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Abstract— A custom system has been developed for medical image
acquisition and processing in both the visible and the infrared
(IR) bands. Unlike some non-customizable commercial devices, this
system can easily be adapted to different application scenarios
by adding new peripherals and/or custom image processing algo-
rithms. Portable, autonomous, and easy to use, it offers immediate
results at the moment of examination and has a competitive cost.
The system comprises a Single Board Computer (SBC) controlling
a group of sensors and peripherals. The hardware implementation,
described in detail in this paper, was adapted for two different ap-
plication scenarios. First, the system was employed to differentiate
between different kinds of vascular anomalies. The clinical results
obtained are reported. The device was then redesigned to automatically detect people with high body temperatures in
public environments. The system’s real-time image processing capabilities in both scenarios are demonstrated. Specific
algorithms were implemented by the authors for each case study.

Index Terms— Body temperature detection, Image Processing, LWIR, Medical sensors, Raspberry Pi board, Thermo-
graphic imaging, Vascular anomaly.

I. INTRODUCTION

OVER the last ten years, infrared cameras have become
more affordable. The current COVID-19 pandemic has

significantly increased demand for them and as a result they
are now being deployed on a massive scale in public places
like airports, stadiums, and train stations to detect individuals
with fever. Clinically, they can also be used to obtain very
accurate body temperature measurements. Prior to the pan-
demic, several authors had already drawn attention to their
great potential for biomedical applications in many fields
where accurate body temperature analysis is decisive [1]–[3].
Infrared cameras are generally acknowledged as an excellent
solution for studying local body temperature variations in
different clinical conditions such as hemangiomas [1], [4],
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[5], burns [1], extremity thrombosis [1], and other temperature
related conditions [1], [2]. Indeed, providers like Meditherm
[6] and Spectron IR [7] are already offering infrared cameras
specifically targeted towards the medical field.

One unexplored field that could benefit from these emerging
devices is the correct classification of vascular anomalies
[8]. Some of these anomalies alter local hemodynamics and
temperatures. Classification of vascular anomalies by visual
inspection is challenging even for experts. Traditionally, it
relies on examinations using Doppler ultrasonography or mag-
netic resonance imaging (MRI) [9], neither of which take
into account temperature variations. However, these forms of
medical imaging require trained operators and are not always
immediately available for clinical use.

In clinical scenarios, imaging systems must satisfy several
requirements: they must be accurate, portable, easy to use,
and autonomous, and their results must be easy to interpret.
Images in the visible spectrum can provide extra information
about texture and color that is of key importance in med-
ical specialties like dermatology. They are also helpful for
identifying patients and injured body regions. Multispectral
imaging in both the visible and infrared (IR) bands is therefore
a must. Finally, the incorporation of extra peripherals and
sensors into an imaging system facilitates its adaptability to
different medical scenarios.

In this article, we present an open, customizable, general-
purpose platform for measuring body temperature. This plat-
form was designed to be adaptable to different scenarios
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Fig. 1. Detail of the system’s final implementation. (a) Front view. Main
system components have been highlighted. (b) Back view displaying
the two image sensor interfaces operating in parallel. (c) Lateral view
showing the available Ethernet and USB ports. (d) Detail of the internal
connectivity with the touch screen.

in which IR images can provide thermal information. The
system can be expanded by adding additional sensors and
peripherals, it can display real-time images, and it can run
image processing algorithms. To demonstrate its applicability,
we used it to classify vascular malformations in both high-
and low-flow cases and to automatically detect people with
high body temperatures in public places.

II. SYSTEM IMPLEMENTATION

A. Overview and mechanical design
The generic system implementation can be seen in Figure

1.(a)-(d), which shows the position of its peripherals and
sensors. To house and protect the system components, a casing
was designed and fabricated with a 3D printer fed with PLA
filament. Figure 2 details the casing design, providing front
and rear view. There were several design requirements: 1) The
system had to be easy to handle during clinical sessions. 2)
The battery had to be easily replaceable. 3) Low weight. 4)
The system’s USB and Ethernet ports had to be accessible
to connect the system with other devices such as external
memories or computers. 5) The system had to allow power
dissipation and cooling. Figures 2(a) and 2(b) show front
and rear views of the casing, respectively. Figure 2(c), details
the internal layout, showing how the main components were
assembled.

B. System components
Figure 3 shows all the system’s components. For the sake

of simplicity, we will describe the function of each one
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Fig. 2. The system’s casing design. (a) Rear view. (b) Front view.
(c) Main components assembly. The battery can be easily replaced by
pulling it up/down through the stick.
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Fig. 3. Illustration of the system’s components. The Raspberry Pi 3
board is in the centre, and the different sensors and peripherals are
connected to it.
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separately:
• Raspberry Pi 3 B+ board. This is the main element of the

system. It controls all the peripherals and processes and
stores, and transmits visual information. It can also run
dedicated image processing algorithms to process cap-
tured images. It runs the Linux-based operating system
Raspbian and some dedicated scripts programmed in C++
and Python languages. All the sensors and the battery
are connected to the Raspberry Pi board as shown in
Figures 4 and 5. The board has a 40-pin GPIO connector,
USB ports, a CSI-2 camera interface, WiFi, and Bluetooth
connectivity.

• Lepton IR image sensor. This is the most important sensor
in the system. It is connected to the Raspberry Pi board
via a 40-pin connector. After calibration, it provides abso-
lute temperature values for the visual scene. A dedicated
interface is capable of recording and displaying real-
time images in the LWIR (Long Wave Infrared) band.
The sensor is intended to classify the vascular anomalies
under study and/or to determine their size.

• Raspberry Pi image sensor. This sensor captures visible
band images of all the patients under study. Although the
information in this band was not important in this study,
it is useful to keep a record of the patient’s anomaly and
be able to compare its features in the visible and LWIR
bands simultaneously. Images in the visible band provide
complementary information about things like texture and
color. A dedicated interface records and displays real-time
visible band images and videos.

• Melexis MLX90614D IR thermometer. This has the job
of calibrating the IR sensor to translate radiation levels
into thermographic images. It takes absolute temperature
measurements without touching patients.

• 5-inch HDMI LCD screen. To simultaneously display
real-time images in the visible or LWIR bands.

• External battery. The entire system can operate au-
tonomously for more than 5.5 hours.

• External SD memory.

C. System connectivity

Figures 4 and 5 show the Raspberry Pi’s connectivity with
all the system peripherals. Figure 4.(a) details the ports and
interfaces that each device uses to send/receive data. In Figure
4.(b), there is a diagram showing the data flow between the
developed sensors and software interfaces. Figure 5 shows the
connections made via the Raspberry Pi’s 40-pin GPIO port.

The IR image sensor uses the Raspberry Pi SPI interface for
video streaming and the I2C interface for communication with
the sensor interface installed on the Raspberry Pi board. The
Raspberry Pi image sensor is connected via the Camera Serial
Interface (CSI-2), the dedicated image sensor connection in-
terface. The touch screen is connected via the available HDMI
connector for video streaming, with one USB port being used
for the touch screen driver embedded in the device. The IR
thermometer is connected to the Raspberry Pi connector. It
uses one power supply pin, and two general-purpose I/O ports
to transmit or receive data using the I2C protocol. Any of the
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Fig. 4. (a) Detailed hardware system connectivity. (b) Scheme of the
interfacing data flow between the three sensors that compound the
system.
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Fig. 5. Details of the Raspberry Pi’s 40-pin bus connectivity. Connec-
tions with the IR image sensor are plotted in black. Connections with the
IR thermometer are marked in red.

Raspberry Pi’s free USB ports and wireless interfaces can be
employed to download data stored during the clinical sessions
or to add external memories or peripherals. The battery is
connected directly to the power supply µUSB port.

D. System specifications

The most important system specifications are summarized
in Table I. Thanks to the Broadcom BCM2837B0 CPU and the
64-bit dedicated GPU, the system has high image processing
capabilities. The SD memory has sufficient capacity to store
images and video over multiple clinical sessions. The system’s
possibilities for connecting with other devices and periph-
erals are numerous, with three available USB ports, WiFi
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TABLE I
SYSTEM SPECIFICATIONS

CPU Broadcom BCM2837B0
GPU Cortex-A53 64-bit SoC@1.4GHz
RAM 1GB LPDDR2 SDRAM

Power consumption 890mA@5V
Autonomy >5.5 hours

IR sensor resolution 160×120 pixels
IR sensor frame rate at least 2fps

RGB sensor frame rate 1920×1080@30fps
RGB sensor resolution 3280×2464 pixels (static images)

Weight 550 grams (including battery)
Temperature accuracy 0.1◦C after calibration

Screen resolution 800×480
WiFi connectivity yes

Bluetooth connectivity yes
Ethernet connectivity yes

Operating system Raspbian

TABLE II
COST OF SYSTEM COMPONENTS

Raspberry Pi 3 B+ board 35e
16GB SD memory card 15e

5 INCH HDMI LCD touch screen 42e
Power bank 5,000mAh 10e

MELEXIS infrared thermometer 5e
LEPTON infrared sensor 245e

Raspberry Pi camera 30e
HDMI connectors and buses 10e

3D printer material 5e
TOTAL 397e

and Bluetooth wireless connectivity, and an Ethernet port.
Table II summarises of the approximate cost of the system’s
components. The total cost of the components and material is
below 400e.

III. IR SENSOR CALIBRATION

To render IR images, infrared radiation levels measured by
the IR sensor have to be translated into absolute tempera-
ture values. The Melexis MLX90614D IR thermometer was
mounted in the system for precisely this purpose. Optimized
to operate within a temperature range of [22, 40] ◦C, and
compatible with medical body temperature measurements,
the device is factory calibrated. It simultaneously measures
both skin and ambient temperatures. The skin temperature
measurement is corrected taking into account the ambient
temperature. For this purpose, the vendor has integrated a
DSP device in the sensor. The calibration procedure consists
of taking two temperature measurements at two different
body locations, e.g., the palm and the forehead. A C routine
was implemented to automatize the calibration procedure.
Two snapshots were taken and their temperatures measured.
According to the vendor, the dependence between radiation
levels and absolute temperatures is linear in the operating
range. Knowing the temperature of two different body spots,
T1 and T2 and their respective radiation levels R1 and R2,
it was therefore possible to determine the linear relationship
between the radiation levels and the absolute temperatures, as
depicted in in Listing I.

Listing I: Infrared image sensor calibration procedure.

1) We measured the absolute temperature T at a fixed
distance from two different body spots with uniform
temperature (for instance, the forehead and the palm).
The temperatures of each spot were denoted T1 and
T2.

2) We used the IR image sensor to measure the average
infrared (IR) levels in the LWIR band at the same
spots and at the same distance. The radiation levels
of each spot were denoted IR1 and IR2.

3) To determine the a and b constants, the following
equation system was solved:

T1 = a · IR1 + b, (1)
T2 = a · IR2 + b

4) The sensor radiation levels were translated into tem-
perature levels using the following equation:

T = a · IR+ b (2)

The calibration procedure described in Listing I provides
accurate temperature measurements if the readings are taken
at a fixed distance from the IR camera. The infrared radiation
flux emitted by an object decreases quadratically with distance.
In practical situations, the target will not be at a fixed distance.
In Figure 6, absolute temperature error was plotted against
distance. In this experiment, absolute temperature was mea-
sured with the Melexis MLX90614D thermometer at an initial
distance of 40 cm from the target (a person’s bare forehead).
Absolute error is represented in the blue trace, while the red
trace contains the best non-linear data fitting, in accordance
with the following law:

ε (d) = α− β 1

dγ
(3)

with α = −1.89 β = 12.06 γ = 0.4393

The maximum distance at which the device can gauge
temperature depends on three factors: the device’s optics, the
device’s IR pixel resolution, and the size of the object to be
measured. Following the manufacturer’s indications, we took
measurements within a region of interest larger than 3×3
pixels. Error dependence with distance is also conditioned
by other factors: the quadratic decay of IR radiation with
distance, the size of the object, the pixels’ sensing of different
radiation levels depending on distance, and the effect of the
object’s curvature on the optical projection of the visual scene
on the sensor’s pixels. It is therefore challenging to take
absolute temperature measurements if the distance to the target
is unknown. Fortunately, operating within a certain range of
the lens, the measured error is acceptable in many application
scenarios.
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Fig. 6. Absolute temperature error versus distance between the target
and the device. Blue trace: experimental results. Red trace: best non-
linear data fitting.

IV. CASE STUDY A: A DIFFERENTIATION OF VASCULAR
ANOMALIES

Vascular anomalies constitute a very wide spectrum of
disorders [10], [11]. For some of them, correct classification is
a real challenge. In many cases, they have to be analyzed by
different specialists to obtain the correct early diagnosis which
will be crucial for their treatment. A simple classification of
vascular anomalies establishes two main families: vascular
malformations and vascular tumors. The former include low-
flow and high-flow malformations, while the latter include
hemangiomas, a vascular anomaly very common among in-
fants [12]. The proposed case study focused on differentiating
between low-flow and high-flow malformations, and on esti-
mating the area of high-flow malformations and hemangiomas.
Over sixty vascular malformations and over 100 hemangiomas
were studied for two years. The research was approved by
the Hospital Virgen del Rocı́o Review Board. Beforehand,
the participants’ representatives also signed a consent form
allowing the study to be carried out.

A. High- and low-flow vascular malformation analysis
High- and low-flow vascular malformations [10], [11] may

appear very similar when examined visually [8]. [8]. Their
prognosis, however, is completely different. High-flow mal-
formations are potentially more dangerous. Moreover, their
hemodynamic flow is different. They are created by arteri-
ovenous malformations, and the blood flow inside them is
therefore high. This increases the temperature locally. Low-
flow malformations are caused by venous and capillary mal-
formations. The blood flow inside them —and therefore their
temperature— is lower.

This study differentiated vascular malformations by analyz-
ing their temperature, an approach completely different to that
of traditional methods, which are mainly based on Doppler
ultrasonography or magnetic resonance [9]. Figure 7 shows a
case study of two different vascular malformations at similar
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Fig. 7. Comparative analysis of high- and low-flow vascular malfor-
mations in the hand. Arrows indicate the malformation locations. (a)-(c)
are images in the visible spectrum. (b)-(d) are thermal images acquired
with the IR image sensor. (a)-(b) correspond to high-flow malformations.
(c)-(d) correspond to low-flow malformations.

places on the left hands of two different patients. Figures
7(a),(c) are images in the visible spectrum. The arrows indicate
the exact location of the affected region in each case. Both
malformations are very similar and are impossible to differen-
tiate by visual inspection. Figures 7(b),(d) are thermographic
images in the LWIR band. Here, the temperature patterns of
the two malformations are completely different. For the high-
flow malformation shown in Figures 7(a),(b), the temperature
of the injured region is higher. Moreover, the malformation
reduces the blood flow in the other limb, so there is clear
asymmetry between the temperatures of the two hands (up to
0.7 ◦C in some places). Similar temperature asymmetry can
be observed between the injured and non-injured fingers.

We analyzed more than 60 vascular malformations of dif-
ferent types. All of them had been diagnosed and classified
previously. In all cases, it was possible to correctly classify the
malformations by establishing a temperature threshold. High-
flow malformations create temperature variations in the [0.45
◦C, 0.8 ◦C] range, low-flow malformations in the [-0.3 ◦C,
0.25 ◦C] range. The 99% confidence intervals do not overlap,
so a temperature decision boundary can be set to classify the
two types.

B. Study and prognosis of hemangiomas

Infantile hemangiomas are benign tumors produced by the
proliferation of endothelial cells of blood vessels. Incidence
is high (4%-10%) in children under the age of one year
[12], [13]. These tumors are not included in the vascular
malformations studied previously. The capillary and venous
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Fig. 8. Hemangioma before (images (a) and (b)) and after (images
(c) and (d)) treatment. The thermographic image helps to determine
whether the tumor has decreased after treatment and, accordingly, to
select the correct dose of propranolol.

effects associated with them cause variations in temperature
[1]. Early detection and treatment of hemangiomas are crucial
to reduce their impact. Nowadays, they are successfully treated
with oral propranolol [12]. Hemangiomas are diagnosed and
subsequently assessed by visual inspection. No automated
procedures exist for assessing their prognosis. In this case, the
implemented system proved to be useful in monitoring their
evolution and size after treatment.

Figure 8 shows an example of a hemangioma before and
after treatment. Since not all the regions affected by the
hemangioma are close to the skin and thus perceivable by
visual inspection, the thermographic image is more capable
of determining the size of the affected region. The dose
of propranolol administered depends on the size of region
affected by the hemangioma and on the patient’s response to
prior treatment [12]. To determine the optimum dose, it is
therefore necessary to quantify the size of the injured region.

C. Comparison with classic forms of medical imaging

Figure 9 compares different types of medical images for two
high-flow malformations located on the hand and the back,
respectively. The left-hand column has images taken in the
visible spectrum. The next column has infrared thermographic
images, and the third has Doppler ultrasonography echographs.
The fourth column has magnetic resonance images. Both the
infrared images and the Doppler images provide equivalent
results, indicating the regions with higher hemodynamic flow
based on different physical properties. Ultrasonography mea-
sures the velocity of the blood flow, detecting whether vessels
flow toward (blue) or away from (red) the transducer. In-
frared imaging detects local temperature variations caused by
changes in blood flow pressure. Magnetic resonance imaging
is helpful in analyzing the extension and the depth of the

malformation. From this analysis, it can be said that all the
image types are complementary and non-exclusive. Infrared
imaging has the advantage of being easy to interpret, and
can be used during a first clinical examination for a fast
diagnosis. Doppler ultrasonography and magnetic resonance
require advanced equipment and trained operators that are not
always available at the patient’s first examination, thus limiting
an early diagnosis. These last two techniques also inevitably
involve touching the patient and the use of gels, and infants
may therefore be apprehensive towards them.

D. Medical image processing

The SBC allows the implementation of real-time image
processing algorithms. Several algorithms were implemented
in the C + + language to process the thermal images. The
capability of pre-programmed custom image processing algo-
rithms to extract additional information from recorded images
is one of the system’s key advantages.

Contrast detection: The extraction of spatial contrasts from
thermographic images after calibration provides information
about the temperature gradients of adjacent body regions with
different temperatures [14], [15]. Figure 10 shows an example
obtained after processing one of the medical images shown
previously in Figure8. In the left-hand column, we see an
image of a vascular malformation in the visible spectrum. The
middle column has a thermographic image after calibration,
while the right-hand column shows a spatial contrast image.
The values represent the temperature gradient of each pixel
with respect to its neighborhood. These plots provide very ac-
curate information about temperature gradients that is helpful
in monitoring the patient’s condition and in identifying the
regions with higher vascular activity within the malformation.
To extract the thermal gradients in the image, we used a Sobel-
Feldman operator kernel [14], [15] applied after rendering one
frame. The kernel’s values were:

K =

 47 0 −47
162 0 −162
47 0 −47

 (4)

Image segmentation: In some situations, it is desirable to
isolate and/or highlight the region affected by the anomaly for
further image processing. For this purpose, thresholding algo-
rithms based on analysis of the image histogram prove useful.
One such method, Otsu’s algorithm [14], [15], determines the
optimum temperature threshold to be applied to an image with
an approximate bimodal distribution. The aim is to separate
the patient’s skin from regions with lower temperatures, i.e.,
the scene background, clothes, adornments, etc.

Figure 11 details the effect of Otsu’s method before and
after its application to a thermal image. The original image,
shown in Figure 11(a), contains temperature data for regions
that are irrelevant for medical study: i.e., the background
and the parts of the body covered by garments. Figure 11(b)
shows the image histogram. It can be seen that the histogram
has two clearly distinguishable modes, corresponding to the
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Fig. 9. Comparison between different types of medical imaging for high-flow vascular malformations. From left to right: images in the visible
spectrum, thermographic images, Doppler ultrasonography images, and magnetic resonance images.
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Fig. 10. Example of a contrast-detection algorithm applied to thermographic images. The resulting image provides information about the
temperature gradient of each pixel with respect to the adjacent ones. The left-hand column has an image of the malformation in the visible spectrum.
The middle column has a thermographic image of the malformation. The right-hand column has the image obtained after spatial contrast detection.

skin and to the scene’s background temperatures. The op-
timum threshold value found by the algorithm is indicated
by an arrow. The algorithm seeks the value that maximizes
the deviation between the background and body histograms
superposed on it. Figure 11(c) shows the segmented image
after thresholding. The regions that are meaningless for the
study—i.e., the background and the parts of the body covered
by clothes—are shown in dark blue. As can be seen, the
regions lacking in interest for our study have been correctly
removed. The step-by-step procedure for segmenting the image
is described in Listing II.

1) Temperature contour lines and area evaluation of vascular
anomalies:: To track a patient’s response to treatment, it may
be more convenient to process off-line snapshots of images
taken previously. Contours are curves joining all the continu-
ous points (along a boundary) that have the same temperature
or intensity. They are a useful tool for shape analysis and
object detection and recognition. To obtain the temperature
contour lines, we used predefined OpenCV [16] functions
for contour extraction in conjunction with some basic image
processing operations. Figure 12 shows how the contour lines
were used to track the evolution of a hemangioma. Figures
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Fig. 13. Custom image processing user interface showing the image
processing functions available for infrared images. The original image,
represented in the visible spectrum, can be seen at bottom right.

12(a)-(c) correspond to the hemangioma before treatment.
Figures 12(d)-(f) are pictures taken after treatment. In the first
case, the hemangioma area was 35% smaller after treatment.
It should be noted that the method for comparing changes in a
hemangioma’s area size is invariant to translation and rotation,
so the patient does not need to be placed in the same position
in each clinical session. The procedure for estimating the size
of the region affected by the tumor is described in Listing III.

Listing II: Image segmentation procedure.

1) Histogram counts are computed for the thermal im-
age.

2) Otsu’s method is applied using the histogram counts
to calculate the optimum temperature threshold value
(TH) to segment the image.

3) The image is thresholded: pixel values lower than
TH are set to zero.

4) The resulting pixel matrix is stored in the memory.

E. Medical image processing user interface

To facilitate access to the image processing algorithms
described above, a custom Graphical User Interface (GUI)
was developed in the Python programming language. Python
has a powerful programming library to create user interfaces
and represent sensor data. The user can obtain a snapshot of
an infrared image, calculate its spatial contrast, segment the
anomaly, represent its temperature contour lines, and compute
the area inside a previously selected contour line.

Use of the GUI is simple and intuitive. The execution time
of all the processing algorithms is always below 0.3 ms, so
results are immediately available if a particular anomaly needs

(a) (b)

Fig. 14. a) Mechanical design of the system for automatically detecting
people with high body temperatures. b) Final system implementation.

to be analyzed in detail by the clinician. The GUI is shown
in Figure 13. It can be expanded and adapted to a particular
research project by adding new or different image processing
functions.

Listing III: Contour line extraction procedure.

1) Compute and plot N temperature contour lines within
the [35.5, 38] ◦C range: that is to say, the range
in which the temperature usually varies with the
presence of vascular anomalies. This was done by
selecting the findContours() predefined contour ex-
traction routine from the OpenCV library [16].

2) Select a temperature value to delimit the malforma-
tion boundary. The same value will be used to com-
pare the area of the affected region in the different
clinical sessions. The findContours() function pro-
vided coordinate pairs Pi (xi, yi) with i = 1, . . . , N
of the N vertices that delimited the contour line. Note
that the vertices have to create a closed contour. The
start and end point vertex coordinates are the same
and must therefore be taken into account twice in the
computation: i.e., P1 (x1, y1) = PN (xN , yN ).

3) The corresponding contour line is plotted separately
for a detailed analysis.

4) The size (the number of pixels affected by the vascu-
lar malformation) is computed using the coordinate
method [14], [15], in two steps:

S1 = x1y2 +
N−1∑
i=1

xiyi+1, S2 = x2y1 +
N−1∑
i=1

xi+1yi

Area =
|S1 − S2|

2
(5)

V. CASE STUDY B: PERSONAL TEMPERATURE
MONITORING IN PUBLIC ENVIRONMENTS

The second application scenario envisaged for the system
was the detection of people with fever in public places. For this
task, the system casing was redesigned and the touch screen
was removed. Figure 14 shows snapshots of the new system
casing design and its final implementation. During operation,
the acquired images can be optionally streamed, stored, or
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Fig. 15. Illustration of the processing steps for gauging average body
temperature. a) Original IR image. b) Segmented IR image. Temperature
is estimated by averaging the active pixel values.

displayed on a laptop connected remotely to the sensor. System
operation can be automatized or supervised by an operator.

According to the experimental data in Figure 6, to minimize
absolute temperature measurement error, the distance between
the device and the target has to be bounded. Ideally, the system
should be mounted in narrow corridors or checkpoints where
the distance to the target is limited and predetermined. In such
situations, once the sensor has been calibrated it is possible
to estimate absolute measurement error with the experimental
data from Figure 6. Two operating modes were devised. Each
one is analyzed separately as follows.

A. Temperature monitoring with an operator
In this situation, people pose in front of the camera. An

operator triggers a snapshot when a person’s face is displayed
and their average skin temperature is then determined. The
processing steps are detailed in Listing IV.

Listing IV: Measurement of people’s average body
temperature.

1) A person poses in front of the camera’s field of view.
2) An operator triggers a snapshot with the IR camera.
3) IR values are converted to absolute temperature val-

ues.
4) Temperature values below and above possible body

temperature values are set to zero and not taken into
account in the next phases of computation.

5) The skin is segmented using Otsu’s thresholding
method.

6) Average skin temperature is determined by averaging
active pixel temperature values.

The method is illustrated in Figure 15 with a person
wearing glasses and a mask. The algorithm segments the skin
and averages its temperature to gauge the body temperature.
This method is robust to situations in which automatic face
detection is challenging due to people wearing glasses, masks,
caps, hats, etc.

B. Unsupervised body temperature estimation
In many situations—for example, in crowded public places

like stadiums, train stations, etc.—it may be convenient to

Fig. 16. Automatic face detection and temperature monitoring. a)
Infrared image with the ROI and the measured skin temperature. b) ROI
detail. c) Result of the ROI skin segmentation with Otsu’s method.

automatize body temperature measurement. For this purpose,
a face detector was implemented to automatically trigger the
body temperature estimation every time a face is detected. We
started with a Haar feature-based cascade classifier from the
OpenCV library. To train the algorithm, we created an image
dataset with infrared images. The dataset contained 750 faces
in different poses, including people wearing glasses and masks.
This was necessary because some facial features are different
in the LWIR band. Noses, for example, usually have lower
temperatures than cheeks and may appear as darker regions.
Eyes may be invisible because glasses completely filter out
the IR radiation.

Figure 16 shows the automatic body temperature detection
interface. Every time a face is detected within the visual scene,
the algorithm marks it with a colored circle and computes
the average face skin temperature, as shown in Figure 16.(a).
Figure 16.(b) shows a close-up view of the detected face
(Region of Interest, ROI) and Figure 16.(c) shows the result of
skin segmentation within the ROI. The pixel intensity values
following segmentation are averaged to estimate the body
temperature.

The algorithm can be run at a fixed frame rate of up to
35 frames per second. Since the Lepton sensor frame rate is
9 frames per second, in our study this was the maximum
achievable execution speed. This frame rate proved to be
sufficient to monitor the temperature of non-static people
facing the camera lens.

VI. BENCHMARKING AND FUTURE WORK

After analyzing existing commercial thermography-based
systems, we found several competitive possibilities in the
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TABLE III
BENCHMARKING OF DIFFERENT INFRARED SYSTEMS FOR BODY TEMPERATURE MEASUREMENT.

Sensor Sensitivity
(◦C)

Accuracy
(◦C)

Precision
(◦C)

Range
(◦C)

Range
(λ)

Resolution Programa-
bility

Hardware
expansion

FLUKE
TiX560

≤ 0.03 ND
(factory

calibrated)

± 2 [−20, 1200] LWIR &
visible

320 × 240 No Limited

FLIR A320 ≤ 0.05 ± 0.5
(factory

calibrated)

± 2 [−20, 120] LWIR 320 × 240 No No

Mediterm
IRIS 640

0.01 <0.2 (user
calibration)

ND [17, 38] LWIR 640 × 480 No No

This
system

0.05 <0.1
(user

calibration)

± 1 [−10, 80] LWIR &
visible

160 × 120 Yes Yes

market. Some manufacturers, like FLIR [17], ], already mar-
ket general-purpose multispectral vision systems combining
infrared and conventional vision sensors, usually with higher
pixel resolution and better image quality. However, such
imaging systems are not open platforms in which the user
can embed specific image processing algorithms. Vendors like
Meditherm [6] provide specific infrared cameras for medical
applications. These systems are stand-alone infrared cameras
which offer no possibility of multispectral vision or image pro-
cessing in the infrared band. They also need to be connected
to a PC, laptop, or tablet via a USB cable to be powered and
to display images, and cannot therefore be considered portable
systems.

Table III details the features of some representative systems
developed by the aforementioned providers. Some of them are
factory calibrated and their temperature measurement accuracy
is limited by particular operating conditions, i.e., external
temperature, distance, size of the target object, optics, etc.
In terms of measurement precision, the proposed system is
competitive if the target is less than 2 m from the IR sensor.

As an alternative to all the existing commercial solutions
with higher image quality, we propose a low-resolution, cus-
tomizable, low-cost system that is easy to build and adaptable
to different research scenarios requiring body temperature
analysis. Such adaptation is made feasible at the hardware
level by adding extra sensors and peripherals to the system,
and at the software level by implementing advanced image
processing algorithms. The huge current demand for infrared
cameras capable of detecting body temperature in public
environments justifies the existence of open-test platforms that
can easily be adapted to study the further evolution of the
COVID-19 virus. Possible future scenarios associated with
the pandemic are still unpredictable and require devices that
can easily be customized. Finally, the proposed system is
low-cost and based on an open platform. This facilitates its
dissemination and sharing among the research community.

VII. CONCLUSIONS

A custom system has been implemented for the acquisition
and processing of biomedical infrared images. This article
details its full physical implementation and the connectivity
between all its components. This is a real-time, autonomous

operating system and an open platform suitable for clinical re-
search. We have demonstrated its usefulness in differentiating
high- and low-flow vascular malformations. Furthermore, it
has been modified to automatically detect people who may be
affected by COVID-19. In comparison with other existing al-
ternatives, the system is potentially easier to adapt to different
medical scenarios requiring body temperature measurement
and image processing.
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