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A ROBUST ALGEBRAIC MULTILEVEL DOMAIN
DECOMPOSITION PRECONDITIONER FOR SPARSE SYMMETRIC

POSITIVE DEFINITE MATRICES∗

HUSSAM AL DAAS† AND PIERRE JOLIVET‡

Abstract. Domain decomposition (DD) methods are widely used as preconditioner techniques.
Their effectiveness relies on the choice of a locally constructed coarse space. Thus far, this
construction was mostly achieved using non-assembled matrices from discretized partial differential
equations (PDEs). Therefore, DD methods were mainly successful when solving systems stemming
from PDEs. In this paper, we present a fully algebraic multilevel DD method where the coarse space
can be constructed locally and efficiently without any information besides the coefficient matrix.
The condition number of the preconditioned matrix can be bounded by a user-prescribed number.
Numerical experiments illustrate the effectiveness of the preconditioner on a range of problems arising
from different applications.

Key words. Algebraic domain decomposition, multilevel preconditioner, overlapping Schwarz
method, sparse linear system.

1. Introduction. We are interested in solving the linear system of equations

Ax = b,

where A ∈ Rn×n is a sparse symmetric positive definite (SPD) matrix and b ∈ Rn is
the right-hand side. On the one hand, despite their accuracy, direct methods [14] that
are based on matrix factorizations become memory and computationally demanding
for large-scale problems. Furthermore, establishing a high level of concurrency in
their algorithm is challenging, which limits the effectiveness of their parallelization
with many processing units, e.g., thousands of MPI processes. On the other hand,
iterative methods, such as Krylov subspace methods, are attractive as they require
less memory resources and parallelizing them is easier. However, their convergence
depends on the coefficient matrix A. More precisely, the error at iteration k of the
conjugate gradient method [23] satisfies

‖xk − x?‖A ≤ 2‖x0 − x?‖A

(√
κ2(A)− 1√
κ2(A) + 1

)k
,

where x? is the exact solution and κ2(A) is the spectral condition number of A.
Therefore, iterative methods are usually combined with preconditioners that modify
the properties of the linear system such that the convergence rate of the method
is improved. A variety of preconditioning techniques have been proposed in the
literature, see the recent survey [39] and references therein. We focus in this work on
preconditioners for SPD matrices. In terms of construction type, these preconditioners
can be split into two categories. (1) Algebraic preconditioners: those do not require
information from the problem besides the linear system, and their construction relies
only on A and b [5, 24, 33, 37, 41]. (2) Analytic preconditioners: in order to
construct them, more information from the origin of the linear system, e.g., matrix
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2 H. AL DAAS AND P. JOLIVET

assembly procedure, is required [27, 28, 44]. Inferring how preconditioners modify
the spectrum of iteration matrices provides another way to classify them. Again, two
categories exist. (1) One-level preconditioners: those mostly rely on incomplete matrix
factorizations, matrix splitting methods, approximate sparse inverse methods, and
Schwarz methods [41]. One-level preconditioners usually bound from above the largest
eigenvalue of the preconditioned matrix. (2) Two-level and multilevel preconditioners:
those are usually a combination of a one-level method and a coarse space correction.
While the one-level part can bound from above the largest eigenvalue, the coarse space
is used to bound from below the smallest eigenvalue such that the condition number of
the preconditioned matrix is bounded [2, 3, 4, 13, 17, 18, 20, 21, 30, 31, 33, 52, 45, 48].

When it comes to overlapping DD, most one-level preconditioners and a few two-
level/multilevel preconditioners are algebraic, while most two-level preconditioners are
analytic. On the one hand, analytic two-level/multilevel preconditioners construct
the coarse space efficiently without requiring computations involving the global
matrix. On the other hand, existing algebraic two-level/multilevel preconditioners
still require global computations involving the matrix A that limit the setup
scalability [2, 18]. Furthermore, certain algebraic two-level preconditioners require
complicated operations that may not be easy to parallelize. Therefore, we focus
in this paper on two-level/multilevel preconditioners where the coarse space can be
constructed locally. Certain algebraic multigrid (AMG) methods are examples of these
preconditioners [37]. Note that several AMG methods require unassembled matrices or
the near-nullspace of the global matrix, which is known in some applications [11, 47].
One could argue that these methods are thus not purely algebraic. Furthermore,
their effectiveness has been proved only for certain classes of matrices. An algebraic
two-level preconditioner for the normal matrix equations was recently proposed in [4].

In [2], the authors presented an algebraic framework to construct robust coarse
spaces and characterized a class of local symmetric positive semi-definite (SPSD)
matrices that allows to construct such coarse spaces efficiently. Since then, there have
been several attempts to construct algebraic two-level preconditioners with a locally
computed coarse space that are theoretically effective on any sparse SPD matrix,
see, e.g., [18] and references therein. Starting off with the subdomain matrices of
A, the authors in [18] define an auxiliary matrix A+ such that A − A+ is low-rank
and a local SPSD splitting for A+ is easily obtained. A robust algebraic two-level
preconditioner for A is then derived by a low-rank update of the robust algebraic two-
level preconditioner of A+. Despite the fact that the preconditioner proposed in [18]
is fully algebraic, using it in practice may not be very attractive since the low-rank
update requires the solution of linear systems with A+ involving a large number of
right-hand sides that is nearly equal to the size of the coarse space of A+, which is
prohibitive for large number of subdomains. Therefore, we believe that the question
of finding efficient locally constructed coarse spaces is still open.

When information such as the near-nullspace or the subdomain non-assembled
matrices are available, analytic AMG or DD preconditioners are optimal. The
preconditioner presented in this paper should be used when a robust black-box solver
is needed.

The manuscript is organized as follows. We introduce the notation and review
the algebraic DD framework in Section 2. Section 3 presents our main contribution
in finding local SPSD splitting matrices associated with each subdomain fully
algebraically in an inexpensive way and starting from local data. These matrices
will be used to construct a robust two-level Schwarz preconditioner. Then, we briefly
discuss the straightforward extension of our approach to a multilevel preconditioner.
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Afterwards, we present in Section 4 numerical experiments on problems arising from
different engineering applications. Concluding remarks and future lines of research
are given in Section 5.

Notation. We end our introduction by defining notations that will be used in this
paper. Let 1 ≤ n ≤ m and let B ∈ Rm×n. Let S1 ⊂ J1,mK and S2 ⊂ J1, nK be two sets
of integers. B(S1, :) is the submatrix of B formed by the rows whose indices belong
to S1 and B(:, S2) is the submatrix of B formed by the columns whose indices belong
to S2. The matrix B(S1, S2) is formed by taking the rows whose indices belong to S1

and only retaining the columns whose indices belong to S2. The concatenation of
any two sets of integers S1 and S2 is represented by [S1, S2]. Note that the order of
the concatenation is important. The set of the first p positive integers is denoted by
J1, pK. The identity matrix of size n is denoted by In.

2. Domain decomposition. Throughout this section, we assume that C is a
general n × n sparse SPD matrix. Let the nodes V in the corresponding adjacency
graph G(C) be numbered from 1 to n. A graph partitioning algorithm can be used to
split V into N � n disjoint subsets ΩIi (1 ≤ i ≤ N) of size nIi. These sets are called
nonoverlapping subdomains.

2.1. Abstract setting for two-level overlapping Schwarz methods.
Defining first a one-level Schwarz preconditioner requires overlapping subdomains.
Let ΩΓi be the subset of size nΓi of nodes that are distance one in G(C) from the nodes
in ΩIi (1 ≤ i ≤ N). The overlapping subdomain Ωi is defined to be Ωi = [ΩIi,ΩΓi],
with size ni = nΓi + nIi. The complement of Ωi in J1, nK is denoted by ΩcΓi.

Associated with Ωi is a restriction (or projection) matrix Ri ∈ Rni×n given by
Ri = In(Ωi, :). Ri maps from the global domain to subdomain Ωi. Its transpose R>i
is a prolongation matrix that maps from subdomain Ωi to the global domain.

The theory in this paper requires a decomposition of the graph of C2. Hence, in
addition to the previous subsets, we define the following ones. We denote Ω∆i the
subset of size n∆i containing nodes that are not in ΩIi and distance one in G(C) from

the nodes in ΩΓi (1 ≤ i ≤ N). The extended overlapping subdomain Ω̃i is defined to

be Ω̃i = [ΩIi,ΩΓi,Ω∆i] and it is of size ñi. We denote the complement of Ω̃i in J1, nK by

Ωc∆i. Associated with Ω̃i is a restriction matrix R̃i ∈ Rñi×n given by R̃i = In(Ω̃i, :).

R̃i maps from the global domain to the extended overlapping subdomain Ω̃i. Its
transpose R̃>i is a prolongation matrix that maps from the extended overlapping

subdomain Ω̃i to the global domain.
The one-level additive Schwarz preconditioner [13] is defined to be

M−1
ASM =

N∑
i=1

R>i C
−1
ii Ri, Cii = RiCR

>
i .

Applying this preconditioner to a vector involves solving concurrent local problems
in the overlapping subdomains. Increasing N reduces the sizes ni of the overlapping
subdomains, leading to smaller local problems and faster computations. However,
in practice, the preconditioned system using M−1

ASM may not be well-conditioned,
inhibiting convergence of the iterative solver. In fact, the local nature of this
preconditioner can lead to a deterioration in its effectiveness as the number of
subdomains increases because of the lack of global information from the matrix C [13,
17]. To maintain robustness with respect to N , a coarse space is added to
the preconditioner (also known as second-level correction) that includes global
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information.
Let 0 < nC � n. If R0 ∈ RnC×n is of full row rank, the two-level additive Schwarz

preconditioner [13] is defined to be

(2.1) M−1
additive =

N∑
i=0

R>i C
−1
ii Ri = R>0 C

−1
00 R0 +M−1

ASM, C00 = R0CR
>
0 .

Observe that, since C and R0 are of full rank, C00 is also of full rank. For any
full rank R0, it is possible to cheaply obtain upper bounds on the largest eigenvalue
of the preconditioned matrix, independently of n and N [2]. However, bounding
the smallest eigenvalue is highly dependent on R0. Therefore, the choice of R0 is
key to obtaining a well-conditioned system and building efficient two-level Schwarz
preconditioners. Two-level Schwarz preconditioners have been used to solve a large
class of systems arising from a range of engineering applications (see, for example,
[20, 26, 32, 34, 43, 49] and references therein).

Following [2], we denote by Di ∈ Rni×ni (1 ≤ i ≤ N) any non-negative diagonal
matrices such that

N∑
i=1

R>i DiRi = In.

We refer to (Di)1≤i≤N as an algebraic partition of unity. In [2], Al Daas and Grigori

show how to select local subspaces Zi ∈ Rni×pi with pi � ni (1 ≤ i ≤ N) such that,
if R>0 is defined to be R>0 = [R>1 D1Z1, . . . , R

>
NDNZN ], the spectral condition number

of the preconditioned matrix M−1
additiveC is bounded from above independently of N

and n.

2.2. Algebraic local SPSD splitting of an SPD matrix. We now recall
the definition of an algebraic local SPSD splitting of an SPD matrix given in [2] and
generalized in [3].

An algebraic local SPSD splitting of the SPD matrix C with respect to subdomain
i is defined to be any SPSD matrix C̃i ∈ Rn×n that satisfies the following

0 ≤ u>C̃iu ≤ u>Cu, for all u ∈ Rn,

RcΓiC̃i = 0.

We denote the nonzero submatrix of C̃i by C̃ii so that

C̃i = R>i C̃iiRi.

Associated with the local SPSD splitting matrices, we define a multiplicity
constant km that satisfies the inequality

(2.2) 0 ≤
N∑
i=1

u>C̃iu ≤ kmu>Cu, for all u ∈ Rn.

Note that, for any set of SPSD splitting matrices, km ≤ N .
The main motivation for defining splitting matrices is to find local seminorms that

are bounded from above by the C-norm. These seminorms will be used to determine a
subspace that contains the eigenvectors of C associated with its smallest eigenvalues.
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We remind the reader of the result presented in [2] on the upper bound of
the condition number of the preconditioned matrix by using the two-level Schwarz
preconditioner with the coarse space constructed with local SPSD splitting matrices.

Theorem 2.1. [2, Theorem 4.5] Let Ãii be a local SPSD splitting matrix
associated with subdomain i, for i = 1, . . . , N .Let τ > 0, and let R0 be a matrix
whose columns span the subspace Z =

⊕N
i=1R

>
i DiZi, where Zi is defined as:

Zi = span{u | DiAiiDiu = λÃiiu, and λ > 1/τ}.

Then, the condition number of the preconditioned matrix M−1
additiveA, noted

κ
(
M−1

additiveA
)
, where M−1

additive is defined in (2.1), satisfies

κ
(
M−1

additiveA
)
≤ (kc + 1)

(
2 + (2kc + 1)

km
τ

)
,

where kc is the number of colors required to color the graph of A such that any two
neighboring subdomains have different colors and km is the multiplicity constant that
satisfies (2.2).

3. Local SPSD splitting matrices. In this section we show how to construct
local SPSD splitting matrices of a sparse SPD matrix efficiently using only local
subdomain information.

3.1. From normal equations matrices to general SPD matrices. In [4],
the authors presented how to compute local SPSD splitting matrices for the normal
equations matrix C = B>B where B ∈ Rm×n. Considering the case B = A,
we have C = A2. Thus, provided the theory developed in [4], we can compute
local SPSD splitting matrices of A2 efficiently. Using the permutation matrix
Pi = I(ΩIi,ΩΓi,Ω∆i,Ωc∆i], :), we can write

PiAP
>
i =


AIi AIΓi
AΓIi AΓi AΓ∆i

A∆Γi A∆i A∆c∆i

Ac∆∆i Ac∆i

 ,

and

C̃i = R̃>i X
>
i XiR̃i

is an SPSD splitting of A2, where Xi is given as

(3.1) Xi = RiAR̃
>
i =

(
AIi AIΓi
AΓIi AΓi AΓ∆i

)
.

Remark 3.1. All terms from (3.1) stem from the original coefficient matrix A, in
the sense that there is no connection with the underlying discretization scheme or
matrix assembly procedure. In a parallel computing context, e.g., if A is distributed
following a contiguous one-dimensional row partitioning among MPI processes, all
terms may be retrieved using peer-to-peer communication between neighboring
processes.

Lemma 3.2 demonstrates how to obtain a local SPSD splitting of A with respect to
the extended overlapping subdomains given an SPSD splitting of A2.
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Lemma 3.2. Let C̃i be a local SPSD splitting of C = A2, and let Ãi be the square

root SPSD matrix of C̃i such that Ã
2

i = C̃i. Then, Ãi is a local SPSD splitting of A

with respect to the extended overlapping subdomain Ω̃i.

Proof. First, observe that for any vector u ∈ Rn,

u>(A2 − Ã
2

i )u = u>(A+ Ãi)(A− Ãi)u.

Since A+ Ãi is SPD, we can write A+ Ãi = W>i Wi, and we have

u>Wi(A− Ãi)W−1
i u = u>W−>i W>i Wi(A− Ãi)W−1

i u

= v>W>i Wi(A− Ãi)v

= v>(A+ Ãi)(A− Ãi)v

= v>(A2 − Ã
2

i )v

≥ 0,

where v = W−1
i u. Since Wi(A− Ãi)W−1

i and A− Ãi have the same eigenvalues, we

conclude that A− Ãi is SPSD. The locality of Ãi stems from the locality of C̃i.

We note that the SPSD splitting Ãi obtained from the SPSD splitting of A2 is

local with respect to the extended overlapping subdomain Ω̃i. A Schur complement
technique can be applied to obtain the locality to the subdomain Ωi. Lemma 3.3
presents how to obtain a local SPSD splitting matrix of A with respect to the
subdomain Ωi from the local SPSD splitting of A with respect to the extended
overlapping subdomain Ω̃i.

Lemma 3.3. Let Ãi = R̃>i ÃiiR̃i be a local SPSD splitting of A with respect to the

extended overlapping subdomain Ω̃i. Let Ãii be written as a (2, 2) block matrix such
that the (1, 1) block corresponds to the overlapping subdomain Ωi and the (2, 2) block
corresponds to Ω∆i, i.e.,

Ãii =

(
Xi,11 Xi,12

Xi,21 Xi,22

)
,

and let

(3.2) Ãii = Xi,11 −Xi,12X
−1
i,22Xi,21,

where we assume that Xi,22 is SPD. Then, Ãi = R>i ÃiiRi is an SPSD splitting of A
with respect to the subdomain Ωi.

Proof. We have

Ãii =

(
Xi,11 Xi,12

Xi,21 Xi,22

)
=

(
Xi,11 −Xi,12X

−1
i,22Xi,21

)
+

(
Xi,12X

−1
i,22Xi,21 Xi,12

Xi,21 Xi,22

)
.

Since Xi,22 is SPD and Ãii is SPSD, Xi,11 −Xi,12X
−1
i,22Xi,21 is SPSD. Therefore,

0 ≤ u>Ãiu = u>R>i ÃiiRiu

≤ u>R̃>i ÃiiR̃iu
≤ u>Au.
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Remark 3.4. Since the SPSD splitting will be used to construct a preconditioner,
the assumption in Lemma 3.3 that Xi,22 is SPD can be obtained by shifting its
diagonal elements by a small value such as ‖Xi,22‖2ε, where ε is the floating-point

machine precision. One can also shift the diagonal values of the matrix Ãii by a small

value ‖Ãii‖2ε so that the Schur complement can be well defined.

In the following section, we explain how to compute the local SPSD splitting matrices
efficiently.

3.2. Practical construction of local SPSD matrices. The construction of
robust two-level overlapping Schwarz preconditioners is based on computing the coarse
space projection operator R0. Following Theorem 2.1 and using the local SPSD
splitting matrices of A, R0 can be chosen as the matrix that spans the space

Z =

N⊕
i=1

R>i DiZi,

where Zi is defined to be

(3.3) Zi = span{u | DiAiiDiu = λÃiiu, and λ > 1/τ},

where τ > 0 is a user-specified number. The condition number of the preconditioned
matrix M−1

additiveA is bounded from above by (kc + 1)
(
2 + (2kc + 1)kmτ

)
, where kc

is the number of colors required to color the graph of A such that any two
neighboring subdomains have different colors and km is the multiplicity constant that
satisfies (2.2).

Solving the generalized eigenvalue problem in (3.3) using iterative solvers such

as the Krylov–Schur method [46] requires solving linear systems of the form Ãiiu =

v. The matrix Ãii is the Schur complement of the matrix Ãii =
(
X>i Xi

) 1
2 , where

Xi = RiAR̃
>
i . Let Xi = UiΣiV

>
i be the economic singular-value decomposition of

Xi and let V ⊥i be an orthonormal matrix whose columns form a complementary basis
of the columns of Vi, i.e., [Vi, V

⊥
i ] is an orthogonal matrix. Note that V ⊥i (V ⊥i )> =

Iñi
− ViV >i . Using Remark 3.4, Ãii can be chosen as

Ãii = ViΣiV
>
i + σ1iεIñi

= ViΣiV
>
i + σ1iε[Vi, V

⊥
i ][Vi, V

⊥
i ]>

= Vi(Σi + σ1iεIni)V
>
i + σ1iεV

⊥
i (V ⊥i )>

= Vi(Σi + σ1iεIni
)V >i + σ1iε(Iñi

− ViV >i ),

where σ1i is the largest singular value of Xi. One way to solve the linear system
Ãiiu = v is thus to solve the augmented linear system

Ãii

(
u
y

)
=

(
v
0

)
.

Given the singular-value decomposition of Ãii, the solution u can be obtained

efficiently. Indeed, the inverse of Ãii is

(3.4) Ã
−1

ii = Vi(Σi + σ1iεIni
)−1V >i + σ−1

1i ε
−1(Iñi

− ViV >i ).
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In our current implementation, the singular-value decomposition is computed
concurrently using LAPACK [6]. This implies that the sparse matrix Xi, see (3.1),

is converted to a dense representation. Then, Ãii is never assembled, and instead,
the action of its inverse is applied in a matrix-free fashion using (3.4). Since these
operations are local to each subdomain, they remain tractable. However, it could
be beneficial to leverage the lower memory-footprint of iterative sparse singular-value
solvers, e.g., PRIMME SVDS [51]. To the best of our knowledge, no such solver may
be used to retrieve the complete economic singular-value decomposition of a sparse
matrix.

Since the construction of the two-level method is fully algebraic, one can
successively apply the same approach on the coarse space matrix to obtain a multilevel
preconditioner in which, the condition number of each preconditioned matrix is
bounded from above by a prescribed number. Note that if the matrices Ãii for
i = 1, . . . , N are formed explicitly as in (3.2), we can use the strategy that we proposed
in [3] to construct a multilevel preconditioner with the same properties.

3.3. Computational complexity. We present in this section the
computational complexity of the operations involving the SPSD splitting matrix
since all other computations required to construct the preconditioner are identical to
the ones in a classic two-level DD method.

The main computation involved in the proposed SPSD splitting is the economic
singular-value decomposition of the matrixA(Ωi, Ω̃i), which is of size ni×ñi, computed
concurrently for each subdomain. As we currently compute its SVD explicitly, the
computational cost is O(ñin

2
i ), equivalent to O(n3

i ) for most sparse matrices. Once
the SVD is obtained, we use it as presented in (3.4) to solve linear systems arising in
the Krylov–Schur method to solve the generalized eigenvalue problem defined in (3.3).

Applying Ã
−1

ii as in (3.4) to a vector v of size ñi requires O(ñini) operations.
We would like to stress that due to the high computational cost of computing

the dense SVD, we expect that this will dominate runtime. However, since ni and
ñi decrease approximately linearly as the number of subdomains increases, we expect

a linear strong scalability of the SVD computation and the application of Ã
−1

ii as
in (3.4).

4. Numerical experiments. In this section, we present a variety of numerical
experiments that show the effectiveness and efficiency of the proposed preconditioner.
First, we compare it against state-of-the-art algebraic multigrid preconditioners
including AGMG [36, 37], BoomerAMG [16], and GAMG [1]. Then, we include
numerical experiments where the proposed preconditioner is used to solve coarse
problems from other multilevel solvers, thus emphasizing the algebraic and robust
traits of our method. Except for AGMG which is used through its MATLAB
interface, all these experiments are performed using PETSc [7]. In particular, the
proposed preconditioner is a natural extension of the PCHPDDM infrastructure [26]
which we use to solve the concurrent generalized eigenvalue problems from (3.3)
via SLEPc [22], and then to define our multilevel preconditioner by selecting the
appropriate local eigenmodes depending on the user-specified value of τ . With
respect to Remark 3.1, we use the PETSc routine MatCreateSubMatrices, see https:
//petsc.org/release/docs/manualpages/Mat/MatCreateSubMatrices.html. Instead of
using M−1

additive as defined in (2.1), we will use M−1
deflated, defined as

M−1
deflated = R>0 C

−1
00 R0 +M−1

RAS(In − CR>0 C−1
00 R0),

https://petsc.org/release/docs/manualpages/Mat/MatCreateSubMatrices.html
https://petsc.org/release/docs/manualpages/Mat/MatCreateSubMatrices.html
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Table 1
Test matrices taken from the SuiteSparse Matrix Collection.

Identifier n nnz(A) condest(A)
s3rmt3m3 5,357 207,123 4.4 · 1010

vanbody 47,072 2,329,056 9.4 · 1018

gridgena 48,962 512,084 7.1 · 105

ct20stif 52,329 2,600,295 2.2 · 1014

nasasrb 54,870 2,677,324 1.5 · 109

Dubcova2 65,025 1,030,225 10,411
finan512 74,752 596,992 98.4
consph 83,334 6,010,480 3.2 · 107

s3dkt3m2 90,449 3,686,223 6.3 · 1011

shipsec8 114,919 3,303,553 1.5 · 1014

ship 003 121,728 3,777,036 2.6 · 1016

boneS01 127,224 5,516,602 4.2 · 107

bmwcra 1 148,770 10,641,602 9.7 · 108

G2 circuit 150,102 726,674 2 · 107

pwtk 217,918 11,524,432 5 · 1012

offshore 259,789 4,242,673 2.3 · 1013

af 4 k101 503,625 17,550,675 6.5 · 108

parabolic fem 525,825 3,674,625 2.1 · 105

apache2 715,176 4,817,870 5.3 · 106

tmt sym 726,713 5,080,961 1.1 · 109

ecology2 999,999 4,995,991 6.7 · 107

where M−1
RAS is the well-known one-level restricted additive Schwarz method [10]. The

choice of M−1
deflated over M−1

additive is motivated by previous results from the literature [48],
which exhibit better numerical property of the former over the latter. Table 1 presents
the set of test matrices from the SuiteSparse Matrix Collection [12] that are used first.
They represent a subset of the matrices from the collection which satisfy both criteria
“Special Structure equal to Symmetric” and “Positive Definite equal to Yes”. We
highlight the fact that our proposed preconditioner can handle unstructured systems,
not necessarily stemming from standard PDE discretization schemes, by displaying
some nonzero patterns in Figure 1.

4.1. The algebraic two-level case. In this section, we present a numerical
comparison between our proposed preconditioner and three algebraic multigrid
solvers: AGMG, BoomerAMG, and GAMG. Even though matrices from Table 1 are
SPD, all three AMG solvers encounter difficulties in solving many of the associated
linear systems with random right-hand sides. On the contrary, our algebraic two-level
preconditioner M−1

deflated is more robust and always reaches the prescribed tolerance
of 10−8. Note that a simple one-level preconditioner such as M−1

RAS with a minimal
overlap of one does not converge for these problems. The outer Krylov method is
the right-preconditioned GMRES(30) [42]. For preconditioners used within PETSc
(all except AGMG), the systems are solved using 256 MPI processes and are first
renumbered by ParMETIS [29]. For our DD method, a single subdomain is mapped
to each process, i.e., N = 256 in (2.1). Furthermore, exact subdomain and second-
level operator Cholesky factorizations are computed. In the second to last column
of Table 2, sizes of second-level operator are reported. Eventually, in the last column,
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(a) s3rmt3m3, n = 5,357 (b) ct20stif, n = 52,329 (c) finan512, n = 74,752

(d) consph, n = 83,334 (e) G2 circuit, n = 1.5 · 105 (f) offshore, n = 2.6 · 105

Fig. 1. Nonzero sparsity pattern of some of the test matrices from Table 1.

grid complexities (GC), as usually defined in the multigrid community [15], are
reported. One may notice that they fluctuate among matrices. Indeed, for small-
sized problem s3rmt3m3, the grid complexity is 5,357+5,321

5,357 = 1.99, while for problem

parabolic fem, it is 5.26·105+21,736
5.26·105 = 1.04.

Corresponding to the numerical results of our preconditioner in Table 2, we report
in Table 3 the runtime on the first process of the most significant steps during the
setup and solve phases. As predicted in subsection 3.3, the computation of the dense
SVD dominates other computations for almost all problems, especially for the ones
where the local problem size ni ≈ n

N is sufficiently large. We present in subsection 4.3
the scalability of the setup and solve phases.

4.2. The nested-level case. Since our proposed preconditioner is fully
algebraic, we now use it recursively to solve the second-level operator from the
previous section using yet another two-level method instead of using an exact Cholesky
factorization. This is referred to as K-cycle in the multigrid community [38]. This
thus yields an algebraic three-level preconditioner. PCHPDDM has the capability
of automatically redistributing coarse operators on a subset of MPI processes on
which the initial coefficient matrix A is distributed [25]. We still use 256 MPI
processes for the fine-level decomposition, then use four processes for the second-
level decomposition, and the third-level operator is centralized on a single process.
The outer solver is now the flexible GMRES(30) [40]. Second-level systems are this
time solved with the right-preconditioned GMRES(30), with a higher tolerance set
to 10−4, compared to the outer-solver tolerance of 10−8. We investigate problems
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Table 2
Preconditioner comparison: iteration counts are reported in the columns 2–5 if convergence

to the prescribed tolerance of 10−8 is achieved in 100 iterations or less. In column 6, sizes of
the second-level operator generated by our proposed preconditioner are reported. In column 7, grid
complexities (GC) are reported.

Identifier AGMG BoomerAMG GAMG M−1
deflated nC GC

s3rmt3m3 4 5,321 1.99
vanbody 18 25,600 1.54
gridgena 2 16,706 1.34
ct20stif 4 49,421 1.94
nasasrb 10 25,600 1.47
Dubcova2 76 56 5 12,729 1.2
finan512 9 7 8 4 15,271 1.2
consph 26 25,600 1.31
s3dkt3m2 49 25,592 1.28
shipsec8 7 76,800 1.67
ship 003 9 76,759 1.63
boneS01 16 25,600 1.2
bmwcra 1 20 76,800 1.52
G2 circuit 29 11 26 19 21,602 1.14
pwtk 47 25,600 1.12
offshore 7 76,800 1.3
af 4 k101 18 76,800 1.15
parabolic fem 12 8 16 17 21,736 1.04
apache2 14 11 35 7 76,800 1.11
tmt sym 14 10 17 14 32,000 1.04
ecology2 18 12 18 45 33,261 1.03

s3rmt3m3 and parabolic fem which are the two extremes from the previous section
in terms of grid complexity. Iteration counts are reported in Table 4. One may
notice that the number of outer iterations is exactly the same as in the fifth column
of Table 2, meaning that the switch to an inexact second-level solver does not hinder
the overall convergence. Also, the number of inner iterations is small, so our proposed
preconditioner applied to the second-level operator is indeed robust. Eventually, as
we decrease the number of subdomains for the second-level decomposition, the grid
coarsening improves as well, especially for small-sized problem s3rmt3m3.

In another context, we use our proposed preconditioner to solve coarse systems
yield by two other multilevel preconditioners. The following three-dimensional
problems are discretized by FreeFEM [19] using 4,096 MPI processes. First, we use
GenEO [44] to assemble a two-level analytic preconditioner for a scalar diffusion
equation using order-two Lagrange finite elements. The number of unknowns is
4.17 · 106, and the second-level operator generated by GenEO is of dimension nC,2 =
60,144. It is redistributed among 512 processes, and our preconditioner constructs a
third-level operator of dimension nC,3 = 12,040. Then, we use GAMG to assemble a
four-level quasi-algebraic (the near-nullspace is provided by the discretization kernel)
preconditioner for the system of linear elasticity using order-two Lagrange finite
elements. The number of unknowns is 3.06 · 107. The coarse operator from GAMG
grid hierarchy is of dimension nC,2 = 14,880. It is redistributed among 256 processes
using the telescope infrastructure [35] and our preconditioner constructs a final-level
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Table 3
Preconditioner cost (in seconds): singular value decomposition, generalized eigenvalue problem,

and Krylov solver.

Identifier SVDSolve EPSSolve KSPSolve
s3rmt3m3 1.3 2.7 · 10−3 4.1
vanbody 5.2 · 10−1 9.5 · 10−2 3.6
gridgena 1.1 3.6 · 10−2 6.1 · 10−1

ct20stif 1.4 2.9 · 10−1 12.1
nasasrb 1.3 2.1 · 10−1 4.2
Dubcova2 2.8 · 10−1 6.9 · 10−2 2.2 · 10−1

finan512 1.4 · 10−1 2.2 · 10−2 2.6 · 10−1

consph 14.4 4.5 10.7
s3dkt3m2 4.8 · 10−1 1.7 · 10−1 2.7
shipsec8 8.3 8.1 27.2
ship 003 20.5 13.6 27.5
boneS01 9.6 3.4 7.8
bmwcra 1 54.7 33.8 17.9
G2 circuit 1.1 2.7 · 10−1 1.9
pwtk 13.5 4.9 2.2
offshore 66.2 39.1 32.9
af 4 k101 75.7 48.7 6.9
parabolic fem 42.0 7.8 2.9 · 10−1

apache2 211.3 96.2 8.5
tmt sym 121.1 28.8 2.2
ecology2 204.8 53.0 2.9

1

5 · 105

1 · 106

1.7 · 106

κ

(a) Scalar diffusion in the unit cube with the
coefficient κ extruded in one dimension.

1 · 10−2

200

E (GPa)

0.45

0.25

ν

(b) Elongated (10× ratio) three-dimensional beam
with Young’s modulus (E) and Poisson’s ratio (ν)
extruded in one dimension.

Fig. 2. Variations of the material coefficients for problems from Table 5.

operator of dimension nC,3 = 5,120. This is similar, in principle, to AMG-DD [8].
Unlike what is traditionally done with smoothed-aggregation AMG [50], we do not
transfer explicitly the near-nullspace from GAMG coarse level for setting up our
preconditioner. These results are gathered in Table 5. Again, one may notice that
the fast and accurate convergence of the inner solves (third column) does not hinder
the overall convergence (second column). For both the scalar diffusion equation ∇·κ∇
and the system of linear elasticity, highly heterogeneous material coefficients are used,
see Figure 2a and Figure 2b, respectively.
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Table 4
Algebraic multilevel preconditioner: Outer iterations is the FGMRES iteration count, Inner

iterations is the average GMRES iteration count to solve coarse systems, n is the size of the linear
system, nC,2 (resp. nC,3) is the size of the second-level (resp. third-level) operator, GC is the grid
complexity.

Identifier
Outer

iterations
Inner

iterations
n nC,2 nC,3 GC

s3rmt3m3 4 10 5,357 5,321 2,240 2.41
parabolic fem 17 3 525,825 21,736 3,838 1.05

Table 5
Hybrid multilevel preconditioner: Outer iterations is the FGMRES iteration count, Inner

iterations is the average GMRES iteration count to solve coarse systems, n is the size of the
linear system, nC,2 is the size of the coarse-level operator assembled by either GenEO (for problem
diffusion) or GAMG (for problem elasticity), nC,3 is the size of the second-level operator assembled
by our algebraic preconditioner to solve the aforementioned coarse systems.

Identifier
Outer

iterations
Inner

iterations
n nC,2 nC,3

diffusion 11 5 4,173,281 60,144 12,040
elasticity 8 11 30,633,603 14,880 5,120

Furthermore, as in subsection 4.1, note that using a simple one-level
preconditioner such as M−1

RAS with a minimal overlap of one for solving coarse systems
from Tables 4 and 5 does not yield accurate enough inner solutions, thus preventing
the outer solvers from converging. Coupling GAMG with our preconditioner is a good
assessment of the composability of PETSc solvers [9], for the interested reader, we
provide next in Figure 3 the exact options used to setup such a multilevel solver.

4.3. Strong scalability. We present here a strong scalability experiment
of the proposed preconditioner to assess the computational complexity discussed
in subsection 3.3. We consider the problem tmt sym, see Table 1. Starting with
N = 128 subdomains, we increase N by a factor of 2 up to 2,048 and report in Figure 4
the runtime on processor 0, as reported by PETSc -log view option. We also plot the
ideal linear decrease with slope −3. The runtime is comprised of both setup and solve
times. Setup time includes dense SVD computation, generalized eigenvalue problem
solve, computing and factoring the coarse space matrix, and factoring the local one-
level subdomain matrix. Solve time accounts for solving the linear system by using
GMRES preconditioned by the two-level method M−1

deflated. We notice that setup times
(which include exact SVD computation) dominates. However, we observe the linear
decrease in the setup and the overall runtime which behaves similarly to the ideal
scaling. Indeed, as discussed in subsection 3.3, the local explicit SVD costs O(n3

i ),
and doubling the number of subdomains reduces ni by a factor of approximately 2
which yields a cubic decrease in the SVD cost.

We would like to remind that the system of equations associated with this
matrix can be solved by using GMRES preconditioned by BoomerAMG, and
the corresponding runtime is around one second independently of the number
of processors. Therefore, as long as solving the generalized eigenvalue problem
in (3.3) requires computing the dense SVD, the proposed preconditioner should not
be considered, from a performance point-of-view, when other preconditioners are
effective.
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-ksp_type fgmres

-ksp_rtol 1.0e-8

-pc_type gamg

-pc_gamg_threshold 0.01

-pc_gamg_repartition

-pc_mg_levels 4

-prefix_push mg_coarse_

-pc_type telescope

-prefix_push pc_telescope_

-reduction_factor 16

-prefix_pop

-prefix_pop

# continue on the right column

# continued from the left column

-prefix_push mg_coarse_telescope_

-ksp_converged_reason

-ksp_type gmres

-ksp_pc_side right

-ksp_norm_type unpreconditioned

-ksp_rtol 1.0e-4

-pc_type hpddm

-prefix_push pc_hpddm_

-define_subdomains

-levels_1_pc_type asm # M−1
RAS

-levels_1_sub_pc_type cholesky # subdomain solvers

-levels_1_eps_nev 20 # smallest λ in (3.3)

-levels_1_st_type mat # Ãii
−1 from (3.4)

-coarse_pc_type cholesky # coarse solver

-prefix_pop

-prefix_pop

Fig. 3. PETSc command-line options for coupling GAMG and the proposed preconditioner.
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Fig. 4. Strong scaling analysis of the proposed preconditioner for solving problem tmt sym
with an increasing number of MPI processes. Numbers in parentheses are iteration counts. For
reference, this problem is solved in around one second with BoomerAMG, independently of the
number of processes. The dashed line with a slope of −3 represents the ideal linear decrease, see
subsection 3.3.

5. Conclusion. We presented in this paper a fully algebraic and locally
constructed multilevel overlapping Schwarz preconditioner that can bound from above
the condition number of the preconditioned matrix given a user-defined number. The
construction of the preconditioner relies on finding local SPSD splitting matrices of
the matrix A. Computing these splitting matrices involves the computation of the
right singular vectors of the local block row matrix which might be considered costly
on the fine level. However, the locality of computations and the robustness of the
preconditioner provide a very powerful and scalable preconditioner that can be used
as a black-box solver especially when other black-box preconditioners fail to achieve
a desired convergence rate. Our implementation is readily available in the PETSc
library. Again, the proposed preconditioner is not meant to replace analytic multilevel
preconditioners such as smoothed-aggregation algebraic multigrid and GenEO. When
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these work, they will be more efficient algorithmically. However, employing the
proposed preconditioner to solve the corresponding coarse problems proved to be
effective and efficient. As a future work, we would like to investigate less expensive
constructions of SPSD matrices for specific classes of SPD matrices that arise from
the discretization of PDEs.
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Universität zu Köln, September 2020, https://kups.ub.uni-koeln.de/12113/.

[22] V. Hernandez, J. E. Roman, and V. Vidal, SLEPc: a scalable and flexible toolkit for the
solution of eigenvalue problems, ACM Transactions on Mathematical Software, 31 (2005),
pp. 351–362, https://slepc.upv.es.

[23] M. R. Hestenes and E. Stiefel, Methods of conjugate gradients for solving linear systems.,
Journal of Research of the National Bureau of Standards, 49 (1952), pp. 409–436.

[24] N. J. Higham and T. Mary, A new preconditioner that exploits low-rank approximations to
factorization error, SIAM Journal on Scientific Computing, 41 (2019), pp. A59–A82.

[25] P. Jolivet, F. Hecht, F. Nataf, and C. Prud’homme, Scalable domain decomposition
preconditioners for heterogeneous elliptic problems, in Proceedings of the International
Conference on High Performance Computing, Networking, Storage and Analysis, SC ’13,
ACM, 2013, pp. 80:1–80:11.

[26] P. Jolivet, J. E. Roman, and S. Zampini, KSPHPDDM and PCHPDDM: extending PETSc
with advanced Krylov methods and robust multilevel overlapping Schwarz preconditioners,
Computers & Mathematics with Applications, 84 (2021), pp. 277–295.
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