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The collision of two real photons can result in the emission of axions. We investigate the perfor-
mance of a modified light-shining-through-wall (LSW) axion search aiming to overcome the large
signal suppression for axion masses ma ≥ 1 eV. We propose to utilise a third beam to stim-
ulate the reconversion of axions into a measurable signal. We thereby find that with currently
available high-power laser facilities we expect bounds at axion masses between 0.5 − 6 eV reaching
gaγγ ≥ 10−7 GeV−1. Combining the use of optical lasers with currently operating x-ray free electron
lasers, we extend the mass range to 10 − 100 eV.

I. INTRODUCTION

The Standard Model (SM) is one of the biggest achieve-
ments of modern particle physics. While successful in
predicting any terrestrial experiment, it is known to be
incomplete. It falls short of explaining the CP symme-
try of the strong sector and fails to provide explanations
for the energy density content of the universe. In fact,
only around 5% of the energy density of the universe is
in ordinary, baryonic matter, around 26% is in the form
of dark matter, which is not contained in the SM.

One elegant solution to both aforementioned problems
makes use of the potential generated by pions after quark
confinement. Upon the spontaneous breaking of a new
chiral, anomalous U(1)PQ symmetry, the CP violating
vacuum angle of quantum-chromodynamics (QCD) effec-
tively becomes a dynamic field and runs, in the potential
generated by the pions, to the CP-conserving value θ̄ ∼ 0.
This elegant solution was proposed by Peccei and Quinn
in [1, 2]. Weinberg and Wilczek pointed out that the
spontaneous breaking of the new U(1)PQ leads to the ap-
pearance of a pseudo Nambu-Goldstone boson, the QCD
axion [3, 4]. This new particle is a possible candidate to
explain the dark matter content of the universe [5–7].

Generic pseudoscalars also arise abundantly in theory
extensions beyond the SM, like in the low energy spec-
trum of string theory [8, 9]. In the following we shall
mean by the term axion both, the CP restoring QCD
axion and any pseudoscalar particle coupling to electro-
magnetism with the same 5-dimensional operator

Laγγ = gaγγaE ·B. (1)

Here, E and B are the electric and magnetic field, respec-
tively and a is the axion field. This interaction is polari-
sation dependent and thus perfectly suited for laboratory
experiments as the coupling can easily be switched off by
a simple change of polarisation.

∗ Authors to whom correspondence should be addressed: kon-
stantin.beyer@physics.ox.ac.uk
† and:giacomo.marocco@physics.ox.ac.uk

A new, light particle addition to the SM like the ax-
ion must be feebly interacting to avoid current detection
bounds (see [10]). Such bounds can be broadly classified
into three categories, cosmological, astrophysical and lab-
oratory based. The first two types generically outperform
laboratory based searches but suffer from varying model
dependence like the underlying assumption that the dark
matter content of the universe is fully exhausted by the
existence of a single axion. For this reason, laboratory
based bounds have been called for [11].

Axions are best searched for at the intensity frontier
of high power lasers. Axion induced birefringence was
searched for by the PVLAS collaboration and it’s non-
detection placed bounds on the axion parameter space
[12]. Implementing a traditional Sikivie type light shin-
ing through wall (LSW) detector [13], the axion photon
coupling gaγγ was constrained by multiple groups with
the current best bounds set by the QSQAR collaboration
[14]. We recently proposed a modified experimental ap-
proach replacing the static magnetic field of traditional
LSW searches by a second laser and thereby avoiding
the suppression at large axion masses stemming from the
large required momentum transfer [15]. The idea behind
the proposal of Ref. [15] is a coherent enhancement of
the number of detected photons, Nγ , that is realised via
a standing wave setup. However, it can be shown that the
setup described in that paper only produces a scaling of
Nγ ∝ |E|2 |B|2 ∝ N2, where N is the number of photons
in each of the two lasers used to form the standing wave,
instead of the N3 scaling as assumed within the quoted
bounds of Ref. [15]. Here we aim to clarify that a N3

enhancement is still possible if the experimental setup is
modified by stimulating the photon regeneration process.

The experimental setup we propose is shown in figure
1. The collision of two lasers produces axions, which,
due to their weak coupling, traverse a wall blocking the
laser light from penetrating into the detector. We pro-
pose to replace the static magnetic field detector of tra-
ditional LSW searches by an appropriately timed laser
beam, thereby avoiding the large suppression for higher
axion masses with a larger required momentum trans-
fer for reconversion. The large photon number in high
power laser beams stimulates photon production, further
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FIG. 1. A diagram of the experimental setup. The collision
of two lasers results in the production of any hypothetical ax-
ions. Such weakly coupled particles pass through a central
wall blocking the laser photons from entering the detector
region. An appropriately timed third laser facilitates the re-
conversion into photons behind the wall. Those reconverted
photons are measured with a detector.

enhancing the signal. The latter was described in [16] for
an isotropic photon bath and will be applied to a laser
beam in section III. Stimulated axion decay can also be
used to search for dark matter axions whose decay prod-
uct produce an echo propagating back to earth when an
electromagnetic wave is sent into space [17, 18]. While we
focus on the axion-photon coupling gaγγ other schemes
investigating the axion’s coupling to electrons are inves-
tigated in Ref. [19–21].

With the above modification, the proposal has simi-
larities to axion searches via light-by-light scattering, in
fact it is an on-shell version of it. The distinct advantages
lie in the background suppression due to the spatial and
temporal separation of the production and reconversion
by the interposing wall and macroscopic distance. Light-
by-light scattering for axion detection was investigated
in Ref. [22].

The paper is organised as follows, in section II we re-
view the axion production and calculate the axion field
we expect for the aforementioned set-up. The stimu-
lated reconversion of an axion in a laser beam is then
investigated in III where we find the power in the signal
photon field. We finally apply the calculation to our pro-
posed experimental set-up and compare the performance
to complementary searches in section IV.

II. PRODUCTION

The presence of an axion a modifies Maxwell’s equa-
tions [13] and the resulting wave equations for the fields
are(
∂2t −∇2

)
E = gaγγ [∂t (B∂ta−E×∇a)−∇ [(∇a) ·B]]

(2)
and (

∂2t −∇2
)
B = gaγγ∇× (E×∇a−B∂ta) . (3)

The axion field obeys the Klein-Gordon equation(
∂2t −∇2 +m2

a

)
a = −gaγγE ·B, (4)

where ma is the axion mass. The electric and magnetic
fields are produced by two linearly polarised laser beams
colliding at an angle α. If the pulse length T is much
greater than the central frequency ωj , j = 1, 2, of each
laser beam, then the electric and magnetic fields, Ej and
Bj , respectively, may be treated as a single plane-wave.
These may then be decomposed as

Ej =
1

2

(
Ejeiωjt−ikj ·x + c.c.

)
,

Bj =
1

2

(
Bjeiωjt−ikj ·x + c.c.

)
, (5)

while the axion sourced by these fields is

a =
1

2

[
ã(x)eiωat + c.c.

]
, (6)

with(
ω2
a +∇2 −m2

a

)
ã(x)eiωat =

gaγγ
2
Fei(ω1+ω2)t−i(k1+k2)·x

(7)
where F = (E1 ·B2 + E2 ·B1) and x is the position vec-
tor. We will in the following adopt a coordinate system
centred on the axion production region. The long laser
pulse length also fixes the axion energy ωa = ω1 +ω2 and
we define ka = k1 + k2, whose magnitude is

|ka| =
√

(ω1 + ω2)2 − 4ω1ω2 sin2 α

2
≡
√
ω2
a −m2

a. (8)

Hence, we see that the collision angle α sets the axion
mass the set-up tests

ma =

√
4ω1ω2 sin2 α

2
. (9)

The fundamental solution to the axion equation is

G(x) =

∫
d3k

(2π)3
eik·x

−ω2
a + k2 +m2

a

=
e−ika|x|

4π|x|
, (10)

where we neglected the advanced solution and only keep
the retarded one. The axion field is then obtained via an
integration over the beam overlap region, V ,

ã(x) ≡ −gaγγ
2
F
∫
d3yG(x− y)e−ika·y

' −gaγγ
8π
F e
−ika|x|

|x|

∫
V

d3yeika(x̂−k̂a− y
2|x|+

x̂·y
2|x| x̂)·y,

(11)

which applies in the limit where we evaluate the field far
from the overlap volume, that is |x| � |y| and |x| �√
ka|y|3.
We can make further simplifications if we consider the

direction along the axion momentum x̂ − k̂a ' 0, where
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x/|x| ≡ x̂. Treating the overlap V as a cube of sidelength
`� |x|, the integral becomes

1

V

∫
V

d3ye−ika( y
2|x|−

x̂·y
2|x| x̂)·y

=


√
π(1− i)√
ka`2

|x|

Erf

[
(1 + i)

4

√
ka`2

|x|

]
2

. (12)

As we increase the spot size of the two incoming lasers,
therefore increasing ` and the interaction volume, the
axion field amplitude grows linear in volume as long as
`2 < d/ka where we define d the distance to the recon-
version region. Increasing the spot size further will only
produce a growth linear in `. In fact the situation is worse
because the above scaling is strictly only true when keep-
ing the laser fields Ej constant. In a real laser system of
course the energy is constant and therefore the fields scale
like |Ej |2 ∝ `−2 resulting in an optimal spot size set by
the ratio of separation to axion momentum. In this limit
we may approximate (12) by V thus resulting in an axion
field given by

ã(x)eiωat = −gaγγ
8π

V Feiωat
e−i
√
ω2

a−m2
a|x|

|x|
, (13)

at large distances along k̂a.
Using this result, we can also calculate the gradient

along the observation direction at the position of axion

reconversion into photons, that is

∇ã(d) = −ka
1 + ikad

kad
ã(d), (14)

which we will use later.

III. AXION RECONVERSION

The produced axions must now be reconverted into
photons to leave a detectable signal. Here, we pro-
pose to place an opaque wall in the way of the source
(drive) lasers, through which, instead, all axions can pass
through. These are reconverted by a third laser beam
via stimulated axion decay. For simplicity, we choose the
stimulating beam to be a copy of either one of the initial
beams incident at the same angle on the other side of the
wall, see figure 1.

The calculation of the signal power proceeds in much
the same way as the previous calculation. The only dif-
ference is in the perturbation theory of the axion recon-
version, in that now we start with an axion field and only
one laser, labelled by s. We parametrize the signal field
as

E =
1

2

(
Ẽ(x)eiωt + c.c.

)
, B =

1

2

(
B̃(x)eiωt + c.c.

)
.

(15)
The equations describing the axion-sourced electric field
are

(
−ω2 −∇2

)
Ẽ(x)eiωt = −gaγγ

2

{
i(ωa − ωs) (E∗s ×∇ã− iωaB

∗
s ã) eiks·x +∇

[
(∇ã) ·B∗seiks·x

]}
ei(ωa−ωs)t, (16)

and magnetic field (
−ω2 −∇2

)
B̃(x)eiωt =

gaγγ
2
∇×

(
E∗seiks·x ×∇ã− iωB∗seiks·xã

)
ei(ωa−ωs)t. (17)

The signal photon energy is ω = ωa − ωs. Let us start
with the electric field and calculate the source from the
axion field (13) at the reconversion area which is a large
distance d away from the conversion in the direction of
the axion momentum. The source density generating the
electric field on the right hand side of (16) is then

j(x) = −gaγγj0ã(x)eiks·(x), (18)

with

j0 =iω

(
(E∗s × ka)

1 + ikad

kad
− iωaB∗s

)
+ ka (B∗s · ka)

(
1 + ikad

kad

)2

− iks (B∗s · ka)
1 + ikad

kad
.

(19)

We find the electric field from the fundamental solution

(10) in analogy to before

Ẽ(x) ' −gaγγ
e−iω|x|

8π|x|
j0ã(d)

∫
V ′
d3ye−iω(k̂−x̂)·y, (20)

where V ′ is the volume of the reconversion region, and,
again, we evaluate the field in the far-field limit |x| �
k`′2 with `′ the sidelength of the reconversion volume,
approximated by a cube, and we take the envelope of the
source constant over V ′. This time however we wish to
maximise the solid angle over which we collect the signal
photons, hence we may no longer limit ourselves to a

direction parallel k̂.
To estimate the signal power we are interested in the

intensity in the electromagnetic field a detector at dis-
tance D covering a solid angle d2Ω. In the presence of
an axion field a non-zero scalar potential Φ is generated
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via ∇2Φ = −gaγγ(∇a) · B resulting in an electric field
component parallel to the gradient. Such a field does
not propagate in vacuum and will not reach the detec-
tor. We may either choose the stimulating laser beam
such that gaγγ(∇a) ·B = 0 and hence restore the gauge
freedom to set Φ = 0, at least to first order in gaγγ , or we
must limit the detected power to the electric field compo-

nent orthogonal to the photon momentum k̂. The power

reaching the detector at distance D is then

P =

∫
dϑdϕ sin(ϑ)D2

∣∣∣Ẽ(D,ϑ, ϕ)⊥

∣∣∣2 cos2 (ωt) . (21)

The integrand is highly peaked around the photon mo-
mentum justifying an integration over the whole sphere
as long as our detector is large enough. We thence find,
to leading order in (`′ω)−1, for the square of the volume
integral in equation (20):

64

ω6

∫
dϑdϕ sin(ϑ)

sin2
{
`′ω
2 [1− sin(θ) cos(ϕ)]

}
(1− sin(θ) cos(ϕ))2

sin2
[
`′ω
2 sin(θ) sin(ϕ)

]
(sin(θ) sin(ϕ))2

sin2
[
`′ω
2 cos(θ)

]
cos2(θ)

' 4π2`′6

(`′ω)2
(22)

where for the exact form of the angular dependence, we
assumed the interaction volume to be oriented such that
k̂ is a unit vector pointing towards one of the faces of the
cube V ′. Any other orientation should not change the
solution significantly.

We define the geometry of the setup for two laser
beams of equal frequency

E1

|E1|
=

0
1
0

 ,
B1

|B1|
=

− cos α2
0

− sin α
2

 ,
k1

ω1
=

− sin α
2

0
cos α2


(23)

B2

|B2|
=

0
1
0

 ,
E2

|E2|
=

 cos α2
0

− sin α
2

 ,
k2

ω2
=

sin α
2

0
cos α2


(24)

Es = E2, Bs = B2, ks = k2, (25)

where α is the angle between the two drive beams (see
Figure 1). For a generalisation to beams with different
frequencies see Appendix A.

The incoming beams are focused such that the beams
are cubes of side `, hence the laser energy contained in the
matching interaction volume Ej =

∫
Pjdτ = |Ej |2`3/2 is

simply the laser energy per pulse. This results in the
energy of the signal field to be

E =
g4aγγ
64π2

`2

d2
ω2
aE1E

2
2 sin4 α

2

(
1− ka

ωa
cos

α

2

)2

(26)

where we set ` = `′ because the pulselength of the stim-
ulating laser should not be longer than the initial lasers
and for simplicity we take it to be a cube again. The
dependence on the scattering angle α can be rewritten

as an axion mass dependence through (9), resulting, in
the case of ω1 = ω2, in

E =
g4aγγ
64π2

`2

d2
m2
aE1E

2
2

(
ma

ωa

)6

. (27)

In the general case with different frequency beams the
dependence may be more complicated, see Appendix A.

Note, we chose the stimulating beam to be the same as
beam 2, such that B∗s ·ka = 0, simplifying the expression
for j0. Performing the full calculation for the other choice
of stimulating beam results in the same bounds, thus,
justifying this simplifying assumption.

IV. PROJECTED BOUNDS

To assess the performance of the above proposal we
will evaluate the projected bounds utilising the Aton 4
laser at the Extreme Light Infrastructure (ELI) beam-
lines. This laser system operates at optical frequencies
ωj = 1.55 eV (j = 1, 2) with Ej = 1.5 kJ energy per pulse
and has pulse lengths of 150 fs up to τ = 1 ns. The opti-
mal pulse duration was discussed earlier and turned out
to be τ =

√
d/ka. The number of signal photons incident

on the detector can simply be obtained from the energy
equation (26) as Nγ = E/ω. We will in the following as-
sume single photon counting is possible using a transition
edge detector similar to the one designed for the ALPS II
experiment [23, 24] and exploiting the coincidence timing
of signal and incoming lasers to discriminate background.
The Aton 4 laser has a repetition rate of 1 min−1 resulting
in 1440 shots per day. Assuming a day of data collection
per angular step and a required rate of signal photons
Rγ = 1 day−1, the projected bounds for this system are

gaγγ ≥ 3.5× 10−7 GeV−1
(

1.5 kJ

E1

) 1
4
(

1.5 kJ

E2

) 1
2
(

d

10 cm

) 1
4

(√
1−

( ma

3.08 eV

)2) 1
4 (

3.08 eV

ma

)2(
Rγ

day−1

) 1
4

, (28)
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FIG. 2. Exclusion plot for axion parameter space. The light
blue region shows existing bounds from the OSQAR experi-
ment [14]; the orange region is excluded by PVLAS [12]; the
dashed blue line depicts CAST constraints [26]; the lower hor-
izontal dashed line comes form stellar cooling lifetimes [27]
and the upper from solar Bragg diffraction experiments [28].
The green region shows the Xenon1T anomaly interpreted as
QCD axion signal [29, 30]. The red region on the left indi-
cates the reach of the set-up described in the main text using
three optical lasers. We included the mass interval which can
be probed when considering frequency doubled beams. The
dashed red line indicates the improvement for a 15 kJ laser.
The purple region on the right shows the projected bounds
for the collision of an optical 1.5 kJ laser and an X-FEL like
the european X-FEL. The bounds extend from ω = 1 keV, on
the left, to ω = 25 keV on the right and again, the dashed
line is a projection to 15 kJ optical laser energy. The QCD
axion region, shown in yellow, indicates particular theoretical
predictions for where the axion might be, given dark matter
abundances [31].

where we have taken ` = `′ = τ =
√
d/ka and quote

the bounds for the maximal mass, ma ∼ 3.08 eV, that
can be reached with this setup, obtained by requiring
the two beams to be 1° off the counter-propagation di-
rection. The testable parameter space is shown in red in
figure 2 with the dashed red line the projection obtained
assuming E1 = E2 = 15 kJ. Such increase in laser energy
may be within reach by the next generation of high-power
laser systems. The lower cut-off in mass assumes a mini-
mal angle of collision α = 1°. In principle, we can extend
the exclusion region to lower masses by exploiting the col-
lision of two photons in a converging beam geometry, at
arbitrarily small angles similar to what shown in Ref. [25].
However, in that case, the predicted bounds will fall be-
low those already excluded by PVLAS, and they will not
probe any new parameter space. Additional increase in

the mass range of predicted bounds, also shown in figure
2, exploits the use of frequency doubled beams. In esti-
mating these bounds we have assumed a 10% energy loss
for frequency doubling, but such assumption only affects
the projected bounds weakly.

To extend the exclusion bounds to even higher axion
masses we consider exchanging one of the drive beams
with an x-ray free electron laser (XFEL). The Euro-
pean XFEL operates at ω1 = 1 keV with a pulse length
τ = 100 fs and energy per pulse of E1 = 0.5 mJ. The
shorter pulse length limits the interaction region to a
cube of side τ and the resulting bounds are shown in
purple in figure 2 for the same distance d = 10 cm. The
stimulating laser is a copy of the optical beam to ensure
a favourable scaling with the large energy available with
such lasers (E2 = Es = 1.5 kJ). The right region ex-
tends the mass range considerably because the frequency
of the European XFEL may be tuned up to ω = 25 keV.
In principle one can go ahead and exchange all optical
beams for XFEL ones, however, due to the decrease in
total power this strategy quickly becomes sub-optimal.
In drawing the exclusion regions as continuous areas we
made the same set of assumptions as was already dis-
cussed in Ref. [15]. In a real laser system the spectral
width ensures a width in axion masses we test at each
angle. We therefore choose the angular step size such
that the excluded region is covered continuously. This is
possible in ∼ 30 steps if we assume a minimal collision
angle and minimal step-size of 1°.

We conclude that the present scheme is capable of pro-
ducing a competitive N3 scaling with the photon num-
ber, and it can access an axion parameter space currently
unexplored by laboratory experiments. For higher axion
masses, we find that the collision of an optical high power
pulse with a x-ray free electron laser produces bounds
which still test parameter space formerly not reached
by laboratory experiments, however the bounds drop off
due to the large decrease of photon numbers in the x-ray
beam. Future improvement of laser energy may have the
potential to reach the QCD band for eV masses due to
the favourable N3 dependence of the signal photons.
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[23] Noëmie Bastidon, Dieter Horns, and Axel Lindner.
Quantum efficiency characterization and optimization of
a tungsten transition-edge sensor for alps ii. Journal of
Low Temperature Physics, 184(1-2):88–90, 2016.

[24] Aaron Spector. Alps ii technical overview and status
report. arXiv preprint arXiv:1611.05863, 2016.

[25] Akihide Nobuhiro, Yusuke Hirahara, Kensuke Homma,
Yuri Kirita, Takaya Ozaki, Yoshihide Nakamiya, Masaki
Hashida, Shunsuke Inoue, and Shuji Sakabe. Extended
search for sub-eV axion-like resonances via four-wave
mixing with a quasi-parallel laser collider in a high-
quality vacuum system. PTEP, 2020(7):073C01, 2020,
hep-ex/2004.10637.

[26] V Anastassopoulos, S Aune, K Barth, A Belov,
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Appendix A: COUPLING OF DIFFERENT FREQUENCY BEAMS

With the definition of the geometry (23) we exploited the symmetry between the two beams present in the collision
of two identical (up to polarisation and propagation direction) optical beams. This allowed for simple expressions
denoting the dependence on the scattering geometry. When quoting the bounds achievable by the collision of an
optical beam with a X-FEL we must drop this assumption. Fixing the geometry to have the axion propagate again
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in the ẑ direction we find

k1

|k1|
=

1√
ω2
1 + ω2

2 + 2ω1ω2 cosα

(
ω2

√
sin2 α, 0,

√
ω2
2 cos2 α+ ω2

1 + 2ω1ω2 cosα

)
, (A1)

E1

|E1|
= (0, 1, 0), (A2)

B1

|B1|
=

−1√
ω2
1 + ω2

2 + 2ω1ω2 cosα

(√
ω2
2 cos2 α+ ω2

1 + 2ω1ω2 cosα, 0, ω2

√
sin2 α

)
. (A3)

And for the second laser

k2

|k2|
=

1√
ω2
1 + ω2

2 + 2ω1ω2 cosα

(
ω1

√
sin2 α, 0,

√
ω2
1 cos2 α+ ω2

2 + 2ω1ω2 cosα

)
, (A4)

E2

|E2|
=

1√
ω2
1 + ω2

2 + 2ω1ω2 cosα

(√
ω2
1 cos2 α+ ω2

2 + 2ω1ω2 cosα, 0,−ω2

√
sin2 α

)
, (A5)

B2

|B2|
= (0, 1, 0). (A6)

We then evaluate

F2 = |E1|2|E2|2
(
ω1ω2 sin2 α+ 2ω1ω2 cosα−

√
(ω1 cosα+ ω2)2(ω2 cosα+ ω1)2 + ω2

1 + ω2
2

ω2
1 + ω2

2 + 2ω1ω2 cosα

)2

, (A7)

and

|j0|2 = ω2
aω

2
1 |E2|2

(1− ka
ωa

√
(ω1 cosα+ ω2)2

ω2
1 + ω2

2 + 2ω1ω2 cosα

)2

+
k2a
ω2
a

(ω1 cosα+ ω2)2

(ω2
1 + ω2

2 + 2ω1ω2 cosα)

1

(kad)2

 , (A8)

where again we chose beam 2 to be the stimulating one. This results in energy of the signal field

E =
g4aγγ

256π2

`2

d2
ω2
aE1E

2
2

F2

|E1|2|E2|2
|j0|2

ω2
aω

2
1 |E2|2

, (A9)

from which we may trivially find the bounds on gaγγ as indicated by the purple region in Figure 2.
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