
Exact and Efficient Bayesian Inference for
Privacy Risk Quantification⋆

Rasmus C. Rønneberg1, Raúl Pardo2, and Andrzej Wąsowski2

1 Karlsruhe Institute of Technology, Germany
rasmus.ronneberg@kit.edu

2 IT University of Copenhagen, Denmark
{raup,wasowski}@itu.dk

Abstract. Data analysis has high value both for commercial and re-
search purposes. However, disclosing analysis results may pose severe
privacy risk to individuals. Privug is a method to quantify privacy risks of
data analytics programs by analyzing their source code. The method uses
probability distributions to model attacker knowledge and Bayesian in-
ference to update said knowledge based on observable outputs. Currently,
Privug uses Markov Chain Monte Carlo (MCMC) to perform inference,
which is a flexible but approximate solution. This paper presents an exact
Bayesian inference engine based on multivariate Gaussian distributions
to accurately and efficiently quantify privacy risks. The inference engine
is implemented for a subset of Python programs that can be modeled as
multivariate Gaussian models. We evaluate the method by analyzing pri-
vacy risks in programs to release public statistics. The evaluation shows
that our method accurately and efficiently analyzes privacy risks, and
outperforms existing methods. Furthermore, we demonstrate the use of
our engine to analyze the effect of differential privacy in public statistics.

Keywords: Privacy risk analysis · Bayesian inference · Probabilistic
Programming

1 Introduction

Data anonymization methods gain legal importance [5] as data collection and
analysis are expanding dramatically in data management and statistical research.
Yet applying anonymization, or understanding how well a given analytics pro-
gram hides sensitive information, is non-trivial [20]. Contemporary anonymiza-
tion algorithms, such as differential privacy [18], require calibration to balance
between reducing risks and preserving the utility of data. To assess the risks,
data scientists need to assess the flow (leakage) of information from sensitive
data fields to the output of analytics.

⋆ Work partially supported by funding from the topic Engineering Secure Systems of
the Helmholtz Association (HGF), the KASTEL Security Research Labs and the
Danish Villum Foundation through Villum Experiment project No. 0002302.

2 R. C. Rønneberg et al.

Measuring the information leakage is a useful technique to quantify how much
an attacker may learn about the sensitive information a program processes. Many
methods have been proposed in this domain [4,14,15,9,8,29,12,34,32]. Privug is
a recent one [32]. It relies on Bayesian inference to quantify privacy risks in data
analytics programs. The attacker’s knowledge is modeled as a probability distri-
bution over program inputs, and it is then conditioned on the disclosed program
outputs. Then, Bayesian probabilistic programming is used to compute the pos-
terior attacker knowledge, i.e., the updated attacker knowledge after observing
the outputs in the program. One of the advantages of Privug is that it works
on the program source code, and can be extended to compute most information
leakage metrics [4]. However, Privug currently relies on approximate Bayesian
inference such as Markov Chain Monte Carlo [33]. These methods can be used to
analyze arbitrary programs, but may be computationally expensive and may pro-
duce imprecise results. In quantifying privacy risks, precision is critical, as under-
estimation of risks may result in an illegal disclosure of personal information.

We present a new exact and efficient Bayesian inference engine for Privug
targeting attackers modeled by multivariate Gaussian distributions. Even though
not all standard program statements can be mapped to operations on Gaussian
distributions (and thus not all programs can be analyzed using our new engine),
multivariate Gaussian distributions are a good candidate for a semantic domain
of attacker’s knowledge for several reasons: i) Multivariate Gaussians are closed
under many common operations and they can be computed efficiently; ii) The
Gaussian distribution is a maximum entropy distribution under common con-
ditions [30,27] that allows modeling prior attacker knowledge with minimum
assumptions; iii) Gaussians are commonly used in probabilistic modeling of en-
gineering systems to represent uncertainty of measurement.

This work constitutes a new point in the study of expressiveness vs perfor-
mance in quantification of privacy risks by means of Bayesian inference. Specif-
ically, our contributions are:

1. A probabilistic programming language for exact Bayesian inference using
multivariate Gaussians. The language is a subset of Python (Sect. 3).

2. A definition of a sound (Sect. 3.2) Bayesian inference engine (Sect. 3.1) using
multivariate Gaussian distributions.

3. A proof-of-concept implementation of the inference engine as a library that
can be applied to analyze our subset of Python.

4. An application of the inference engine to a case study of privacy risk quantifi-
cation in public statistics (Sect. 4), with and without differential privacy [18].

5. An evaluation of the scalability of the inference engine, and a comparison
with existing inference methods for privacy risk quantification (Sect. 5). The
evaluation shows that our engine can analyze large systems involving thou-
sands of individuals, and also that we greatly outperform existing tools for
the programs supported in our language.

The code to reproduce the evaluation and case study in this paper is available
at [35]. The proof-of-concept implementation of the exact inference engine is an
open source project available at https://github.com/itu-square/gauss-privug.

https://github.com/itu-square/gauss-privug

Exact and Efficient Bayesian Inference for Privacy Risk Quantification 3

2 Background

2.1 Privug: A Data Privacy Debugging Method

Let I,O denote sets of inputs and outputs, respectively. We use D(I) to denote a
space of distributions; in this case over inputs. Let d ∈ D(I) denote a distribution
over inputs, I ∼ D(I) denotes a random variable distributed according to d.

Privug [32] is a method to explore information leakage on data analytics pro-
grams. The method combines a probabilistic model of attacker knowledge with
the program under analysis to quantify privacy risks. This process is summarized
in the following steps:

(1) Prior. We first model the prior knowledge of an attacker as a distribution
over program inputs. This distribution represents the input values of a program
that the attacker finds plausible. For example, consider a program that takes as
input a real number A representing the age of an individual (I ≜ R). A possible
prior knowledge of the attacker could be: A ∼ U(0, 120) (all ages between 0 and
120 are equally likely for the attacker) or A ∼ N (µ = 42, σ = 2) (the attacker
believes that the age of 42 and values nearby are most likely ages). We write
P (I) for the distribution of prior attacker knowledge.

(2) Probabilistic program interpretation. The second step is to interpret a target
program π : I → O using the attacker prior knowledge. To this end, we lift the
program to run on distributions D(I) instead of concrete inputs I. This corre-
sponds to the standard lifting to the probability monad [24]; lift : (I → O) →
(D(I) → D(O)). For example, consider the following program that computes the
average age of a list of ages (in Python):

1 def average_age(ages: List[float]): return sum(ages)/len(ages)

The lifted version of the program is (Python allows retaining the same body):

1 def average_age(ages: Dist[List[float]]): return sum(ages)/len(ages)

where Dist[List[float]] denotes a distribution over lists of floats, D(Rn). The
lifted program yields the distribution P (O |A). In general, the combination of
prior attacker knowledge with the lifted program yields a joint distribution on
inputs and outputs, P (O |I)P (I) = P (O , I).

(3) Observations. It is possible to analyze privacy risks for concrete outputs of
the program. To this end, one may add observations to the probabilistic model.
In the average example above, we could check how the knowledge of the attacker
changes when the attacker observes that the average is 44. This step yields the
posterior distribution P (I |O = 44). In general, the probabilistic lifting of the
program π defines a likelihood function on the joint distribution of input and
output, P (E |I ,O) with some predicate E on the joint distribution.

4 R. C. Rønneberg et al.

(4) Posterior Inference. The next step is to apply Bayesian inference to obtain
a posterior distribution on the input variables.

P (I ,O |E) = P (E |I ,O)P (O |I)P (I)/P (E) (1)

It is usually intractable to compute a symbolic representation of P (E). Therefore,
it is not possible to get analytical solutions for the posterior distributions. The
current implementation of Privug uses Markov Chain Monte Carlo (MCMC) [33]
to tackle this issue. But MCMC methods are approximate and do not always
converge. As mentioned above, the subject of this paper is to provide an exact
inference method to efficiently and precisely compute the posterior distribution.

(5) Posterior analysis We query the posterior and prior distributions (attacker
knowledge) to measure how much the attacker has learned. This can be done
by applying different techniques such as computing probability queries, plot-
ting visualizations of probability distributions, computing information theoretic
metrics (e.g., entropy or mutual information), and metrics from quantitative in-
formation flow [4] such as Bayes vulnerability.

30 35 40 45 50
Age

0.00

0.05

0.10

0.15

0.20
Prior vs Posterior attacker knowledge

Prior
Posterior

Fig. 1: Prior vs Posterior ages

For example, Fig. 1 compares the prior and
posterior distributions of the average age pro-
gram above. We analyze the case where the
output of the program is 44. The green line
shows the prior attacker knowledge on the vic-
tim’s age P (A) and the blue line the posterior
knowledge P (A|O = 44) when observing that
the program output is 44. The prior attacker
knowledge is A ∼ N (35, 2) for the victim’s age
and also for the rest. The figure clearly shows
that the attacker now believes that higher ages
are more plausible. In other words, the attacker prior knowledge has been cor-
rected towards more accurate knowledge on the victim’s age.

2.2 Multivariate Gaussian Distributions

In this paper, we use capital Greek letters for matrices, and bold font for column
vectors. Small letters a and b are reserved for selecting subvectors (as in µa) and
pairs of them for selecting submatrices (as in Σba). Matrix and vector literals are
written in brackets. We write supp(X) for the support of the random variable X.

A multivariate Gaussian distribution, denoted X ∼ N (µ,Σ), defines a prob-
abilistic model composed of n normally distributed random variables, X =
[X1, X2, . . . , Xn]

⊺. The distribution is parameterized by a vector µ of n means,
and a symmetric n × n covariance matrix Σ, so Σij = cov[Xi, Xj] gives the
covariance between Xi and Xj , Σkk gives the variance of Xk. We assume that
the covariance matrix is positive definite. The probability density function is:

P (x) = ((2π)n|Σ|)−1/2 exp
(
−2−1(x− µ)⊺Σ−1(x− µ)

)
(2)

Exact and Efficient Bayesian Inference for Privacy Risk Quantification 5

where |Σ| denotes the determinant of the matrix Σ. We recall standard properties
of multivariate Gaussian distributions [19,28,10].

Theorem 1. Let
[
Xa

Xb

]
∼ N (µ,Σ) with µ =

[
µa

µb

]
and Σ =

[
Σaa Σab

Σba Σbb

]
. The

marginal distributions are Xa ∼ N (µa,Σaa), Xb ∼ N (µb,Σbb), and Xi ∼
N (µi,Σii) for i = 1 . . . a+ b.

The covariance matrix identifies independent random variables:

Theorem 2. Let [X1, . . . , Xn]
⊺ ∼ N (µ,Σ), two marginals Xi, Xj with i ̸= j

are independent iff Σij = cov[Xi, Xj] = 0.

The space of Gaussian distributions is closed under affine transformations:

Theorem 3. Let X ∼ N (µ,Σ) and Y = AX + b be an affine transformation
with A ∈ Rm×n a projection matrix and b ∈ Rn×1 a column vector. Then,
Y ∼ N (Aµ+ b,AΣA⊺) holds.

We use Y |X1, X2, . . . , Xn to denote a random variable Y that is distributed
conditionally with respect to X1, X2, . . . , Xn. Linear combinations of random
variables can be used to define hierarchical probabilistic models consisting of
dependent random variables, such as Gaussian Bayesian networks [28].

Theorem 4. Let X ∼ N (µ,Σ) and Y |X ∼ N (a⊺X + b, σ2), where a ∈ Rn×1

is a vector, b ∈ R and σ2 > 0. Then [X⊺, Y]⊺ ∼ N ([µ⊺,a⊺µ+ b]⊺,Σ′) with

Σ′
1..n,1..n=Σ, Σ′

(n+1)(n+1) = σ2 + a⊺Σa, Σ′
i(n+1) = cov[Xi, Y] =

∑n
j=1 ajΣij .

Example 1. We present an example of a Gaussian Bayesian network [28]. Let
X1 ∼ N (50, 2), X2|X1 ∼ N (2X1 − 5, 1), and X3|X2 ∼ N (X2 − 10, 4). Here the
distribution of X2 is conditioned on X1, and of X3 on X2. The model defines
a joint multivariate Gaussian probability distribution [X1, X2, X3]

⊺ ∼ N (µ,Σ).
Theorem 4 allows to compute the mean, variance, and covariance of this joint
distribution:

µ=

[
50

2 · µ1 − 5
1 · µ2 − 10

]
=

[
50
95
85

]
, Σ=

[
2 2 · Σ11 0 + 1 · Σ12

1 + 2 · Σ11 · 2 0 + 1 · Σ22

4 + 1 · Σ22 · 1

]
=

[
2 4 4

9 9
13

]
As the matrices are symmetric, we only show the upper-right part. Note that,
even tough X3 does not directly depend on X1, it still has a non-zero covariance.
The reason for this is the indirect dependence through X2.

We use conditioning to model observations on values of random variables.

Theorem 5. Let X ∼ N (µ,Σ) be split into two sub-vectors so that

X =

[
Xa

Xb

]
, µ =

[
µa

µb

]
, Σ =

[
Σaa Σab

Σba Σbb

]
and xb ∈ supp(Xb).

The conditioned distribution is Xa|(Xb = xb) ∼ N (µ′,Σ′) with µ′ = µa +
ΣabΣ

−
bb(xb−µb) and Σ′ = Σaa−ΣabΣ

−
bbΣba, where Σ− is the generalized inverse.

6 R. C. Rønneberg et al.

Example 2. Consider the multivariate distribution of Example 1. We condition
X3 to be 85. By Thm. 5 the posterior of X1, X2|X3 = 85 is N (µ′,Σ′) with

µ′=

[
50
95

]
+

[
4
9

]
[13]

−
(85−85)=

[
50
95

]
and Σ′=

[
2 4
4 9

]
−
[
4
9

]
[13]

−
[4 9]=

[
10/13 16/13
16/13 36/13

]

3 Exact Inference Engine for Privug

Our inference engine is an interpreter of a probabilistic programming language
that corresponds to a subset of Python. We include variable assignments, bounded
for-loops, binary operators, sequencing, probabilistic assignments, and observa-
tions (conditioning). Let vr ∈ R be real values, x, y, z, . . . denote (deterministic)
variables, X,Y, Z, . . . be (Gaussian) random variables, and X a vector of random
variables. Let ⊕ ∈ {+,−, ∗, /}. The syntax of well-formed programs is generated
by the rule p below.

(Expressions) e ::= vr | x | e⊕ e
(Distributions) d ::= Normal(e, e) | Normal(e ∗X + e, e)

(Statements) s ::= X = d | X = Y ⊕ e | X = Y + Z | condition(X, e) |
x = e | s; s | for x in range vr s

(Programs) p ::= s; return X

We admit (e) constants expressions, references to deterministic program vari-
ables, and binary operations. Two ways of defining normal distributions (d)
are supported: an independent Gaussian distribution, or a linear transformation
of random variables. Statements (s) are: probabilistic assignments (a normal, a
transformed distribution, a sum of two random variables), an observation (condi-
tioning), deterministic assignment, sequencing, and a limited for-loop. We define
no expressions over random variables, only statements, to simplify introduction
of changes to the state (the probabilistic model) in the semantics for each sub-
expression (Sect. 3.1). The for-loops are only a convenience construct for repeti-
tive statements. A program (p) terminates returning a random variable (return).
The distribution of the returned variable is the marginal of the posterior joint
probability distribution that we want to reason about.

Although the language appears restrictive, we show in Sect. 4 that it can be
used in realistic case studies; e.g., for the study of privacy risks in database recon-
struction attacks using public statistics. Furthermore, this syntax ensures sound-
ness and termination (Sect. 3.2) of a highly scalable (Sect. 5) inference engine.

3.1 Semantics

The formal semantics is defined in the small-step style, over terms of multivariate
Gaussian distributions (Sect. 2.2). It provides a sound and efficient inference
engine to track attacker knowledge in Privug (cf. Sect. 2.1).

A state S is a tuple ⟨µ,Σ, σ⟩. The first two elements define a multivariate
Gaussian distribution N (µ,Σ) over n random variables. Let V denote the set

Exact and Efficient Bayesian Inference for Privacy Risk Quantification 7

of deterministic variables, σ : V → R maps variables to values. We use Σ[X,X]

to denote the variance of marginal variable X, and Σ[X,.], Σ[.,X] to denote the
covariance vectors of X with other variables in the state’s multivariate Gaussian
distribution. Similarly, Σ[X,X], and Σ[X,Y] denote the covariance matrix of the
sub-vector X of a multivariate Gaussian, and the covariance matrix between
sub-vectors X,Y of a multivariate Gaussian, respectively. We use µX to denote
the mean of X, and µX for the mean vector of X.

Definition 1 (Semantics). The semantics is given by the relations →e: e ×
S → R, →s: s × S → S and →p: p × S → Rn×1 × Rn×n for expressions e,
statements s, and programs p, respectively, as defined in Fig. 2.

The rules for expressions, (deterministic) assignments, sequence of statements,
and for-loops are standard, and they do not change the state’s multivariate Gaus-
sian distribution. We omit their details. Programs finish with a return instruc-
tion. It returns the mean-vector µa and covariance matrix Σaa of the specified
sub-vector of the state’s multivariate Gaussian. In what follows, we focus on the
rules manipulating the state’s multivariate Gaussian distribution.

There are two types of probabilistic assignments: independent and linearly
dependent. In both cases the multivariate Gaussian distribution in the state is ex-
tended with a new variable, and consequently the mean vector (µ) and covariance
matrix (Σ) increase their dimension. Independent assignments (P-Asg-Ind) add
to the mean vector the mean of the distribution. The covariance matrix is also
updated with two 0 vectors indicating the new variable is not correlated with
existing variables, and the variable’s variance is added to the diagonal of the
matrix. Dependent assignments (P-Asg-Dep) add to the mean vector a mean
computed as a linear combination with the mean of the dependent random vari-
able Y . The covariance matrix is extended with two vectors computed from the
covariance of the dependent variable with other variables, Σ[Y,.], Σ[.,Y]. This is
because the new variable depends on Y and consequently on all the variables
that Y depends on. The variance of the new variable is added to the diagonal of
the matrix as a linear combination with the variance of Y .

Example 3. Consider the program X = Normal(15, 2); Y = Normal(20, 1); Z =
Normal(2X, 1). The first assignment results in state µ = [15] and Σ = [2]. The
second assignment updates the state into,

µ′ =

[
15
20

]
Σ′ =

[
2 0
0 1

]
Note the zeros in the covariance coefficients as these variables are independent.
Finally, the last probabilistic statement results in

µ′′ =

[
15
20

2 · 15

]
=

[
15
20
30

]
Σ′′ =

[
2 0 2 · 2
0 1 2 · 0

2 · 2 2 · 0 22 · 2 + 1

]
=

[
2 0 4
0 1 0
4 0 9

]
Here we observe that the covariance between Z and X is updated with a non-
zero value due to the dependency between variables, but the coefficients of Y , Z
are 0 as these variable remain independent.

8 R. C. Rønneberg et al.

(V-Exp)
σ(x) = c

⟨x,S⟩ →e c
(O-Exp)

⟨e0,S⟩ →e c0 ⟨e1,S⟩ →e c1

⟨e0 ⊕ e1,S⟩ →e c0 ⊕ c1

(C-Exp)
⟨c,S⟩ →e c

(D-Asg)
e →e c

⟨x = e,S⟩ →s ⟨µ,Σ, σ[x 7→ c]⟩

(P-Asg-Ind)
⟨ei,S⟩ →e ci for i = 1, 2 µ′ =

[
µ
c1

]
Σ′ =

[
Σ′ 0
0 c2

]
⟨X = Normal(e1, e2),S⟩ →s ⟨µ′,Σ′, σ⟩

c2 > 0

(P-Asg-Dep)

⟨ei,S⟩ →e ci for i = 1..3

µ′ =

[
µ

c1µY + c2

]
Σ′ =

[
Σ c1Σ[.,Y]

c1Σ[Y,.] c21Σ[Y,Y] + c3

]
⟨X = Normal(e1 ∗ Y + e2, e3),S⟩ →s ⟨µ′,Σ′, σ⟩

c3 > 0

(P-Cond)

⟨e,S⟩ →e c µ =

[
µa

µX

]
Σ =

[
Σa Σ[.,X]

Σ[X,.] Σ[X,X]

]
µ′ = µa + (c− µX)/Σ[X,X]Σ[.,X] Σ′ = Σa − 1/Σ[X,X]Σ[.,X]Σ[X,.]

⟨condition(X, e), ⟨µ,Σ, σ⟩⟩ →s ⟨µ′,Σ′, σ⟩

(Seq)
⟨s0,S⟩→sS ′′ ⟨s1,S ′′⟩→sS ′

⟨s0; s1,S⟩ →s S ′ (Ret)

⟨s,S⟩→s ⟨
[
µX

µY

]
,

[
Σ[X,X]Σ[X,Y]

Σ[Y ,X]Σ[Y ,Y]

]
, σ⟩

⟨s;returnX,S⟩ →p (µX ,Σ[X,X])

(For-B)
vr ≤ 0

⟨forxinrangevr s,S⟩→sS
(For-I)

vr > 0 ⟨s′,S⟩→sS ′

s′=s;x =x+1; forx inrange vr−1 s

⟨for x inrange vr s,S⟩ →s S ′

(P-Sum)

µ′=

[
µ

µY + µZ

]
Σ′=

[
Σ Σ[.,Y] +Σ[.,Z]

Σ[Y,.]+Σ[Z,.] Σ[Y,Y]+Σ[Z,Z]+Σ[Y,Z]+Σ[Z,Y]

]
⟨X = Y + Z,S⟩ →s ⟨µ′,Σ′, σ⟩

(P-Op-PM)
⊕ ∈ {+,−} ⟨e,S⟩ →e c

µ′=

[
µ

µY ⊕c

]
Σ′=

[
Σ Σ[.,Y]

Σ[Y,.]Σ[Y,Y]

]

⟨X = Y ⊕ e,S⟩ →s ⟨µ′,Σ′, σ⟩

(P-Op-MD)
⊕ ∈ {∗, /} ⟨e,S⟩ →e c

µ′=

[
µ

µY ⊕c

]
Σ′=

[
Σ c⊕Σ[.,Y]

c⊕Σ[Y,.] c
2⊕Σ[Y,Y]

]

⟨X = Y ⊕e,S⟩ →s ⟨µ′,Σ′, σ⟩

Fig. 2: Operational Semantics rules; S stands for a tuple ⟨µ,Σ, σ⟩.

Exact and Efficient Bayesian Inference for Privacy Risk Quantification 9

Two rules (P-Op-PM) and (P-Op-MD) define binary operations between ran-
dom variables and values. These rules always produce a random variable that is
added to the state’s multivariate Gaussian. This is why the statement is com-
bined with an assignment.

When a value is added/subtracted to a random variable (P-Op-PM), a new
random variable is added with its mean updated accordingly. The new vari-
able inherits the variance an covariances of Y . For multiplication and division
(P-Op-MD), the mean is updated as before, but also the variance of the random
variable, and the covariances with the dependent random variables.

Example 4. Consider the program X = Normal(1, 1); Y = X + 2; Z = Y ∗ 2.
After the first statement we have the state µ = [1] and Σ = [1]. The second
statement updates the state such that,

µ′ =

[
1
3

]
Σ′ =

[
1 1
1 1

]
The last statements updates the state into

µ′′ =

[
1
3
6

]
Σ′′ =

[
1 1 2 · 1
1 1 2 · 1

2 · 1 2 · 1 22 · 1

]
=

[
1 1 2
1 1 2
2 2 4

]

Sum of random variables. The sum of two Gaussian random variables (P-Sum)
adds a new random variable to the multivariate Gaussian. The mean of the
new random variable is the sum of the means of the operands. The covariance
of the resulting random variable is the sum of the covariances of the operands
with other variables, i.e., the new variable depends on all the variables that the
operands depend on. The variance is the sum of the variances of the operands,
and the covariances of the operands.

Example 5. Consider the program X = Normal(15, 2); Y = Normal(2, 1); Z =
X + Y . After the second assignment we have

µ′ =

[
15
2

]
Σ′ =

[
2 0
0 1

]
Thus, the third assignment updates the state’s multivariate Gaussian into

µ′′ =

[
15
2

15 + 2

]
=

[
15
2
17

]
Σ′′ =

[
2 0 2 + 0
0 1 0 + 1

2 + 0 0 + 1 2 + 1 + 0 + 0

]
=

[
2 0 2
0 1 1
2 1 3

]

Conditions. For conditioning (P-Cond), we use Thm. 5 introduced in Sect. 2.2.
As a result of conditioning, the observed variable is removed from the mean
vector and covariance matrix. Note that, despite P-Cond applying to the newest
random variable, we may perform an affine transformation using a permutation
matrix that swaps the order of random variables. Thus, conditions may refer to
any variable in the multivariate Gaussian.

10 R. C. Rønneberg et al.

Example 6. Let µ′′, and Σ′′ be those in the final state of the program in Exam-
ple 5. Suppose that we extend the program with the statement condition(Z, 1).
The resulting multivariate Gaussian is updated as

µ′′′ =

[
15
2

]
+

1− 17

3
·
[
2
1

]
=

[
15
2

]
+

[
−32/3
−16/3

]
=

[
13/3
−10/3

]
Σ′′′ =

[
2 0
0 1

]
− 1

3
·
[
2
1

]
· [2 1] =

[
2 0
0 1

]
− 1

3
·
[
4 2
2 1

]
=

[
8/3 −2/3
−2/3 2/3

]
Recall that covariances may be negative as the covariance matrix is positive
definite (cf. Sect. 2.2).

3.2 Soundness and Termination

In what follows, we show that the semantics rules in Fig. 2 are sound, and that
the inference engine always terminates for well-formed programs.

We establish soundness of our engine by ensuring that all program statements
perform a closed-form transformation on the state’s multivariate Gaussian distri-
bution. Lemmas (1-5) assert the soundness of each of the rules in →s (cf. Fig. 2).
For example, below we show the proof of the lemma for sum of random variables
(i.e., P-Sum) whose soundness is based on the affine transformation property
of multivariate Gaussian distributions (cf. Thm. 3). The lemma asserts that the
distribution resulting from executing the program statement is a well-formed
multivariate Gaussian and also that the newly introduced variable is distributed
as the sum of the operands. We refer interested readers to the extended version of
the paper [36] for the proofs of the remaining lemmas. Again, we omit the sound-
ness details of deterministic statements and expressions as they are standard.
The soundness of the Ret rule follows from lemmas (1-5) and Thm. 1.

Lemma 1 (Sum random vars.). Let [X1, X2, . . .]
⊺ ∼ N (µ,Σ). For all states

S = ⟨µ,Σ, σ⟩, if ⟨Y = Xi +Xj ,S⟩ →s ⟨µ′,Σ′, σ⟩ and [X1, X2, . . . , Xi +Xj]
⊺ ∼

N (µ′′,Σ′′), then [X1, X2, . . . , Y]⊺ ∼ N (µ′,Σ′) and N (µ′,Σ′) = N (µ′′,Σ′′).

Proof. Let A be a m× n projection matrix where An = In where In is a n× n
identity matrix, An+1[i] = An+1[j] = 1 and An+1[k] = 0 for i, j ̸= k. Let b = 0.
Then, by matrix multiplication [X1, X2, . . . , Xi +Xj]

⊺ = AX + b. By Thm. 3,
[X1, X2, . . . , Xi +Xj]

⊺ ∼ N (Aµ+ b,AΣA⊺). By matrix multiplication

Aµ+ b =

[
µ

µXi + µXj

]
AΣA⊺ =

[
Σ Σ[.,Xi]

+Σ[.,Xj]

Σ[Xi,.]
+Σ[Xj ,.]

Σ[Xi,Xi]
+Σ[Xj ,Xj]

+Σ[Xi,Xj]
+Σ[Xj ,Xi]

] (3)

By definition 1 and eq. (3) we have that µ′ = Aµ + b and Σ′ = AΣA⊺. Thus,
[X1, X2, . . . , Y]⊺ ∼ N (µ′,Σ′) and N (µ′,Σ′) = N (Aµ+ b,AΣA⊺).

Exact and Efficient Bayesian Inference for Privacy Risk Quantification 11

Lemma 2 (Independent assignment). Let [X1, X2, . . .]
⊺ ∼ N (µ,Σ). For all

states S = ⟨µ,Σ, σ⟩, if ⟨Y = Normal(e1, e2),S⟩ →s ⟨µ′,Σ′, σ⟩ and ⟨S, ei⟩ →e ci,
then [X1, X2, . . . , Y]⊺ ∼ N (µ′,Σ′) and Y ∼ N (c1, c2) and Y,Xi are independent.

Lemma 3 (Dependent assignments). Let [X1, X2, . . .]
⊺ ∼ N (µ,Σ). For all

states S = ⟨µ,Σ, σ⟩, if ⟨Y = Normal(e1 ∗ Xi + e2, e3),S⟩ →s ⟨µ′,Σ′, σ⟩ and
⟨S, ei⟩ →e ci, then [X1, X2, . . . , Y]⊺ ∼ N (µ′,Σ′) and Y | Xi ∼ N (c1Xi + c2, c3).

Lemma 4 (Binary operations with values). Let [X1, X2, . . .]
⊺ ∼ N (µ,Σ)

and ⊕ ∈ {+,−, ∗, /}. For all states S = ⟨µ,Σ, σ⟩, if ⟨Y = Xi ⊕ e,S⟩⟩ →s

⟨µ′,Σ′, σ⟩ and ⟨S, e⟩ →e c and [X1, X2, . . . , Xi ⊕ c]⊺ ∼ N (µ′′,Σ′′), then [X1,
X2, . . . , Y]⊺ ∼ N (µ′,Σ′) and N (µ′,Σ′) = N (µ′′,Σ′′).

Lemma 5 (Conditioning). Let [X⊺
a , Y]⊺ ∼ N (µ,Σ). For all states S = ⟨µ,Σ,

σ⟩, if ⟨S, e⟩ →e c and ⟨condition(Y, c),S⟩ →s ⟨µ′,Σ′, σ⟩, then X ′ ∼ N (µ′,Σ′)
and X ′ = Xa | Y = c.

Readers familiar with semantics of probabilistic programs will note that these
lemmas define the cases of a pushfoward measure semantics à la Kozen [7] on
the program statements in our language. A standard induction on the structure
of well-formed programs establishes soundness of our inference engine.

We also establish termination of our inference engine.

Lemma 6 (Termination). Given a well-formed program, the process of com-
puting the resulting multivariate Gaussian always terminates.

Proof. Well-formed programs are unbounded but finite sequences of program
statements. Thus, to prove termination, it suffices to prove that each program
statement is evaluated in finite time. Expressions (V-Exp, C-Exp, O-Exp) and
deterministic statements (D-Asg, Seq) can be resolved in constant time. For-
loops (For-B,For-I) are bounded and can be unfolded in linear time in the
number of iterations. Probabilistic assignments (P-Asg-Ind, P-Asg-Dep) ex-
tend the mean vector with one element and the covariance matrix with a row and
column vectors. Both operations can be performed in linear time in the number
of variables of the program. Binary operations between random variables and
values (P-Op-PM, P-Op-MD), summation of random variables (P-Sum) and
conditioning (P-Cond) are computed as a sequence of matrix multiplication
operations. All these operations can be computed in polynomial time in the size
of the program state, which is never larger than quadratic in the number of
variables in the program. Return (Ret) performs a lookup in the mean vector
and covariance matrix, which can be computed in constant time.

Our inference engine not only terminates for all well-formed programs, but, most
importantly, it is very efficient. In Sect. 5, we study the scalability of the inference
engine, and we show that it can efficiently analyze systems with thousands of
random variables. Moreover, we show that our method scales much better than
existing tools for the family of programs captured by our language.

12 R. C. Rønneberg et al.

Age group Males Females

21-30

500 480 470 410
460 430 420 450
490 510 460 410
440 480 510 310
520 410 370 440

31-40

550 410 450 500
490 580 520 530
530 420 510 600
590 400 620 390
680 510 550 390

41-50

600 540 590 640
640 590 540 580
580 620 740 540
340 510 140 830
620 660 540 740

51-60

700 680 690 680
740 640 720 780
590 650 680 580
770 630 590 730
540 840 640 980

Age group Males Females

21-30

N (480, 100) N (490, 100) N (450, 100) N (430, 100)
N (440, 100) N (420, 100) N (410, 100) N (430, 100)
N (490, 100) N (490, 100) N (470, 100) N (400, 100)
N (520, 100) N (490, 100) N (490, 100) N (330, 100)
N (470, 100) N (400, 100) N (350, 100) N (400, 100)

31-40

N (500, 100) N (410, 100) N (400, 100) N (450, 100)
N (470, 100) N (490, 100) N (490, 100) N (480, 100)
N (500, 100) N (410, 100) N (500, 100) N (550, 100)
N (540, 100) N (410, 100) N (590, 100) N (350, 100)
N (500, 100) N (400, 100) N (510, 100) N (360, 100)

41-50

N (580, 100) N (530, 100) N (550, 100) N (490, 100)
N (590, 100) N (510, 100) N (520, 100) N (500, 100)
N (560, 100) N (590, 100) N (650, 100) N (480, 100)
N (280, 100) N (500, 100) N (150, 100) N (790, 100)
N (580, 100) N (600, 100) N (510, 100) N (700, 100)

51-60

N (680, 100) N (570, 100) N (680, 100) N (670, 100)
N (620, 100) N (610, 100) N (690, 100) N (700, 100)
N (600, 100) N (570, 100) N (630, 100) N (570, 100)
N (700, 100) N (600, 100) N (500, 100) N (670, 100)
N (520, 100) N (770, 100) N (600, 100) N (770, 100)

Table 1: Left : Incomes pr. year in DKK for different age groups and genders.
The numbers have been scaled down by a factor of 1000. Right : Priors used in
the experiments. The means are scaled down by a factor of 1000.

4 Case Study: Privacy Risks in Public Statistics

We analyze a program computing statistics on a database containing incomes
for different genders and age groups. The purpose of this case study is to demon-
strate the applicability of our approach in a real-life example. Average incomes
are available through public national statistics banks [1,2,3], which makes in-
formation available to attackers. Leakage of private information and database
reconstruction attacks are known issues (e.g., in US census data [21]). We use our
inference engine to quantify the increase of attacker knowledge, as she gradually
obtains statistics from a database. We also analyze a differentially private [18]
mechanism in this setting. The case study uses a small database, but in Sect. 5 we
show that our inference engine scales to databases with thousands of individuals.

Releasing public statistics. Consider a data analyst that releases average statis-
tics on population income for different age groups and genders. An attacker
with access to the statistics attempts to learn the income of an individual in the
database. We consider the synthetic data shown in Tbl. 1 (left). The table shows
the income for 40 individuals in different age groups and genders. We consider
3 different cases. Case 1) the attacker obtains the average income for males in
the age group 21-30. Case 2) the attacker also obtains the average income for
all people in the age group 21-30. Case 3) the attacker also obtains the average
income for all males. In all cases the attacker attempts to learn the income of
the first male in database in the age group 21-30. We note that the observations
made by the attacker are independent, so it does not matter in which order the
attacker obtains the observations.

Exact and Efficient Bayesian Inference for Privacy Risk Quantification 13

To understand the privacy risks for these 3 cases we use the Privug method
described in Section 2. In the following code snippet we show how to model the
steps for case 1 using our inference engine. We model the program using our
syntax (step 2).

1 def agg():

2 male_21_30 = [Normal(480_000, 100),]

3 male_21_30_total = male_21_30[0] + male_21_30[1] ...

4 male_21_30_average = male_21_total/10

5 condition("male_21_30_average", 472_000)

6 return male_21_30[0]

The array in line 2 contains the priors of the income for the individuals in
the database—Tbl. 1 (right) shows the complete list—denoted as P (Ii). They
represent the possible incomes that the attacker considers possible before making
any observations (step 1). The victim is the first male in the 21-30 age group,
P (I1). In lines 2-3, we compute the average income of this each group, which
defines P (O|Ii). In line 5, we add the attacker observation in the condition
statement (step 3). Finally, in line 6 we return the posterior distribution of
the victim P (I1|O), which represents the updated attacker knowledge (step 4).
Note that, for brevity, we omit the repetitive parts of the code. Also, arrays are
syntactic sugar. We refer interested readers to [35] for the complete source code.

Figure 3 shows how attacker knowledge is updated in the 3 cases above, and
how close it is to real victim data (vertical line). We plot the prior attacker knowl-
edge P (I1), and for each case we plot the posterior distribution after conditioning
on the output P (I1|O). The left plot shows the updated attacker knowledge with-
out differential privacy. As the plot shows, the attacker knowledge gets closer to
the actual income when obtaining more information. The most accurate attacker
knowledge is case 3 where the attacker obtains several average statistics.

Releasing public statistics with differential privacy. Given the above results, the
data analyst decides to use a differentially private mechanism [18] to protect
the individuals’ privacy. Differential Privacy (DP) is used in realistic settings for
the release of public statistics. Notably, it was used in the 2020 US Census as
a result of privacy issues in previous US Census editions [21]. Intuitively, if the
privacy protection mechanism satisfies differential privacy, then the impact of an
individual on the output of the program is negligible. More precisely, differential
privacy states that: a randomized mechanism M : I → O is (ϵ, δ)-differentially
private if for all O ⊆ O, and neighboring inputs i1, i2 ∈ I, the following holds

P (M(i1) ∈ O) ≤ exp(ϵ)P (M(i2) ∈ O) + δ.

The neighboring relation between inputs depends on the input domain (I). For
instance, when it applies to datasets of n natural numbers, Nn, it is usually
defined as the first norm ||ix − iy||1. The parameter ϵ is often referred to as the
privacy parameter, and it is used to specify the required level of privacy. The
parameter δ is the probability of failure. This parameter relaxes the definition
of differential privacy. It is used to specify the probability that pure differential

14 R. C. Rønneberg et al.

48000 48500 49000 49500 50000 50500
0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040 Prior
Case 1
Case 2
Case 3
True income

48000 48500 49000 49500 50000 50500
0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040 Prior
Case 1 DP
Case 2 DP
Case 3 DP
True income

Fig. 3: Updated attacker knowledge after adding observations. Incomes are scaled
down by a factor of 10. Left : Public stats. Right : Public stats with DP.

privacy (i.e., with δ = 0) does not hold. This parameter may be used to, e.g.,
enable high utility gains while keeping a good level of privacy. Both ϵ and δ are
often determined empirically [17].

We analyze a differentially private mechanism for the 3 cases presented above.
To this end, we apply the Gaussian mechanism [18], which adds Gaussian noise
to the observable output (o) as o + N (0, σ2). The parameter σ2 is calculated
as follows: σ2 = 2∆2 log(1.25/δ)/ϵ2. The sensitivity ∆ ∈ R denotes how much o
changes if computed in two datasets differing in at most 1 entry. In our setting,
it is ∆ = (max income −minincome)/sizeDB . We set δ = 1/size2DB—as usual for
this query [18]. We set ϵ to 0.9—this is an arbitrary value, but it is common to
use values < 1 in practice [17]. Adding Gaussian noise is proven to satisfy (ϵ, δ)-
differential privacy [18]. We remark that our method can be used to determine
the values of ϵ and δ that satisfy high level privacy requirements. For instance,
privacy requirements specified as probability queries for a given individual or
using quantitative information flow metrics [32]. The program implementing the
Gaussian mechanism is shown in the following listing

1 def agg_dp():

2 ...

3 noise = Normal(0, 1442533240)

4 male_21_30_average_dp = male_21_30_average + noise

5 condition("male_21_30_average_dp", 472_000)

6 return male_21_30[0]

We only show lines that change namely: line 3 where the noise distribution is
defined, and line 6 where we add the noise to the output. The variance σ2 of the
noise distribution is calculated using the equation above.

The right plot in Fig. 3 shows the updated attacker knowledge in the 3 cases.
We observe a decrease in privacy risks when using differential privacy; as the
change in attacker knowledge is insignificant for all cases. The plot shows that
the impact of the victim’s data on the released statistics is minuscule compared
to the non-differentially private version of the output.

Information leakage metrics. In addition to inspecting the distributions of at-
tacker knowledge in Fig. 3, we show for demonstration how to compute two

Exact and Efficient Bayesian Inference for Privacy Risk Quantification 15

KL divergence Mutual information
Case 1 Case 2 Case 3 Case 1 Case 2 Case 3

Public stats 312.762 3621.29 14374.13 4.17e-04 6.25e-05 7.81e-06
Diff. Priv. 1.55e-12 1.72e-12 1.81e-12 5.00e-12 3.14e-13 2.16e-14

Table 2: Left : KL-divergence between prior and posterior attacker knowledge on
secret. Right : Mutual information between secret and output random variables.

metrics for information leakage: KL-divergence and mutual information [16].
Let [P,Q]⊺ ∼ N (µ,Σ). KL-divergence is KL(P,Q) = log2(Σ

1/2
[Q,Q]/Σ

1/2
[P,P]) +

(Σ[P,P] + (µP − µQ)
2)/2Σ[Q,Q] − 1/2, and mutual information is I(P,Q) =

1/2 log2(Σ[P,P]Σ[Q,Q]/|Σ|).
Table 2 shows the results. The left shows the KL-divergence between prior

and posterior attacker knowledge on the secret. Intuitively, this is commonly
understood as information gain [11]. We observe an increase in information gain
from case 1 to 3 (both with and without differential privacy). However, with
differential privacy, information gain is virtually 0 for all cases. Tbl. 2 (right)
shows mutual information between attacker knowledge on the secret and the
output. When mutual information between two random variables is 0, it means
that the variables are independent. Thus, a value of mutual information close to
0 indicates that the amount of information shared between secret and output is
low. We observe that mutual information decreases from case 1 to 3 (both with
and without differential privacy). This is due to the output containing informa-
tion for a larger set of individuals (which minimizes the effect of the secret on
the output). As expected, mutual information is lower with differential privacy.
Admittedly, these metrics are hard to interpret in practice, but we remark that
more important than the concrete values is their relative distance—it provides
a quantitative mean to compare information leakage in different settings.

5 Scalability Evaluation

We evaluate the scalability of our exact inference engine proof-of-concept im-
plementation. The scalability of Bayesian inference engines mainly depends on
the number of random variables. Thus, we consider two synthetic benchmark
programs with increasing number of variables. The first computes the sum over
an increasing number of variables O =

∑n
i=1 Xi. We choose this benchmark as

it was originally used to measure the scalability of Privug [32]. We compare the
scalability of our engine to Privug MCMC using the NUTS [26] sampler and the
exact inference engine PSI [23]—PSI is the leading inference engine supporting
the features of our language (cf. Sect. 6). We instruct NUTS to draw 10000
samples in 2 chains—this number of samples produces an accurate posterior in
this benchmark, see [32]. The second program performs the same computation

16 R. C. Rønneberg et al.

100 200 300 400 500 600 700
Number variables

0

500

1000

1500

2000

2500

Se
co

nd
s

Privug exact
PSI
Privug MCMC
Regression line PSI
Regression line Privug exact
Regression line Privug MCMC

0 10000 20000 30000 40000 50000 60000 70000
Number variables

0

100

200

300

400

500

Se
co

nd
s

Privug exact

0 1000 2000 3000 4000 5000
Number variables

0

500

1000

1500

2000

Se
co

nd
s

Privug exact condition

Fig. 4: Execution time for our engine (privug-exact), Privug NUTS (privug-
mcmc) and PSI. Left : privug-mcmc, privug-exact, and PSI on O =

∑n
i Xi.

Middle: privug-exact on O =
∑n

i Xi. Right : privug-exact on condition(O, c).

but adds a condition statement condition(O, c). The purpose is to evaluate the
scalability of our engine in more realistic settings for the case study in Sect. 4.
The evaluation run on a 4x2.80GHz cores machine with 16 GB RAM.

Figure 4 (left) shows the measured times for the first program. Execution
time does not increase significantly when going from 100 to 700 variables us-
ing our engine. On the other hand, PSI takes approximately 40 minutes when
summing 700 variables. Most notably, our engine greatly outperforms PSI—in
this experiment, it was more than 40.000 times faster than PSI for 700 vari-
ables. Privug MCMC exhibits better results, but our engine scales better. As
the number of variables increases, we observe a bigger gap between our engine
and Privug MCMC—with our engine 6 times faster for 700. It is noteworthy
that our exact engine outperforms an approximate inference method.

Figure 4 (middle,right) focus on the scalability for larger systems. The middle
plot, shows that our engine can handle the first program with 70000 variables
more efficiently that PSI for 700. Figure 4 (right) mimics the case study (Sect. 4).
We observe that the condition statement notably degrades the performance of
our engine. However, the running time for 5000 individuals is less than 40min.
We omitted PSI in this benchmark as conditioning would only decrease its per-
formance, and the previous experiment showed its lower scalability w.r.t. our
engine. Privug MCMC is also omitted as a fair comparison requires determining
the number of samples to draw to obtain an accurate posterior.

6 Related Work

The majority of existing methods to estimate privacy risks use sampling based
techniques [32,34,12,15,14,13]. In [32], Privug made use of MCMC algorithms
to perform Bayesian inference, e.g., Metropolis-Hastings or Hamiltonian Monte
Carlo [6,25,26]. Other sampling based methods target specific quantitative infor-
mation flow metrics [4]—these metrics are supported by Privug [32], and hence
by our engine. LeakWatch/Leakiest [15,14] use program samples to estimate mu-
tual information between secret inputs and public outputs. Cherubin et al. and
Romanelli et al. [12,34], use machine learning to compute metrics from the g-
leakage family [4]. These methods treat programs as black-boxes, so they can
analyze any program, as opposed to our method that targets a subset of Python

Exact and Efficient Bayesian Inference for Privacy Risk Quantification 17

programs. However, their accuracy guarantees are proven in the limit, i.e., as-
suming an infinite size sample. In practice, samples are finite and it is often
difficult to ensure that results are accurate; specially for programs with large
number of variables (such as the ones in Sect. 5). On the contrary, our inference
engine produces exact results. This is crucial as a under-approximations could
miss important privacy breaches. Furthermore, the scalability evaluation shows
that the inference engine scales better than MCMC-based Privug, which is one
of the most scalable methods for this type of systems [32].

There exist several works that use exact inference in the context of privacy
risk analysis. SPIRE [29] uses the exact inference engine PSI [22,23] to model at-
tacker knowledge and synthesize privacy enforcers. PSI computes a symbolic rep-
resentation of the joint probability distribution of a given program. It can handle
continuous and discrete random variables. It targets a more expressive program-
ming language than the subset of Python that our engine supports. However,
PSI scales poorly compared to our engine for programs that our engine supports
(cf. Sect. 5). Hakaru [31] and SPPL [37] are exact inference engines—not used
for privacy risk analysis. We did not consider them in our evaluation because
they do not handle some features of our language. Hakaru cannot handle condi-
tioning probability-zero events (as in lemma 5). SPPL does not support linear
combination and sum of Gaussians (as in lemmas 3, 1). QUAIL [9] computes
mutual information between input and output variables. It performs forward
state exploration of a program to construct a Markov chain, which is then used
to compute mutual information. QUAIL works on discrete random variables.
Instead, our inference engine works on Gaussian (continuous) random variables
and computes the posterior distribution that can be used to compute mutual
information (cf. Sect. 4) and other quantitative information flow metrics [32,4].

Stein and Staton proposed a Gaussian-based semantics to study exact con-
ditioning through the lens of category theory [38]. They do not study the use of
the semantics for privacy risks quantification on a subset of Python programs,
or evaluate the efficiency of the semantics.

7 Conclusion

We have presented an exact Bayesian inference engine for quantifying privacy
risks in a subset of Python. We have proven that our inference engine is sound.
We have presented an application of our engine to analyze privacy risks on public
statistics; a realistic case study for national statistics agencies where privacy risks
analysis is crucial. We have also analyzed the impact of differential privacy on
data release. In the scalability evaluation, we have shown that our engine can ana-
lyze systems with thousands of random variables, and that it greatly outperforms
existing tools. All in all, this work provides a new point in the study of expressive-
ness vs performance. Future work includes adapting our engine with underlying
probabilistic models that capture more Python program statements, for instance
Gaussian mixtures or the exponential family of probability distributions.

18 R. C. Rønneberg et al.

References

1. Statistics Denmark. https://www.dst.dk/en, accessed: 2023-06-23
2. Statistics New Zealand. https://www.stats.govt.nz/, accessed: 2023-06-23
3. US Census Bureau. https://www.census.gov/, accessed: 2023-06-23
4. Alvim, M., Chatzikokolakis, K., McIver, A., Morgan, C., Palamidessi, C., Smith,

G.: The Science of Quantitative Information Flow. Springer (2020)
5. Article 29 Data Protection Working Party: Opinion 05/2014 on Anonymisation

Techniques (2014), http://www.pdpjournals.com/docs/88197.pdf
6. Avi Pfeffer: Practical probabilistic programming. Manning Publications Co. (2016)
7. Barthe, G., Katoen, J.P., Silva, A. (eds.): Foundations of Probabilistic Program-

ming. Cambridge University Press (2020)
8. Biondi, F., Kawamoto, Y., Legay, A., Traonouez, L.: Hybrid statistical estimation

of mutual information and its application to information flow. Formal Aspects
Comput. 31(2), 165–206 (2019)

9. Biondi, F., Legay, A., Traonouez, L., Wasowski, A.: QUAIL: A quantitative security
analyzer for imperative code. In: CAV’13. pp. 702–707. Springer Berlin Heidelberg
(2013)

10. Bishop, C.M.: Pattern recognition and machine learning. Information science and
statistics, Springer, New York (2006)

11. Burnham, K.P., Anderson, D.R.: Model Selection and Multimodel Inference: A
Practical Information-Theoretic Approach. Springer-Verlag New York (2002)

12. Cherubin, G., Chatzikokolakis, K., Palamidessi, C.: F-BLEAU: fast black-box leak-
age estimation. In: SP’19. pp. 835–852. IEEE (2019)

13. Chothia, T., Guha, A.: A statistical test for information leaks using continuous
mutual information. In: CSF’11. pp. 177–190. IEEE (2011)

14. Chothia, T., Kawamoto, Y., Novakovic, C.: A tool for estimating information leak-
age. In: CAV’13. LNCS, vol. 8044, pp. 690–695. Springer (2013)

15. Chothia, T., Kawamoto, Y., Novakovic, C.: Leakwatch: Estimating information
leakage from Java programs. In: ESORICS’14. LNCS, vol. 8713. Springer (2014)

16. Cover, T.M., Thomas, J.A.: Elements of information theory (2. ed.). Wiley (2006)
17. Dwork, C., Kohli, N., Mulligan, D.: Differential privacy in practice: Expose your

epsilons! Journal of Privacy and Confidentiality 9(2) (2019)
18. Dwork, C., Roth, A.: The algorithmic foundations of differential privacy. Found.

Trends Theor. Comput. Sci. 9(3-4), 211–407 (2014)
19. Eaton, M.: Multivariate Statistics: A Vector Space Approach. Lecture notes-

monograph series, Institute of Mathematical Statistics (2007)
20. Elliot, M., Mackey, E., O’Hara, K., Tudor, C.: The Anonymisation Decision - Mak-

ing Framework. UKAN, University of Manchester (2016)
21. Garfinkel, S.L., Abowd, J.M., Martindale, C.: Understanding database reconstruc-

tion attacks on public data. Commun. ACM 62(3), 46–53 (2019)
22. Gehr, T., Misailovic, S., Vechev, M.T.: PSI: exact symbolic inference for proba-

bilistic programs. In: CAV’16. LNCS, vol. 9779, pp. 62–83 (2016)
23. Gehr, T., Steffen, S., Vechev, M.: λPSI: exact inference for higher-order probabilis-

tic programs. In: PLDI’20. pp. 883–897. ACM (2020)
24. Gordon, A.D., Henzinger, T.A., Nori, A.V., Rajamani, S.K.: Probabilistic pro-

gramming. In: FOSE’14. pp. 167–181. ACM (2014)
25. Greenberg, S.C.E.: Understanding the Metropolis-Hastings Algorithm p. 10
26. Homan, M.D., Gelman, A.: The no-u-turn sampler: Adaptively setting path lengths

in hamiltonian monte carlo. J. Mach. Learn. Res. 15(1), 1593–1623 (jan 2014)

https://www.dst.dk/en
https://www.stats.govt.nz/
https://www.census.gov/
http://www.pdpjournals.com/docs/88197.pdf

Exact and Efficient Bayesian Inference for Privacy Risk Quantification 19

27. Jaynes, E.T.: Probability theory: The logic of science. Cambridge University Press,
Cambridge (2003)

28. Koller, D., Friedman, N.: Probabilistic Graphical Models - Principles and Tech-
niques. MIT Press (2009)

29. Kucera, M., Tsankov, P., Gehr, T., Guarnieri, M., Vechev, M.T.: Synthesis of
probabilistic privacy enforcement. In: CCS’17. pp. 391–408. ACM (2017)

30. McElreath, R.: Statistical rethinking: A Bayesian course with examples in R and
Stan. CRC press (2020)

31. Narayanan, P., Carette, J., Romano, W., Shan, C., Zinkov, R.: Probabilistic in-
ference by program transformation in hakaru (system description). In: FLOPS’16.
LNCS, vol. 9613, pp. 62–79. Springer (2016)

32. Pardo, R., Rafnsson, W., Probst, C.W., Wasowski, A.: Privug: Using probabilistic
programming for quantifying leakage in privacy risk analysis. In: ESORICS’21.
LNCS, vol. 12973. Springer (2021)

33. Robert, C.P., George Casella: Monte Carlo Statistical Methods. Springer (2004)
34. Romanelli, M., Chatzikokolakis, K., Palamidessi, C., Piantanida, P.: Estimating

g-leakage via machine learning. In: CCS’20. ACM (2020)
35. Rønneberg, R.C., Pardo, R., Wąsowski, A.: Exact and Efficient Bayesian Inference

for Privacy Risk Quantification (Accompanying Artifact). https://www.doi.org/10.
5281/zenodo.8173905

36. Rønneberg, R.C., Pardo, R., Wąsowski, A.: Exact and efficient bayesian inference
for privacy risk quantification (extended version). https://doi.org/10.48550/arXiv.
2308.16700 (2023)

37. Saad, F.A., Rinard, M.C., Mansinghka, V.K.: SPPL: Probabilistic programming
with fast exact symbolic inference. In: PLDI’21. p. 804–819. ACM (2021)

38. Stein, D., Staton, S.: Compositional semantics for probabilistic programs with
exact conditioning. In: LICS’21. pp. 1–13. IEEE (2021)

https://www.doi.org/10.5281/zenodo.8173905
https://www.doi.org/10.5281/zenodo.8173905
https://doi.org/10.48550/arXiv.2308.16700
https://doi.org/10.48550/arXiv.2308.16700

	Exact and Efficient Bayesian Inference for Privacy Risk Quantification

