvent molecule, that is liberated during heating, leaving the bond
exposed to the void region. Not all MOFs can present open metal sites: the
framework needs to be sufficiently rigid in order to sustain the structure without
collapsing [26]. It is also interesting to notice that results of experiments and
calculations suggest that the strength of the bond between the cation and the
hydrogen molecule depends on the ionic radius of the cation [27]. Adding open
metal sites is one of the most effective way to increase the heat of adsorption,
therefore those types of MOFs are the most studied.

1.3.3 MOFs for hydrogen storage: HKUST-1

Since the late 90s, when MOFs started becoming popular in many research fields,
more than 90’000 structures have been synthesized and over 500’000 predicted
[28], however not all of them are relevant for hydrogen storage applications. One
of the most studied MOFs in this field is MOF-5 ( or IRMOF-1), this MOF is par-
ticularly interesting because of its simple preparation process and cheap chemical
constituents. Here inorganic [OZn4]

6+ groups are joined to an octahedral array
of [O2C C6H4 CO2]

2– (1,4-benzenedicarboxylate, BDC) groups. Rosi reports for
this MOF an apparent surface area of 2500 to 3000 m2g−1. As mentioned before,
its measured uptake at 78 K is of 45 mg of H2 per gram of MOF-5 (4.5 weight%,
which means 17.2 H2 per Zn4O(BDC)3 formula unit). Rosi identifies two main
adsorption sites for this MOF, associated with the Zn and the BDC linkers. But
data shows that further increasing the loading could result in the emergence of
new peaks, associated with different adsorption sites. MOF-5 was also the sub-
ject of numerous computational studies. Sillar et all use Density functional theory
(DFT) and second-order Møller-Plesset perturbation theory (MP2) to simulate the
interaction between H2 and different elements of the MOF, taking into account dis-
persion interactions and zero-point vibrational energies [29]. It’s found that the
stronger site is at the OZn4(O2Ph)6 node.

It is possible to construct slightly different MOFs, starting from the same initial
unit Zn4O(O2C )6, by changing the organic linking units. MOFs similar to MOF-5
are known as IRMOFs (isoreticular MOFs). As an example Rowsell studied MOF-
5 as well as IRMOF-8, IRMOF-11, and MOF-177. Despite the similar structures,
the nature of the hydrogen bonds in each MOF varies considerably, showing that
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the organic units play a significant role: the adsorption isotherms show how the
four samples present different capacities for hydrogen uptake.

Another example of interesting MOFs are zeolite-like MOFs which are anionic
and have exchangable extra-framework cations. Here the nature of the binding is
strongly influenced by the strong electrostatic field in the pores [25].

Some of the most promising MOFs, in the field of hydrogen storage, are those
with unsaturated metal centers. An example of these is given by another family of
isostructural MOFs, known as: M2(dobdc) (M = Mg, Mn, Fe, Co, Ni, Zn) (dobdc4–

= 2,5-dioxido-1,4-benzenedicarboxylate) which present exposed M +
2 cation sites.

Of these, the MOF with the Ni cation shows the shortest hydrogen-metal distance
[30][31].

Other MOFs with open metal sites, interesting for hydrogen storage appli-
cations, are iron-based sodalite-type MOFs [32], fcu-MOFs [20], covalent organic
frameworks (COFs) [20], isostructural MOFs of the type M-CUK-1 [33], as well as
Cr3(BTC)2 [21] and In-soc-MOF [34].

For the purpose of this work we will focus on one particular open metal site
MOF, which was used in the experiments: HKUST-1. This MOF is named af-
ter the Hong Kong University of Science and Technology, but is also known as
MOF-199 or Basolite 300. This MOF is composed of copper nodes with 1,3,5-
benzenetricarboxylic acid links between them (Cu3(BTC)2), disposed as in figure
1.4, for a total of 156 atoms. Here the Cu atoms, in the dehydrated phase, are
unsaturated, favoring high binding enthalpies.

The largest pores, shown in figure 1.4, have a diameter of 9 Å and are formed
by 12 dinuclear Cu2(OOC)4 subunits, arranged in a cuboctahedron. The second
largest pores are composed of four benzene rings and have a 5 Å diameter. This
MOF can be synthesized using hydrothermal methods. At 77 K this material
adsorbs up to 2 wt % at 100 Pa (0.001 bar). The powder diffraction pattern showed
the structure slightly expanding during the loading of gas. The most favored
binding site lies next to the Cu atoms, specifically it occupies the unsaturated
axial sites of the dinuclear Cu center, and has a distance of 2.39 Å from the Cu
atom. Peterson et al. report the order in which the other binding sites are filled
during loading, showing that it is consistent with the fact that smaller pores are
filled first [35]. Brown et al. proves the rotational motion of hydrogen inside the
main adsorption site to be slightly hindered: this means that the H2 molecule has
a tendency to lie in a plane perpendicular to the Cu-Cu bond [36].

In the following sections we will thoroughly discuss how adsorbed hydrogen
behaves inside the pores, in particular we will focus on the kinetics of the ortho-
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Figure 1.4: Representation of HKUST-1 metal organic framework, the spheres represent
the pores of the framework.

para conversion, which appears to be catalyzed by the framework. We will then
discuss the rotational levels of adsorbed hydrogen, showing how the rotation is
often hindered in the presence of the adsorbant.

1.4 Kinetics of the catalysed ortho-para conversion

The ortho-para conversion happens at low temperatures, when a change of the
rotational state from J=1 to J=0 occurs simultaneously with a total nuclear spin
change, from S=1 to S=0, to guarantee the anti-symmetry of the wave function.
The transition between states of different parity is not spontaneous, therefore it
requires an external magnetic field, that in the case of free hydrogen is provided by
neighbouring oH2, that rotate producing a dipole. Here the rate of the conversion
can be expressed in terms of the oH2 concentration o as:

−do
dt

= k2
o(o− oe)

1− oe
(1.19)

Where oe is the concentration of oH2 at equilibrium, and k2 is the conversion
rate constant. For liquid hydrogen at 15 K and 0.66 bar the value of the rate
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constant can be found to be k2 = 0.0143 h−1o−1. This results in a characteristic
conversion time of around 79 hours [10]. While the conversion of free hydrogen is
particularly slow, when the molecules are bound to a surface, its magnetic field
can function as a catalyst of the reaction. This is observed in both magnetic
and diamagnetic materials and can be attributed to potential anisotropies at the
microscopic level. In the presence of a catalyst the conversion rate changes, in
particular we have to distinguish the case where the surface is saturated, and the
case where some of the adsorption sites are empty. The latter can usually be
expressed as a fist order interaction as:

−do
dt

= k1o (1.20)

According to this, the ortho-hydrogen concentration as a function of time can
be written as:

o(t) = o0e
− (t−t0)

τ (1.21)

Where the characteristic time τ is defined as the inverse of the conversion rate
constant:

τ =
1

k1
(1.22)

Which gives us a time scale of the reaction. On the other hand when the surface
is saturated the conversion rate may be independent from the concentration of
ortho-hydrogen, and can be written as:

−do
dt

= k0 (1.23)

The kinetics of the ortho-para conversion is particularly interesting in the field
of hydrogen storage. Many materials that are studied for storage applications, are
able to adsorb the H2 molecules without modifying their chemical bonds. MOFs are
one of those, and can be shown to act as a catalyst of the ortho-para conversion [37],
therefore it is particularly important to investigate how the hydrogen molecules
interact with the framework [38].
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1.5 Rotational states of adsorbed H2

Rotational levels of free hydrogen, in the gaseous, liquid or solid state, can be
described using a free rotor model, also known as 3D rotor model. As mentioned
before, the wave functions of the 3D rotor are the spherical harmonics YJmJ

(θ, ϕ).
They are labelled with two quantum numbers, the rotational quantum number J
and the quantum number mJ that defines the projection of the angular momentum
along the z-axis. The system is (2J+1)-fold degenerate and the rotational energies
are given by:

E3D(J) = BJ(J + 1) (1.24)

In some cases, the 3D rotor model can be used to describe the rotational states
of adsorbed hydrogen, however, depending on the specific surface and the nature of
the bond, the rotational motion could be hindered. As an example, H2 molecules
adsorbed by the Cu(100) surface, in absence of defects, can be described as a
quasi-free 3D rotor, because the Cu(100) surface is particularly flat. On the other
hand, when H2 is adsorbed by the Cu(510) surface things change. Using electron-
energy-loss spectroscopy, as well as density-functional calculations, Bengtsson and
Svensson showed that the H2 adsorbed on the steps on the Cu(510) surface is
constrained to rotate as hindered rotor [39] [40].

This behaviour was modelled for the first time in 1976 by Silvera and Nielsen:
they used inelastic neutron scattering (INS) to observe H2 and D2 molecules ad-
sorbed by activated alumina. They were able to observe a broad peak around the
value of B, as expected for a two dimensional rotor, and no peak around 2B, which
one would have expected for a 3D rotor. The model they proposed for this system
is that of a rotational Hamiltonian with a hindering potential:

Hhind = B

[
− 1

sinθ

∂

∂θ

(
sinθ

∂

∂θ

)
+

J2
z

sin2θ

]
− Φ0sin

2θ (1.25)

Where θ is the angle between the molecular axis and the direction z, which is
perpendicular to the surface. If Φ0 is assumed positive, the potential is hindered
along the direction defined by the angle θ = π

2
, this means that the molecule is

parallel to the surface. In absence of the hindering potential, at Φ0 = 0, the
eigenstates of this Hamiltonian are those of the three-dimensional rotor. When
Φ0 → ∞ the lower energy states are those of the 2D rigid rotor, its spectrum is
defined as:
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E2D(J) = BJ2 (1.26)

On the other hand, if Φ0 is negative the molecule is oriented perpendicularly
to the surface, therefore when Φ0 → −∞ it can no longer rotate. In this case the
system is said to behave as a 1D rotor: it doesn’t show rotational states, but can
only vibrate along the z direction. It is also possible to express the hindering po-
tential in terms of cos2(θ) by redefining the sign of the potential. Silvera concludes
that the most fitting model for hydrogen adsorbed on the activated alumina is a
1D modified model, this model however does not take into account translational
motion. Moreover the model fails to predict high energy transitions.

Bengtsson and Svensson investigated rotational as well as vibrational motion
for the H2 adsorbed at the step edges of Cu(510): The Hamiltonian proposed by
Silvera and Nielsen was used to investigate the rotational motion, while DFT total-
energy calculations were implemented to construct a 3D potential-energy surface
used to simulate vibrational motion. The transition energies for a hindered 3D
rotor as a function of the hindering strength Φ0 is reported in [40]. Here we
calculated the energy levels as well as the transition energies for a hindered rotor,
by numerically solving the eigenvalue equation for Hamiltonian in 1.25.
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Figure 1.5: Energy levels (a) and transition energies (b) for a 3D rotor subject to a
hindering potential as a function of the scaled hindering strength Φ0. In the right axis
of each plot, energy was normalized using the Boltzmann constant in order to express
the energy in Kelvin. This allows us to infer what levels would be occupied at a certain
temperature. The calculations were performed using Wolfram Mathematica, assuming
an hindered potential equal to Φ0sin

2θ.

In figure 1.5a and 1.5b they are reported as a function of the scaled hindering
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potential Φ0. We chose to reproduce calculations shown in [40] as they will be
useful in the following chapters.

Figure 1.5a represents the energy levels of the hindered rotor, on the right
axis we normalized energy by the Boltzmann constant, therefore expressing it as a
function of temperature, so that one can roughly infer how many levels would be
occupied at a certain temperature. In figure 1.5b each line shows the transition
energy from the state (J,mJ) = (0, 0), to states with (J,mJ) ̸= (0, 0). When
Φ0 = 0 the states are mJ -degenerate, however, when the hindering potential is
turned on, each level splits for different mJ . For each J , the state with the lowest
energy is the one that approaches the 2D rotor energy state given by BJ2. As a
result, when the hindering barrier is sufficiently high, the first accessible states are
well represented by a two dimensional rotor.

Knowing the energy levels, it is possible to compute the partition function of
the hindered rotor, for a specific hindering strength. The partition functions of
confined ortho- and para-hydrogen molecules can be written as:

Zortho = ZS,tripletZr,odd = 3
∑

J=1,3,5,...

J∑
mJ=0

gmJ
e−EJmJ

/kBT (1.27)

and

Zpara = ZS,singletZr,even = 1
∑

J=0,2,4,...

J∑
mJ=0

gmJ
e−EJmJ

/kBT (1.28)

where EJmJ
are the energies levels shown in figure 1.5a, evaluated at a specific

hindering strength, and gmJ
is the degeneracy of each level, specifically:

gmJ
=

{
1 if mJ = 0

2 else
(1.29)

Using equations 1.27 and 1.28 we calculated the ortho- and para-concentrations
for a hindering strength of Φ0 = 70 B. In figure 1.6 it is reported a comparison
between the 2D and 3D concentrations.

Similarly to the 3D case, it is possible to calculate the heat capacities of the
ortho- and para-hydrogen when their rotational motion is hindered. These heat
capacities are shown in figure E.1, and it is interesting to notice that their shape
is similar to those of the 3D case, but they are slightly smaller since the rotation
is hindered.
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Figure 1.6: Comparison between the ortho- and para-hydrogen concentrations of a 2D
and 3D rotors as a function of temperature.
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Figure 1.7: Ortho- and para-hydrogen heat capacities for a 2D rotor, normalized by the
gas constant R.

In addition to the theoretical calculations implemented by Bengtsson, Teillet-
Billy and Gauyac present a theoretical study where the sudden rotational approxi-
mation, usually used for free molecules, is applied to the case of hydrogen molecules
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adsorbed by the Cu(510) surface. The model makes it possible to justify the vari-
ous peaks in the electron energy loss spectrum [41].

The two dimensional rotor behaviour can be observed not only on stepped
surfaces and defects, but also in porous materials. Two different examples are pro-
vided by Ramirez-Cuesta et al. In 2001 they studied molecular hydrogen adsorbed
by a cobalt aluminophosphate catalyst (CoAIPO). Here, dihydrogen was adsorbed
at the cobalt(III) sites. From both INS experiments and DFT simulations it is clear
that absorbed hydrogen molecules can not be treated as unhindered 3D rotors. In
particular, two types of bonds are detected at the Co(III) site: a weaker bond is
present when the hydrogen molecule is perpendicular to the surface of the catalyst,
in this case we observe peaks typical of a 1D rotor. Conversely, when dihydrogen
is bound parallel to the surface, the bond is stronger and the molecule behaves as
a 2D rotor. At 30 K the weakly adsorbed species desorb and the spectrum only
presents peaks of the 2D rotor.

In 2007 Ramirez-Cuesta et al. used INS to study the adsorption of dihydrogen
on a copper substituted ZSM5 zeolite. In the adsorption sites H2 molecules appear
to be bound to behave as 1D rotor, when their axis is parallel to the electric field, or
in a plane perpendicular to the electric field as a 2D rotor. This paper shows how
INS is a particularly useful tool to investigate the interaction between H2 molecules
and their binding sites: this technique allows us to measure the rotational constant,
as well as observe the conversion of para-hydrogen into ortho-hydrogen.

In more complex materials as MOFs, various adsorption sites that display dif-
ferent properties may complicate the interpretation of INS spectrums, it is possible
to chose the hydrogen loading so that only the main adsorption site is observed
[42] [43].
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Chapter 2

Introduction to inelastic1 neutron
transmission and imaging

Neutron imaging is a versatile and non-destructive technique that has proven to
be very useful to investigate materials, for a vast range of applications. The good
properties of neutrons make it possible to perform high resolution radiography and
tomography on engineering-sized samples, at controlled environmental conditions.
Although fairly expensive, neutrons have a very important role as complementary
probes to X-rays. Especially in the last decades, neutron imaging evolved from
a strict adsorption based contrast, to many different contrast based techniques
(phase contrast, Bragg edge imaging, resonance adsorption imaging and so on) that
are being used and developed to this day. In this chapter we will briefly discuss
the main properties of neutrons, trying to underline what makes them interest-
ing for materials investigations. Additionally we will illustrate the Beer-Lambert
law and the mechanism behind neutron transmission, physical phenomenon that
is essential for understanding the functioning of neutron transmission and neutron
imaging instruments. We will then focus on neutron production, large scale facili-
ties and the properties of two specific transmission-based instruments: IMAT and
VESUVIO.

1For inelastic neutron transmission we refer to the measurements of those neutrons that do
not undergo an inelastic scattering process.
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2.1 Neutron as a probe

When the first nuclear reactors were developed in the 1940s, researchers soon
realized that the neutrons produced in the reactions could serve as a probe to in-
vestigate condensed matter. Neutrons are subatomic particles, with neutral charge
and half integer spin. Their mass is slightly grater than the mass of a proton and
they have an intrinsic magnetic dipole moment. Neutrons are stable when they
are part of an atomic nucleus, but become unstable when they are free: a neu-
tron decays into a proton, an electron, and an antineutrino, with mean lifetime of
approximately 14 minutes.

Table 2.1: Main properties of neutrons [44].

Physical quantity Value
Mass 1.0087 a.m.u.
Charge 0
Spin 1/2
Magnetic moment -1.913 µN

Mean lifetime (879.4 ± 0.6)s

Neutrons can be classified according to their kinetic energies, as shown in table
2.2. Fission processes, as well as spallation processes, produce very energetic
neutrons, known as fast neutrons, that are mainly used to simulate the effect of
cosmic rays on electronic devices. Thermal neutrons on the other hand are much
more useful to investigate vibrational or rotational properties matter. Thermal
neutrons can be obtained from fast neutrons through a process called moderation,
which consists in slowing them down. As an example, it is interesting to notice
that para-hydrogen, among other materials, can be used as a neutron moderator.

Neutrons represent an ideal probe to study properties of matter for multiple
reasons. For starters, their charge is neutral, which means they do not interact
with the electric shells, but only with the atomic nuclei. The distances between
nuclei are typically a factor 105 larger than the size of the nucleus itself, and
since the nuclear forces are very short range, neutrons can travel long distances
into materials without being scattered or adsorbed. This means that they are
particularly indicated to investigate bulk properties, as opposed to protons or
electrons, which cannot penetrate as deep. Moreover, when the neutrons have an
energy comparable to that of the lattice vibrations at room temperature (around
25 meV), their wavelength happens to be comparable to the inter-atomic spacing of
condensed matter. This makes them particularly ideal to investigate the structure
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of solids. Neutrons are also useful to study magnetic properties of matter, since
they have a half integer spin, but null charge. Furthermore, they are usually
sensible to different isotopes, which means they can be used to study a contrast
variation in the composition of a mixture of different isotopes [44].

Table 2.2: Neutron classification based on their energies.

Classification Energy
Cold < 20 meV
Thermal 20-500 meV
Epithermal 500 meV - 10 keV
Fast < 10 keV - 10 MeV

In order to use neutrons as probes, it is essential to understand and model
their interaction with matter. Neutrons can interact with a certain substance in
a multitude of ways, depending both on the properties of the target and on the
characteristics of the neutron beam. Each interaction phenomena can be described
by a quantity known as cross section σ, which quantifies the probability that a
specific process will take place. This quantity is expressed in unit of area (barns),
and even though it is not strictly related to the dimension of the target atoms,
it can be thought of as an effective area that the neutron must cross in order for
the process to occur. In imaging experiments, it is particularly useful to define
the scattering cross section of the process: an in-depth mathematical derivation
of the scattering cross section is given in chapter 3, here the general discussion is
accompanied by that of a more specific case, interesting for this study.

2.2 Neutron transmission: Beer-Lambert law

The Beer-Lambert law relates the attenuation of radiation travelling through a
sample, to the properties of the material itself. To derive this formula lets con-
sider a monochromatic neutron beam with intensity I0. The beam is composed of
neutrons travelling parallel to each other, impinging on a sample of thickness x.

One can divide the sample into thin slices along the x-axis, as shown in figure
2.1. The intensity of the beam that passed through one slice can be expressed as:

I0 + dI (2.1)

We can express the differential dI as:
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Figure 2.1: Representation of a sample irradiated by a neutron beam.

dI = −I0 · n(x) · σ(x)dx (2.2)

Where n is the number of adsorbers per unit volume, that is the concentration
of the material, σ is the microscopic cross section and dx is the thickness of the
slice. The negative sign expresses the fact that some of the neutrons are either
adsorbed or scattered, and the intensity of the outgoing beam is reduced. We can
now solve the equation integrating over the whole material, with thickness t:∫ I

I0

dI

I0
= −

∫ t

0

n · σ · dx (2.3)

Assuming that the concentration of the adsorber and its microscopic cross
section don’t depend on the position along the x-axis, this integral gives:

I = I0e
−nσt (2.4)

We can now assume that the material is composed of multiple chemical species,
with different concentrations and microscopic cross sections: In this case the in-
tensity of the outgoing neutron beam can be expressed as:

I = I0e
−

∑
i niσit (2.5)

From this relation we can define transmission as the ratio between outgoing
intensity I and initial intensity I0, which gives the Beer-Lambert law:

T =
I

I0
= e−

∑
i niσit (2.6)
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2.3 Neutron sources and facilities: ISIS

It is possible to identify many different reactions and methods to produce neu-
trons, which vary from one another for characteristics like neutron energy, rate of
the reaction, as well as cost and size of the source. In the field of neutron scatter-
ing, most research infrastructure rely on spallation or fission reactions to produce
neutrons.

Fission sources: In the case of fission sources, two or three neutrons are pro-
duced when a thermal neutron is absorbed by a fissile material. The neutrons
produced can induce a chain reaction by impacting on another fissile atom. All
the neutrons that do not participate in the chain reaction can be channelled in
a continuous beam that can be used to investigate matter. Some examples of
facilities that rely on fission reactions are the NIST [45] reactor (Gaithersburg,
USA), the HFIR [46] reactor (Oak Ridge Laboratory, USA), and the Institute
Laue-Langevin (ILL) [47] in (Grenoble, France). Because of safety measures, re-
actor sources have a power limit, which results in a limit on the neutron flux.

Figure 2.2: Representation of the fission chain reaction(a) and spallation reaction (b) for
neutron production.

Spallation sources: Accelerator based neutron sources, on the other hand, can
produce the most intense pulsed neutron beams. The main spallation sources are
the Los Alamos Neutron Science Center [48] (Los Alamos National Laboratory,
USA), the ISIS [49] facility (Rutherford-Appleton Laboratory in Didcot, UK) and
the European Spallation Source [50] (Copenaghen, Denmark), which is still under
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construction. Since the knowledge of the neutron source is necessary to correctly
interpret data, for the purpose of this work we will focus on the functioning of the
spallation source where data was collected: the ISIS neutron and muon source.

Figure 2.3: Representation of the layout of the ISIS facility.

Here, negatively charged hydrogen atoms are produced by an ion source and
injected into a particle accelerator (LINAC), that accelerates them up to tens of
MeV. The hydrogen atoms are then stripped of electrons and packed into bunches
inside a synchrotron, which further accelerates them. The proton bunches come out
of the synchrotron with energies up to 800 MeV and bunch rate of 50 Hz. The 160
kW proton beam collides on a tungsten target, causing the neutrons in the material
to spall off. Tungsten is particularly indicated as a spallation target because it has
a high atomic mass, which results in a high number of neutrons produced per
proton. Moreover it has a high melting point, high thermal conductivity, and
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it is safe and largely available. Neutrons are then expelled in every direction,
they enter a complex system of reflectors and moderators, and they are later
channeled through guides that lead them to many different instrument, each one
optimized to investigate different characteristics of matter. Since the proton source
is pulsed, neutrons come out in bunches that are particularly indicated for time-of-
flight experiments, which allow to measure energy and wavevector transfer. ISIS
instruments are divided into two target stations, the first one, TS-1, utilizes the
protons at 40 Hz, while TS-2 has two 10 Hz pulsed magnets and a septum magnet
that extract a proton beam with a bunch rate of 10 Hz. In the next sections we will
discuss two particular instruments, that were used in this work to investigate the
properties of molecular hydrogen adsorbed by HKUST-1: IMAT and VESUVIO.

2.4 Imaging beamline: IMAT

Figure 2.4: Layout of the main IMAT components.

IMAT is a neutron imaging and diffraction instrument, used to investigate
the properties of matter in a broad range of material sciences. IMAT allows to
perform neutron radiography, neutron tomography, and energy selective and dis-
persive neutron imaging, on engineering-sized samples (up to 1.5 tonnes). The
instrument is located on the west 5 beam port of the second target station at ISIS.
After fast neutrons are emitted by the source at the TS-2, they are thermalized
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using moderators. Traveling through a supermirror guide, they pass into a pinhole,
continuing inside flight tubes and finally arriving to the sample. Some of the neu-
trons will interact with the sample, others will be transmitted. IMAT is equipped
with multiple kinds of detectors, which make it possible to perform different types
of complementary analysis. Understanding their functioning is crucial to correctly
interpreting the results, therefore we will now discuss the main properties of each
constituent element.

2.4.1 Moderators

Figure 2.5: IMAT moderators layout.

Moderators are materials with a high neutron scattering cross section, low ad-
sorption cross section and high neutron energy loss per collision. These properties
allow the material to reduce the speed of fast neutrons generated during spallation
processes without capturing them, thus thermalizing them to the temperature of
the moderator. Moderating neutrons is essential to any scattering experiments as
well as adsorption experiments, since thermal neutron interact more easily with nu-
clei, and are sensitive to the dynamics and structure of condensed matter. Because
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of the conservation of energy and momentum, neutrons experience the highest en-
ergy transfer per collision when they interact with nuclei with similar mass, such as
hydrogen nuclei, but it is also important to take into account the absorption cross
section. Moreover, the type of the moderator and its thermodynamic conditions
can be changed to select the energy range of the neutrons. For these reasons the
most commonly used moderators are water and heavy water, particularly useful
because they are easily found and can also be used as cooling medium in reactors,
as well as graphite, that presents a particularly small adsorption cross section. On
the other hand the beam port W5 where IMAT is installed utilizes both liquid
hydrogen (L H2) and solid methane (S CH4) to reach a colder neutron energy
spectrum, particularly useful in imaging and diffraction experiments. The moder-
ator can be coated with reflecting or absorbing material, in these cases the mod-
erator is said to be coupled and decoupled respectively. A decoupled moderator
prevents the neutrons from bouncing on the walls of the moderator by absorbing
them. The neutrons that are absorbed are the main contribution to the tail of the
emission time distribution. A decoupled moderator therefore allows for a better
time-of-flight resolution because it shortens the pulse length, but it also reduces
the neutron flux. A similar result to decoupling can be obtained by poisoning the
moderator, mixing it with an absorbing material, which results in an even shorter
tail and lower flux. The moderator used for IMAT is a coupled moderator, because
imaging applications require the highest possible neutron flux, then choppers are
used to shorten the tail of the bunch.

2.4.2 Guiding system

Neutrons that emerge from the moderator are transported to the pinhole trough a
supermirror guide. Neutron guides are long channels coated with reflective mate-
rials, that are supposed to redirect neutrons impacting with very small scattering
angles. The reflective surface typically used for neutron guides is a polished multi-
layered device, known as supermirror. The functioning of the supermirror is based
on Bragg diffraction by multilayers. They are made of alternating substrates of a
high refractive index material, such as nickel, and a low refractive index material,
like titanium, deposited on glass. Each bilayer has a different thickness, the neu-
trons are reflected by the bilayer that satisfies the Bragg condition, as shown in
figure 2.6.

This allows to obtain a good reflectivity over a wide range of wavelengths. The
materials chosen for the supermirror should also be nearly non-magnetic so as not
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Figure 2.6: Schematization of the supermirror layers.

to disturb the neutron polarization. To reduce scattering, and the deposition of
impurities on the substrate, the whole neutron guide is in a vacuum. At IMAT
the supermirror guides have a square section, with dimensions 10 × 10 cm2, and
they are 44 m long. Different guide sections are placed inside a continuous vacuum
system.

2.4.3 Energy selectors: choppers

IMAT uses choppers to select the energy of the incident neutron beam. Choppers
are disks made of materials with high neutron adsorption cross section.

They are provided with an opening slit, so that when the beam is aligned with
the slit the neutrons are able to pass through. Choppers rotate around their axis
with a certain angular velocity and chop the neutron beam. Using the time-of-
flight technique it is possible to use choppers to select a certain range of energies:
Neutrons that are emitted at the same time by the pulsed source, impinge on the
chopper at different times, depending on their energy. Choosing the rotational
frequency of the chopper we can select the neutrons that are able to pass, while
the others are adsorbed by the chopper. It is important to take into account that
a smaller energy range entails lower neutron flux. IMAT uses choppers with a 1
m radius, the first one is a T0 chopper, that has the purpose of removing fast
neutrons and gamma radiation, the other two are double-disk choppers, which use
two different disks rotating in opposite directions, that ensures a better resolution.
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Figure 2.7: Schematization of the double disk choppers 1 (a) and 2 (b), respectively
located at 12.2 m and 20.4 m from the moderator system.

2.4.4 Pinhole

The pinhole is the aperture that selects the beam size, and it is positioned at a
distance of 10 m from the sample. The aperture selector allows to choose between
five different apertures, their diameters are respectively 5, 10, 20, 40, 80 mm. This
is useful to select a different ratio between distance from the sample and aperture
diameter (L/D), which affects resolution. In fact, the spatial resolution can be
quantified by the image blurring d defined by:

d = lD/L (2.7)

Where D is the diameter of the pinhole, L the distance between pinhole and
sample and l is the distance between sample and detector. The latter can not
be as small as desired because the detector is located outside of the closed-circuit
refrigerator, that has a certain dimension. The maximum field of view (FOV) is
20 × 20 cm2 which makes it ideal for imaging applications on macroscopic sam-
ples. The FOV was chosen taking into account the space available for operational
movements of the sample and the position where the diffraction detectors will be
located. The aperture selector can also be left open for diffraction experiments.
In this case a set of five jaws and a set of slits, located closer to the sample, can
be adjusted to obtain a minimum beam size of 1 mm.
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2.4.5 Sample environment and sample container

The sample stage at IMAT is equipped to support many different types of samples.
The heavy duty positioning system can hold up to 1.5 tonnes, and it is equipped
with a rotating stage for tomography applications. Moreover, the equipment from
the ISIS sample environment pool allows the user to study the sample in different
environments and subject it to different types of strains. For the purpose of this
work we will use a rectangular aluminium container with a 5 cm width and 6 cm
height.

Figure 2.8: Neutron tomography (left) and radiography (right) of the sample container
[38].

The aluminium was chosen because of its low neutron scattering and adsorption
cross sections, which makes it practically transparent to neutrons. The container,
shown in figure 2.8, was inserted in a closed-circuit refrigerator (CCR). A CCR is a
device that generates low temperature by mechanically compressing and expanding
an isolated gas. The CCR was inserted in a vacuum tank to allow cryogenic
vacuum, and placed on the IMAT stage.

The container is connected at the top to a gas panel, which is located outside the
IMAT blockhouse. The gas panel allows us to dose the gas that we want to study,
in order to select its concentration in the sample. The gas is initially in a bottle,
with a 10 bar pressure. The panel is equipped with four buffers of 1 L volume (fig.
2.9). The buffers can be filled with the gas at a desired pressure. Knowing the
temperature of the buffers (300 K), it is possible to choose the pressure in order to
select the desired number of moles for the gas. Buffers are equipped with valves
that can be opened slowly to pour the gas into the sample container. The CCR
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Figure 2.9: Schematic representation of the equipment layout.

ensure that the sample container is at a lower temperature than the buffers, which
means that the gas will spontaneously stream into the container and condensate.

2.4.6 Detectors

IMAT is equipped with different imaging detectors, as well as beam monitors for
diagnostics and normalizations. A detector based on microchannel plates (MCP) is
used for energy resolved neutron imaging, but was not available for this experiment.
This type of detector measures the energy of the neutron with the time-of-flight
technique, as well as the position where the neutron impacts and has a field of view
(FOV) of 28× 28 mm2 . In our experiment we used a CCD system. This camera,
with FOV 20× 20 cm2, can be used for white beam radiography and tomography,
as well as energy selective neutron imaging. It is particularly useful for contrast
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enhancement or contrast variations experiments. Moreover a glass scintillator
monitor (GS20) can be used to measure the flux of the incident neutron beam. For
the purposes of this work we will focus on the functioning of the CCD system, which
will be used to perform time resolved energy selective neutron imaging. The CCD-
based system is housed in a light-tight camera box, which can be moved to vary
its distance from the sample. Various scintillator screens can be accommodated on
the front of the camera box, they vary for dimensions and materials and need to
be chosen depending on the application. The photons emitted by the scintillator
are reflected at 90° by a mirror, towards the CCD camera. The camera has 2048 x
2048 pixels and is kept at a temperature of 203 K to minimize the signal to noise
ratio due to the shot noise.

2.5 Imaging experiment for the catalysed hydro-
gen conversion

Figure 2.10: Example of a radiograph of the sample container, loaded with HKUST-1
and hydrogen. This image has been processed, increasing contrast and brightness, for
better visualization.

The last chapter of this work presents an experimental study performed at the
IMAT beamline of the ISIS neutron and muon source. The purpose of this study
was to investigate the catalysed ortho-para conversion of hydrogen adsorbed by
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HKUST-1. Here energy selective neutron imaging was used to characterize the
conversion rate as a function of time, by acquiring radiographs of the sample at
regular time intervals. Figure 2.10 shows one of the radiographs obtained by ir-
radiating the sample container with the IMAT neutron beam for 30 s. Acquiring
many similar radiographs allowed us to observe the time dependence of the pro-
cess. This technique is known as time-resolved neutron imaging, it relies on the
great difference between the ortho and para hydrogen scattering cross sections to
measure the variation of contrast as a function of time. Moreover imaging tech-
niques allow us to explore the spatial distribution of the sample, rendering them
particularly appealing for industrial and engineering applications.

2.6 Neutron transmission beamline: VESUVIO

The VESUVIO spectrometer operates at the first target station of the ISIS neu-
tron and muon source. This spectrometer performs transmission measurements, as
well as inelastic neutron scattering at high energy (h̄ω ≥ 1 eV) and high momen-
tum transfer (q ≥ 20 Å−1), technique known as deep inelastic neutron scattering
(DINS). VESUVIO faces a water moderator, that operates at 295 K. The resulting
neutron beam is polychromatic: it presents a broad peak around 0.03 eV, and a tail
in the epithermal region, up to 107 eV. Unlike IMAT, VESUVIO is not equipped
with choppers, therefore the sample is irradiated with the whole polychromatic
beam. In order to measure the energy of the incoming neutrons this instrument
makes use of the time-of-flight (ToF) technique. This technique consists of calcu-
lating the neutron energy by measuring the time it takes for it to travel from the
moderator to the detector. If the lengths of the flight paths from moderator to
sample (L0) and from sample to detector (L1) are known, the time of flight can be
written as:

ToF =
L0

v0
+
L1

v1
=

√
m

2

(
L0√
Ei

+
L1√
Ef

)
(2.8)

where v0 and v1 are the neutron velocities of that incident neutrons, and neu-
trons that come out of the sample respectively. These velocities are written in
terms of neutron energies in the right hand side.

In the case of DINS experiments, this instrument operates in inverse geom-
etry mode, which means that the measured neutron final energy is fixed, while
the incident neutron energy can be evaluated using the ToF technique. Here, the
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final energy of neutrons is selected using a foil of a material that presents a sin-
gle nuclear resonance in the considered energy range, usually gold. During data
acquisition this foil is placed between sample and detector. Later the same mea-
surements are acquired without the foil. The difference between these two data
sets gives the number of neutrons absorbed by the foil, which provides a measure of
how many neutrons scattered from the sample, at that specific angle, have a final
energy that corresponds to the gold resonance energy. The foil cycling technique
is used at multiple scattering angles, which allows the user to measure the wave
vector. Since the final energy is fixed, we are able to calculate the initial energy
with the ToF technique.

On the other hand for transmission measurements the energy of the neutron
can be calculated considering that the energy of transmitted neutrons does not
change. This means that we can consider v1 = v0 and therefore calculate the
energy of neutrons taking into account that their flight path now has a length equal
to L1 + L0. To do so the neutron detector needs to measure the flux of incoming
neutrons, as well as the time at which they arrive on the detector. VESUVIO
transmission detector is a glass scintillator, in particular a GS20. For neutron
applications, the glass of these type of detectors is usually enriched with lithium-
6, the GS20 has a 95% enrichment, which corresponds to a Li-6 content of 7.33%
by weight. Lithium-6 is particularly interesting for this application because it
has a neutron absorption cross section of 930 barn at thermal wavelengths. This
detector, although not particularly efficient, presents a good stability compared to
other solutions. However it is important to take into account that it is also sensible
to γ-ray, which means that measurements will be subject to a background noise.

The sample container and environment at the VESUVIO beamline are identical
to what we described for IMAT. Here the sample container is again placed inside
a CCR and loaded with hydrogen using bottles and buffers, as shown in figure 2.9
[51].
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Chapter 3

Neutron scattering cross section for
diatomic molecules

As mentioned before, neutrons interact only weakly with matter, into which they
can penetrate deeply. When a neutron interacts with a nucleus, it can be either
scattered or adsorbed. Adsorption reactions include neutron capture reactions
as well as fission reactions, and are extremely important for a vast number of
applications. For the purpose of this work however, we are mainly interested in
scattering phenomena. In fact, modeling the scattering process we are able to
investigate structural properties of matter by detecting scattered or transmitted
neutrons. In this chapter we will discuss the theory behind scattering reactions,
finally defining an important quantity known as scattering cross section. The cross
section will be calculated for a generic sample, and later for diatomic molecules.

3.1 Scattering cross section

To investigate matter using neutrons, we firstly need to understand how a thermal
neutron beam interacts with a certain substance. When a neutron with the wave
vector k impacts on a target, it is scattered into a different state, with wave vector
k′. The properties of the outgoing neutron can be investigated in various ways,
but the measurements always depend on a basic quantity called double differential
cross section. The double differential cross section gives information on the fraction
of total neutrons that is scattered into a small solid angle dΩ, with a final energy
between E ′ and E ′ + dE ′. Therefore it is proportional to the probability of a
neutron to be scattered in a certain direction with a certain energy. It is usually
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denoted by the expression:

d2σ

dΩdE ′ (3.1)

This quantity has the dimension of an area, and is usually expressed in barn
(1 barn = 10−24 cm2). Integrating the differential cross section over energy and
solid angle, we obtain a total scattering cross section, which is defined by the ratio
between the number of neutron scattered on the whole solid angle, and the flux of
incident neutrons.

The cross section depends on both the properties of the probe and the target,
in particular it is possible to identify a relevant dependence on the isotope. Ta-
ble 3.1 reports as an example the value of coherent, incoherent scattering cross
sections, as well as total scattering cross section and absorption cross section for
neutrons impinging on different hydrogen and carbon isotopes. This allows us to
observe contrast variations from one isotope to another, which makes them easily
distinguishable.

Table 3.1: Values of coherent cross sections, incoherent cross sections, total scattering
cross section and absorption cross section for different isotopes expressed in barn.

Isotope Coh xs Inc xs Scatt xs Abs xs
H 1.7568 80.26 82.02 0.3326
1H 1.7583 80.27 82.03 0.3326
2H 5.592 2.05 7.64 0.000519
3H 2.89 0.14 3.03 0
C 5.551 0.001 5.551 0.0035
12C 5.559 0 5.559 0.00353
13C 4.81 0.034 4.84 0.00137
Al 1.495 0.0082 1.503 0.231

To be able to correctly understand the experimental results, it is important to
derive a theoretical expressions for the cross section of the specific target. In the
next sections we will derive an equation for the differential scattering cross section,
underlying the distinction between incoherent and coherent scattering, and we will
then specialize the formula to the case of diatomic molecules. For now, we will
start considering the simplest case: a single fixed nucleus, that interacts with one
neutron of wave vector k. If the z axis is along the direction of k the initial wave
function of the neutron can be expressed as:
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Ψinc = eikz (3.2)

Since the nuclear forces have a range of around 10−14 and the wavelength of a
thermal neutron is around 10−10 the process depends mainly on the S waves, which
have spherical symmetry. As a consequence, the wave function of the scattered
neutron can be written as a spherical wave:

Ψsc = − b
r
eikr (3.3)

Where b is known as the scattering length, and it depends on the particular
nucleus and its spin, compared to that of the neutron. In fact, if the nucleus has
spin I, the total spin of the system neutron-nucleus can be of I + 1

2
or I − 1

2
, to

each state corresponds a different value of b, that can be measured experimentally.
In the simple case of one neutron scattering on a single nucleus, the differential

cross section can be evaluated in terms of the scattering angle by considering the
number of neutron passing through an area dS in the unit of time, which is given
by:

vdS|Ψsc|2 = vdS
b2

r2
= vb2dΩ (3.4)

Where v is the velocity of the neutron, before and after the scattering process.
The flux of incident neutrons is given by:

Φ = v|Ψinc|2 = v (3.5)

Applying the definition of the differential cross section, which tell us that dσ
dΩ

is
equal to the number of neutron scattered into dΩ in the unit of time, divided by
the flux of incident neutrons Φ(E), it is possible to evaluate the differential cross
section in terms of the scattering angle:

dσ

dΩ
=
vb2dΩ

ΦdΩ
= b2 (3.6)

Integrating over the whole solid angle this gives a total cross section of:

σtot = 4πb2 (3.7)

This suggests that in this simple case the neutron sees the atom as a sphere of
radius b, thus σtot is an effective area that quantifies the probability of the scattering
event.

39



While this simple model gives an interesting interpretation of the scattering
length, a more complete theory requires us to consider a system with many nuclei.
Given a system with N nuclei, we indicate with Rj the position vector of the j-th
nucleus, and r that of the neutron. As the neutron is scattered, and its wave
vector changes from k to k′, the scattering system changes state, from an initial
state λ to the final state λ′. In this case the differential scattering cross section
needs to take into account all the possible processes during which the system state
changes from λ to λ′ and the neutron state changes from k to k′.

The double differential scattering cross section d2σ
dΩdE′ can be defined as the

number of neutron with energies between E ′ and E ′+dE ′ scattered into dΩ in the
unit of time, divided by the flux of incident neutrons Φ(E):

d2σ

dΩdE ′ =
neutrons scattered per second

Φ(E)dΩdE ′ (3.8)

To quantify the number of neutron scattered per second in dΩ we can use the
Fermi golden rule, which states that the rate of transitions from the state k, λ to
k′, λ′ is given by:

Wk,λ→k′λ′ =
2π

h̄
ρk′ | ⟨k′λ′|V |kλ⟩ |2 (3.9)

Where ρk′ is the number of momentum states per unit energy in dΩ. To write
d2σ

dΩdE′ it is important to consider all the possible k′ that end up in the solid angle
dΩ, however, the derivation of the golden rule shows that the probability of the
transition is negligible for all the k′ that don’t correspond to the conservation of
energy, which states that:

E + Eλ = E ′ + Eλ′ (3.10)

Where the left hand side of the equation shows the energies of neutron and scatter-
ing system before the scattering, and the the right hand side after the scattering.
As a consequence, the energy distribution of the scattered neutron can be written
as a δ-function, and the differential scattering cross section can be expressed in
terms of the energy as:

(
d2σ

dΩdE ′

)
λ→λ′

=
1

ΦdΩdE ′
2π

h̄
ρk′ | ⟨k′λ′|V |kλ⟩ |2δ(Eλ − Eλ′ + E − E ′) (3.11)

We can now explicate the flux ϕ and density ρk′ . The flux of incident neutrons
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is given by their velocity of particles in a volume ∆ as:

Φ =
1

∆

h̄k

m
(3.12)

The density of final scattering states per unit of energy is given by:

ρk′(E) =
∆

(2π)3
dk′

dE
(3.13)

Since:
dk′ = k′2dΩdk′ = k2dΩdk (3.14)

and:

dE =
h̄2k

m
dk (3.15)

we can write ρk′ as:

ρk′ =
∆

(2π)3
mk

h̄2
dΩ (3.16)

Substituting 3.12 and 3.16 into 3.11 we obtain:

(
d2σ

dΩdE ′

)
λ→λ′

=
k′

k

(
m

2πh̄2

)
| ⟨k′λ′|V |kλ⟩ |2δ(Eλ − E ′

λ′ + E − E ′) (3.17)

Where we notice that the normalization volume ∆ correctly canceled out since it
is arbitrary.

The differential scattering cross section can be further evaluated by calculating
the matrix element. For this purpose we need to define the potential V that the
neutron feels when approaching the scattering system. Since the potential has to
depend on the distance between the neutron and each nucleus, we can write it as:

V =
∑
j

Vj(r −Rj) =
∑
j

Vj(xj) (3.18)

Where Vj is the potential due to the j-th nucleus. We substitute this into the
matrix element:

⟨k′λ′|V |kλ⟩ =
∑
j

∫
χ∗
λ′e−ik′·rVj(r −Rj)χλe

ik·rdRdr (3.19)

Where we called χλ and χλ′ the wave function of the scattering system before and
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after the scattering event.Writing the neutron wavefunction we assumed that in
the initial and final states, where the neutron is far from the sample, it can be
described as a plane wave. Substituting r = xj +Rj :

=
∑
j

∫
χ∗
λ′e−ik′·(xj+Rj)Vj(xj)χλe

ik·(xj+Rj)dRdr =
∑
j

Vj(q) ⟨λ′|eiqRj |λ⟩ (3.20)

Where q is the scattering vector (k − k′) and Vj(q) is the Fourier transform of
Vj(xj).

To further evaluate the expression we need to substitute a specific function for
Vj(xj), a good approximation to the real potential is given by the Fermi Pseudo-
potential. The main idea behind this pseudo-potential is that, since V depends on
nuclear forces, and is therefore really short range compared to the wavelength of
the neutron, we can assume it is of the form:

V (x) = aδ(x) (3.21)

Where δ(x) is the three dimensional Dirac delta function. We can derive the
constant a by considering once again the case of one neutron scattering on a fixed
nucleus, specifically we want to rewrite the expression for dσ

dΩ
found in 3.6, using

this new formalism. If the nucleus is only one we have j = 1 and no sum over
j. Moreover we can assume the nucleus is in the origin, so R = 0, and since the
nucleus is fixed λ = λ′. Using this formalism 3.19 becomes:

⟨k′λ′|V |kλ⟩ =
∫
χ∗
λχλdR

∫
V (r)eiq·rdr =

∫
V (r)eiq·rdr (3.22)

Where we used that χλ is normalised. We can now substitute the matrix element
into the formula for the differential cross section.

dσ

dΩ
=

(
m

2πh̄2

)2 ∣∣∣∣∫ V (r)eiq·rdr

∣∣∣∣2 (3.23)

Where we also used that k′ = k. Now we can substitute V (r) = aδ(r):

dσ

dΩ
=

(
m

2πh̄2

)2 ∣∣∣∣∫ aδ(r)eiq·rdr

∣∣∣∣2 = ( m

2πh̄2

)2

a2 (3.24)

Comparing this to 3.6 we notice that the constant a can be written in terms of the
scattering length b as:
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a =
2πh̄2

m
b (3.25)

Therefore we find the Fermi pseudo-potential:

V (r) =
2πh̄2

m
bδ(r) (3.26)

We can now use this in the expression for the general scattering system, defining:

Vj(xj) =
2πh̄2

m
bjδ(xj) (3.27)

That has the following Fourier transform:

Vj(q) =
2πh̄2

m
bj (3.28)

Substituting the pseudopotential in the formula for
(

d2σ
dΩdE

)
λ→λ

, found in 3.17, we
can now evaluate the matrix element by inserting 3.28 into 3.20:

(
d2σ

dΩdE ′

)
λ→λ′

=
k′

k

∣∣∣∣∣∑
j

⟨λ′|bjeiq·Rj |λ⟩
∣∣∣∣∣
2

δ(Eλ − Eλ′ + E − E ′) (3.29)

It is possible to rewrite this expression substituting the integral representation of
the δ-function:

δ(Eλ − Eλ′ + E − E ′) =
1

2πh̄

∫ ∞

−∞
ei(Eλ−Eλ′ )t/h̄e−iωtdt (3.30)

Where ω is defined by h̄ω = E−E ′. We can write the differential scattering cross
section of the process as:(

d2σ

dΩdE ′

)
λ→λ′

=
1

2πh̄

k′

k
⟨λ|
∑
j′

bj′e
−iq·Rj′ |λ′⟩ ⟨λ′|

∑
j

bje
iq·Rj |λ⟩

∫ ∞

−∞
ei(Eλ′−Eλ)t/h̄e−iωtdt

(3.31)

This formula describes the differential cross section of a scattering process in which
the system goes from a state λ to a state λ′. However, in actual experiment, it
is not possible to measure this quantity, because the scattering system never goes
exactly from one state to another. Instead we need to sum over all possible initial

43



states λ, weighted with the probability pλ that the scattering system is in that
state, and over all possible final states λ′, so that:

d2σ

dΩdE ′ =
∑
λλ′

pλ

(
d2σ

dΩdE ′

)
λ→λ′

(3.32)

The probability pλ is defined using the Boltzmann distribution as:

pλ =
1

Z
e−Eλβ (3.33)

Where Z is the partition function defined as Z =
∑

λ e
−Eλβ and β = 1

kBT
.

d2σ

dΩdE ′ =
∑
λλ′

pλ
1

2πh̄

k′

k
⟨λ|
∑
j′

bj′e
−iq·Rj′ |λ′⟩ ⟨λ′|

∑
j

bje
iq·Rj |λ⟩×

×
∫ ∞

−∞
ei(Eλ′−Eλ)t/h̄e−iωtdt

(3.34)

To further evaluate this formula we need to establish if there is any correlation
between the values of the scattering length b of neighbouring atoms. In the case
of diatomic molecules, there’s a strong correlation between scattering lengths and
atom dispositions, therefore we will dedicate an entire section to this particular
case. Here we will briefly discuss how to treat the case where no correlation occurs,
in order to better compare the two situations. If different isotopes are randomically
mixed, there is no correlation between the values of b and atoms disposition, in
this case the differential scattering cross section becomes:

d2σ

dΩdE ′ =
k′

k

1

2πh̄

∑
jj′

bj′bj

∫ ∞

−∞
e−iωt

∑
λ

pλ ⟨λ|e−iq·Rj′eiq·Rj(t)|λ⟩ dt (3.35)

Where the sum over λ′ in 3.32 was evaluated using the closure relation as in:∑
λ′

⟨λ|A|λ′⟩ ⟨λ′|B|λ⟩ = ⟨λ|AB|λ⟩ (3.36)

and the matrix element was written in terms of the Heisenberg operator Rj(t)

defined as:
Rj(t) = eiHt/h̄Rje

−iHt/h̄ (3.37)
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We can write the thermal average with the symbol [·]T , obtaining:

d2σ

dΩdE ′ =
k′

k

1

2πh̄

∑
jj′

bj′bj

∫ ∞

−∞
e−iωt

[
⟨λ|e−iq·Rj′eiq·Rj(t)|λ⟩

]
T
dt (3.38)

In the next paragraphs we will discuss the simple case of system composed of
one element, in order to discuss the difference between coherent and incoherent
scattering. We will then focus on diatomic molecules, that are of particular interest
for this study. Diatomic molecules represent an example of a system in which
there’s correlation between the value of the scattering lengths and atom disposition.

3.2 Coherent and incoherent scattering

In a generic system, even if it’s composed of only one element, the scattering
length b is never a constant. In fact it can vary from one isotope to another, and
depending on the spins of the nucleus compared to that of the impacting neutron.
Let us now consider the possible values that b assumes in a system consisting of
one element, each bi occurs with a frequency fi, so that:∑

i

fi = 1 and b̄ =
∑
i

fibi (3.39)

Where the frequency fi does not depend on the value of bi of neighbouring atoms.
As shown before, the cross section that we measure can be written in terms of the
bjbj′ averaged over random isotopes distribution and relative spin orientations, as:

d2σ

dΩdE ′ =
k′

k

1

2πh̄

∑
jj′

bj′bj

∫ ∞

−∞
e−iωt

[
⟨λ|e−iq·Rj′eiq·Rj(t)|λ⟩

]
T
dt (3.40)

where:

bjbj′ =

{
bj bj′ = |b|2 if j ̸= j′

|bj|2 = |b|2 if j = j′
(3.41)

Writing equation 3.40 we are once again assuming that there is no correlation
between the values of b of each atom, and the atom position, this allowed us to
extract the average over the scattering lengths.

Substituting the two values for the average expressed in 3.41 into 3.40, the
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cross section becomes the sum of two terms, that we can manipulate as follows:

d2σ

dΩdE ′ =
k′

k

1

2πh̄
(b)2

∑
j ̸=j′

∫ ∞

−∞
e−iωt

[
⟨λ|e−iq·Rj′eiq·Rj(t)|λ⟩

]
T
dt+

+
k′

k

1

2πh̄
b2
∑
j

∫ ∞

−∞
e−iωt

[
⟨λ|e−iq·Rj′eiq·Rj(t)|λ⟩

]
T
dt =

=
k′

k

1

2πh̄
(b)2

∑
jj′

∫ ∞

−∞
e−iωt

[
⟨λ|e−iq·Rj′eiq·Rj(t)|λ⟩

]
T
dt+

+
k′

k

1

2πh̄
(b2 − (b)2)

∑
j

∫ ∞

−∞
e−iωt

[
⟨λ|e−iq·Rj′eiq·Rj(t)|λ⟩

]
T
dt

(3.42)

Now the two terms can be written respectively as:

d2σ

dΩdE ′ =

(
d2σ

dΩdE ′

)
coh

+

(
d2σ

dΩdE ′

)
inc

(3.43)

We can see from the equations that the coherent scattering depends on the
position of two nuclei j and j′ at different times, and is summed over all possible
j and j′. The coherent scattering is the scattering that the system would produce
if all scattering lengths were equal to b. This term gives interference effects, based
on the position of the nuclei. On the other hand the incoherent scattering terms
depend only on the j − th nucleus, therefore this term depends on the correlation
between the same nucleus at different times, which does not give interference. The
incoherent term is proportional to the deviations of all the scattering length from
their mean value.

We can now discuss the values of the frequencies fi for a specific case, that are
useful to calculate b and b2. In the simplest case where we have one isotope with
nuclear spin zero, all values of b are equal. If the system is composed of a single
isotope with nuclear spin I, the spin of the nucleus-neutron system can be equal
to I + 1

2
or I − 1

2
, which identifies two possible scattering lengths, usually known

as b+ and b− respectively. If the neutron beam is not polarised and the nuclear
spins are randomly oriented each spin state has the same probability. The number
of states with spin I + 1

2
is 2(I + 1

2
)− 1 = 2I + 2, the number of states with spin

I − 1
2

is 2(I − 1
2
)− 1 = 2I. From this follows that the scattering length b+ occurs

with frequency:

f+ =
2I + 2

4I + 2
=

I + 1

2I + 1
(3.44)
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And similarly:

f− =
2I

4I + 2
=

I

2I + 1
(3.45)

Knowing this we can evaluate the mean value of b:

b =
1

2I + 1
[(I + 1)b+ + Ib−] (3.46)

If the scattering system is composed of different isotopes the mean value of b
can be calculated by multiplying each frequency by the relative abundance of the
isotope.

3.3 Scattering by diatomic molecules

For the purpose of this work we are interested in calculating the differential scat-
tering cross section of diatomic molecules, in order to model the interaction be-
tween neutrons and molecular hydrogen. As described in chapter 1, the hydrogen
molecule is composed of two atoms bound together, with an average length of the
bond a. The molecule can vibrate along the joint and rotate about the centre of
mass, which, in the case of H2, is in the centre point of the bond. We can express
the position of the m− th hydrogen atom in terms of the vector xm:

xm = rl + (−)n
Rl

2
(3.47)

where rl is the position of the centre of mass of the l − th molecule, and Rl

expresses the coordinate of each atom in the l− th molecule, by varying the index
n. The index n can assume two values: n=1 and n=2, that represent the two
atoms of the molecule, for which the coordinates have opposite signs.

We can rewrite equation 3.34 substituting the vector xm to describe the scat-
tering cross section of a hydrogen molecule:
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d2σ

dΩdE ′ =
1

2πh̄

k′

k

∑
λ′

∫ ∞

∞
dt[ei(ω−Eλ+Eλ′ )

t
h̄

∑
l ̸=j

2∑
n,p=1

⟨λ|ajpe−iq·rj−i(−)p
Rj ·q

2 |λ′⟩×

⟨λ′|alne−iq·rl−i(−)n
Rl·q

2 |λ⟩]T+

+
1

2πh̄

k′

k

∑
λ′

∫ ∞

∞
dt[ei(ω−Eλ+Eλ′ )

t
h̄

∑
l

2∑
n,p=1

⟨λ|alpe−iq·rl−i(−)p
Rl·q

2 |λ′⟩×

⟨λ′|alne−iq·rl−i(−)n
Rl·q

2 |λ⟩]T
(3.48)

Where the subscript T means that the thermal average is taken over the initial
states as in equation 3.34. One can consider the second term equation 3.48, this
term contains only the contribution of the molecule l, it can therefore be referred
to as a self term. One can now rewrite the wave functions of the states λ and
λ′. Assuming that the translational modes can be separated from rotational and
vibrational modes, we call Ψit the initial wave function of the translational modes,
and Ψi and Ψf the initial and final roto-vibrational and spin dependent wave
functions. The self term becomes:

d2σs
dΩdE ′ =

1

2πh̄

k′

k

∑
f

∫ ∞

∞
dt
∑
l

⟨Ψit|e−iq·rl(0)eiq·rl(t)|Ψit⟩T ×

×

∣∣∣∣∣ ⟨Ψf |
2∑

n=1

blne
(−)ni

q·Rl
2 |Ψi⟩

∣∣∣∣∣
2

× ei(ω−E′
i+E′

f )t/h̄


T

(3.49)

Where we wrote rl in the Heisenberg notation as in 3.37. It is important to
note that now E ′

i and E ′
f refer only to the roto-vibrational and spin dependent

energies of the initial and final states, instead of the total energies of the system.
Let us call the matrix element in the second part of equation 3.49 g(t), which is
defined as:

g(t) =

∑
f

∣∣∣∣∣ ⟨Ψf |
2∑

n=1

blne
(−)ni q·R

2 |Ψi⟩
∣∣∣∣∣
2

ei(ω−E′
i+E′

f )t/h̄


T

(3.50)

We now compute g(t) taking into account the nuclear spin correlations. The
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explicit form of g(t) is:

g(t) =
∑
J,S

PJS

2J + 1

1

2S + 1

1

2

∑
σzσ′

z=± 1
2

∑
J ′

ei(EJ′−EJ )t/h̄×

×
∑
n=0

einωt
∑

mJm
′
J

∑
S′

∑
SzS′

z

| ⟨J ′m′
J , S

′S ′
z, σ

′
z, n|B|JmJ , SSz, σz, n = 0⟩|2

(3.51)

Here the thermal average was written in its explicit form, PJS is the statistical
weight of initial rotational state J with spin S. J and J ′ are initial and final
angular momenta of the hydrogen molecule, with their z components mJ and m′

J .
Similarly, S and S ′, as well as Sz and S ′

z, are referred to initial and final spin
states. The initial and final z components of the neutron spin are indicated by σz
and σ′

z. Since the Hamiltonian is spin independent and we neglect the coupling
between rotations and vibrations it is possible to state that:

|J, S, n⟩ = |J⟩ |S⟩ |n⟩ (3.52)

The rotational energies EJ are given by 1.24. In terms of ω we can write the
vibrational energy, that in the case of hydrogen is h̄ω = 0.546 eV . The molecules
are initially in the vibrational ground state, n = 0. The parameter B resumes
exponential terms of the two hydrogen atoms as:

M = b1e
iq·R

2 + b2e
−iq·R

2 (3.53)

3.3.1 Spin correlations

Let us now construct the scattering length operator b̂, in order to rewrite the
parameter B. The total spin of the neutron-proton system t̂ can assume two
different values depending on the neutron spin. This results in two possible states,
that we will call |+⟩ and |−⟩, that represent respectively the state with positive
neutron spin 1

2
and negative neutron spin −1

2
. Applying b̂ to those states we obtain

the two different values of the scattering length as:

b̂ |±⟩ = b± |±⟩ (3.54)

It is possible to express the scattering length operator as a function of the nuclear
spin of the nucleus Im and the neutron spin σ as:
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b̂ = A+BIm · σ (3.55)

where the values of the constants A and B can be found by remembering how
the operators Îm, σ̂ and t̂ act on the states |+⟩ and |−⟩:

t̂2 |±⟩ = t±(t± + 1) |±⟩ (3.56)

Î2m |±⟩ = Im(Im + 1) |±⟩ (3.57)

σ̂2 |±⟩ = 1

2

3

2
|±⟩ (3.58)

Where we specified the neutron spin, but not the nucleus spin, so that we can
discuss a more general case.

Since:

t̂2 = Î2m + σ̂2 + 2Îm · σ̂ (3.59)

it is possible to show that:

Îm · σ̂ |+⟩ = Im
2

|+⟩ (3.60)

Îm · σ̂ |−⟩ = −Im + 1

2
|−⟩ (3.61)

Finally solving for A and for B the equations:

b+ = A+B
Im
2

b− = A−B
Im + 1

2

(3.62)

we find that:
bm =

Im + 1 + 2Im · σ
2Im + 1

b+ +
Im − 2Im · σ

2Im + 1
b− (3.63)

It is possible to define the coherent and incoherent scattering lengths by weigh-
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ing the two scattering lengths b+ and b− with their statistical weight. This gives:

b2coh = <b>2 = [
1

(2I + 1)2
][(I + 1)b+ + Ib−]

2 =
1

16
(3b+ + b−)

2 (3.64)

b2inc = <b2>−<b>2 = [
I(I + 1)

(2I + 1)2
][b+ + b−]

2 =
3

16
(b+ + b−)

2 (3.65)

Since Im is the hydrogen spin Im = 1
2
. The total spin of the molecule is given by

I1 + I2 = S = 1, B becomes:

M

2
= bcoh cos

(
q ·R
2

)
+

2√
3
binc

[
cos

(
q ·R
2

)
σ · S + i sin

(
q ·R
2

)
σ · (I2 − I2)

]
(3.66)

We can now distinguish between cases with same of different parity. States
with same parity have the same molecular spin S, in this case only the symmetric
part of B contributes to the matrix element. If we call α the initial state, and β

the final state, we have that:

| ⟨β|M |α⟩S=S′ |2 = | ⟨J ′m′
Jn|cos

(
q ·R
2

)
|JmJn = 0⟩ |2 × | ⟨σ′

zS
′S ′

z|P |σzSSz⟩ |2

(3.67)
where P is given by:

P = 2bcoh +
4√
3
bincσ · S (3.68)

If we sum over the final spin states, using the closure relation as in 3.36 we get:

∑
σ′
zS

′S′
z

| ⟨β|M |α⟩ |2 = | ⟨J ′m′
Jn|cos

(
q ·R
2

)
|JmJn = 0⟩ |2 × ⟨σzSSz|P 2|σzSSz⟩

(3.69)
Where:

P 2 = 4b2coh +
16

3
b2inc(σ · S)2 + 16√

3
acohaincσ · S (3.70)

We also want to sum over the neutron spin states σz. In doing so, the matrix
element given by the last term of 3.70 averages to zero. The first term is easily
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computable, while the second one depends on the eigenvalues of S2, since:∑
σz

⟨σz|(σ · S)|σz⟩ =
1

2
S2 (3.71)

Therefore summing over the neutron spin states we obtain:∑
σz

⟨σzSSz|P 2|σzSSz⟩ = 8[b2coh +
1

3
b2incS(S + 1)] (3.72)

We can now sum over S and substitute 3.69 and 3.72, we obtain the term g(t)

for the spin-conserving transitions

gS=S′(t) =4
∑
J

PJS

2J + 1
[b2coh +

b2inc
3
S(S + 1)]×

∑
J ′

′ei(Ej′+EJ )t/h̄
∑
n=0

einωt×

×
∑

mJm
′
J

| ⟨J ′m′
Jn|cos

(
q · R
2

)
|JmJn = 0⟩ |2

(3.73)

where we indicate the sum over J ′ states of same parity as J with the symbol∑′.
The same can be done for transitions between states of opposite parity, choosing

only the antisymmetric part of B as in:

| ⟨β|M |α⟩ |2S ̸=S′ = | ⟨J ′mJn|sin
(
q · R
2

)
|JmJn = 0⟩ |2 × | ⟨σ′

zS
′Sz‘|Q|σzSSz⟩ |2

(3.74)
where:

Q = (
4√
3
)bincσ(I1 − I2) (3.75)

We once again sum over final spin states and using:∑
σz

⟨σz|[σ · (I1 − I2)]
2|σz⟩ =

1

2
(I1 − I2)

2 = I2
1 + I2

2 − 1

2
S2 (3.76)

we find g(t) for states with different parity, where we indicate with the symbol
∑′′
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the sum over states J ′ with different parity compared to J .

gS ̸=S′(t) =4
∑
J

PJS

2J + 1
b2inc[1−

S(S + 1)

3
]×
∑
J ′

”ei(EJ′−Ej)t/h̄
∑
n=0

einωt×

×
∑

mJm
′
J

| ⟨J ′m′
Jn|sin

(
q · R
2

)
|JmJn = 0⟩ |2

(3.77)

3.3.2 Vibrations

The molecules are able to vibrate along their H-H bond, we call x the amount
the bond is stretched, if the average length of the bond is a the total length of
the bond is R = a + x. All the molecules are initially in their ground vibrational
states, vibrational transitions are only relevant when the energy of the incident
neutron is high ( q2

8Mω
> 1). We can write the stretch x as a function of phonon

creation and annihilation operators a and a† as:

x = i
1√
Mωh̄

[a− a†] (3.78)

We can therefore further explicate the matrix elements in 3.73 and 3.77 sub-
stituting R into:

⟨n|e±i qR cos θ
2 |0⟩ = e±i qa cos θ

2 ⟨n|e∓
q cos θ

2
√
Mω

(a−a†)|0⟩ (3.79)

where θ is the angle between q and R. Observing that:

eAeB = eA+B+ 1
2
[A,B] (3.80)

we can rewrite the matrix element of 3.73 as:

| ⟨J ′mJ ‘n|cos
(
q · R
2

)
|JmJn = 0⟩ |2 =

=

(
q2

4Mω

)n
1

n!
| ⟨J ′m′

J |cosn θe−
q2 cos2 θ
8Mω

(
eiqa cos θ/2 + (−)ne−iqa cos θ/2

2

)
|JmJ⟩ |2 =

=

(
q2

4Mω

)n
1

n!
| ⟨J ′m′

J |cosn θe−
q2 cos2 θ
8Mω eiqa cos θ/2)|JmJ⟩ |2

(3.81)
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which gives:

gS=S′(t) = 4
∑
J

PJS

2J + 1
[b2coh +

b2inc
3
S(S + 1)]×

×
∑
J ′

′ei(EJ′−EJ )t/h̄
∑
n

einωt
(

q2

4Mω

)n
1

n!

∑
mJm

′
J

| ⟨J ′m′
J |cosn θe−

q2 cos2 θ
8Mω

+iqa cos θ/2)|JmJ⟩ |2

(3.82)

and similarly:

gS ̸=S′(t) = 4
∑
J

PJS

2J + 1
b2inc[1−

S(S + 1)

3
]×

×
∑
J ′

”ei(EJ′−EJ )t/h̄
∑
n=0

einωt
(

q2

4Mω

)n
1

n!

∑
mJm

′
J

| ⟨J ′m′
J |cosn θe−

q2 cos2 θ
8Mω

+iqa cos θ/2)|JmJ⟩ |2

(3.83)

3.3.3 Rotations

Assuming there is no coupling between rotational and vibrational motion, and that
the rotation is not hindered, the wavefunctions of the rotational states are simply
the spherical harmonics:

|JmJ⟩ = YJmJ
(θ, ϕ) (3.84)

Knowing this, the rotational matrix elements can be written as:

⟨J ′m′
J |cosn θe−

q2 cos2 θ
8Mω

+i qa cos θ
2 |JmJ⟩ =

∫
dΩcosn θe−

q2 cos2 θ
8Mω

+i qb cos θ
2 YJ ′m′

J
(θ, ϕ)×YJmJ

(θ, ϕ)

(3.85)
Let us now apply the coupling theorem for the spherical harmonics, which

states:

Yl1m1(θ, ϕ)Yl2m2(θ, ϕ) =

l1+l2∑
l=|l1−l2|

(
(2l1 + 1)(2l2 + 1)

4π(2l + 1)

)1/2

×

× C(l1l2l;m1m2)C(l1l2l; 00)Yl,m1+m2(θ, ϕ)

(3.86)
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Where C(l1l2l;m1m2) are the Clebsch-Gordan coefficients. It is important to
note that the Clebsch-Gordan coefficients vanish for m1 = m2 = 0 unless l1+ l2+ l
is even. We can apply the coupling theorem remembering that Y ∗

l,m = (−1)mYl,−m

⟨J ′m′
J |cosn θe−

q2 cos2 θ
8Mω

+i qb cos θ
2 |JmJ⟩ = δm′

JmJ
(−)m

′
J

J ′+J∑
l=|J ′−J |

(
(2J ′ + 1)(2J + 1)

4π(2l + 1)

)1/2

×

×C(JJ ′l;mJm
′
J)C(JJ

′l; 00)

∫
dΩcosn θe−

q2 cos2 θ
8Mω

+i qb cos θ
2 Yl,mJ−m′

J
(θ, ϕ)

(3.87)

Using the closure relation of the Clebsch-Gordan coefficients:∑
mJ

C(JJ ′l′;mJ −mJ)C(JJ
′l;mJ −mJ) = δll′ (3.88)

and defining the constant Anl in terms of the Legendre polynomial Pl(cos θ):

Anl =

∫ 1

−1

d cos θ cosn θe−
q2 cos2 θ
8Mω

+i qb cos θ
2 Pl(cos θ) (3.89)

we can once again rewrite g(t) as:

gS=S′(t) = [b2coh +
b2inc
3
S(S + 1)]

∑
J

PJS×

×
∑
J ′

′ei(EJ′−EJ )t/h̄(2J ′ + 1)
∑
n

einωt
(

q2

4Mω

)n
1

n!

J ′+J∑
l=|J ′−J |

|Anl|2 × C2(JJ ′l; 00)

(3.90)

and similarly:

gS ̸=S′(t) = b2inc[1−
S(S + 1)

3
]
∑
J

PJS×

×
∑
J ′

”ei(EJ′−EJ )t/h̄
∑
n=0

einωt
(

q2

4Mω

)n
1

n!

J ′J∑
l=|J ′−J |

| ⟨J ′m′
J |cosn θe−

q2 cos2 θ
8Mω

+iqa cos θ/2)|JmJ⟩ |2

(3.91)
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3.3.4 Translations

It is possible to assume that the translations are free, in this case we can solve the
translational part of 3.49 independently as:

⟨Ψit|e−iq·rl(0)eiq·rl(t)|Ψit⟩T = e−
q2h̄2

4M
(−i+tT ) (3.92)

3.3.5 Scattering cross sections

We are finally able to write the equations for the self term scattering cross section,
for pH2 and oH2, by using equations 3.90 and 3.91 as well as 3.92, inside 3.49:(

dσs
dΩdE ′

)
para

=
k′

k

(
M

πq2T

)1/2∑
n

1

n!

(
q2h̄2

4Mω

) ∑
J=0,2,4...

PJ×

× [b2coh
∑

J ′=0,2,4...

+b2inc
∑

J ′=1,3,5...

]× (2J ′ + 1)e
−

(E′+∆E+
q2

4M
)2

q2T/M ×

×
J ′+J∑

l=|J ′−J |

|Anl|2 × C2(JJ ′l; 00)

(3.93)

(
dσs

dΩdE ′

)
ortho

=
k′

3k

(
M

πq2T

)1/2∑
n

1

n!

(
q2h̄2

4Mω

) ∑
J=1,3,5...

PJ×

× [b2inc
∑

J ′=0,2,4...

+(3bcoh + 2b2inc)
∑

J ′=1,3,5...

]× (2J ′ + 1)e
−

(E′+∆E+
q2

4M
)2

q2T/M ×

×
J ′+J∑

l=|J ′−J |

|Anl|2 × C2(JJ ′l; 00)

(3.94)

The same equations can be written for low temperatures, where the molecules
are in their ground rotational as well as vibrational states:

(
dσs

dΩdE ′

)
para

=
k′

k

(
M

πq2T

)1/2∑
n

1

n!

(
q2h̄2

4Mω

)
× [b2coh

∑
J ′=0,2,4...

+b2inc
∑

J ′=1,3,5...

]×

× (2J ′ + 1)e
−

(E′+EJ′+nω− q2

4M
)2

q2T/M × |AnJ ′|2
(3.95)
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(
dσs

dΩdE ′

)
ortho

=
k′

3k

(
M

πq2T

)1/2∑
n

1

n!

(
q2h̄2

4Mω

)
×

× [b2inc
∑

J ′=0,2,4...

+(3bcoh + 2b2inc)
∑
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(3.96)

The same equations can be modified for the 2D rotor by considering the correct
eigenvalues with their degeneracy, as well as a modified distribution PJ [52].

Using these formulas we are able to plot the neutron scattering cross section
for ortho- and para- hydrogen, as well as for a certain concentration of the two, in
the case of the 3D rotor.
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Figure 3.1: Neutron cross sections for pH2, oH2, and normal hydrogen (nH2) as a function
of neutron energy for a 3D rotor. The normal hydrogen curve corresponds to a pH2
concentration of 25%, typical of the room temperature system. The dashed line represents
the limit of free scattering cross section [53].

Figure 3.1 shows the scattering cross sections for pH2, oH2 and normal hydrogen
nH2, as a function of the energy of the neutron. The dashed line represents the
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limit of free scattering cross section σf , defined as:

σf = 4πb2f (3.97)

where:
bf =

bbound
m

µ (3.98)

which is the scattering length in the limit of a free atom. Both ortho- and para-
cross section tend to σf at high energies because energetic neutrons interact with
the two protons of the molecule as if they were free particles.

From figure 3.1 it is possible to notice that at lower neutron energies, in the
range of cold and thermal neutrons, the scattering cross sections of ortho and para
hydrogen differ by almost two orders of magnitude. This makes neutron scattering
particularly useful to investigate the concentrations of the two modifications.
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Chapter 4

Measurements and data analysis

The purpose of this experimental analysis is to investigate the ortho-para conver-
sion and cross sections of molecular hydrogen adsorbed inside a metal organic
framework, specifically HKUST-1. Experiments were performed at the IMAT
beamline and at the VESUVIO beamline of the ISIS Neutron and Muon Source. In
this chapter we illustrate the methods for data analysis and the experimental strat-
egy, as well as the background noise correction procedures that were implemented
on the images. The characteristic conversion time of the opC will be estimated
for multiple regions of interest. Moreover we report the measured scattering cross
section of adsorbed molecular hydrogen at 30 K, comparing it to theoretical mod-
els.

4.1 Software for data analysis

The data analysis was performed using multiple software, two of which are par-
ticularly popular in imaging processing and neutron data analysis: ImageJ and
Mantid respectively. We will illustrate below their main caratheristics, while the
programs used in the data analysis are reported in the appendices.

• ImageJ: ImageJ is an image processing program born from a collaboration
between the National Institutes of Health of the United states and the Labo-
ratory for Optical and Computational Instrumentation (LOCI, University of
Wisconsin). The program is provided of Java plug-ins as well as recordable
macros that allow the user to automate the imaging processing and analy-
sis. ImageJ allows the user to manage stacks of radiographs, which contain
images that are ordered as a function of time. Here, ImageJ was used to
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perform the background noise corrections on the radiographs. Once the cor-
rections were implemented on the stacks, it allowed us to extract the neutron
transmission as a function of time [54][55].

• Mantid: Mantid is a software developed to analyse neutron scattering and
muon spectroscopy data. It was created by the shared effort of the ISIS
Neutron and Muon Facility, and the Oak Ridge National Laboratory. Mantid
is a python based software that provides a framework for high performance
data visualization and data analysis. In this work it was used to perform the
fitting of neutron data, in order to infer the best trend for the ortho-para
conversion [56].

4.2 Experimental procedure

The imaging experiment was performed at the IMAT beamline, where energy
selective neutron imaging was implemented to obtain in situ/operando radiographs
of the MOF. Before loading, the MOF was annealed for 1 day at a temperature
of 453 K, in order to evaporate water molecules that would otherwise occupy
adsorption sites. The MOF was then inserted into the sample container shown
in figure 2.8, which was then loaded into the closed-circuit refrigerator (CCR).
Hydrogen was first dosed inside the buffers, this is useful to control the amount
of molecules inserted into the MOF. In order to only fill the first adsorption site,
the amount of hydrogen was chosen so that there was one H2 molecule for every
Cu atom. Hydrogen was then slowly loaded into the sample container during data
acquisition, using the gas panel. The temperature of the CCR was chosen to be
of 17 K, this is because at this temperature free hydrogen is in its liquid form,
making the loading procedure smoother.

By tuning the two double-disk choppers, the energy of the incident neutrons
was chosen to be lower than 9 meV, in order to guarantee maximum contrast
between ortho- and para-hydrogen. In fact, figure 3.1 shows how the para-hydrogen
scattering cross section presents a plateaux at lower energies, and starts increasing
around 9 meV. This is due to the inability to promote transitions from J=0 to J=1
at these lower energies. Here the cross section is only proportional to the coherent
term.

The radiographs were acquired at regular time intervals in order to characterize
the time dependence of the process. The data acquisition was started before the
loading procedure in order to observe the hydrogen entering the sample container,
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and therefore the MOF. During this initial phase, the exposure time is 5 s, in
the final loading phase it is set at 15 s and after the hydrogen is fully loaded the
exposure time is set at 30 s to observe the later stages opC. This is because the
time scale of loading is faster than that of the opC.

The radiographs were acquired using the CCD camera described in paragraph
2.4.6, which works at a temperature of 203 K. The pinhole was chosen to be of 40
mm to reduce beam divergence. The imaging system provides a field of view of
20× 20 cm2.

Besides the radiographs of the sample, other two set of radiographs were ac-
quired, which were used to perform background noise corrections. We will discuss
those in the next paragraph.

The transmission experiment was performed at the VESUVIO beamline.
The sample was prepared using the same procedure described above. The VESU-
VIO beamline is equipped with the same type of buffers as IMAT, therefore hydro-
gen was again dosed and loaded as above. Since VESUVIO is not equipped with
choppers, this data is acquired on a much greater energy range, which allows us to
better investigate the cross section. In this case we performed 3 runs at a temper-
ature of 30 K, each one with a different hydrogen concentration. The three suns
present a hydrogen concentration, compared to that of the Cu atoms, of 1:1.3, 1:1,
and 1:2 respectively. These three concentrations were chosen because even though
we are interest in having hydrogen only in the first adsorption site, the detector
we used is particularly sensible to γ-rays, which contribute to a background that
could ruin the measurements if hydrogen concentration is too low. In addition to
the three runs containing hydrogen, transmission data of the MOF alone was also
acquired, in order to perform a background correction.

4.3 Neutron imaging: background noise corrections

In order to perform the darkfield and flatfield corrections other two sets of data
were acquired. For the darkfield correction the radiographs were acquired with
the neutron beam turned off, to detect the electronic noise of the CCD camera.
On the other hand for the flatfield correction the radiographs of the empty CCR
are needed. Both sets of data were acquired at 5s, 15s, and 30s, in order to
compare them with the H2 radiographs. In the following section we will describe
the procedure chosen to perform the corrections, which were implemented using
the software ImageJ.
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4.3.1 Darkfield correction

The purpose of this correction is to subtract detector artifacts, as dark current,
bias current or readout noise, due to the properties of the CCD itself, as well as
identify dark or hot pixels. The dark radiographs were acquired with the neutron
beam turned off, in order to only capture the noise produced by the detector. Since
the intensity due to the noise depends on the exposure time, the dark frames were
acquired at the same exposure times as the H2 data, which were chosen to be of 5,
15 and 30 s. For every exposure time, 50 frames were acquired, in order to average
them out.

The purpose of this section is to obtain three images, one for every exposure
time, that best represent the noise due to the CCD and can therefore be subtracted
from the original data.

The three dark stacks appear to have a background electronic noise as well
as some hot pixels, which are easily identifiable because they remain in a fixed
position for every slice of the stack. Using the software ImageJ it is possible to
perform different operations on the images: we compared three different filters
that are often used to treat the dark frames:

• Gaussian blur: this filter performs a Gaussian blur on every slice of the
stack, it is possible to select its standard deviation as a function of the
number of pixels with the macro command:

run("Gaussian Blur...", "sigma=4 stack");

• Remove outliers: this filter replaces outlier pixels by the median of the
pixels in the surrounding. It is possible to choose a threshold in terms of the
standard deviation, to define which pixels are treated as outliers. The macro
command is:

run("Remove Outliers", "block_radius_x=40 block_radius_y=40
standard_deviations=3 stack");

where the block radius indicates the radius used to calculate the median and
substitute the value of the outlier. Both radius and standard deviation are
given as a function of the number of pixels.
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• Median: this filter replaces each pixel with the median of the value of
neighboring pixels. It can be applied in 2D or 3D by changing the radius in
the z direction, using the macro:

run("Median 3D...", "x=2 y=2 z=2");

where the third dimension is time. This means that the median is calculated
using the preceding and following slices. The three parameters are again
expressed as a function of the number of pixels used.

Figure 4.1 shows the three corrections compared with the original data. The
left plot shows the pixel intensity evaluated along a line of pixels, as a function of
the pixel number. The line was chosen with the purpose of showing a region with
very intense outliers. The second plot represents the average intensity of the x-th
column of pixels, as a function of the column number.

In figure 4.1 and 4.2, we chose to represent the corrections with the default
standard deviations suggested by the software for each filter. In particular, the
standard deviation of the Gaussian filter is over a radius of 4 pixels; the threshold
that defines the outliers is of 3 standard deviations, calculated over a radius of 40
pixels; the median filter calculates the median in a 3D neighborhood with a 2 pixel
radius.

Upon observing the radiographs it is possible to notice a lower intensity back-
ground that varies with time, and many hot pixels with higher intensity, that do
not vary with time. It is important to chose the best way to treat such a system.

The "Gaussian filter" lowers the gray value of a hot pixel, but also increases
the gray value of the surrounding pixels. While it seems to maintain the same
average as the original data over the rectangle (figure 4.1b) in figure 4.1a it is pos-
sible to notice that the Gaussian blur induces a systematic error, since it presents
peaks where the original data has a baseline. This effect is due to the fact that
the intensity of neighbouring hot pixels on different lines is spread beyond their
position, onto the observed line.

The filter "remove outliers" defines the outlier value based on the median of
the surrounding pixels, for this reason not all the pixel with the same value are
removed. Moreover the average value calculated over the rectangle appears to be
lower than that of the original data, but higher than the average median (see figure
4.1b).
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Figure 4.1: The three corrections are compared with the original data. In the first plot,
each curve represents the grayvalue of the pixel as a function of the pixel number, the data
were acquired along the line defined with the macro: ’makeLine(148, 720, 1448, 720)’. In
the second image the grayvalue of every plot is an average of the pixels intensity along
the x-th pixel column, this data were acquired with the macro: ’makeRectangle(0, 0,
2048, 2048)’.

The median filter on the other hand seems to better reproduce the background
noise, but doesn’t take into account hot pixels, for this reason its average over the
rectangle is significantly lower than that of the original data.

In figure 4.2 the first two corrections are applied simultaneously, since the two
filters do not commute, they were applied in both orders. When the Gaussian blur
is applied before removing the outliers is still present a significant systematic error.
Removing the outliers before applying the Gaussian blur gives a better result but
it still doesn’t treat hot pixels. Moreover, the Median alone still gives a better
reproduction of the baseline of the noise. For this reason we choose to use the
median filter to treat the Dark stacks. After the filter is applied the stacks are
averaged out to create a single image that can be subtracted to implement the
dark field correction, using the macro:

run("Grouped Z Project...","projection=[Average Intensity]
group="+nSlices);

While this correction is sufficient for the application in this work, usually it
would be necessary to remove the white spots by designing a proper filter [57].
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Figure 4.2: The functions "Gaussian blur" and "remove outliers" are applied sequentially.
The order in which they are reported represents the order in which they were applied.In
the first plot, each curve represents the grayvalue of the pixel as a function of the pixel
number, the data were acquired along the line defined with the macro: ’makeLine(148,
720, 1892, 720)’. In the second image the grayvalue of every plot is an average of the
pixels intensity along the x-th pixel column, this data were acquired with the macro:
’makeRectangle(0, 0, 2048, 2048)’.

The darkfield correction was applied not only to the sample radiographs, but
also to the stack of radiographs of the empty CCR, used for the flatfield correction.

4.3.2 Flatfield correction

The flatfield correction consists of dividing the sample radiographs by a reference
flatfield image, in order to obtain the neuron transmission due to the sample.
This correction was performed using reference stacks of the empty CCR, that were
acquired with acquisition times of 5 s, 15 s, and 30 s. For each of the three acquisi-
tion times multiple radiographs were taken, those will be averaged to obtain three
flatfield images, that can be used to divide the sample radiographs with the corre-
sponding acquisition time. Flatfield stacks are acquired by uniformly radiating the
CCR with the neutron beam, thus obtaining images that contain informations on
the transmission due to instrumental setup. For simplicity, the flatfield correction
was performed on the empty CCR instead of the sample container. Just like sam-
ple radiographs, flatfield images record an intensity that depends on the camera
artifacts, as well as the neutron transmission. Therefore the darkfield correction
was also performed on the flatfield stacks.

65



When working with neutrons it is important to take into account that their
flux may vary significantly from one radiography to another.
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Figure 4.3: Beam counts as a function of time measured by the GS20 detector, for three
different acquisition times.

Figure 4.3 reports as an example the beam counts as a function of time, regis-
tered during the experiment, for three different data acquisitions. The beam count
represents the total number of neutrons that are measured by the GS20 monitor
during the 5 s, 15 s or 30 s long data acquisitions. It is clear that this flux might
vary significantly from one radiography to another, thus we have to take this into
account when constructing the flatfield correction image. Two types of corrections
were assessed:

• Normalization correction: this consists of normalizing each flatfield ra-
diography by the number of its neutron counts. In order to obtain intensity
values grater than one in each pixel, we actually divide by the number of
counts of the respective radiography and multiply by the mean value of the
counts of each radiography of the stack.

• Standard deviation correction: given the total number of counts of every
slice in the stack, for each of the three acquisition times, it is possible to
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construct its standard deviation. This number is used to discard slices that
have a number of counts that exceeds the standard deviation, which are
considered outliers.

The macros for both these corrections are shown in appendix B. It is important
to notice that each of the corrections has to be implemented on a radiography
where the blackfield is already been subtracted. Moreover once the correction is
performed, the stack is again averaged to obtain one image, using the same macro
command used to average the darkfield stacks.

The two corrections were compared to the image obtained by averaging the
stack without implementing any correction. In order to compare them, each cor-
rection image was divided by the non-corrected image by using the macro:

imageCalculator("Divide create slice",
"AVG_Result of CCR_5s_PH40-1","AVG_Result of CCR_5s_PH40");
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Figure 4.4: Comparison between normalization and standard deviation corrections, nor-
malized by non-corrected image. This image only represents the central area obtained
using the macro makeRectangle(556, 548, 880, 900);

Results are shown in figure 4.4. Both corrections do not differ more than 1%
from the raw data average and therefore we consider them equally valid. We
choose to treat flatfield images with the standard deviation correction assuming
that the results would improve by excluding outliers. Moreover, not dividing each
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radiography by the number of counts allows us to work with pixel that still have
integer intensities.

4.3.3 Field of view correction

Figure 4.5: Example of a radiography showing the area chosen in order to perform the
field of view correction, the area is identified with the macro: makeRectangle(1548, 384,
188, 1300);.

As shown in figure 4.3 the neutron flux has a strong time dependence that is due
to the specifics of the source. It is therefore important to take into account that the
number of transmitted neutrons also depends on the number of incident neutrons.
A possible solution to this is to apply the normalization correction described before
for the flatfield stacks, however it is preferred to use a field of view correction, for
both flatfield and sample radiographs. This correction consists in selecting an area
of each sample radiography, where the neutrons are being transmitted and the
sample is not present. As an example figure 4.5 shows the area chosen for our
setup. Using the function:

run("Measure");

It is possible to obtain the mean intensity of pixels in this area, that can be
used to normalize the entire slice. This correction was performed on every slice of
the sample stacks, but only after the other corrections were applied.

68



4.3.4 Implementation of corrections and systematic errors

The total implementation of background noise corrections allowed us to obtain
three corrected stacks of radiographs that we will analyze in the next section. The
operations that are performed on raw data to obtain the corrected stack can be
summarized by the following formula:

STACKCorrected =
STACKRaw − SLICEDark

SLICEFlat − SLICEDark
(4.1)

Where SLICEDark and SLICEFlat are the two images obtained by averaging the
dark stacks and flat stacks, after corrections are performed, and STACKRaw is the
stack of the raw sample data. After this operations were performed, the field of
view correction was implemented on the corrected stacks. While interpreting the
resulting stacks it is important to take into account that these corrections could
induce some systematic errors. As an example, the method chosen to treat the
dark stacks does not treat hot pixels, however for the purpose of this work we
are going to average the transmission value on areas of the image that are big
enough to neglect this error. Moreover, the intensity of hot pixels does not depend
strongly on time, and its dependence is stochastic, therefore their contribution
may constitute an off-set on the transmission value, but will not disrupt the time
dependence of ortho-para conversion.

Another offset on the transmission is due to the fact that the flatfield correction
is performed using empty CCR radiographs instead of radiographs of the MOF
before hydrogen adsorption. However the MOF is a powder, which means that
it could have different densities depending on the observed section, and it could
move around during hydrogen loading. Therefore it was preferred to use a more
uniform background. As a consequence, the material of the sample container is
also not accounted for, however due to scattering cross section of aluminium being
so small we can neglect this contribution.

The field of view correction was implemented assuming a uniform spatial dis-
tribution of neutrons in the incident beam, in order to reduce the error due to
this correction the field of view was chosen to be as big as possible. It is also
important to notice that scattered neutron can still reach the detector, disrupting
the intensity of transmitted neutrons. Moreover the neutron source is not mo-
noenergetic, therefore we neglect the error due to the energy dependence of the
scattering processes [58].

All of the corrections that were performed in this work can more easily be
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implemented using packages for tomographic data processing as NeuTomPy [59].

4.4 Neutron imaging for the catalysed ortho-para
conversion

In this section we will describe the procedure used to obtain the characteristic con-
version time of the catalysed ortho-para conversion. In particular, this procedure
will be implemented in multiple regions of interest, obtaining a grid of values for
the conversion time, which allowed us to explore the spatial distribution of this
phenomenon.

4.4.1 Ortho-para conversion: transmission measurements

Once the raw transmission data has been treated following the procedure in the
previous section, it is possible to extract time dependence of the measured trans-
mission by using the following ImageJ command on a selected area:

run("Plot Z-axis Profile");

Given a certain stack of radiographs, this function will plot the selected area
mean gray value versus the slice number. Since the slices inside the stack progress
as a function of time, this allowed us to extract a time dependence. Before using
the command above, it is important to choose the region of interest (ROI) of which
we want to extract the time dependent transmission. ROIs can be selected using
the macro:

makeRectangle(x, y, width, height)

This creates a rectangle that has the top left corner in the coordinates (x,y), which
are expressed as a function of the number of pixels, and has specified width and
height. Ideally, one could choose a ROI as big as the whole sample, however this
area is too big to obtain meaningful results because hydrogen may not reach every
point of the sample, and does not reach them simultaneously. Therefore we want
to investigate multiple smaller ROIs and compare the results. We choose ROIs
of 50 × 50 pixels, which roughly correspond to 1 cm2 sections of the sample. As
an example, we chose to represent five different ROIs, labeled with letters from A
to E. These are defined by varying the y coordinate and maintaining the x fixed,
therefore varying the depth within the sample. Figures from 4.6 to 4.10 report the
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location of the five ROIs, as well as plots of the average pixel grayvalue in that
area, which is proportional to transmission, as a function of time.

Every plot is constituted of three curves following each other: each one refers
to a different stack, acquired at a certain acquisition time.

As mentioned before, slices were acquired with shorter acquisition times during
loading because this process has a shorter time scale compared to the opC.

Observing the plots in figures from 4.6 to 4.10, it is possible to notice an initial
plateaux, which represents the value of the transmission before hydrogen is loaded.
Here, transmission depends on the scattering cross section of sample container and
MOF, and it is therefore constant as a function of time.

After a couple of minutes, the hydrogen is loaded: this is when the scattering
cross section increases abruptly, consequently decreasing transmission.
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Figure 4.6: ROI A, selected with the function ’makeRectangle(800, 800, 50, 50)’
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Figure 4.7: ROI B, selected with the function ’makeRectangle(800, 900, 50, 50)’
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Figure 4.8: ROI C, selected with the function ’makeRectangle(800, 1000, 50, 50)’
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Figure 4.9: ROI D, selected with the function ’makeRectangle(800, 1100, 50, 50)’
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Figure 4.10: ROI E, selected with the function ’makeRectangle(800, 1200, 50, 50)’
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The jump in the transmission depends on the fact that loading is fast compared
to the almost three hours long experiment. However, comparing plots from 4.6 to
4.10, it is possible to notice the hydrogen molecules percolating inside the powder
by observing that the transmission jump happens slightly later at the bottom of
the container.

Especially for the ROIs that are closer to the surface, transmission is slightly
disturbed by the hydrogen loading, because the powder moves around. After
loading is complete, the ortho-para conversion is clearly visible in each graph.
The same measurements are performed for other four ROIs, which were chosen in
order to sample the superficial layers of the powder. These ROIs have the same
dimension as before (50 × 50 pixels), and are labeled with letters from F to I
(figures from 4.11 to 4.14).
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Figure 4.11: ROI F, selected with the function ’makeRectangle(900, 800, 50, 50)’
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Figure 4.12: ROI G, selected with the function ’makeRectangle(1000, 800, 50, 50)’
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Figure 4.13: ROI H, selected with the function ’makeRectangle(1100, 850, 50, 50)’
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Figure 4.14: ROI I, selected with the function ’makeRectangle(1200, 850, 50, 50)’

It is possible to notice a more complex behaviour for those ROIs that are closer
to the surface. In particular, ROI H and I are very close to a region where the
powder is absent, near the top right corner of the container. The absence of powder
is noticeable because the area is lighter in color, due to higher transmission.

4.4.2 Characteristic conversion time

From transmission plots obtained in the previous section, it is possible to extract
the time dependence of the ortho-hydrogen concentration. To do so, we firstly
consider the Beer-Lambert law (equation 2.6) introduced in chapter 2. In our
specific case, transmission depends on multiple terms: we need to take into ac-
count the sample container, the MOF powder, and the two hydrogen modifications.
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However, only the concentrations of ortho- and para-hydrogen have a time depen-
dence, therefore we can consider transmission due to sample container and MOF
as a multiplying constant. The Beer-Lambert law becomes:

T = TMOFTcontainere
−o(t)σoxe−(1−o(t))σpx = TsTce

−σpxe−o(t)(σo−σp)x (4.2)

where o(t) is the ortho-concentration as a function of time, and (1 − o(t)) is the
para-concentration. From the equation above it is clear that the negative logarithm
of transmission can be written as:

− lnT = C + o(t)(σo − σp)x (4.3)

where the constant C contains information on the sample and container transmis-
sion, as well as para-hydrogen cross section and sample thickness. Applying the
negative logarithm to transmission data is therefore the first step in studying the
time dependence of the opC.

Figure 4.15 represents the negative logarithm of the transmission for the ROIs
chosen in the previous section.
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Figure 4.15: -ln(Tnorm) is plotted as a function of time for the different ROIs chosen
above.

The two plots separately show the ROIs that vary vertically and horizontally
respectively. In these figures, the transmission was normalized by a constant con-
taining information on TM and Tc. This constant was calculated as the average
transmission value of the plateaux, which can be observed at initial times of the
transmission plots, before hydrogen loading. This procedure is not essential, but it
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allows us to visualize data so that the initial ortho-concentration is equal to zero,
as it should be since there’s no hydrogen in the MOF.

In order to infer the correct time dependence of the ortho-concentration, it
is necessary to fit our data. We expect to observe the trend typical of adsorbed
hydrogen, reported in equation 1.21. For this reason we fit our data with the
function:

F = Ae−
t−t0
τ + C (4.4)

Where A contains the constant [(σo−σp)x] as well as the initial ortho-concentration
o0, and t0 is the time at which the conversion starts.

Fitting is performed using Mantid. In this Python-based software it is possible
to fit data with a user defined function, using the command:

Fit(Function=’name=UserFunction,Formula=A*exp(-(t-t0)/tau)+C,
A=0.108322, t0=2000,tau=2929.79,B=0.00920422,ties=(t0=2000)’,
InputWorkspace=’lnT_tot_17K_X’+str(x)+’_Y’+str(y),
Output=’lnT_tot_17K_X’+str(x)+’_Y’+str(y), OutputCompositeMembers
=True, StartX=x0, EndX=21301, Normalise=True)

where we provided the formula, as well as the initial guess for each parameter. We
chose to fix the value of t0 = 2000 (≃ 33 min). This fixed parameter was selected
in order to accommodate each curve, taking into account that the conversion starts
at slightly different times in each ROI, depending on the depth within the sample.
Fitting range is therefore t=2000-21301 s (≃ 33-355 min), except for ROI E, which
is fitted in the interval t=3500-21301 s (≃ 58-355 min).

To calculate errors for the parameters A, B and τ , we firstly need to estimate
transmission errors. ImageJ allows the user to calculate the mean value and the
corresponding standard deviation of pixels, in a selected area. Doing this over 50×
50 ROIs, in different slices, it is possible to notice that the standard deviation is on
average equal to 2% of the corresponding transmission value. Taking into account
other possible errors due to the instrument setup, we estimated the transmission
error to be equal to 5% the corresponding value (∆T = 0.05 T ). Errors of the
quantity (− ln(T )) can be computed by error propagation as:

d(− ln(T )) =

∣∣∣∣d(− ln(T )

dT

∣∣∣∣∆T =
1

T
0.05T = 0.05 (4.5)

Knowing this, Mantid is able to calculate the errors of the fitted parameters,
which are reported in table 4.1 together with their corresponding value.
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Table 4.1: Fitting parameters obtained for each ROI.

ROI τ A B
A 2573 ± 573 0.100 ± 0.009 0.017 ± 0.004
B 3812 ± 676 0.134 ± 0.008 0.013 ± 0.006
C 4155 ± 749 0.135 ± 0.008 0.012 ± 0.007
D 3807 ± 709 0.127 ± 0.008 0.013 ± 0.006
E 3796 ± 2415 0.063 ± 0.01 0.015± 0.008
F 2916 ± 533 0.123 ± 0.008 0.016 ± 0.005
G 2868 ± 488 0.132 ± 0.008 0.020 ± 0.005
H 2929 ± 610 0.108 ± 0.008 0.009 ± 0.005
I 2880 ± 459 0.141± 0.008 0.019 ± 0.005

Apart for the specific case of ROI E, the relative uncertainty of the character-
istic conversion time of each ROI is around 20 % of the corresponding value.

4.4.3 Spatial distribution

Figure 4.16: Radiograph of the sample container loaded with HKUST-1 and liquid H2,
a grid is overlaid to represent the different ROIs for which the conversion time (τ) is
calculated.

The next step in this study was to investigate the spatial distribution of this
phenomena. We chose to sample the radiographs in a 10 × 10 grid, where each
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ROI still has a dimension of 50× 50 pixels. Data acquisition was automated using
ImageJ macros, specifically using a program reported in appendix C. The grid is
represented in figure 4.16, here it was overlaid on a sample image, in order to show
the different ROIs for which the conversion time is calculated.

Mantid analysis was also implemented for the grid, and is reported in appendix
D. In figure 4.17a we report values for the characteristic conversion time in each
ROI of the grid, represented by a color map.
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Figure 4.17: Color map of the values of τ (a), and its error (b).
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Figure 4.18: Color map of the values of τ (a), and its error (b), obtained by removing
outliers.

Figure 4.17a shows their corresponding errors. From both the τ values and
their errors in the color maps, it is possible to notice some outliers. In the top
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right corner outliers are due to the fact that data is acquired where there is no
powder. This can be easily seen from figure 4.16. In the bottom left corners
outliers portray an area where hydrogen failed to reach.

Removing the outliers, the color maps are easier to interpret (see figure 4.18).
Observing the color map in figure 4.18a, it is possible to notice that the value
of τ seems to vary systematically in the central area. However, the error color
map in 4.18b shows that this systematic increment in the values of τ corresponds
to a systematic increment in their error. This can therefore be explained as a
consequence of fitting, that we consider uncorrelated with physical phenomena.
Except for this systematic error, the distribution of the values of τ , reported in
figure 4.19, seems to be consistent with a normal distribution.
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Figure 4.19: Histogram of the values of τ .

The value of the characteristic conversion time was calculated for many ROIs,
therefore it is now possible to calculate their average and standard deviation, and
confront the latter with experimental errors.

In figure 4.20 the rows of the grid are shown. Each point corresponds to a ROI
in the grid, with its error bar. The mean value of τ is represented as a black line.
The orange lines represent the error given by one standard deviation.

The mean value of τ obtained by excluding the outliers gives a characteristic
conversion time equals to 3512 s, with a standard deviation of 393 s. Therefore we
can conclude that:

τ = 58± 6 minutes (4.6)
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Figure 4.20: Values of τ represented for different rows, as a function of the x coordinate
of the ROI.

This result is 80 times smaller compared to that of the free hydrogen, which
is coherent with results obtained for other catalysts. As an example Romanelli et
al. report a characteristic conversion time of ca. 100 min [38].

4.5 Neutron transmission for ortho- and para- cross
sections

Neutron transmission data were acquired at the VESUVIO beamline of the ISIS
neutron and muon source. The purpose of this experiment was to measure the
adsorbed dihydrogen scattering cross section at 30 K, as a function of the incident
neutron energy, in order to establish if they differ from those of the 3D rotor, as
we would expect for this type of material.

4.5.1 Data analysis

Transmission data of the MOF containing H2 were acquired for three different hy-
drogen concentrations, as a function of incident neutron energy. Each of the three
measurements is composed of multiple runs, that we summed in order to obtain
an average spectrum with high S/N ratio. Since at a temperature of 30 K molec-
ular hydrogen undergoes the opC, we need to make sure that there’s no kinetics
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involved before averaging the measurements, so that we obtain the cross section of
the system at equilibrium. Knowing the characteristic conversion time obtained in
the previous section, we are able to discard the first three measurements, during
which the conversion is still tacking place.

In order to perform background noise corrections flatfield data were also ac-
quired. Both H2 data and flatfield data were normalized by the number of counts
of the incoming beam, also as a function of the incident neutron energy, in order
to take into account the variability of the neutron source flux.

In contrast to the imaging setup, here the sample is smaller, has fixed thickness
in every point and the powder can not move around as much, therefore it makes
sense to acquire flatfield data of the CCR containing the MOF. This allows us to
subtract both the MOF and sample container contribution to the cross section.
To do so we divide the normalized H2 data by the normalized flatfield data using
Mantid.

Finally, just like for the imaging data, we perform the negative logarithm of
transmission, in order to take into account the Beer-Lambert law (equation 2.6).
In this case, we assume the concentration of ortho- and para-hydrogen to be fixed,
as well as the sample thickness. This means that they only contribute as an offset
to the scattering cross section.

4.5.2 Neutron scattering cross section of adsorbed hydrogen

After processing, we are able to plot the experimental scattering cross sections as a
function of energy, for hydrogen adsorbed by HKUST-1. Figure 4.21 portraits the
three different runs with their experimental error. These errors are estimated from
the ToF dependent beamcounts assuming they reproduce a Poisson distribution.
It is interesting to notice that the error bars are smaller in the central region,
this is due to the H2O moderator, which thermalizes neutrons so that the their
distribution has a peak around 3

2
KBT .

The shape of the cross sections as a function of energy appears to be consistent
in each run. The difference between the three measurements is due to the different
hydrogen concentrations. It is possible to prove this by comparing their average
value at high energies, which correspond to the limit of σf . In fact, the three runs
tend to values of 0.021 ± 0.003, 0.017 ± 0.003 and 0.032 ± 0.004 respectively.
These values were obtained averaging the data at energies higher than 103 meV,
and their errors are estimated with the respective standard deviations. It is pos-
sible to show that their ratios correspond within the error to the ratios of their
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concentrations. In fact the ratio between run 1 and run 2, which is 1:1.3=0.77
corresponds to a measured ratio of 0.8 ± 0.2, similarly the ratio 1.3:2=0.65 corre-
sponds to the measured ratio 0.6 ± 0.2 and 1:2=0.5 corresponds to 0.5 ± 0.2. Here
each error was estimated by propagating the two standard deviations associated
with each average value.
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Figure 4.21: Experimental scattering cross sections of hydrogen adsorbed by HKUST-1,
reported for different H2 to Cu ratios.

To better compare the three experimental cross sections, they can be scaled so
that average experimental σf of each run corresponds to a common value, which
is the σf of theoretical calculations. In figure 4.23 the scaled measurements are
compared with theoretical cross sections. The ortho- and para- theoretical cross
sections were calculated using the Young and Koppel equations reported in chapter
3 [52], which describe the case of the 3D rotor.

The total scattering cross section can be calculated by linear combination of
the ortho- and para- cross sections, weighted with their concentrations. In figure
4.22 are reported the ortho- and para- concentrations for four hindering strengths
as a function of temperature, for which we had to ensure convergence. Using these
partition functions the concentrations were calculated at 30 K for each hindering
strength. The values of the concentrations at 30 K are reported in table 4.2.
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Figure 4.22: Ortho- and para- concentrations as a function of temperature for four dif-
ferent hindering strengths, the case of Φ0=0 corresponds to the three dimensional case.

Table 4.2: Ortho- and para- concentrations calculated using the partition functions of
ortho- and para-hydrogen, for a two dimensional rotor, for different hindering strengths,
at 30 K.

Φ0/B pH2 (%) oH2 (%)
0 97 3
10 89 11
20 83 17
70 78 22

In figure 4.23 it is possible to notice that the experimental runs do not match
the 3D rotor cross section (black) in the thermal energy range. This result sug-
gests that the adsorbed hydrogen molecules may behave as a hindered rotor. We
therefore compare data to three more curves, which are labeled as Φ0 = 10 B,
Φ0 = 20 B and Φ0 = 70 B. These curves are obtained using the 3D ortho- and
para- cross sections, but considering concentrations that are obtained using the
2D partition function at 30 K, for each hindering strength. When comparing ex-
perimental curves to theoretical calculations, it is important to take into account
that above 9 meV the energy of the incident neutrons is great enough to promote
some of the para-hydrogen molecules, which at this temperature are in the lowest

83



100 101 102 103

0

20

40

60

E (meV)

C
ro
ss

se
ct
io
n
(b
a
rn
)

Φ0 = 0
Φ0 = 10 B
Φ0 = 20 B
Φ0 = 70 B
run 1 1:1.3
run 2 1:1
run 3 1:2

Figure 4.23: Comparison between the experimental data and theoretical calculations.
The black line represents the cross section of a three dimensional rotor at 30 K. The
other three theoretical cross sections are calculated by weighting the ortho- and para- 3D
cross sections with concentrations obtained with a 2D partition function, as a function
of the hindering strength. The dashed line represents the best fit for our data, obtained
using this method.

energy state (J=0), to ortho-hydrogen (J=1). Therefore we identify as the best
fit the theoretical curve that matches experimental data under 9 meV. Figure 4.23
shows that the data in runs 1 and 3 is best represented by the dashed curve, cor-
responding to a hindering strength of Φ = 20 B. In figure 1.5 it is possible to
notice that at this strength the hindering is not particularly strong, especially at
high energies. However, using the partition function, it is possible to prove that
at T=30 K and Φ = 20 B most of the molecules (83 %) are in the first energy
level (J = 0, mJ = 0). The second energy level (J = 1, mJ = 1) is occupied by
17 % and the occupation percentage of the third lowest level (J = 2, mJ = 2) is
of the order of 10−6. The first two levels differ of 1.19 B and could therefore be
associated with the behaviour of a partially hindered rotor.

The significant difference between run 2 and the other runs could be due to
its lower hydrogen concentration. In fact, such a low scattering cross section
could render the measurement more subject to background noise error due to the
environmental γ-ray background. However this difference could also be due to
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the fact that when the concentration exceeds the Cu to H2 ratio of 1:1, hydrogen
will start filling other adsorption sites, which have lower binding energies. If the
binding energy is lower, the hindering strength is lower, which could explain why
runs 2 and 3 are in agreement with a partially hindered rotor model.
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Figure 4.24: The comparison between the experimental data of run 3 and theoretical
calculations of figure 4.23 is shown for the central region, in order to better visualize the
difference between calculated and experimental slopes in the cross sections.

Moreover in figure 4.24 one can observe that the slope of the cross sections is
not well represented by our approximation, we expect this problem to be solved
by calculating the ortho- and para- cross sections of a hindered rotor. It is in fact
important to stress that the ortho- and para- cross sections used to obtain these
curves are calculated for a three dimensional rotor, and that the calculations for
the 2D cross sections could turn out to be in agreement with a model that presents
a different hindering strength.
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Conclusions and outlook

Currently metal organic frameworks are attracting interest as potential hydrogen
storage materials [12], rendering necessary to investigate how molecular hydrogen
interacts with these complex structures.

In this work we performed neutron transmission and neutron imaging experi-
ments on molecular hydrogen adsorbed by one particular MOF, known as HKUST-
1. This MOF is particularly interesting for storage applications because of its
unsaturated metal bonds.

Imaging experiments were performed ad the IMAT beamline of the ISIS neu-
tron and muon source. Here, a time resolved imaging technique allowed us to
characterize the ortho-para conversion rate as a function of time and space, for
different regions of interest. We report that the ortho-hydrogen conversion rate
depends linearly on the ortho-concentration, presenting an average characteristic
conversion time of 58 minutes, at a temperature of 17 K. This result clearly indi-
cates that the ortho-para conversion is catalysed by the MOF, as the free hydrogen
conversion time is of ca. 79 hours [10].

Moreover we showed that the possibility to explore the spatial distribution of
the sample renders imaging techniques particularly appealing for industrial and
engineering applications.

Transmission experiments were performed at the VESUVIO beamline of the
ISIS neutron and muon source. Here, transmission measurements were performed
as a function of neutron energy using the time of flight technique.

The same MOF was observed, in order to determine the total scattering cross
section of adsorbed hydrogen. Comparing it to the theoretical scattering cross sec-
tion of free hydrogen we were able to show that this system is not well represented
by the 3D rotor model, suggesting that a 2D rotor model might be more fit to
represent adsorbed hydrogen rotational behaviour.

With a simplified approximation, we compared experimental data to a model
that uses a 3D scattering cross section, weighted with 2D ortho- and para- partition
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functions, showing that data are better represented assuming the presence of a
hindering potential.

The next step in this line of work would be to calculate the total scattering cross
section of the hindered hydrogen molecule, in order to compare it with experimen-
tal data. Moreover the experimental uncertainties due to high γ-ray background
noise indicate a need to develop detectors with higher neutron efficiency and lower
γ sensitivity for more reliable measurements.
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Appendix A

Ortho- and para- partition
functions, concentrations and heat
capacities for 2D and 3D rotors

# -*- coding: utf-8 -*-
"""
Created on Sat May 27 13:13:34 2023

@author: margherita
"""

import numpy as np
import matplotlib.pyplot as plt

rotor = "2D"

"""H2 properties and other constants"""
M = 2.016 # a.m.u.
re = 0.74
hbar = 2.0445 # (meV*a.m.u.)^0.5 / A-1
Kb=8.617281e-2 #meV/K
ortho=1
para=0
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conversion=1.60218*6.02214/8.314462618*10 #conversion constant used to
obtain Cv/R

T=30 # concentrations calculated at this temperature
Tmax=300
NK=5 #numero di stati rotazionali
NmJ=12 # number of eigenvalues calculated for each mJ in the input plot
B = hbar**2/(M/2.)/re**2 #meV, energy constant of rotational levels

"""Hindered rotor eigenvalues for 2D calculations"""
hindering_strength = 70 #normalized by B
filename = "hindered rotor levels m12 phi500.txt"
with open(filename, "r") as file:

for _ in range(hindering_strength - 1):
file.readline()

line = file.readline().strip()
values = line.split()
eigenvalues= [float(el) for el in values ]

def eigenvalues2D(mJ,J):
if mJ<=J and 2*NK<NmJ:

e=eigenvalues[mJ*NmJ+J-mJ]
return e

else:
return "mJ can not be greater than J, or your input\

file does not have enough Js for each mJ"

def partition_function(I, temp) :
beta = 1. / 8.617281e-2 / temp # 1/meV

if rotor == "3D" :
PK = np.zeros(2*NK)
for k in range(2*NK):

PK[k] = (2.*k+1) * np.exp(-B * k * (k+1.) * beta)
PK[k] *= np.abs( (-1)**k + (-1)**I)/2.

PK = PK.sum()
return PK

elif rotor == "2D" :
PK = np.zeros(2*(NK**2)+NK)
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i=0
for k in range(2*NK):

for mk in range(0,k+1):
EV= eigenvalues2D(mk,k)
PK[i] = np.exp(-B * EV * beta)
if mk > 0 : PK[i] *= 2.
PK[i] *= np.abs( (-1)**k + (-1)**I)/2.
i=i+1

PK = PK.sum()
return PK

T_values = np.linspace(0.0001, Tmax, 100)
Ortho_concentration_3D_values =[]
Para_concentration_3D_values=[]

for t in T_values:
Para_concentration_3D_values.append\
(partition_function(0,t)/(partition_function(0,t)+3*partition_function(1,t)))
Ortho_concentration_3D_values.append\
(3*partition_function(1,t)/(partition_function(0,t)+3*partition_function(1,t)))

plt.plot(T_values, Para_concentration_3D_values)
plt.plot(T_values, Ortho_concentration_3D_values)
plt.xlabel(’T’)
plt.ylabel(’Concentration’)
plt.title(’Ortho-para concentrations’)
plt.show()

if rotor == "3D":
print("The 3D Ortho concentration at temperature %g K is %g %%"\

%(T,3*partition_function(1,T)/(partition_function(0,T)+\
3*partition_function(1,T))*100))

print("The 3D Para concentration at temperature %g K is %g %%"\
%(T,partition_function(0,T)/(partition_function(0,T)+\
3*partition_function(1,T))*100))

elif rotor =="2D":
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print("The 2D Ortho concentration at temperature %g K is %g %%"\
%(T,3*partition_function(1,T)/(partition_function(0,T)+\
3*partition_function(1,T))*100))

print("The 2D Para concentration at temperature %g K is %g %%"\
%(T,partition_function(0,T)/(partition_function(0,T)+\
3*partition_function(1,T))*100))

def Para_Cv(temp) :
if rotor=="3D":

beta = 1. / Kb / temp # 1/meV
E2avg = np.zeros(2*NK)
Eavg = np.zeros(2*NK)
PK=np.zeros(2*NK)
for k in range(2*NK):

J=2*k
E2avg[k] = ((B*J*(J+1.))**2)*(2.*J+1.) * np.exp(-B * J *

(J+1.) * beta)
Eavg[k] = B*J*(J+1.)*(2.*J+1.) * np.exp(-B * J * (J+1.) *

beta)
PK[k] = (2.*J+1.) * np.exp(-B * J * (J+1.) * beta)

E2AVG = E2avg.sum()
EAVG = Eavg.sum()

E2AVG /= PK.sum()
EAVG /= PK.sum()
EAVG2= EAVG**2
return conversion*(E2AVG-EAVG2)/(Kb*temp**2)

elif rotor=="2D":
beta = 1. / Kb / temp # 1/meV
E2avg2D = np.zeros(2*(NK**2)+NK)
Eavg2D = np.zeros(2*(NK**2)+NK)
PK2D = np.zeros(2*(NK**2)+NK)
k=0
mk=0
i=0
for k in range(2*NK):

for mk in range(0,k+1):
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EV= eigenvalues2D(mk,k)

PK2D[i] = np.exp(-B * EV * beta)
if mk > 0 : PK2D[i] *= 2.
PK2D[i] *= np.abs( (-1)**k + (-1)**para)/2.

E2avg2D[i] =((EV*B)**2) * np.exp(-B * EV * beta)
if mk > 0 : E2avg2D[i] *= 2.
E2avg2D[i] *= np.abs( (-1)**k + (-1)**para)/2.

Eavg2D[i] = EV*B * np.exp(-B * EV * beta)
if mk > 0 : Eavg2D[i] *= 2.
Eavg2D[i] *= np.abs( (-1)**k + (-1)**para)/2.

i=i+1

E2AVG2D = E2avg2D.sum()
EAVG2D = Eavg2D.sum()
E2AVG2D /= PK2D.sum()
EAVG2D /= PK2D.sum()
EAVG22D= EAVG2D**2
PK2D /=PK2D.sum()
return conversion*(E2AVG2D-EAVG22D)/(Kb*temp**2)

def Ortho_Cv(temp) :
if rotor=="3D":

beta = 1. / Kb / temp # 1/meV
E2avg = np.zeros(2*NK)
Eavg = np.zeros(2*NK)
PK=np.zeros(2*NK)
for k in range(2*NK):

J=2*k+1
E2avg[k] = ((B*J*(J+1.))**2)*(2.*J+1.) * np.exp(-B * J *

(J+1.) * beta)
Eavg[k] = B*J*(J+1.)*(2.*J+1.) * np.exp(-B * J * (J+1.) *

beta)
PK[k] = (2.*J+1.) * np.exp(-B * J * (J+1.) * beta)
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E2AVG = E2avg.sum()
EAVG = Eavg.sum()

E2AVG /= PK.sum()
EAVG /= PK.sum()
EAVG2= EAVG**2
return conversion*(E2AVG-EAVG2)/(Kb*temp**2)

elif rotor=="2D":
beta = 1. / Kb / temp # 1/meV
E2avg2D = np.zeros(2*(NK**2)+NK)
Eavg2D = np.zeros(2*(NK**2)+NK)
PK2D = np.zeros(2*(NK**2)+NK)
k=0
mk=0
i=0
for k in range(2*NK):

for mk in range(0,k+1):
EV= eigenvalues2D(mk,k)

PK2D[i] = np.exp(-B * EV * beta)
if mk > 0 : PK2D[i] *= 2.
PK2D[i] *= np.abs( (-1)**k + (-1)**ortho)/2.

E2avg2D[i] =((EV*B)**2) * np.exp(-B * EV * beta)
if mk > 0 : E2avg2D[i] *= 2.
E2avg2D[i] *= np.abs( (-1)**k + (-1)**ortho)/2.

Eavg2D[i] = EV*B * np.exp(-B * EV * beta)
if mk > 0 : Eavg2D[i] *= 2.
Eavg2D[i] *= np.abs( (-1)**k + (-1)**ortho)/2.

i=i+1
E2AVG2D = E2avg2D.sum()
EAVG2D = Eavg2D.sum()
E2AVG2D /= PK2D.sum()
EAVG2D /= PK2D.sum()
EAVG22D= EAVG2D**2
PK2D /=PK2D.sum()
return conversion*(E2AVG2D-EAVG22D)/(Kb*temp**2)
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def Three_to_one_Cv(temp):
EQ=(3./4.)*Ortho_Cv(temp)+(1./4.)*Para_Cv(temp)
return EQ

def Equilibrium_Cv_3D(temp):
beta = 1. / Kb / temp # 1/meV
E2avg = np.zeros(2*NK)
Eavg = np.zeros(2*NK)
PK=np.zeros(2*NK)
for J in range(2*NK):

E2avg[J] = ((B*J*(J+1.))**2)*(2.*J+1.) * np.exp(-B * J * (J+1.) *
beta)

Eavg[J] = B*J*(J+1.)*(2.*J+1.) * np.exp(-B * J * (J+1.) * beta)
PK[J] = (2.*J+1.) * np.exp(-B * J * (J+1.) * beta)
if J%2!=0:

E2avg[J] *=3
Eavg[J] *= 3
PK[J] *=3

E2AVG = E2avg.sum()
EAVG = Eavg.sum()
E2AVG /= PK.sum()
EAVG /= PK.sum()
EAVG2= EAVG**2
return conversion*(E2AVG-EAVG2)/(Kb*(temp**2))

T_values = np.linspace(0.0001, Tmax, 100)
O3_values =[]
P3_values=[]
T3_values=[]
E3_values=[]

for T in T_values:
O3_values.append(Ortho_Cv(T))
P3_values.append(Para_Cv(T))
T3_values.append(Three_to_one_Cv(T))
E3_values.append(Equilibrium_Cv_3D(T))
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if rotor == "3D":

with open("Para_Cv_3D.txt", "w") as f:
for t, P_val in zip(T_values, P3_values):

f.write(f"{t}\t{P_val}\n")

with open("Ortho_Cv_3D.txt", "w") as f:
for t, P_val in zip(T_values, O3_values):

f.write(f"{t}\t{P_val}\n")

with open("Three_to_one_Cv_3D.txt", "w") as f:
for t, P_val in zip(T_values, T3_values):

f.write(f"{t}\t{P_val}\n")

with open("Equilibrium_Cv_3D.txt", "w") as f:
for t, P_val in zip(T_values, E3_values):

f.write(f"{t}\t{P_val}\n")
elif rotor == "2D":

with open("Para_Cv_2D.txt", "w") as f:
for t, P_val in zip(T_values, P3_values):

f.write(f"{t}\t{P_val}\n")

with open("Ortho_Cv_2D.txt", "w") as f:
for t, P_val in zip(T_values, O3_values):

f.write(f"{t}\t{P_val}\n")
with open("Three_to_one_Cv_2D.txt", "w") as f:

for t, P_val in zip(T_values, T3_values):
f.write(f"{t}\t{P_val}\n")

if rotor =="3D":
plt.plot(T_values, O3_values)
plt.plot(T_values, P3_values)
plt.plot(T_values, T3_values)
plt.plot(T_values, E3_values)
plt.xlabel(’T’)
plt.ylabel(’Rotational Cv/R’)
plt.show()

elif rotor== "2D":
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plt.plot(T_values, O3_values)
plt.plot(T_values, P3_values)
plt.plot(T_values, T3_values)
plt.xlabel(’T’)
plt.ylabel(’Rotational Cv/R’)
plt.show()
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Appendix B

Background noise corrections

B.1 Normalization correction

open("/home/s1123564/Desktop/Empty_CCR_10K/CCR_5s_PH40")

imageCalculator("Subtract create stack", "CCR_5s_PH40","AVG_Darks_5s");
selectWindow("Result of CCR_5s_PH40");

Table.open("/home/s1123564/Desktop/Empty_CCR_10K/Timestamp_vs_Beamcount_
IMAT00018309_Empty_CCR_10KCCR_5s_PH40_log.txt");

m=0;
for (i = 1; i <= nSlices; i++) {

setSlice(i);
counts=parseFloat(Table.get("counts", i-1));
m=m+counts;

}
media=m/nSlices;
for (i = 1; i <= nSlices; i++) { //loop per normalizzare

setSlice(i);
counts=parseFloat(Table.get("counts", i-1));
val=counts/media; //?????????
run("Divide...", "value="+val+" slice");

}
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run("Grouped Z Project...", "projection=[Average Intensity]
group="+nSlices);

selectWindow("CCR_5s_PH40");
close();

B.2 Standard deviation correction

open("/home/s1123564/Desktop/Empty_CCR_10K/CCR_5s_PH40")

imageCalculator("Subtract create stack", "CCR_5s_PH40","AVG_Darks_5s");
selectWindow("Result of CCR_5s_PH40");

Table.open("/home/s1123564/Desktop/Empty_CCR_10K
/Timestamp_vs_Beamcount_IMAT00018309_Empty_CCR_10KCCR_5s_PH40_log.txt");

m=0;
for (i = 1; i <= nSlices; i++) {

setSlice(i);
counts=parseFloat(Table.get("counts", i-1));
m=m+counts;

}
media=m/nSlices;
SD=0

for (i = 1; i <= nSlices; i++) {
setSlice(i);
counts=parseFloat(Table.get("counts", i-1));
SD=SD+Math.sqr(counts-media);

}
StanDev=sqrt(SD/nSlices);

for (i = 1; i <= nSlices; i++) { //loop per normalizzare
//setSlice(i);
counts=parseFloat(Table.get("counts", i-1));
if (counts>media+StanDev) {
run("Slice Remover", "first="+i+" last="+i+" increment=1");

}
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if (counts<media-StanDev) {
run("Slice Remover", "first="+i+" last="+i+" increment=1");

}
}

run("Grouped Z Project...", "projection=[Average Intensity]
group="+nSlices);

selectWindow("CCR_5s_PH40");
close();

B.3 Total background corrections

/////////////////////////////////////////////////////////////////////
////////////////////////////// DARKS //////////////////////////////
/////////////////////////////////////////////////////////////////////

//////// open stack ////////
open("/home/s1123564/Desktop/MOF_Darks/Darks_5s") //??no conteggi da norm

/////////////////////////////////
run("Median 3D...", "x=2 y=2 z=2");
//run("Gaussian Blur...", "sigma=4 stack");
//run("Remove Outliers", "block_radius_x=40 block_radius_y=40

standard_deviations=3 stack");

run("Grouped Z Project...", "projection=[Average Intensity]
group="+nSlices);

selectWindow("Darks_5s");
close();
/////////////////////////////////////////////////////////////////////
//////////////////////////// EMPTY CCR /////////////////////////
/////////////////////////////////////////////////////////////////////

//////// open stack ////////
open("/home/s1123564/Desktop/Empty_CCR_10K/CCR_5s_PH40")

/////////////////////////////
imageCalculator("Subtract create stack", "CCR_5s_PH40","AVG_Darks_5s");
selectWindow("Result of CCR_5s_PH40");

//////// open .txt table ////////
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Table.open("/home/s1123564/Desktop/Empty_CCR_10K/Timestamp_vs_Beamcount_
IMAT00018309_Empty_CCR_10KCCR_5s_PH40_log.txt");

///////////////////////////////////
m=0;
for (i = 1; i <= nSlices; i++) {

setSlice(i);
counts=parseFloat(Table.get("counts", i-1));
m=m+counts;

}
media=m/nSlices;
SD=0

for (i = 1; i <= nSlices; i++) {
setSlice(i);
counts=parseFloat(Table.get("counts", i-1));
SD=SD+Math.sqr(counts-media);

}
StanDev=sqrt(SD/nSlices);

for (i = 1; i <= nSlices; i++) { //loop per normalizzare
//setSlice(i);
counts=parseFloat(Table.get("counts", i-1));
if (counts>media+StanDev) {
run("Slice Remover", "first="+i+" last="+i+" increment=1");

}
if (counts<media-StanDev) {
run("Slice Remover", "first="+i+" last="+i+" increment=1");

}
}

selectWindow("Result of CCR_5s_PH40");
run("32-bit");

for (i = 1; i <= nSlices; i++) {
setSlice(i);
makeRectangle(1548, 384, 188, 1300);
run("Measure");
MediaPixel=parseFloat(Table.get("Mean", i-1));
makeRectangle(0, 0, 2048, 2048);
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run("Divide...", "value="+MediaPixel+" slice");
}

run("Grouped Z Project...", "projection=[Average Intensity]
group="+nSlices);

selectWindow("CCR_5s_PH40");
close();
//////////////////////////////////////////////////////////////////////
///////////////////// MOF_17K Corrected /////////////////////
//////////////////////////////////////////////////////////////////////

open("/home/s1123564/Desktop/MOF_17K/H2liq_5s_PH40")
imageCalculator("Subtract create stack",
"H2liq_5s_PH40","AVG_Darks_5s");

selectWindow("Result of H2liq_5s_PH40");
run("32-bit");
selectWindow("AVG_Result of CCR_5s_PH40");
run("32-bit");
imageCalculator("Divide create stack", "Result of

H2liq_5s_PH40","AVG_Result of CCR_5s_PH40");

selectWindow("Result of Result of H2liq_5s_PH40");
run("32-bit");

for (i = 1; i <= nSlices; i++) {
setSlice(i);
makeRectangle(1548, 384, 188, 1300);
run("Measure");
MediaPixel=parseFloat(Table.get("Mean", i-1));
makeRectangle(0, 0, 2048, 2048);
run("Divide...", "value="+MediaPixel+" slice");

}
/////////////////////////////////////////////////////////////////////
////////////////////////////// plot ///////////////////////////////
/////////////////////////////////////////////////////////////////////
selectWindow("Result of Result of H2liq_5s_PH40");
makeRectangle(824, 924, 408, 260);
run("Plot Z-axis Profile");
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Appendix C

Sampling characteristic conversion
time in a grid

///makeRectangle(800, 800,400, 400); ///////// griglia 8x8
///makeRectangle(775, 800,500, 500); ///////// griglia 10x10
//5s
open("/home/s1123564/Desktop/MOF_17K/Result of Result of

H2liq_5s_PH40_17K.tif");
//15s
open("/home/s1123564/Desktop/MOF_17K/Result of Result of

H2liq_15s_PH40_17K.tif");
//30s
open("/home/s1123564/Desktop/MOF_17K/Result of Result of

H2liq_30s_PH40_17K.tif");
Table.open("/home/s1123564/Desktop/MOF_17K/Timestamp_tot_17K.txt");
timestamp=Table.getColumn("timestamp");
//normalizzare per il plateaux (?)
elements5s=150; //numero elementi nella prima stack
elements15s=100; //numero elementi seconda stack
err=0.05; //errore del 5%
xgriglia=8; //nxm elementi = griglia number
ygriglia=8;
celldim=50; //larghezza elemento della griglia 50x50
xpixel=800; //fino a 1200

for (X = 1; X < xgriglia+1; X++) { //contatore che corre sulla griglia
lungo X
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ypixel=800; //fino a 1200
for (Y = 1; Y < ygriglia+1; Y++) {//contatore che corre sulla griglia

lungo Y
str = "";
selectWindow("Result of Result of H2liq_5s_PH40_17K.tif");
makeRectangle(xpixel, ypixel, 50, 50);
run("Plot Z-axis Profile");
Plot.getValues(x5, y5);

for ( i5 = 0; i5 < x5.length; i5++ ) {
lnT=-log(parseFloat(y5[i5]));
str += "" + timestamp[i5] + "\t" + lnT + "\t" + err + "\n"; }

selectWindow("Result of Result of H2liq_15s_PH40_17K.tif");
makeRectangle(xpixel, ypixel, 50, 50);
run("Plot Z-axis Profile");
Plot.getValues(x15, y15);
for ( i15 = 0; i15 < x15.length; i15++ ) {

lnT=-log(parseFloat(y15[i15]));
str += "" + timestamp[i15+elements5s] + "\t" + lnT + "\t" +

err + "\n"; }

selectWindow("Result of Result of H2liq_30s_PH40_17K.tif");
makeRectangle(xpixel, ypixel, 50, 50);
run("Plot Z-axis Profile");
Plot.getValues(x30, y30);

for ( i30 = 0; i30 < x30.length; i30++ ) {
lnT=-log(parseFloat(y30[i30]));
str += "" + timestamp[i30+elements5s+elements15s] + "\t" +

lnT + "\t" + err + "\n"; }

File.saveString( str, "/home/s1123564/Desktop/MOF_17K
/griglia_lnT_17K/lnT_tot_17K_X"+X+"_Y"+Y+".txt" );

ypixel=ypixel+celldim;
}
xpixel=xpixel+celldim;

}
close("*");
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Appendix D

Mantid analysis of the grid

# import mantid algorithms, numpy and matplotlib
from mantid.simpleapi import *
import matplotlib.pyplot as plt
import numpy as np

Tau=[]
A=[]
B=[]
x0=2000 # legato al valore iniziale!!!!
gxg=10 #elementi della griglia, es griglia di dimensioni 8x8
#file griglia
g= open("/Users/margherita/Desktop/Tesi magistrale//Dati

H2/MOF_17K/griglia_10x10_lnT_17K/griglia_10x10_tau_17K.txt","w+")

GridErr= open("/Users/margherita/Desktop/Tesi magistrale/Dati \
H2/MOF_17K/griglia_10x10_lnT_17K/errori_griglia_10x10_tau_17K.txt","w+")

GridErrpgf= open("/Users/margherita/Desktop/Tesi magistrale/Dati\
H2/MOF_17K/griglia_10x10_lnT_17K/pgfplot_errori_griglia_10x10_tau_17K.txt","w+")

pgf=open("/Users/margherita/Desktop/Tesi magistrale/Dati \
H2/MOF_17K/griglia_10x10_lnT_17K/pgfplot_griglia_10x10_tau_17K.txt","w+")

mpi=open("/Users/margherita/Desktop/Tesi magistrale/Dati \
H2/MOF_17K/griglia_10x10_lnT_17K/media_plateaux_tau_17K.txt","w+")
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#media punti iniziali
n=20 #numero di punti del plateaux su cui faccio la media
y=1
for y in range(1,gxg+1):

x=1
for x in range(1,gxg+1):

Load(Filename=’C:/Users/margherita/Desktop/Tesi magistrale/Dati
H2/MOF_17K/griglia_10x10_lnT_17K\

/lnT_tot_17K_X’+str(x)+’_Y’+str(y)+’.txt’, \
OutputWorkspace=’lnT_tot_17K_X’+str(x)+’_Y’+str(y))

Fit(Function=’name=UserFunction,Formula=A*exp(-(x-x0)/tau)+B,A=0.108322,
x0=’+str(x0)+’,tau=2929.79,B=0.00920422,ties=(x0=’+str(x0)+’)’,

InputWorkspace=’lnT_tot_17K_X’+str(x)+’_Y’+str(y),
Output=’lnT_tot_17K_X’+str(x)+’_Y’+str(y),
OutputCompositeMembers=True, StartX=x0,
EndX=21301.955000000002, Normalise=True)

with open(’C:/Users/margherita/Desktop/Tesi \
magistrale/Dati H2/MOF_17K/griglia_10x10_lnT_17K\
/lnT_tot_17K_X’+str(x)+’_Y’+str(y)+’.txt’, ’r’) as f:

values=[]
for i, line in enumerate(f):

if i >= n:
break

values.append(float(line.split()[1]))
m=0
for M in range(0,n):

m=m+values[M]
Mpi=m/n
mpi.write("%g \n" %(Mpi))
ws=mtd[’lnT_tot_17K_X’+str(x)+’_Y’+str(y)+’_Parameters’]
a=ws.cell(0,1)
tau=ws.cell(2,1)
errtau=ws.cell(2,2)
b=ws.cell(3,1)
g.write("%g \t" %(tau))
GridErr.write("%g \t" %(errtau))
pgf.write("%g \t %g \t %g \n" %(x, y, tau))
GridErrpgf.write("%g \t %g \t %g \n" %(x, y, errtau))
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Tau.append(tau)
A.append(a)
B.append(b)
x=x+1

g.write("\n")
GridErr.write("\n")
pgf.write("\n")
mpi.write("\n")
GridErrpgf.write("\n")
y=y+1

GridErrpgf.close()
GridErr.close()
pgf.close()
g.close()
mpi.close()
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Appendix E

Average Functional Group
Approximation for the neutron
thermal cross section of organic
polymers

In the framework of neutron thermal scattering cross sections of hydrogen-rich
materials, I personally had the chance to employ the Average functional group
approximation (AFGA) to calculate the scattering cross section of thermoplastic
polymers, contributing to the publication of [60].

The AFGA approach is based on the fact that hydrogen greatly contributes
to the thermal scattering cross section of organic materials. In fact, as mentioned
in chapter 3, hydrogen contribution to the incoherent cross section of a polymer
is particularly significant because its mass is close to that of neutrons, therefore
exchanging a higher amount of energy compared to any other atom. Moreover an
incoherent approximation is particularly suitable to describe hydrogen rich ma-
terials (such as polymers), because of the great difference between coherent and
incoherent hydrogen cross sections (see table 3.1). For these reasons it is possible to
rationalize a polymer as composed of hydrogen atoms, that belong to specific func-
tional groups. The average functional group approximation (AFGA) [61] consists
of approximating the total incoherent scattering cross section of a polymer using
the contribution of each functional group that composes the polymer. The purpose
of this approximation is to provide a simplified and phenomenological method to
estimate the thermal neutron cross section of polymers and organic molecules, that
could render unnecessary more complex atomistic simulations. It is also important
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Table E.1: Rationalisation of organic polymers based on their hydrogen-containing func-
tional groups. The density and molecular mass per formula unit for each material are
also reported.

Material Formula CH3 CH2 CHali Other Mass (a.m.u.) Density (g/cm3)
Polylactic acid (C3H4O2)n 1 – 1 – 72.06 1.43
Polycarbonate (C16H14O4)n 2 – – 8CHaro 272.29 1.20
Polypropylene (C3H6)n 1 1 1 – 42.08 0.90
Acrylonitrile (C3H3N)n – 1 1 – 53.06 0.81
Butadiene (C4H6)n – 2 2 – 54.09 0.61
Styrene (C8H8)n – 1 1 5CHaro 104.15 0.91
PAPP (C4H10N2H4O7P2)n – 4 – 2OH, 2NH2 264.11 1.50

to notice that experimental data of thermal neutron cross sections are not avail-
able for many materials, thus rendering this approximation particularly useful in
the analysis of complex compounds. AFGA can therefore be implemented when
designing nuclear reactor components, neutron moderators or shielding materials,
in order to compare different recipes and predict how the neutrons interact with
them. Moreover it could be employed for the transport codes used in neutron
capture therapy to simulate neutron interaction with different organs and tissues.

AFGA can also be employed to simulate the thermal neutron cross section of
materials used for 3D printing, in order to easily investigate 3D-printed instrument
components. It is possible to identify a great number of different materials for
3D printing, since monomers and polymer chains can be combined with different
stoichiometries. This field is therefore a good example of how AFGA can provide
a game-changing approach. AFGA calculations of the scattering cross sections run
within the NCrystal environment [62], and are based on the formalism reported in
[61].

Table E.1 reports the rationalization of multiple polymers based on their func-
tional groups. NCrystal already features some of these polymers, therefore we
mainly focus on three polymers that are the main constituents for ABS: acryloni-
trile, butadiene, and styrene. ABS is a common thermoplastic polymer for which
is possible to identify multiple possible recipes by varying the proportions between
its three main constituents. Specifically we considered one of its most common
forms, reported in [63]: 7.1 wt% acrylonitrile, 12.9 wt% butadiene, and 80 wt%
styrene.

As an example we show the code used to obtain the cross section of a specific
polymer (acrylonitrile) from NCrystal using the average functional group approx-
imation.

# create material in NCrystal
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# using the AFGA model
!ncrystal_hfg2ncmat --formula C3H3N

--spec 1xCHali+1xCH2
--density 0.81
--title acrylonitrile
-o acrylonitrile.ncmat

T = ’300K’ # Temperature in K
fn = ’acrylonitrile.ncmat;temp=’+T
pc = NC.createScatter(fn)
# calculate absorption cross section
absorption = NC.createAbsorption(fn)
xs_abs = absorption.crossSectionNonOriented(E)
# calculate scattering cross section
xs = pc.crossSectionNonOriented(E)

With the AFGA method we are able to calculate the total scattering cross
section per formula unit, as well as the linear scattering attenuation factor per mass
unit, an therefore transmission implementing the Beer-Lambert law. It should be
noted that within the AFGA approach it is possible to calculate the attenuation
coefficient as a linear combination of the coefficients of the constituents polymers.

Figure E.1: The total scattering cross section per monomer unit (top) and mass attenu-
ation coefficient (bottom) for the acrylonitrile (red squares), butadine (green circles) and
styrene (blue diamonds) polymers. The reported spectra take into account scattering
contributions only (absorption cross sections not included). Filled and empty markers
refer to 10 K and 300 K, respectively.
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Moreover we extended the calculations to the specific case presented in [63],
where ABS was mixed with the flame-retardant compound known as piperazine
pyrophosphate (PAPP).

Figure E.2 shows a comparison between the mass attenuation coefficients of
ABS, PAPP and a co-polymer made of 25 wt% PAPP and 75 wt% ABS, as well
as the main constituent polymer of ABS.

Figure E.2: The mass attenuation coefficient for the polymer ABS based on the recipe
from Ref.[?], compared with the one for polystyrene (blue triangles). The mass attenua-
tion coefficient for PAPP and a mixture of ABS and PAPP are also reported as dashed
and dotted-dashed lines, respectively.

The publication of these results in [60] provided a worked example that shows
how to implement the average functional group approximation, while also proving
its potential in the field of polymer compounds characterization.

110



Bibliography

[1] Sebastian Eisenhut, Marcel Klaus, Johannes Baggemann, Ulrich Rücker,
Y. Beßler, Alexander Schwab, Christoph Haberstroh, Tobias Cronert,
Thomas Gutberlet, Thomas Brückel, and Carsten Lange. Cryostat for the
provision of liquid hydrogen with a variable ortho-para ratio for a
low-dimensional cold neutron moderator. EPJ Web of Conferences,
231:04001, 01 2020.

[2] Isaac F. Silvera and Mourits Nielsen. Inelastic neutron scattering and
separation coefficient of absorbed hydrogen: Molecular alignment and
energy levels. Phys. Rev. Lett., 37:1275–1278, Nov 1976.

[3] Isaac F. Silvera. The solid molecular hydrogens in the condensed phase:
Fundamentals and static properties. Rev. Mod. Phys., 52:393–452, Apr 1980.

[4] Isaac F Silvera. The solid molecular hydrogens in the condensed phase:
Fundamentals and static properties. Reviews of Modern Physics, 52(2):393,
1980.

[5] L. Abouaf-Marguin and A.-M. Vasserot. Nuclear spin conversion of O2
doped solid normal H2 at 4.2k: An empirical law to determine the ortho-H2
concentration by infrared absorption spectroscopy. Chemical Physics
Letters, 460(1):82–85, 2008.

[6] Liese-Marie Sutherland, J. Knudson, Michal Mocko, and Richard Renneke.
Practical in-situ determination of ortho-para hydrogen ratios via fiber-optic
based raman spectroscopy. Nuclear Instruments and Methods in Physics
Research Section A Accelerators Spectrometers Detectors and Associated
Equipment, 810:182–185, 02 2016.

111



[7] A Stewart and G Squires. Analysis of ortho- and para-hydrogen mixtures by
the thermal conductivity method. Journal of Scientific Instruments, 32:26,
12 2002.

[8] Mitsuru Matsumoto and James H. Espenson. Kinetics of the interconversion
of parahydrogen and orthohydrogen catalyzed by paramagnetic complex
ions. Journal of the American Chemical Society, 127 32:11447–53, 2005.

[9] W U Notardonato, A M Swanger, J E Fesmire, K M Jumper, W L Johnson,
and T M Tomsik. Zero boil-off methods for large-scale liquid hydrogen tanks
using integrated refrigeration and storage. IOP Conference Series: Materials
Science and Engineering, 278(1):012012, dec 2017.

[10] C. A. Swenson. The Catalysis of the Ortho-Para Conversion in Liquid
Hydrogen. jcp, 18(4):520–522, April 1950.

[11] Richard Folkson. 6 - hydrogen as an energy vector for transportation
vehicles. In Richard Folkson and Steve Sapsford, editors, Alternative Fuels
and Advanced Vehicle Technologies for Improved Environmental
Performance (Second Edition), Woodhead Publishing Series in Energy,
pages 151–171. Woodhead Publishing, 2022.

[12] Myunghyun Suh, Hye Jeong Park, Prasad Thazhe Kootteri, and Dae Woon
Lim. Hydrogen storage in metal-organic frameworks. Chemical reviews,
112:782–835, 12 2011.

[13] Nibedita Behera, Jingui Duan, Wanqin Jin, and Susumu Kitagawa. The
chemistry and applications of flexible porous coordination polymers.
EnergyChem, 3(6):100067, 2021.

[14] Nathaniel Rosi, Juergen Eckert, Mohamed Eddaoudi, David Vodak, Jaheon
Kim, Michael O’Keeffe, and Omar Yaghi. Hydrogen storage in microporous
metal-organic frameworks. Science (New York, N.Y.), 300:1127–9, 06 2003.

[15] Gérard Férey, Michel Latroche, Christian Serre, Franck Millange, Thierry
Loiseau, and title ="Hydrogen adsorption in the nanoporous
metal-benzenedicarboxylate M(OH)(O2C–C6H4–CO2) (M = Al3+, Cr3+),
MIL-53 Percheron-Guégan, Annick". Chem. Commun., pages 2976–2977,
2003.

112



[16] Jesse Rowsell, Juergen Eckert, and Omar Yaghi. Characterization of H2
binding sites in prototypical metal-organic frameworks by inelastic neutron
scattering. Journal of the American Chemical Society, 127:14904–10, 11
2005.

[17] F.M. Mulder, T.J. Dingemans, H.G. Schimmel, A.J. Ramirez-Cuesta, and
G.J. Kearley. Hydrogen adsorption strength and sites in the metal organic
framework MOF-5: Comparing experiment and model calculations.
Chemical Physics, 351(1):72–76, 2008.

[18] Nour Nijem, Jean-Francois Veyan, Lingzhu Kong, Haohan Wu, Yonggang
Zhao, Jing Li, David Langreth, and Yves Chabal. Molecular hydrogen
"pairing" interaction in a metal organic framework system with unsaturated
metal centers (MOF-74). Journal of the American Chemical Society,
132:14834–48, 10 2010.

[19] Craig M Brown, Yun Liu, Taner Yildirim, Vanessa K Peterson, and
Cameron J Kepert. Hydrogen adsorption in HKUST-1: a combined inelastic
neutron scattering and first-principles study. Nanotechnology, 20(20):204025,
apr 2009.

[20] Tony Pham, Katherine A. Forrest, Peter A. Georgiev, Wiebke Lohstroh,
Dong-Xu Xue, Adam Hogan, Mohamed Eddaoudi, Brian Space, and Juergen
Eckert. A high rotational barrier for physisorbed hydrogen in a
fcu-metal–organic framework. Chem. Commun., 50:14109–14112, 2014.

[21] Kenji Sumida, Jae-Hyuk Her, Mircea Dinca, Leslie Murray, Jennifer Schloss,
Christopher Pierce, Benjamin Thompson, Stephen Fitzgerald, Craig Brown,
and Jeffrey Long. Neutron scattering and spectroscopic studies of hydrogen
adsorption in Cr3(BTC)2—A metal-organic framework with exposed Cr2+
sites. The Journal of Physical Chemistry C, 115, 03 2011.

[22] Michael Hirscher and Barbara Panella. Hydrogen storage in metal–organic
frameworks. Scripta Materialia, 56(10):809–812, 2007. Viewpoint set no. 42
“Nanoscale materials for hydrogen storage”.

[23] Jesse L. C. Rowsell and Omar M. Yaghi. Effects of functionalization,
catenation, and variation of the metal oxide and organic linking units on the
low-pressure hydrogen adsorption properties of metal-organic frameworks.
Journal of the American Chemical Society, 128 4:1304–15, 2006.

113



[24] Houston Frost, Tina Düren, and Randall Snurr. Effects of surface area, free
volume, and heat of adsorption on hydrogen uptake in metal-organic
frameworks. The journal of physical chemistry. B, 110:9565–70, 06 2006.

[25] Farid Nouar, Juergen Eckert, Jarrod Eubank, Paul Forster, and Mohamed
Eddaoudi. Zeolite-like metal-organic frameworks (ZMOFs) as hydrogen
storage platform: Lithium and magnesium ion-exchange and
h-2-(rho-ZMOF) interaction studies. Journal of the American Chemical
Society, 131:2864–70, 03 2009.

[26] Jesse Rowsell and Omar Yaghi. Strategies for hydrogen storage in
metal—organic frameworks. Angewandte Chemie (International ed. in
English), 44:4670–9, 11 2005.

[27] Wei Zhou, Hui Wu, and Taner Yildirim. Enhanced H2 adsorption in
metal-organic frameworks with open metal sites: Binding mechanism and
strong dependence on metal ions. 03 2009.

[28] Seyed Mohamad Moosavi, Aditya Nandy, Kevin Jablonka, Daniele Ongari,
Jon Paul Janet, Peter Boyd, Yongjin Lee, Berend Smit, and Heather Kulik.
Understanding the diversity of the metal-organic framework ecosystem.
Nature Communications, 11, 08 2020.

[29] Kaido Sillar, Alexander Hofmann, and Joachim Sauer. Ab initio study of
hydrogen adsorption in MOF-5. Journal of the American Chemical Society,
131:4143–50, 04 2009.

[30] Matthew Kapelewski, Stephen Geier, Matthew Hudson, David Stück, Jarad
Mason, Jocienne Nelson, Dianne Xiao, Zeric Hulvey, Elizabeth Gilmour,
Stephen Fitzgerald, Martin Head-Gordon, Craig Brown, and Jeffrey Long.
M-2(m-dobdc) (m = mg, mn, fe, co, ni) metal-organic frameworks exhibiting
increased charge density and enhanced H2 binding at the open metal sites.
Journal of the American Chemical Society, 136, 08 2014.

[31] Craig M. Brown, Anibal Javier Ramirez-Cuesta, Jae-Hyuk Her, Paul S.
Wheatley, and Russell E. Morris. Structure and spectroscopy of hydrogen
adsorbed in a nickel metal–organic framework. Chemical Physics, 427:3–8,
2013. Advances and frontiers in chemical spectroscopy with neutrons.

114



[32] Kenji Sumida, Satoshi Horike, Steven Kaye, Zoey Herm, Wendy Queen,
Craig Brown, Fernande Grandjean, Gary Long, Anne Dailly, and Jeffrey
Long. Hydrogen storage and carbon dioxide capture in an iron-based
sodalite-type metal-organic framework (fe-btt) discovered via
high-throughput methods. (1), 2010-08-01 00:08:00 2010.

[33] Shanelle Suepaul, Katherine Forrest, Peter Georgiev, Paul Forster, Wiebke
Lohstroh, Veronika Grzimek, Samuel Dunning, Joseph Reynolds, Simon
Humphrey, Juergen Eckert, Brian Space, and Tony Pham. Investigating H2
adsorption in isostructural metal–organic frameworks m-cuk-1 (m = co and
mg) through experimental and theoretical studies. ACS Applied Materials
and Interfaces, 14, 02 2022.

[34] Tony Pham, Katherine Forrest, Adam Hogan, Brant Tudor, Keith
McLaughlin, Jon Belof, Juergen Eckert, and Brian Space. Understanding
hydrogen sorption in in-soc-MOF: A charged metal-organic framework with
open-metal sites, narrow channels, and counterions. Crystal Growth and
Design, 15:1460–1471, 01 2015.

[35] Vanessa Peterson, Yun Liu, Craig Brown, and Cameron Kepert. Neutron
powder diffraction study of D2 sorption in Cu3 (1,3,5-benzenetricarboxylate)
2. Journal of the American Chemical Society, 128:15578–9, 01 2007.

[36] Craig M. Brown, Yun Liu, Taner Yildirim, Vanessa K. Peterson, and
Cameron J. Kepert. Hydrogen adsorption in HKUST-1: a combined
inelastic neutron scattering and first-principles study. Nanotechnology,
20:204025, 2009.

[37] Daniil Polyukhov, Nikita Kudriavykh, Sergey Gromilov, Alexey Kiryutin,
Artem Poryvaev, and Matvey Fedin. Efficient MOF-catalyzed ortho–para
hydrogen conversion for practical liquefaction and energy storage. ACS
Energy Letters, 7:4336–4341, 11 2022.

[38] Giovanni Romanelli, Felix Fernandez-Alonso, Triestino Minniti, and
Matthew Krzystyniak. Visualisation of the catalysed nuclear-spin conversion
of molecular hydrogen using energy-selective neutron imaging. 04 2019.

[39] K. Svensson, L. Bengtsson, J. Bellman, M. Hassel, M. Persson, and
S. Andersson. Two-dimensional quantum rotation of adsorbed H2. Phys.
Rev. Lett., 83:124–127, Jul 1999.

115



[40] L. Bengtsson, K. Svensson, M. Hassel, J. Bellman, M. Persson, and
S. Andersson. H2 adsorbed in a two-dimensional quantum rotor state on a
stepped copper surface. Phys. Rev. B, 61:16921–16932, Jun 2000.

[41] D. Teillet-Billy and J.P. Gauyacq. Rotational excitation of physisorbed
molecules by resonant electron scattering. Surface Science, 502-503:358–363,
2002.

[42] Jesse Rowsell, Juergen Eckert, and Omar Yaghi. Characterization of H2
binding sites in prototypical metal-organic frameworks by inelastic neutron
scattering. Journal of the American Chemical Society, 127:14904–10, 11
2005.

[43] Fokko Mulder, Theo Dingemans, H. Schimmel, A. Ramirez-Cuesta, and
Gordon Kearley. Hydrogen adsorption strength and sites in the metal
organic framework MOF-5: Comparing experiment and model calculations.
Chemical Physics, 351, 07 2008.

[44] G. L. Squires. Introduction to the theory of thermal neutron scattering.
Cambridge University Press, 53, 2012.

[45] https://www.nist.gov/ncnr/chrns. Center for high resolution neutron
scattering.

[46] https://www.ornl.gov. Oak Ridge National Laboratory.

[47] https://www.ill.eu. ILL neutron for society.

[48] https://lansce.lanl.gov. Los Alamos Neutron Science Center LANSCE.

[49] https://www.isis.stfc.ac.uk. ISIS facility website.

[50] https://europeanspallationsource.se. European spallation source.

[51] J Mayers, J Tomkinson, T Abdul-Redah, W.G Stirling, C Andreani,
R Senesi, M Nardone, D Colognesi, and E Degiorgi. Vesuvio—the double
difference inverse geometry spectrometer at ISIS. Physica B: Condensed
Matter, 350(1, Supplement):E659–E662, 2004. Proceedings of the Third
European Conference on Neutron Scattering.

[52] James A. Young and Juan U. Koppel. Slow neutron scattering by molecular
hydrogen and deuterium. Phys. Rev., 135:A603–A611, Aug 1964.

116



[53] Giovanni Romanelli, Svemir Rudić, Matteo Zanetti, Carla Andreani, Felix
Fernandez-Alonso, Giuseppe Gorini, Maciej Krzystyniak, and Goran Škoro.
Measurement of the para-hydrogen concentration in the ISIS moderators
using neutron transmission and thermal conductivity. Nuclear Instruments
and Methods in Physics Research Section A: Accelerators, Spectrometers,
Detectors and Associated Equipment, 888:88–95, 2018.

[54] Caroline A. Schneider, Wayne S. Rasband, and Kevin W. Eliceiri. NIH
image to ImageJ: 25 years of image analysis. Nature methods, 9(7):671–675,
2012.

[55] Johannes Schindelin, Ignacio Arganda-Carreras, Erwin Frise, Verena Kaynig,
Mark Longair, Tobias Pietzsch, Stephan Preibisch, Curtis Rueden, Stephan
Saalfeld, Benjamin Schmid, Jean-Yves Tinevez, Daniel James White, Volker
Hartenstein, Kevin Eliceiri, Pavel Tomancak, and Albert Cardona. Fiji: an
open-source platform for biological-image analysis. Nature Methods, 9, 2012.

[56] O. Arnold, J.C. Bilheux, J.M. Borreguero, A. Buts, S.I. Campbell,
L. Chapon, M. Doucet, N. Draper, R. Ferraz Leal, M.A. Gigg, V.E. Lynch,
A. Markvardsen, D.J. Mikkelson, R.L. Mikkelson, R. Miller, K. Palmen,
P. Parker, G. Passos, T.G. Perring, P.F. Peterson, S. Ren, M.A. Reuter,
A.T. Savici, J.W. Taylor, R.J. Taylor, R. Tolchenov, W. Zhou, and
J. Zikovsky. Mantid—data analysis and visualization package for neutron
scattering and muon SR experiments. Nuclear Instruments and Methods in
Physics Research Section A: Accelerators, Spectrometers, Detectors and
Associated Equipment, 764:156–166, 2014.

[57] S. Koerner. Digital image processing in neutron radiography. Technische
Univ. Wien Bibliothek, 2000.

[58] René Hassanein, Eberhard Lehmann, and Peter Vontobel. Methods of
scattering corrections for quantitative neutron radiography. Nuclear
Instruments and Methods in Physics Research Section A: Accelerators,
Spectrometers, Detectors and Associated Equipment, 542(1):353–360, 2005.
Proceedings of the Fifth International Topical Meeting on Neutron
Radiography.

[59] Davide Micieli, Triestino Minniti, and Giuseppe Gorini. Neutompy toolbox,
a Python package for tomographic data processing and reconstruction.
SoftwareX, 9:260–264, 2019.

117



[60] Giovanni Romanelli, Margherita Simoni, Enrico Preziosi, Jose Damian,
Carla Andreani, and Roberto Senesi. Neutron thermal cross sections of
3D-printing organic polymers using the average functional group
approximation. EPJ Web of Conferences, 284, 05 2023.

[61] Giovanni Romanelli, Dalila Onorati, Pierfrancesco Ulpiani, Stephanie
Cancelli, Enrico Perelli-Cippo, José Ignacio Márquez Damián, Silvia Capelli,
Gabriele Croci, Andrea Muraro, Marco Tardocchi, Giuseppe Gorini, Carla
Andreani, and Roberto Senesi. Thermal neutron cross sections of amino
acids from average contributions of functional groups. Journal of Physics:
Condensed Matter, 33(28):285901, may 2021.

[62] X.-X. Cai and T. Kittelmann. Ncrystal: A library for thermal neutron
transport. Computer Physics Communications, 246:106851, 2020.

[63] Zha Yuan, Hui Wen, Yuan Liu, and Qi Wang. Synergy between piperazine
pyrophosphate and aluminum diethylphosphinate in flame retarded
acrylonitrile-butadiene-styrene copolymer. Polymer Degradation and
Stability, 190:109639, 2021.

118



Acknowledgments

Un sentito ringraziamento va al Dott. Giovanni Romanelli e al Prof. Roberto
Senesi, per la loro pazienza, per i consigli preziosi, ma soprattutto per avermi più
volte offerto la possibilità di mettermi alla prova, facendomi muovere i primi passi
nel mondo della ricerca.

Un ringraziamento speciale va agli amici di sempre, è anche il loro affetto
incondizionato che mi ha portato fin qui.

Ringrazio miei colleghi, in particolare Matteo e Virginia, che più di tutti hanno
alleggerito questi anni di studio.

Un pensiero speciale va alla mia famiglia, che in questi anni mi ha sempre
dimostrato il suo sostegno incondizionato: non posso che dedicare a tutti voi questo
traguardo.

119


