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Abstract

The aim of this paper is to prove the existence and smoothness of stable and unstable

invariant manifolds for a stochastic delayed partial differential equation of parabolic type.

The stochastic delayed partial differential equation is firstly transformed into a random

delayed partial differential equation by a conjugation, which is then recast into a Hilbert

space. For the auxiliary equation, the variation of constants formula holds and we show the

existence of Lipschitz continuous stable and unstable manifolds by the Lyapunov-Perron

method. Subsequently, we prove the smoothness of these invariant manifolds under appro-

priate spectral gap condition by carefully investigating the smoothness of auxiliary equation,

after which, we obtain the invariant manifolds of the original equation by projection and

inverse transformation. Eventually, we illustrate the obtained theoretical results by their

application to a stochastic single-species population model.

Key words Invariant manifolds, stochastic partial differential equations, delay, random

dynamical systems, Lyapunov-Perron’s method, smoothness

1 Introduction

Invariant manifolds and invariant foliations are of great significance in the study of dynamical

behavior and geometric properties of nonlinear dynamical systems. For example, the local bifur-

cation of a high-dimensional system can be studied by reducing it into a central manifold. The
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intersection of invariant stable manifolds and invariant unstable manifolds can be used to study

the existence of homoclinic orbits and heteroclinic orbits, which is a key ingredient in proving

existence of chaotic attractors. The smooth conjugation between different flows can be given by

invariant foliations.

Because of the significant roles the invariant manifolds played in analyzing the dynamics

of deterministic or random dynamical systems (RDSs), they have drawn vast attention from

mathematicians in the past decades. As to the pioneer works of invariant manifolds and in-

variant foliations for finite dimensional deterministic dynamical systems generated by ordinary

differential equations or difference equations, the readers are refereed to [17]. In [8, 9], Chow

and Lu extended the general framework for proving the existence and smoothness of invariant

manifolds and central unstable manifolds for finite dimensional deterministic dynamical systems

to semiflows in general Banach spaces generated by partial differential equations. Both papers

[7] and [10] proved the existence of smooth invariant foliations in infinite dimensional spaces. In

[2] and [3], the authors further studied the geometric and analytical properties of invariant man-

ifolds and invariant foliations of semiflows in Banach spaces, including persistence and uniform

hyperbolicity.

For RDSs, Arnold [1] summarized early research results of finite dimensional RDSs, which

includes basic theory, multiplicative ergodic theorem and smooth dynamical system theory (in-

cluding invariant manifolds and bifurcation theory). Duan, Lu and Schmalfuss [12, 13] obtained

Lipschitzian invariant manifolds and smooth invariant manifolds of stochastic partial differential

equations (SPDEs) with additive or multiplicative noise by the Hadamard graph transforma-

tion method and the Lyapunov Perron method respectively. Lu and Schmalfuss [21] studied

the existence and smoothness of invariant manifolds for stochastic wave equations with a non-

linear multiplicative noise. Mohammed, Zhang and Zhao [27] established local stable manifold

theorems for semilinear stochastic evolution equations and SPDEs with additive or linear infi-

nite dimensional noises by Ruelle’s multiplicative ergodic theory in [31] and the saddle point

property for hyperbolic linear random cocycles obtained in [23] and [24]. Caraballo et. al. [5]

applied the results in [27] to random partial equations and SPDEs with linear multiplicative

noise. For stochastic delayed differential equations (SDDEs) without spatial structure, [23] and

[24] established the local stable manifold theorems for linear SDDEs, while [25] [26] obtained cor-

responding results for nonlinear SDDEs. Very recently, in [14] and [15], the authors established

the multiplicative ergodic theory and local stable manifold theorems for a singular SDDE with

delay in the noise term by using Lyons’s rough path theory. With respect to the abstract RDSs,

Li and Lu [19] studied the smoothness of stable and unstable manifolds and the existence of

stable and unstable invariant foliations for non-uniformly hyperbolic RDSs in finite dimensional

space. Lian and Lu [20] considered the existence and smoothness of Lyapunov exponents, stable

and unstable manifolds of quasi non-uniform hyperbolic discrete RDSs in general Banach spaces.
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Shen, Lu and Zhang [32] considered the existence of invariant manifolds, invariant foliations,

Hölder smoothness and the stability of discrete RDSs in Hilbert Spaces.

Although the invariant manifolds and their smoothness for deterministic and stochastic

partial differential equations, SDDEs as well as abstract RDSs have been widely studied, the

investigation of invariant manifolds for SPDEs with delay is scarce. Indeed, even for determin-

istic partial functional differential equations (PFDEs) with finite delays, the Lyapunov Perron

method needs to be improved due to the lack of a general variation of constants formula. In [29],

the authors established the general framework for proving existence of invariant manifolds for

nonautonomous dynamical systems in Banach spaces by means of graph transformation, which

is adopted to show the existence of invariant manifolds for nonautonomous PFDEs. The authors

further established a variation of constants formula in [18] for PFDEs with infinite delays, which

was adopted to investigate invariant manifolds for PFDEs with infinite delays in [28] by the

Lyapunov Perron method. However, the natural question how to establish the Lyapunov Perron

method to obtain existence and smoothness of invariant manifolds for deterministic or stochastic

PFDEs with finite delays remains unsolved, which is the main object of this paper.

We consider the following stochastic retarded partial differential equation with an additive

noise
du(t)

dt
= Au(t)− µu(t) + Lut + f (ut) +

m∑
j=1

gj
dwj(t)

dt
. (1.1)

Here, u(t) ∈ X and X is an arbitrary Hilbert space with norm ‖ · ‖X and inner product (·, ·)X. A :

D(A) ⊂ H → H is a closed densely defined linear operator that generates a strongly continuous

semigroup S(t) on X, ut is an element of L defined by ut(ξ) = u(t + ξ) for ξ ∈ [−τ, 0], where

L , L2([−τ, 0],X) is the Hilbert space consisting of all square Lebesgue integrable functions from

[−τ, 0] to X equipped with the norm ‖ϕ‖L = [
∫ 0

−τ ‖ϕ(s)‖2
Xds]

1/2 for all ϕ ∈ L. L : L 7→ X is a

bounded linear operator and f : L 7→ X is an everywhere defined Lipschitz continuous operator.

{gj}mj=1 with gj ∈ X stands for the intensity and the shape of noise, {wj}mj=1 are mutually

independent two-sided real-valued Wiener process on an appropriate probability space to be

specified below. We first transform the delayed partial differential equations into the following

random delayed partial differential equation by a conjugation (The details of the derivation is

given in Section 2).

dv(t)

dt
= Av(t)− µv + Lvt + Lz(θt+·ω) + f (vt + z(θt+·ω)) + Az(θtω). (1.2)

For the above obtained pathwise deterministic delayed equation (1.2), our method to overcome

the obstacle caused by the lack of a variation of constants formula is to take V (t) = (vt, v(t)) and

recast the equation in an extended Hilbert space H = L × X equipped with the inner product

((φ, h), (ψ, k)) =

∫ 0

−τ
(φ(s), ψ(s))Xds+ (h, k)X for (φ, h), {ψ, k} ∈ H
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and norm

‖(φ, h)‖ = ((φ, h), (φ, h))1/2 for (φ, h) ∈ H.

Therefore, (1.2) can be regarded as a random partial differential equation on H for which an

appropriate variation of constants formula holds and we investigate the existence and smoothness

of stable and unstable invariant manifolds by the Lyapunov-Perron method established in [13].

Then, the invariant manifolds of the original equations can be obtained by a corresponding

projection and the inverse random transformation.

The study of delay equations on the state space X ×Lp([−τ, 0], X) with X = Cn went back

to the early work of Coleman and Mizel [11] and was then developed by many authors. See the

monograph [4] for a comprehensive summary. This idea of recasting functional differential equa-

tions in product space has been adopted by Mohammed and Scheutzow to study the Lyapunov

spectrum and stable manifolds theorem for linear or nonlinear SDDEs in [23, 24, 25, 26]. The

equations they studied do not have spatial structure and they obtained the existence of invariant

manifolds by the multiplicative ergodic theory established in [31]. Our work makes an attempt

to extend the idea of recasting retarded SPDEs in the auxiliary Hilbert space to establish the

Lyapunov Perron method for analyzing existence and smoothness of invariant manifolds. Since

we establish the existence and smoothness of invariant manifolds for the auxiliary equation (3.1)

(see Section 3) and then obtain the invariant manifold of the original equation by projection, our

method successfully avoid variation of constants formula of SPDEs with finite delays, which is

also effective for deterministic PFDEs. Compared with the Lyapunov Perron method established

in [25] and [26] for SPDEs without delay, the exponential dichotomy of the semigroup generated

by the linear part of the auxiliary equation (3.1) is quite different, and the construction of in-

variant manifolds for the original equation (1.1) from the auxiliary equation (3.1) needs much

effort. Moreover, recasting stochastic or deterministic PFDEs in Hilbert space also facilitates one

to tackle the problems requiring Hilbert geometric structure, such as the topological dimensions

estimation of attractors.

The remaining part of this paper is organized as follows. In Section 2, we first introduce

the theory of RDSs as well as random invariant manifolds and then recast (1.2) into the Hilbert

space H, which facilitate us to treat (1.2) as a SPDE without delay on H that generates a RDS.

In Section 3, we show the existence of Lipschitz continuous stable manifolds by the Lyapunov-

Perron method. In Section 4, we prove the smoothness of the stable manifolds as well as the

existence and smoothness of unstable manifolds. In Section 5, we apply the results to a stochastic

single-species population model.
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2 Preliminaries and the auxiliary equation

In this section, we first introduce the concept of RDSs following [1] and the concept of random

invariant manifolds following [13]. Moreover, we show the auxiliary random partial differential

equation (RPDE) generating a RDS.

Definition 2.1. Let {θt : Ω→ Ω, t ∈ R} be a family of measure preserving transformations such

that (t, ω) 7→ θtω is measurable and θ0 = id, θt+s = θtθs, for all s, t ∈ R. The flow θt together

with the probability space
(
Ω,F , P, (θt)t∈R

)
is called a metric dynamical system.

For a given separable complete metric space (X, ‖ · ‖X), denote by B(X) the Borel-algebra

of open subsets in X.

Definition 2.2. A mapping Φ : R+ × Ω × X → X is said to be a random dynamical system

(RDS) on a complete separable metric space (X, d) with Borel σ-algebra B(X) over the metric

dynamical system
(
Ω,F , P, (θt)t∈R

)
if

(i) Φ(·, ·, ·) : R+ × Ω×X → X is (B(R+)×F × B(X),B(X))-measurable;

(ii) Φ(0, ω, ·) is the identity on X for P -a.e. ω ∈ Ω;

(iii) Φ(t+ s, ω, ·) = Φ(t, θsω, ·) ◦ Φ(s, ω, ·), for all t, s ∈ R+ for P -a.e. ω ∈ Ω.

A RDS Φ is continuous or differentiable if Φ(t, ω, ·) : X → X is continuous or differentiable for

all t ∈ R+ and P -a.e. ω ∈ Ω.

In this paper, we consider the canonical probability space (Ω,F , P ) with

Ω = {ω = (ω1, ω2, . . . , ωm) ∈ C (R;Rm) : ω(0) = 0}

and F being the Borel σ-algebra induced by the compact open topology of Ω, while P being the

corresponding Wiener measure on (Ω,F). Then, we identify W (t) with

W (t, ω) ≡ (ω1(t), ω2(t), . . . , ωm(t)) for t ∈ R.

and the time shift by

θtω(·) = ω(·+ t)− ω(t), t ∈ R.

It follows from Definition 2.1 that
(
Ω,F , P, (θt)t∈R

)
is a metric dynamical system.

In the sequel, we follow the idea of [12] to transform (1.1) into a pathwise deterministic

equation. The same idea has been adopted by many authors to deal with invariant manifolds

for various stochastic evolution equations, such as [13, 21]. Consider the stochastic stationary

solution of the one dimensional Ornstein-Uhlenbeck equation

dzj + µzjdt = dwj(t), j = 1, . . . ,m, (2.1)
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which is given by

zj(t) , zj (θtωj) = −µ
∫ 0

−∞
eλs (θtωj) (s)ds, t ∈ R. (2.2)

Putting z (θtω) =
∑m

j=1 gjzj (θtωj), we have

dz + µzdt =
m∑
j=1

gjdwj.

Take the transformation v(t) = u(t)− z (θtω). Then, simple computations imply

dv(t)

dt
= Av(t)− µv(t) + Lvt + Lz(θt+·ω) + f (vt + z(θt+·ω)) + Az(θtω). (2.3)

Next we consider the linear part of (2.3), i.e. the following linear partial functional differential

equation
dṽ(t)

dt
= Aṽ(t)− µṽ(t) + Lṽt. (2.4)

For the linear operator L : L 7→ X in (2.3), define Lλ ∈ L(X) by

Lλx := L
(
eλ·x

)
(2.5)

for x ∈ X. Throughout the remaining part of this paper, we always make the following assump-

tions on A and L.

Hypothesis A1. A : D(A) ⊂ X → X is a densely defined linear operator that generates a

strongly continuous compact semigroup S(t) on X. L : L 7→ X is a bounded linear operator.

By Theorem 2.4(iii) in [34], (2.4) admits a global classical solution ṽ(t) for any t ≥ 0. Set

Ṽ : t 7→

(
ṽt

ṽ(t)

)
∈ H.

Then, it follows from Corollary 3.5 in [4] that Ṽ : R+ → H is continuously differentiable with

derivative
˙̃V (t) = ÃṼ (t),

where

Ã :=

(
d
dt

0

L A− µI

)
,

with domain

D(Ã) = {(φ, h) ∈ H : φ is differentialble on [−τ, 0], φ̇ ∈ L and h = φ(0) ∈ D(A)}.

Denote by

Ã0 :=

(
d
dt

0

0 A− µI

)
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with domain D(Ã0) = D(Ã). It follows from Hypothesis A1, Lemma 3.6, Theorem 3.25 in

[4] that the operator (Ã0, D(Ã0)) is closed and densely defined on H and generates a strongly

continuous semigroup T (t) given by

T (t) :=

(
T0(t) St

0 S(t)

)
,

where (T0(t))t≥0 is the nilpotent left shift semigroup on L and St : X→ L is defined by

(Stx) (ξ) :=

S(t+ ξ)x if − t < ξ ≤ 0,

0 if − τ ≤ ξ ≤ −t.

To guarantee that (Ã,D(Ã)) generates a strongly continuous semigroup, we need to impose

the following assumption on L, which was introduced in [4].

Hypothesis A2. There exists q : R+ −→ R+with limt→0+ q(t) = 0 and∫ t

0

‖L (Ssφ+ T0(s)h)‖ ds ≤ q(t)

∥∥∥∥∥
(
φ

h

)∥∥∥∥∥
for all

(
φ

h

)
∈ D

(
Ã0

)
and t > 0.

It follows from Theorem 3.26 and 4.11 in [4] that (Ã,D(Ã)) generates a strongly continuous

semigroup S̃(t) : H → H such that

‖S̃(t)‖ 6 e%t, t > 0,

under assumptions Hypothesis A1 and Hypothesis A2, where % , s(A−µI+Lλ) = sup{<λ :

λ ∈ σ(A− µI + Lλ)} is the spectral bound of the linear operator A− µI + Lλ.

In order to show that S̃(t) satisfies a pseudo exponential dichotomy condition, we further

impose the following assumption.

Hypothesis A3. Assume there exist β < α such that the spectrum of A and L satisfy

σ(A− µI + Lλ) ∩ (β, α) = ∅, (2.6)

where Lλ is defined by (2.5).

Now we prove an exponential dichotomy result. It says that, if we assume the same compact-

ness on the semigroup generated by Ã,D(Ã) as before, then the space H naturally decomposes

into two subspaces that are invariant under the delay semigroup.

By similar methods in [35, Theorem 2.3] and the original work [16], we show in the follow-

ing that under Hypothesis A3 the semigroup S̃(t) satisfies a pseudo exponential dichotomy

condition.
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Lemma 2.1. Assume that Hypothesis A3 holds, then there exists a continuous projection P u

on H such that

(i) P uS̃(t) = S̃(t)P u;

(ii) the restriction S̃(t)|Hu : Hu → Hu, t ≥ 0 is an isomorphism.

(iii) ∥∥∥S̃(t)P ux
∥∥∥ ≤ Keαt‖x‖, t 6 0,∥∥∥S̃(t)P sx
∥∥∥ ≤ Keβt‖x‖, t ≥ 0,

(2.7)

where P s = I − P u, Hs = P sH and Hu = P uH. Obviously, H = Hu⊕ Hs. We will call Hs and

Hu the stable subspace and the unstable subspace of S̃(t) respectively.

Proof. By Proposition 3.19 in [4], Ã has compact resolvent and σ(Ã) = σ(A − µI + Lλ). As

proved in Theorem 4.15 the operator (Ã,D(Ã)) has pure point spectrum with finite-dimensional

spectral subspaces under Hypothesis A1−A3. We set σ+(Ã) = σ(Ã) ∩ {λ ∈ C | Reλ >

α}, σ−(Ã) = σ(Ã) ∩ {λ ∈ C | Reλ < β}. Obviously

σ(Ã) = σ+(Ã) ∪ σ−(Ã), σ+(Ã) ∩ σ−(Ã) = φ.

Since σ+(Ã) is bounded, and both σ+(Ã) and σ−(A) ∪ {∞} are close, Theorem 1.5.2 in [16]

implies that there are projections Hu and Hs such that

H = Hu ⊕Hs,

where Hu = P uH and Hs = P sH are Ã-invariant subspaces. Since A is sectorial operator, one

can check that Ã is also a sectorial operator and hence it follows from Theorem 1.5.3 in [16] that

statement (ii) holds.

As defined in [12], a multifunction M = {M(ω)}ω∈Ω of nonempty closed sets M(ω), ω ∈ Ω,

contained in a complete separable metric space (L, dH) is called a random set if

ω → inf
y∈M(ω)

dH(x, y)

is a random variable for any x ∈ H.

A random set M(ω) is called an invariant set for a RDS Φ(t, ω, x) if we have

Φ(t, ω,M(ω)) ⊂M (θtω) for t > 0.

Moreover, if M can be represented by a graph of a Ck (or Lipschitz) mapping

hs(·, ω) : Hs → Hu

such that

M(ω) = M s(ω) = {ξ + hs(ξ, ω) | ξ ∈ Hs} ,
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then, we call M s(ω) a Ck (or Lipschitz) stable manifold. Here, Hs is the stable subspace and

Hu is the unstable subspace of (1.2), which are introduced in the paragraph following (2.7).

Conversely, if M can be represented by a graph of a Ck (or Lipschitz) mapping

hu(·, ω) : Hu → Hs

such that

M(ω) = Mu(ω) = {ξ + hu(ξ, ω) | ξ ∈ Hu} ,

then, we call Mu(ω) a Ck (or Lipschitz) unstable manifold.

3 Lipschitz stable manifolds

This section is devoted to obtaining the existence of a Lipschitz continuous stable manifold for

retarded SPDE (1.1). Our main idea is first to show the existence of Lipschitz stable manifolds

for (1.2) by investigating (3.1) and then obtain Lipschitz stable manifolds of (1.1) by the inverse

conjugation.

To reformulate (2.3) as a random partial differential equation in the Hilbert space H, we take

V (t) = (vt, v(t))T , f̃(t, θtω, V (t)) , Lz(θt+·ω) + f (vt + z(θt+·ω)) +Az(θtω) and F (t, θtω, V (t)) =

(0, f̃(t, θtω, V (t))). We consider the following auxiliary random partial differential equation on

H. 
dV (t)

dt
= ÃV (t) + F (t, θtω, V (t)),

V (0) = (φ, h), (φ, h) ∈ H,
(3.1)

Throughout the remaining part of this paper, we always make the following assumptions on

the nonlinear term f :

Hypothesis A4 f is Lipschitz continuous with 0 being a fixed point, that is, f(0) = 0 and

‖f(φ)− f(ϕ)‖X ≤ Lf‖φ− ϕ‖L for any φ, ϕ ∈ L.

Since for P -a.e. ω ∈ Ω, (3.1) is a path-wise deterministic equation, it follows from Pazy [30]

that (3.1) admits a global mild solution which can be represented by a integral equation based

on the variation of constants formula.

Lemma 3.1. Assume that Hypothesis A1−A4 hold. Then, for each (φ, h) ∈ H, there exists

a continuous function V (·, ω, (φ, h)) : [0,∞)→ H such that

V (t, ω, (φ, h)) = S̃(t)(φ, h) +

∫ t

0

S̃(t− s)F (s, θsω, V (s, ω, (φ, h)))ds, t > 0 (3.2)

for P -a.e. ω ∈ Ω. Moreover, if (φ, h) ∈ D(Ã), then V (t, ω, (φ, h)) is a strong solution of (3.1)

for P -a.e. ω ∈ Ω.
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By Theorem 3.1 and Proposition 3.2 in [33], we have the following relationship between

solutions of (2.3) and (3.1).

Lemma 3.2. Let P1 and P2 be the projections of H onto L and X respectively. Then, the

following statements are true.

(i) T (t)h = P2S̃(t)(φ, h) for all (φ, h) ∈ H, where T (t) is the semigroup generated by A− µI on

X.

(ii) For every φ ∈ L, define v(·, ω, φ) : [−τ,∞)→ X by

v(t, ω, φ) =

φ(t) −τ 6 t < 0

P2V (t, ω, (φ, φ(0))) t > 0

Then vt(·, ω, φ) = P1V (t, ω, (φ, φ(0))) for t > 0. Moreover, if (φ, h) ∈ D(Ã), then vt(·, ω, φ) is

the strong solution to (2.3) with initial condition v0 = φ for t > 0 and P -a.e. ω ∈ Ω.

For the constants α, β defined in (2.7) and each η such that β < η < α, we define

the Banach space C+
η = {φ(·) : [0,∞)→ H | φ is continuous and supt∈[0,∞) e

−ηt‖φ‖ <∞
}

and

P1C
+
η =

{
ϕ = P1φ : φ ∈ C+

η

}
with the norms

|φ|C+
η

= sup
t∈[0,∞)

e−ηt‖φ‖,

and

|ϕ|P1C
+
η

= sup
t∈[0,∞)

e−ηt‖ϕ‖L.

Denote by

N s(ω) =
{
ψ ∈ H | V (t, ω, ψ) ∈ C+

η

}
.

By the definition of C+
η , we can see that N s(ω) consists of all initial datum through which

solutions are controlled by eηt. In the sequel, we obtain the Lipschitz stable invariant manifolds

of (2.3) based on N s(ω).

Theorem 3.1. Assume that A,L, f satisfy Hypothesis A1−A3 with the constants K,α, β

defined in (2.7). Moreover, assume that Lf satisfy

KLf

(
1

η − β
+

1

α− η

)
< 1.

Then, the delayed random partial differential equation (2.3) adimits a Lipschitz stable invariant

manifold M s(ω) = P1N
s(ω), which can be represented by

M s(ω) = {ζ + hs(ζ, ω) | ζ ∈ P1P
sN s(ω)} .

Here, hs(·, ω) : P1P
sN s(ω) → P1P

uN s(ω) is a Lipschitz continuous mapping that satisfies

hs(0, ω) = 0.

10



Proof. It follows from the proof of Theorem 3.2 in [13] that N s(ω) is a Lipschitz stable invariant

manifold of the random partial differential equation (3.1) in H under the condition of Theorem

3.1. In the sequel, we show that M s(ω) = {ζ + hs(ζ, ω) | ζ ∈ P1P
sN s(ω)} is the Lipschitz stable

invariant stable manifold of (2.3). It follows from the proof of Theorem 3.1 in [13] that ψ ∈ N s(ω)

if and only if there exists a function V (·) ∈ C+
η with V (0) = (φ, φ(0)) , ψ such that

V (t) =S̃(t)ζ̂ +

∫ t

0

P sS̃(t− s)F (s, θsω, V (s))ds+

∫ t

∞
P uS̃(t− s)F (s, θsω, V (s))ds, (3.3)

where ζ̂ = P sψ ∈ Hs. By Lemma 3.2, (3.3) is equivalent to

vt(·, ω, φ) = P1V (t, ω, ψ) (3.4)

= P1S̃(t)ζ̂ +

∫ t

0

P1P
sS̃(t− s)F (s, θsω, P

−1
1 vs)ds+

∫ t

∞
P1P

uS̃(t− s)F (s, θsω, P
−1
1 vs)ds.

Hence, ψ ∈ N s(ω) if and only if there exists a function vt ∈ P1C
+
η with v0 = φ such that (3.4)

holds. Setting t = 0 in (3.4) we have

v0(·, ω, φ) =P1V (0, ω, ψ)

=P1ζ̂ +

∫ 0

∞
P1P

uS̃(−s)F (s, θsω, P
−1
1 vs)ds

=ζ + hs(ζ, ω),

(3.5)

where ζ = P1P
sψ ∈ P1P

sN s and hs(ζ, ω) is defined by

hs(ζ, ω) =

∫ 0

∞
P1P

uS̃(−s)F (s, θsω, P
−1
1 vs(·, ω, ζ))ds

satisfying hs(0, ω) = 0. Moreover, by the same arguments as the proof Theorem 3.1 in [13], one

can see that hs is measurable.

To show that M s(ω) is a random set, by Castaing and Valadier [6, Theorem III.9], it suffices

to prove that, for any x ∈ L,

ω → inf
y∈Ns(ω)

‖x− (P1P
sy + hs (P1P

sy, ω))‖ (3.6)

is measurable. Since N s(ω) is a random set, the measurability of ω → hs (P1P
sy, ω) for any

y ∈ N s(ω) indicates that (3.6) is measurable.

At last, we prove that M s(ω) is invariant under the assumption of Theorem 3.1. Since N s(ω)

is invariant under the RDS Φ, that is, for each ψ ∈ N s(ω), Φ(t, ω, ψ) = V (t, ω, ψ) ∈ N s(θtω), we

have for any χ = P1ψ ∈ P1N
s(ω), Ψ(t, ω, χ) = vt (·, ω, χ) = P1V (t, ω, P−1

1 χ) = P1V (t, ω, ψ) ∈
P1N

s(θtω) for all t > 0.

11



Theorem 3.2. Assume that M s(ω) is a Lipschitz stable manifold of the random partial dif-

ferential equation (2.3) on L, then M̃ s(ω) = {ψ(ξ) + z(θ·ω) | ψ ∈M s(ω)} is a Lipschitz stable

manifold of the stochastic retarded partial differential equation (1.1) on L.

Proof. We first prove M̃ s(ω) is invariant under us, i.e., for each φ ∈ M̃ s(ω), us (·, φ, ω) ∈ M̃ s (θsω)

for all s > 0. By the relationship us (·, ψ, ω) = vs (·, ψ, ω) + z(θs+·ω), the stationary property of

z(θs+·ω) and vs (·, ψ, ω) ∈M s(θsω), one can see that us (·, ψ, ω) ∈ M̃ s (θsω). In the following, we

prove that M̃ s(ω) can be represented by a Lipschitz function. For z(θ·ω) ∈ L = P 1H, we split

it as z(θ·ω) = z1 + z2 with z1 ∈ P 1P sH and z2 ∈ P 1P uH. Apparently, z2 = P 1P u(P s)−1z1. By

the definition, we have

M̃ s(ω) , {ψ + z(θ·ω) | ψ ∈M s(ω)}
= {z1 + ζ + hs(ζ, ω) + z2 | ζ ∈ P 1P sN s(ω)}
=
{
ζ̄ + ĥs(ζ̄ , ω) | ζ̄ ∈ P 1P sN s(ω)

}
,

where ζ̄ = z1 + ζ and ĥs(ζ̄ , ω) = hs(ζ̄ − z1, ω) + P 1P u(P s)−1z1. It follows from the Lipschitz

continuity of h that ĥs is Lipschitz, implying that M̃ s(ω) is a Lipschitz stable manifold given by

the graph of a Lipschitz continuous function ĥs(ζ̄ , ω) over the space P 1P sN s(ω).

Next we will prove the Ck smoothness of the Lipschitz stable manifold M s(ω) for each ω ∈ Ω.

Theorem 3.3. Assume that A,L, f satisfy Hypothesis A1−A3 with the constants K,α, β

defined in (2.7). Moreover, assume that f : L → X is Ck. If β < kη < α and

KLf

(
1

iη − β
+

1

α− iη

)
< 1 for all 1 6 i 6 k,

then the invariant stable manifold M s(ω) for the delayed random partial differential equation

(2.3) is Ck, that is, h(ζ, ω) is Ck in ζ.

Proof. It follows from the proof of Theorem 3.2 in [13] that N s(ω) is a Ck smoothness invariant

stable manifold of the random partial differential equation (3.1) in H under the condition of

Theorem 3.3. Now we show that

M s(ω) = {ζ + hs(ζ, ω) | ζ ∈ P1P
sN s}

is the smooth invariant stable manifold of (2.3). The invariance has been proved in Theorem 3.1

and we will prove the Ck smoothness by an induction method. In the case k = 1, because of

KLf

(
1

η − β
+

1

α− η

)
< 1,

12



the continuity and monotonicity of g(x) = 1
x−β + 1

α−x implies that there must be a small number

σ > 0 such that if β + σ < η, then

KLf

(
1

(η − δ)− β
+

1

α− (η − δ)

)
< 1 for all 0 6 δ 6 σ.

Denote by Is(vt, ζ̂) the right hand side of equality (3.4). Apparently, Is : P1C
+
η ×P1H

s → C+
η is

well-defined. Moreover, for any given vt, v̄t ∈ P1C
+
η , we can obtain

|Is(vt, ζ)− Is(v̄t, ζ)|P1C
+
η
6 sup

t∈[0,∞)

e−ηt(|
∫ t

0

P1U(t− s)P s[F (s, θsω, P
−1
1 vs)− F (s, θsω, P

−1
1 vs)]ds

+

∫ t

∞
P1U(t− s)P u[F (s, θsω, P

−1
1 vs)− F (s, θsω, P

−1
1 vs)]ds |)

6 sup
t∈[0,∞)

{
KLf |vs − v̄s|P1C

+
η

(∫ t

0

e(β−η)(t−s)ds+

∫ ∞
t

e(α−η)(t−s)ds

)}
6 KLf

(
1

η − β
+

1

α− η

)
|vs − v̄s|P1C

+
η
.

(3.7)

Clearly, Is is Lipschitz continuous in ζ, since for any ζ1, ζ2 ∈ P1C
+
η , |Is(vt, ζ)− Is(v̄t, ζ)|P1C

+
η
6

Keβt‖ζ1 − ζ2‖P1C
+
η

. Hence, Is : P1C
+
η × P1H

s → P1C
+
η is well-defined and is a contraction in

P1C
+
η−σ ⊂ P1C

+
η for any 0 6 δ 6 σ by the above discussion. Hence, vt(·, ξ, ω) ∈ P1C

+
η−δ.

For any ψ ∈ P1C
+
η−δ and ζ ∈ P1C

+
η , we define

Sψ =

∫ t

0

P1S̃(t− s)P sDvtF (s, θsω, P
−1
1 vs(·, ω, ζ))ψ ds

+

∫ t

∞
P1S̃(t− s)P uDvtF (s, θsω, P

−1
1 vs(·, ω, ζ))ψ ds.

By fact that Is : P1C
+
η−σ → P1C

+
η−σ is a contraction, we can see that S : P1C

+
η−σ → P1C

+
η−σ is

bounded by the following estimate

‖S‖ 6 KLf

(
1

(η − σ)− β
+

1

α− (η − σ)

)
< 1.

Therefore, we can see that Id− T is invertible in P1C
+
η−σ. For any given ζ, ζ0 ∈ Hs, we define

J =
∫ t

0
P1S̃(t− s)P s[F (s, θsω, P

−1
1 vs(·, ω, ζ)− F (s, θsω, P

−1
1 vs(·, ω, ζ0))−

DvtF (s, θsω, P
−1
1 vs(·, ω, ζ)) (v(·, ω, ζ)− v(·, ω, ζ0))]ds+

∫ t
∞ S̃P

u[F (s, θsω, P
−1
1 vs(·, ω, ζ))−

F (s, θsω, P
−1
1 vs(·, ω, ζ0))−DvtF (s, θsω, P

−1
1 vs(·, ω, ζ)) (vs(·, ω, ζ)− vs(·, ω, ζ0))]ds.

If we can prove that |J |P1C
+
η−σ

= o (‖ζ − ζ0‖L) as ζ → ζ0, then we have

vt(·, ω, ζ)− vt (·, ζ0, ω)− S (vt(·, ω, ζ)− vt(·, ω, ζ0)) = S (ζ − ζ0) + J

= S (ζ − ζ0) + o (‖ζ − ζ0‖L) , as ζ → ζ0,

13



from which we can see

vt(·, ω, ζ)− vt(·, ω, ζ0) = (Id− S)−1S (ζ − ζ0) + o (|ζ − ζ0|) .

Therefore, vt(·, ω, ζ) is differentiable in ζ and its derivative satisfiesDζvt(·; ζ, ω) ∈ L
(
P1H

s, C+
η−δ
)
,

where L
(
P1H

s, P1C
+
η−δ
)

is the usual space of bounded linear operators and

Dζvt(·, ω, ζ) =P1S̃(t)P s +

∫ t

0

P1S̃(t− s)P sDvtF (s, P−1
1 vs(·, ω, ζ), θsω)Dζvs(·, ζ, ω)ds

+

∫ t

∞
P1S̃(t− s)P uDvtF (s, P−1

1 vs(·, ω, ζ), θsω)Dζvs(·, ω, ζ)ds.

(3.8)

In the sequel, we show that |J |P1C
+
η−σ

= o (|ζ − ζ0|) as ζ → ζ0 indeed holds. Let N be an

appropriate large positive number to be chosen later and define

J1 =e−(η−σ)t{|
∫ t

N

P1S̃(t− s)P s[F (s, P−1
1 vs(·, ω, ζ), θsω)− P−1

1 F (s, vs (·, ω, ζ0) , θsω)−

DvtF (s, vs(·, ω, ζ0), θsω)
(
P−1

1 vs(·, ω, ζ)− P−1
1 vs(·, ω, ζ0)

)
]ds |}

for t > N and J1 = 0 for t < N

J2 =e−(η−σ)t{|
∫ N

0

P1S̃(t− s)P s[F (s, P−1
1 vs(·, ω, ζ), θsω)− F (s, P−1

1 vs(·, ω, ζ0), θsω)−

DvtF (s, P−1
1 vs(·, ω, ζ0), θsω)

(
P−1

1 vs(·, ω, ζ)− P−1
1 vs(·, ω, ζ0)

)
]ds |}.

Also, for a large positive number N̄ to be chosen later and 0 6 t 6 N̄ , let

J3 =e−(η−σ)t{|
∫ t

N̄

P1S̃(t− s)P u[F (s, P−1
1 vs(·, ω, ζ), θsω)− F (s, P−1

1 vs(·, ω, ζ0), θsω)−

DvtF (s, P−1
1 vs(·, ω, ζ0), θsω)

(
P−1

1 vs(·, ω, ζ)− P−1
1 vs(·, ω, ζ0)

)
]ds |},

J4 =e−(η−σ)t{|
∫ N̄

∞
P1S̃(t− s)P u[F (s, P−1

1 vs(·, ω, ζ), θsω)− F (s, P−1
1 vs(·, ω, ζ0), θsω)−

DvtF (s, P−1
1 vs(·, ω, ζ0), θsω)

(
P−1

1 vs(·, ω, ζ)− P−1
1 vs(·, ω, ζ0)

)
]ds |}

In the case t > N̄ , define

J5 =e−(η−σ)t

∫ t

∞
{| P1S̃(t− s)P u[F (s, P−1

1 vs(·, ω, ζ), θsω)− F (s, P−1
1 vs(·, ω, ζ0), θsω)−

DvtF (s, P−1
1 vs(·, ω, ζ0), θsω)

(
P−1

1 vs(·, ω, ζ)− P−1
1 vs(·, ω, ζ0)

)
]ds |}

By the definition, we only need to prove that for any ε > 0 there is a δ > 0 such that |J |P1C
+
η−σ

6

ε |ζ − ζ0| provided that |ζ − ζ0| 6 δ. Keep in mind that

|J |P1Cuη−σ
6 sup

t>0
J1 + sup

t>0
J2 + sup

06t6N̄
J3 + sup

06t6N̄
J4 + sup

t>N̄
J5.
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By the methods for the derivation of (3.6), we can obtain that

J1 6 2KLf

∫ t

N

e(β−(η−σ))(t−s)e−σs
∣∣(P−1

1 vs(·, ω, ζ)− P−1
1 vs(·, ω, ζ0)

)∣∣
Cuη−σ

ds

6
2K2Lfe

−σN

((η − σ)− β)
(

1− Lf
(

1
(η−σ)−β + 1

α−(η−σ)

) |ζ − ζ0| .

Choose N large enough such that

2K2Lfe
−σN

(η − σ − β)
(

1−KLf
(

1
η−σ−β + 1

α−(η−σ)

)) 6
1

4
ε,

implying that

sup
t>0

J1 6
1

4
ε ‖ζ − ζ0‖ ,

for any t ≥ N . Fixing such N , for J2 we have that

J2 6K
∫ N

0

e(β−(η−σ))(t−s)
∫ 1

0

| DvtF (s, τP−1
1 vs(·, ω, ζ0) + (1− τ)P−1

1 vs(·, ω, ζ0), θsω)−

DvtF (s, vs(·, ζ0, ω), θsω) | dτ
∣∣(P−1

1 vs(·, ω, ζ)− P−1
1 vs(·, ω, ζ0)

)∣∣
Cuη−σ

ds

6
K2 |ζ − ζ0| ‖P−1

1 ‖

1−KLf
(

1
η−σ−β + 1

α−(η−σ)

) ∫ N

0

e−(β−(η−δ))s
∫ 1

0

| DvtF (s, τP−1
1 vs(·, ω, ζ0)+

(1− τ)P−1
1 vs(·, ω, ζ0), θsω)−DvtF (s, P−1

1 vs(·, ζ0, ω), θsω) | dτ∣∣(P−1
1 vs(·, ω, ζ)− P−1

1 vs(·, ω, ζ0)
)∣∣
Cuη−σ

ds.

Since the last integral is on the compact interval [0, N ] and DvtF (s, P−1
1 vs(·, ω, ζ), θsω) is contin-

uous with respect to ζ, we can see that ‖DvtF (s, τP−1
1 vs(·, ω, ζ0) + (1− τ)P−1

1 vs(·, ω, ζ0), θsω)−
DvtF (s, vs(·, ζ0, ω), θsω)‖ → 0 as ‖ζ − ζ0‖ → 0. Hence, there exists a δ1 > 0 such that if

|ζ − ζ0| 6 δ1, then

sup
t>0

J2 6
1

4
ε |ζ − ζ0| .

By similar arguments as the computation of J1, we can choose sufficiently large N̄ such that

sup
06t6N̄

J4 + sup
t>N̄

J5 6
1

4
ε |ζ − ζ0|

For such fixed N̄ , there exists δ2 > 0 such that if |ζ − ζ0| 6 δ2, then

sup
06t6N̄

J3 6
1

4
ε |ζ1 − ζ2|

Taking δ = min {δ1, δ2}, we can see that

|J |Cuη−σ 6 ε |ζ − ζ0| ,
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provided |ζ − ζ0| 6 δ, indicating that |J |C+
η−σ

= o (|ζ − ζ0|) as ζ → ζ0. Subsequently, we show

that Dζvt(·, ·, ω) : P1H
s → P1C

+
η is continuous. For any ζ, ζ0 ∈ P1H

s, using (4.1), we have

Dζvt(·, ω, ζ)−Dζvt(·, ζ0, ω) =

∫ t

0

P1S̃(t− s)P s[DvtF (s, P−1
1 vs(·, ω, ζ), θsω)DζP

−1
1 vs(·, ω, ζ)−

DvtF (s, vs(·, ζ0, ω), θsω)Dζvs(·, ζ0, ω)]ds+

∫ t

∞
S̃(t− s)P u

[DvtF (s, P−1
1 vs(·, ω, ζ), θsω)DζP

−1
1 vs(·, ω, ζ)−DvtF (s, vs(·, ζ0, ω), θsω)

Dζvs(·, ζ0, ω)]ds

=

∫ t

0

P1S̃(t− s)P sDvtF (s, P−1
1 vs(·, ω, ζ), θsω)[DζP

−1
1 vs(·, ω, ζ)−

Dζvs(·, ζ0, ω)]ds+

∫ t

∞
P1S̃(t− s)P uDvtF (s, P−1

1 vs(·, ω, ζ), θsω)

[DζP
−1
1 vs(·, ω, ζ)−Dζvs(·, ζ0, ω)]ds+ J̄ ,

(3.9)

where

J̄ =

∫ t

0

P1S̃(t− s)P s[DvtF (s, P−1
1 vs(·, ω, ζ), θsω)−DvtF (s, vs(·, ζ0, ω), θsω)]Dζvs(·, ζ0, ω)ds

+

∫ t

∞
P1S̃(t− s)P u[DvtF (s, P−1

1 vs(·, ω, ζ), θsω)−DvtF (s, vs(·, ζ0, ω), θsω)]Dζvs(·, ζ0, ω)ds.

(3.10)

Therefore, we have

|Dζvt(·, ω, ζ)−Dζvt(·, ζ0, ω)|L(P1Hs,P1C
+
η ) 6

|J̄ |L(P1Hs,P1C
+
η )

1−KLf
(

1
η−β + 1

α−η

) .
By similar argument as we used for the estimation of |J |, one can also see that |J̄ |L(P1Hs,P1C

+
η ) =

o(1) as ζ → ζ0. Hence Dξvt(·, ·, ω) is continuous from P1H
s to L

(
P1H

s, P1C
+
η

)
. Therefore,

vt(·; ·, ω) is C1 from P1H
s to P1C

+
η . Now we show that u is Ck from P1H

s to P1C
+
kη by induction

for k > 2. By the induction assumption, we know that u is Ck−1 from P1H
s to P1C

+
(k−1)η and

the (k − 1) derivative Dk−1
ξ u(t; ξ, ω) satisfies the following equation.

Dk−1
ξ u =

∫ t

0

P1S̃(t− s)P sDvtF (s, P−1
1 vs(·, ω, ζ), θsω)Dk−1

ζ P−1
1 vs(·, ω, ζ) ds

+

∫ t

∞
P1S̃(t− s)P uDvtF (s, P−1

1 vs(·, ω, ζ), θsω)Dk−1
ζ P−1

1 vs(·, ω, ζ) ds

+

∫ t

0

P1S̃(t− s)P sRk−1(s, ζ, ω)ds+

∫ t

∞
P1S̃(t− s)P uRk−1(s, ζ, ω)ds,

where

Rk−1(s, ζ, ω) =
k−3∑
i=0

(
k − 2

i

)
Dk−2−i
ζ

(
DvtF (s, P−1

1 vs(·, ω, ζ), θsω)
)
Di+1
ζ u(s; ξ, ω)
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By the induction hypothesis, we have that Di
ζvt(·, ω, ζ) ∈ C+

iη for i = 1, . . . , k−1, which combined

with the fact that f is Ck, implying that Rk−1(·, ξ, ω) ∈ Lk−1
(
P1H

s, P1C
+
(k−1)η

)
and is C1 in ζ,

where Lk−1
(
P1H

s, P1C
+
(k−1)η

)
stands for the usual space of bounded k−1 linear forms. Since we

have assumed that β < (k − 1)η < α, we can see that the above integrals are well-defined. The

fact that t→ z (θtω) has a sublinear growth rate is also used in these analysis. The assumptions

β < kη < α and

KLf

(
1

iη − β
+

1

α− iη

)
< 1 for all 1 6 i 6 k,

together with the fact and the same argument we used in the case k = 1, implying that

Dk−1
ζ vt(·, ·, ω) : H → Lk

(
P1H

s, P1C
+
kη

)
is C1. This completes the proof.

By Theorems 3.2 and 3.3, we have the following results.

Theorem 3.4. Assume that M s(ω) is a Ck stable manifold of the stochastic partial differential

equation (2.3) on L and z(θ·ω) is Ck on L, then M̃ s(ω) = {ψ(ξ) + z(θ·ω) | ψ ∈M s(ω)} is a Ck

stable manifold of the stochastic retarded partial differential equation (1.1) on L.

4 Existence and smoothness of unstable manifolds

In the sequel, we are concerned about the existence and smoothness of unstable manifolds for

(1.1).

Theorem 4.1. Assume that Lf is the one defined in Hypothesis A1−A3 and the constants

K,α, β are defined in (2.7). The following statements hold.

(i)If K,α, β satisfy

KLf

(
1

η − β
+

1

α− η

)
< 1,

then the delayed random partial differential equation (2.3) admits a Lipschitz unstable invariant

manifold Mu(ω) = P1N
u(ω), which can be represented by

Mu(ω) = {ζ + hu(ζ, ω) | ζ ∈ P1P
uNu(ω)} .

Here, hu(·, ω) : P1P
uNu(ω) → P1P

sNu(ω) is a Lipschitz continuous mapping that satisfies

hu(0, ω) = 0.

(ii) If β < kη < α and

KLf

(
1

iη − β
+

1

α− iη

)
< 1 for all 1 6 i 6 k,

then the invariant stable manifold Mu(ω) for the delayed random partial differential equation

(2.3) is Ck, that is, hu(ζ, ω) is Ck in ζ.
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Theorem 4.2. Assume that Mu(ω) is a Lipschitz unstable manifold of the stochastic partial dif-

ferential equation (2.3) on L, then M̃u(ω) = {ψ(ξ) + z(θ·ω) | ψ ∈M s(ω)} is a Lipschitz unstable

manifold of the stochastic retarded partial differential equation (1.1) on L. Moreover, if Mu(ω) is

Ck and z(θ·ω) is Ck on L, then M̃u(ω) = {ψ(ξ) + z(θ·ω) | ψ ∈Mu(ω)} is a Ck unstable manifold

of the stochastic retarded partial differential equation (1.1) on L.

The proof of Theorems 4.1 and 4.2 are quite similar to the results in Section 3 with only a

few modifications. In the sequel, we point out the differences and outline the proof procedure

while omitting the details, which is the same as Section 3 and Section 4.

Corresponding to space C+
η , we define the Banach space for each β < η < α, C−η =

{φ : (−∞, 0]→ H | φ is continuous and supt60 e
−ηt‖φ‖ <∞

}
with the norm

|φ|C−
η

= sup
t60

e−ηt|φt|.

Denote by

Nu(ω) =
{
ψ ∈ H | V (t, ω, ψ) ∈ C−η

}
.

In order to show that Mu(ω) = {ζ + hu(ζ, ω) | ζ ∈ P1P
uNu(ω)} is the Lipschitz stable in-

variant unstable manifold of (2.3). It follows from the proof of Theorems 5.1 and 5.3 in [13] that

ψ ∈ Nu(ω) if and only if there exists a function V (·) ∈ C+
η with V (0) = (φ, φ(0)) , ψ such that

V (t) =S̃(t)ζ̂ +

∫ t

0

P uS̃(t− s)F (s, θsω, V (s))ds+

∫ t

∞
P sS̃(t− s)F (s, θsω, V (s))ds, (4.1)

where ζ̂ = P uψ ∈ Hu. By Lemma 3.2, (4.1) is equivalent to

vt(·, ω, φ) =P1V (t, ω, ψ)

=P1S̃(t)ζ̂ +

∫ t

0

P1P
uS̃(t− s)F (s, θsω, P

−1
1 vs)ds+

∫ t

∞
P1P

sS̃(t− s)F (s, θsω, P
−1
1 vs)ds.

(4.2)

Hence, ψ ∈ Nu(ω) if and only if there exists a function vt ∈ P1C
+
η with v0 = φ such that (4.2)

holds. Taking t = 0 in (4.2) we have

v0(·, ω, φ) =P1V (0, ω, ψ)

=P1ζ̂ +

∫ 0

∞
P1P

sS̃(−s)F (s, θsω, P
−1
1 vs)ds

=ζ + hu(ζ, ω),

(4.3)

where ζ ∈ P1P
uNU(ω) and hu(ζ, ω) is defined by

hu(ζ, ω) =

∫ 0

∞
P1P

sS̃(−s)F (s, θsω, P
−1
1 vs(·, ω, ζ))ds

satisfying hu(0, ω) = 0. Moreover, hu is measurable. In the same fashion as the case for the

smoothness of stable manifold, one may show that hu is Ck when the assumptions in Theorem

4.2 hold.
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5 Applications

In this part, we apply the obtained results to the following stochastic single-species age-structured

population model
∂tu(x, t) = ∆u(x, t)− µu(x, t)− δu(x, t− τ) + f(u(x, t− τ)) +

∑m
j=1 gj(x)

dwj(t)

dt
, x ∈ [0, π], t ≥ 0,

u(0, t) = u(π, t) = 0, t ≥ 0,

u(x, t) = φ(x, t), x ∈ [0, π], t ∈ [−τ, 0].

(5.1)

This equation describes the dynamics of a single-species population distributed over the interval

[0, π], where u(x, t) represents the population size at (x, t), while ∆u(x, t) represents the spatial

diffusion of the species, µ and δ are positive constants measuring the death rates of mature

and immature individuals respectively, f is the birth function and
∑m

j=1 gj(x)
dwj(t)

dt
is the noise,

respectively.

Let z (θtω) (x) =
∑m

j=1 gj(x)zj (θtωj) with zj (θtωj) being defined by (2.2) and take the

transformation v(x, t) = u(x, t)− z (θtω) (x). Then, simple computation gives

dv(x, t)

dt
= ∆v(x, t)−µv(x, t)−δvt(x, t−τ)−δz(θt−τω)(x)+f (v(x, t− τ) + z(θt−τω))+∆z(θtω)(x).

(5.2)

In the following, we consider the linear part of (5.2), i.e., the following linear random partial

functional differential equation

dṽ(x, t)

dt
= ∆ṽ(x, t)− µṽ(x, t)− δṽ(x, t− τ). (5.3)

Define X := L2(0, π) and L , L2([−τ, 0],X). Then, the operator B := ∆ − µ with Dirichlet

boundary conditions and D(B) := H1
0 (0, π) ∩ H2(0, π). Hence, it generates an analytic and

compact semigroup (T (t))t≥0 on L2(Ω) The operator L : W 1,2([−1, 0],X)→ X defined as Lφ :=

−δφ(−τ) and hence it is clear that Hypothesis A1 holds. By Theorem 3.29 and Remark 4.1

in [4], Hypothesis A2 also holds.

Define

Ã :=

(
d
dt

0

L B

)
,

with domain

D(Ã) = {(φ, h) ∈ H : φ is differentialble on [−τ, 0], φ̇ ∈ L and h = φ(0) ∈ D(B)}

Since B is compact, by Lemma 4.5 in [4], the resolvent R (λ,∆− µI + Lλ) of Ã is compact for

all λ ∈ ρ (∆− µI + Lλ). Moreover, the spectrum of Ã has only point spectrum, which is the

root of the following characteristic equation

λ+ δe−λτ = −n2 − µ, n ∈ N. (5.4)
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By Theorem 1.10 in [34], for each given n, there exists a real number β such that Reλ ≤ β for

all λ ∈ σ(Ã). Moreover, if α is a given real number, then there exists only a finite number of

λ ∈ σ(Ã) such that β ≤ Reλ, implying that Hypothesis A3 holds. Therefore, it follows from

Lemma 2.1 that the semigroup S̃(t) satisfies a pseudo exponential dichotomy condition, i.e. for

the above α and β there exist K and a continuous projection P u on H such that∥∥∥S̃(t)P ux
∥∥∥ ≤ Keαt‖x‖, t 6 0,∥∥∥S̃(t)P sx
∥∥∥ ≤ Keβt‖x‖, t ≥ 0,

(5.5)

where P s = I − P u, Hs = P sH and Hu = P uH. Hence, by the results in Sections 3 and 4, we

have the following results.

Theorem 5.1. Assume that f is globally Lipschitz and K,α, β satisfy

KLf

(
1

η − β
+

1

α− η

)
< 1.

Then the SPFDE (5.1) admits both Lipschitz stable and unstable invariant manifolds. Moreover,

if f is Ck, β < kη < α and

KLf

(
1

iη − β
+

1

α− iη

)
< 1 for all 1 6 i 6 k,

then the invariant stable and unstable manifold for the SPFDE (5.1) is Ck.

6 Summary

In this paper, we have obtained the existence and smoothness of both stable and unstable man-

ifolds for the stochastic retarded partial differential equation (1.1) with an additive noise. Our

results can be regarded as a first attempt to investigate the invariant structure of stochastic

partial functional differential equations of parabolic type. However, there exist some stochastic

hyperbolic partial differential equations with delay, such as stochastic delayed wave equations,

that are quite difficult to obtain the variation of constants formula in the natural phase space and

needless to say split the phase space into stable and unstable subspaces. Thus, we will study the

invariant manifolds for stochastic wave equations with delay by perturbation methods. Further-

more, the natural phase space for stochastic partial functional differential equations is Banach

space and thus establishing the general framework for analyzing existence and smoothness of

invariant structures for RDSs in Banach space is of paramount significance. The noise discussed

in this paper is the standard two-sided real-valued Wiener process and we show the equation

generates a RDS by a conjugation. Nevertheless, for general noise in infinite dimensional spaces,

under what conditions do the perturbed partial functional differential equations generate RDSs

and have stable or unstable manifolds remain largely open, which will also be studied in the near

future.
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