
P R O B A B I L I S T I C M O D E L I N G F O R G A M E C O N T E N T
C R E AT I O N A N D A D A P T I O N

M I G U E L G O N Z Á L E Z - D U Q U E

A framework for adapting content to users based on
Gaussian Processes and Deep Generative Models

April 2023
Digital Design Department

IT University of Copenhagen

Miguel González-Duque: Probabilistic modeling for game content creation
and adaption, a framework for adapting content to users based on Gaus-
sian Processes and Deep Generative Models, © April 2023

P R O B A B I L I S T I C M O D E L I N G F O R G A M E C O N T E N T
C R E AT I O N A N D A D A P T I O N

M I G U E L G O N Z Á L E Z - D U Q U E

miguelgondu@gmail.com
miguelgondu.com/about

This thesis is available online:
miguelgondu.com/assets/phdthesis.pdf

Creative AI Lab
Digital Design Department

IT University of Copenhagen

Supervisors

Prof. Sebastian Risi
IT University of Copenhagen

Prof. Søren Hauberg
Technical University of Denmark

This dissertation is submitted to the Digital Design Department
in partial fulfillment of the requirements for the

degree of Doctor of Philosophy (PhD) at the
IT University of Copenhagen

Submitted:
4th of April, 2023

Defended:
12th of June, 2023

Copenhagen, Denmark

Para Hernán y Diana
con mucho amor,

y con todo el agradecimiento.

R E S U M É

Forskning inden for dynamisk justering af sværhedsgrader i spil fokuserer
på, hvorledes spilindhold kan tilpasses spillerens niveau med henblik på
at bevare vedkommende i en opslugt flow-tilstand. Størstedelen af ekspe-
rimenter inden for området opererer ud fra metoder, der tilpasser faktorer,
såsom modstander-AI eller tilgængelighed af spilressourcer, for derved at
maksimere spillerens engagement eller minimere sandsynligheden for, at
spilleren opgiver spillet. Disses metoder vedligeholder imidlertid ikke en
model af spilleren og benytter ydermere teknologier, der er yderst specifik-
ke for de spil, hvori eksperimenterne udføres (fx kan de være afhængige af,
at modstander-AI’ens søgealgoritme har adgang til forward-modeller). Nu-
værende metoder tillader desuden ikke at indstille sværhedsgraden, hvis
spildesignere skulle ønske indhold af højere eller lavere sværhedsgrad.

Denne afhandling fremsætter og undersøger en metode, baseret på bayesi-
ansk optimering, hvori spilindhold kan tilpasses brugeren og dermed give
spildesignere større fleksibilitet til at sigte mod et ønsket færdighedsniveau.
Med udgangspunkt i alle mulige design, en målbar værdi, forudgående vi-
den om denne værdi samt en idealværdi gennemsøger vores metode hur-
tigt alle mulige spil-baner/missioner efter en af den ideelle sværhedsgrad
(det vil sige, et design, der har den fastsatte idealværdi). Som en del af pro-
cessen vedligeholder vores metode en enkel data-baseret model af spille-
ren, som kan bruges til yderligere beslutningstagning og analyse.

Vi undersøger denne metode i to forskellige omstændigheder: Først i til-
pasningen af spilniveauer inden for ‘dungeon crawler’-spilgenren til AI-
spillere baseret på søgealgoritmer så som Monte Carlo tree search og rol-
ling horizon-evolution, og dernæst i tilpasningen af både sudoku og ‘dun-
geon crawler’-spil til menneskelige spillere. Vores metode formår at tilpas-
se spilindhold til AI-spillere, så længe disses færdighedsniveau ikke er ek-
stremt, og rammer et passende sudokuspil efter omkring 7 iterationer.

Frem for at lade vores metode være afhængig af spildesigneres angivelse af
et reelt tal for indkodning af spilindholdet (fx antallet af placerede cifre fra
start i en sudoku), undersøger vi ydermere hvordan denne indkodning kan
automatiseres ved hjælp af deep generative maskinlæringsmodeller. Med
andre ord udforsker vi designmuligheder ud fra indlærte mulige spildesign
fra variationsautomatindlejringsmodeller (variational autoencoders) træ-
net i spil som Super Mario Bros og The Legend of Zelda ved hjælp af spilba-
ner udtrykt i skrifttegn.

Endelig adresserer vi den udfordring, at maskinlæringsmodeller ikke altid
genererer spilbart indhold, og vi bidrager med en ny metode til at inter-
polere, stikprøveudtage og optimere spilbare dele af variationsautomatind-
lejringsmodellernes mulige spildesign. Dette bidrag, baseret på differenti-
al geometri, er inspireret af nylige fremskridt inden for robotteknologi og

vii

proteinmodellering. Vi kombinerer disse idéer om generering af spilbart
indhold og indholdsoptimering og fremsætter dermed en indsnævret ver-
sion af bayesiansk optimering, hvori indholdet af mulige spilbare områder
optimeres. Vi mener at se et tydeligt kompromis i denne metode: Ved at
indsnævre muligt spilindhold til blot spilbare områder reduceres diversite-
ten af det genererede indhold samt kvaliteten af optimeringens idealværdi-
er.

Med andre ord undersøger denne afhandling bayesiansk optimering og
deep generative maskinlæringsmodellers anvendelsesmuligheder i skabel-
sen og tilpasningen af spilindhold til spillere. Vi udvikler en metode der
hurtigt finder relevante baner i alt fra korpusser over baner til autogenere-
ret muligt spilindhold, og vi demonstrerer ved hjælp af eksperimenter med
både menneskelige og AI-spillere at denne metode formår at finde passen-
de spilindhold i løbet af få iterationer. Denne metode er let anvendelig og
kan benyttes til at skabe spil der lærer af og tilpasser sig til deres spillere.

viii

A B S T R A C T

Dynamic Difficulty Adjustment studies how games can adapt content to
their users’ skill level, aiming to keep them in flow. Most of these methods
maximize engagement or minimize churn by adapting factors like the op-
ponent AI or the availability of resources. However, such methods do not
maintain a model of the player, and use technologies that are highly spe-
cific to the games in which they are tested (e.g. requiring forward models
for enemy AIs based on planning agents). Designers may also intend to
find content that is more difficult/easier on purpose, and current methods
do not allow for such targeting.

This thesis proposes and tests a framework for adapting game content to
users based on Bayesian Optimization, giving designers flexibility when
choosing which skill level to target. Starting with a design space, a metric
to be measured, a prior over this metric, and a target value, our framework
quickly searches possible levels/tasks for one with ideal difficulty (i.e. close
to the specified target). In the process, our framework maintains a simple
data-driven model of the player, which could be used for further decision-
making and analysis.

We test this framework in two settings: adapting content to planning agents
based on search algorithms like Monte Carlo Tree Search and Rolling Hori-
zon Evolution in a dungeon crawler-type game, and adapting both Sudoku
puzzles and dungeon crawler levels to players. Our framework successfully
adapts content to planning agents as long as their skill level is not extreme,
and takes roughly 7 iterations to find an appropriate Sudoku puzzle.

Additionally, instead of relying on designers to specify a real-valued encod-
ing of the content (e.g. the number of pre-filled cells in a Sudoku puzzle),
we investigate learning this encoding automatically using Deep Generative
Models. In other words, we explore design spaces learned as latent spaces
of Variational Autoencoders using tile-based representations of games like
Super Mario Bros and The Legend of Zelda.

Our final contribution is a novel way of interpolating, sampling and opti-
mizing in the playable regions of latent spaces of Variational Autoencoders,
and addresses the challenge that generative models are not always guaran-
teed to decode playable content. This contribution, based on differential
geometry, is inspired by recent advancements in domains like robotics and
protein modeling. We combine these ideas of safe generation with content
optimization and propose a restricted version of Bayesian Optimization,
which optimizes content inside playable regions. We see a clear trade-off:
restricting the latent space to playable regions decreases the diversity of
the generated content, as well as the quality of the optimal values in the
optimization.

ix

In summary, this thesis studies applications of Bayesian Optimization and
Deep Generative Models to the problem of creating and adapting game
content to users. We develop a framework that quickly finds relevant levels
in settings varying from corpora of levels to the latent spaces of generative
models, and we show in experiments involving both human and artificial
players that this framework finds appropriate game content in a few iter-
ations. This framework is readily applicable, and could be used to create
games that learn and adapt to their players.

x

A C K N O W L E D G E M E N T S

In 2018, I emailed Niels Justesen, a then PhD student at ITU working with
Sebastian Risi. In it, I asked a couple of questions about a paper he had just
written on building bots for playing StarCraft. After a couple of exchanges
and a meeting over Skype (!), I asked if I could come visit ITU and write my
master’s thesis under his supervision.

At first, ITU said no. The fact that I was a visiting MSc student and not a
PhD made the bureaucracy more difficult. However, after more emails and
meetings my visit was approved, and I set foot in Copenhagen for the first
time in February 2019. The visit was so fruitful that Sebastian invited me to
apply for a PhD position. I was accepted in July and came back to Denmark
in late September 2019.

For being so kind as to answer a random Colombian mathematician’s cold
email, I would like to start by thanking Niels. Our collaboration quickly
turned into friendship during those 2 months in early 2019, and it set the
first steps of my PhD in motion.

Next, I would like to thank my supervisor Sebastian for his support from
the very beginning. I leave ITU having learned from one of the best. Sebas-
tian has always been patient, professional and present. Most of all, I thank
him for giving me the opportunity to pursue my curiosity with complete
freedom.

In 2021, midway through my PhD, I cold-emailed Søren Hauberg about
some applications of his work on differential geometry to content gener-
ation in games. He replied by inviting me to give a talk to his group, af-
ter which I joined his lab as a visiting student. Søren is an incredible re-
searcher, and I thank him for welcoming me into his group, for his supervi-
sion, and for his kind words and brilliant insights.

Both Sebastian and Søren strive to make their research groups as welcom-
ing and social as possible. I am really thankful for the friends I made in
both: Elías Najarro, Djordje Grbic, Katt Walker, Rasmus Berg Palm, Claire
Glanois, Louisa di Felice, Henrique Galvan Debarba, Rodrigo Moreno, Ali-
son Pouplin, Dimitris Kalatzis, Jeppe Theiss Kristensen, Rosemary Lee, Mads
Johansen, Joachim Winther Pedersen, Laurits Dixen, Thomas Volden, among
many others.

Copenhagen has welcomed me with open arms during my studies, and I
consider myself incredibly lucky for the friends I have made during these
three-and-a-half years. Starting with Sophie Thorkildsen, Dom Ford and
Simon Bøg, with whom I have shared so many wonderful dinners, beers,
boardgame nights, and laughs. Another friend I’m happy to have close is
Santiago Quintero, who is like a brother to me. I also cannot forget to men-
tion and thank Sergio Garrido for his friendship, and for so many insightful

xi

chats about probabilistic modeling. Plenty more friends fit this list: Joleen
Blom, Priscila Santos da Costa & Luca Lemoni, David Wegmann, Petros
Ioannidis, Nina Croitoru, Piyakorn Koowattanataworn, and Imke Grabe. I
would also like to thank Johanna for all the love, support and silliness in
the final months of this dissertation. I’m happy to be surrounded by all of
you.

In 2022, I took a leave of absence to work at the Bosch Center for AI, close
to Stuttgart. I am glad to have met and been supervised by Leonel Rozo,
from whom I learned plenty. During my stay in Germany, I was also lucky
enough to make a couple of friends among my colleagues, like Noémie
Jaquier, Hadi Beik-Mohammadi, David Adrian, Jan Wöhlke, Aleksandar Tara-
novic and Leo himself.

Close to the end of my PhD I visited Malmö University, and I would like to
thank José María Font for welcoming me and inviting me to give a presenta-
tion in their Computer Science department. José María gave me thorough
feedback on several chapters of this dissertation and helped me guide the
writing process. Thanks!

Finally, my family has also been a great source of support before and during
my studies. The reason I’m here is thanks to the hard work of both my
parents, Hernán and Diana; the reason I became an academic in the first
place is because of my older brother Daniel, with whom I keep geeking to
this very day.

xii

Contents

I I N T R O D U C T I O N 1

1 I N T R O D U C T I O N 3
1.1 Research hypotheses . 4
1.2 List of contributions . 5
1.3 Thesis layout & summary of chapters 6

2 T H E P R O B L E M : G E N E R AT I N G A N D S E R V I N G G A M E C O N T E N T 11
2.1 Experience-Driven PCG . 11
2.2 Dynamic Difficulty Adjustment 12
2.3 Conclusion & outlook . 15

II A P P L I C AT I O N S O F G A U S S I A N P R O C E S S E S 17

3 A N I N T R O D U C T I O N T O G A U S S I A N P R O C E S S E S A N D B AY E S I A N

O P T I M I Z AT I O N 19
3.1 An introduction to Gaussian Processes 20
3.2 Building priors using MAP-Elites 24
3.3 A tutorial on Bayesian Optimization 25
3.4 Example: Comparing Bayesian Optimization with evolution-

ary algorithms . 27
3.5 Summary & outlook . 31

4 A D A P T I N G C O N T E N T T O P L A N N I N G A G E N T S U S I N G B AY E S I A N

O P T I M I Z AT I O N 33
4.1 Introduction: the intelligent trial-and-error algorithm . . . 33
4.2 A basic dungeon crawler using GVGAI 34
4.3 Building priors for planning agents 35
4.4 Dynamic Difficulty Adjustment via ITAE 40
4.5 Discussion & limitations . 43

5 A D A P T I N G C O N T E N T T O P L AY E R S U S I N G B AY E S I A N O P T I M I Z A -
T I O N 45
5.1 Introduction: a Bayesian Optimization Framework for Dy-

namic Difficulty Adjustment 45
5.2 Modelling positive values . 47
5.3 Separating the modeling from the optimization 47
5.4 Experimental set-up . 48
5.5 Deploying the experiment: two web applications 51
5.6 Results . 52
5.7 Discussion & limitations . 55
5.8 Conclusion . 58

xiii

xiv C O N T E N T S

III A P P L I C AT I O N S O F D E E P G E N E R AT I V E M O D E L S A N D D I F F E R -
E N T I A L G E O M E T R Y 59

6 A N I N T R O D U C T I O N T O D E E P G E N E R AT I V E M O D E L S I N V I D E O

G A M E S 61
6.1 What is generative modeling? 61
6.2 Autoregressive models . 62
6.3 Generative Adversarial Networks 63
6.4 Variational Autoencoders . 63
6.5 VAEs on Discrete inputs: the Categorical likelihood 68
6.6 Examples of discrete VAEs . 70
6.7 Related work: DGMs in games 73
6.8 DGMs & functional content 75

7 T O W A R D S S A F E C O N T E N T G E N E R AT I O N U S I N G D I F F E R E N T I A L

G E O M E T R Y 79
7.1 An intuitive introduction to differential geometry 80
7.2 Manipulating the geometry of latent spaces 82
7.3 An application in robotics . 86
7.4 An application in protein modeling 87
7.5 Applying geometry to video game content: challenges . . . 87
7.6 Conclusion & outlook . 88

8 D E F I N I N G L AT E N T S PA C E G E O M E T R I E S F O R (A L M O S T) A N Y

D I S T R I B U T I O N 89
8.1 Revisiting differential geometry 89
8.2 Data space vs. parameter space 90
8.3 Pulling back the Fisher-Rao 92
8.4 Experiment: decoding to several distributions 93
8.5 Experiment: Modelling human poses 94
8.6 Black-box random geometries, an implementation 96
8.7 Discussion & limitations . 99

9 G E N E R AT I N G & O P T I M I Z I N G G A M E C O N T E N T S A F E LY 101
9.1 Motivation: Playable content in latent space 101
9.2 Calibrating for safety: challenges 103
9.3 Calibrating for safety: playable levels 104
9.4 Calibrating for safety: high metric volume 105
9.5 Approximating the playability manifold with a graph 107
9.6 Experiment: interpolations and random walks 110
9.7 Experiment: restricted Bayesian Optimization 115
9.8 Limitations . 117
9.9 Conclusion . 119

IV C O N C L U S I O N 121

10 C O N T R I B U T I O N S , D I S C U S S I O N & F U T U R E W O R K 123
10.1 Contributions . 123
10.2 Discussion . 124
10.3 Addressing limitations & future work 126
10.4 Conclusion . 128

C O N T E N T S xv

V A P P E N D I X 129

A T R A I N I N G D E TA I L S & I M P L E M E N TAT I O N S 131
A.1 Links to open source implementations 131
A.2 Training Gaussian Processes 132
A.3 Training Variational Autoencoders 133
A.4 Safe interpolation and sampling 136

B I B L I O G R A P H Y 137

List of Figures

Figure 1.1 Using Bayesian Optimization to adapt content. This
thesis studies the use of Bayesian Optimization to
tailor content to a given player (both artificial and
human). Once a target is set and a prior or “guess”
is optionally specified, the Bayesian Optimization
proposes a certain content specification xn+1, the
content generation algorithm creates the new con-
tent, serves it to the player, and records a metric
tn+1. This is stored in a playtrace, which is used
to update the prior, repeating the loop. In contrast
to prior methods, this framework allows designers
to target specific difficulties, does not require ac-
cess to a game’s forward model, and does not rely
on gathering playtraces from players before deploy-
ment. 4

Figure 1.2 Thesis layout. This dissertation has 4 different parts.
The first one contains an introduction to the prob-
lem, the second one deals with applications of Gaus-
sian Processes and Bayesian Optimization, the third
one dives into automatic content generation using
Deep Generative Models, and how to address the
safety problem (i.e. generated content not being
playable) using differential geometry, and the last
part contains a summary of the contributions and
points to future work. The second and third parts
can be read almost independently, except for the fi-
nal experiments in Chap. 9 which leverage Bayesian
Optimization. Chap. 8 formalizes the discussion on
differential geometry, and provides a new method
for defining latent space geometries for (almost) any
VAE. 7

xvi

List of Figures xvii

Figure 3.1 An example of GP regression. The function f (x) =
x sin(x) (the dashed orange line) is approximated
using a GP on a dataset of 20 noisy samples (de-
noted with X). The GP regression’s posterior mean
µ∗(x) is shown in blue, with a shaded region repre-
senting the uncertainty of one posterior standard
deviationσ∗(x) (See Eq. (3.2)), which is higher when
there is no data to support the prediction. This ac-
cess to uncertainty in the predictions is not avail-
able in other approximations that are not proba-
bilistic by default, like linear regression or when us-
ing neural networks. 21

Figure 3.2 Returning to the prior outside the support. The
prior in a GP allows for specifying domain knowl-
edge, since the prediction will “return to it” outside
of the data provided. This figure illustrates this in
the running example by restricting the dataset to
the [−2.5,2.5] interval. 23

Figure 3.3 Comparing black-box optimization algorithms. This
figure summarizes a comparison between BO and
ES along two axes: sample efficiency and dimen-
sionality of the problem. BO is sample efficient and
works best on lower dimensions; ES requires large
amounts of compute, but is parallelizable and works
well in high dimensions. 28

Figure 3.4 Two test functions to benchmark black-box opti-
mization algorithms. This figure shows the Easom

and Cross-in-tray functions (Eqs. (3.9) and (3.10)),
which are commonly used as benchmarks of black-
box optimization algorithms (Al-Roomi, 2015; Bing-
ham, 2013). 28

Figure 3.5 Optimizing benchmark functions using BO. This
figure shows the GP approximation and the EI ac-
quisition function at the last step of a BO run for
both Easom and Cross-in-tray. After 23 iterations,
BO has a reasonable approximation of the Easom

function, and achieves an optimum of 0.998; on the
other hand, it takes 53 iterations for BO to find an
optimum of 2.540 on Cross-in-tray. 29

Figure 3.6 Optimizing Easom using CMA-ES. Using CMA-ES
with a population size of 10 and a random starting
point, it takes 13 generations to find a suitable opti-
mum (i.e. one that is at most 10−2 from the global
optima). This implies that the objective function
was called 130 times. This figure shows the popula-
tions in generations 2, 6, and 13. 30

xviii List of Figures

Figure 3.7 Num. of objective function queries in CMA-ES and
BO. See the main text for analysis. 30

Figure 4.1 Overview of our first experiment. First, we evolve
a prior using MAP-Elites for a given agent A. Each
cell in this prior maintains an elite level with ap-
proximately 60% win rate, and we illuminate each
cell by how close the elite is to said performance.
We show two such elites. In the second phase of our
experiment, we use this prior as a proxy for the diffi-
culty of agent B (potentially different from agent A).
We use Intelligent Trial-and-Error (ITAE) to query
and test level, iteratively updating the prior to adapt
to the new agent. After some iterations, we are able
to find a level with roughly 60% win rate for agent B. 34

Figure 4.2 One random level and its mutations. In Fig. 4.2a
we show the outcome of running random_solution()
once, followed by the result of randomly mutating
the level three times. The mutation procedure re-
moved the third row and two walls in Fig. 4.2b, and
a new row and wall were added while removing an
enemy in Fig. 4.2c, and two enemies and a wall were
added in Fig. 4.2d. 36

Figure 4.3 Performance function p(w). 37
Figure 4.4 Evolved priors for different planning agents: This

figure shows the final generation of our MAP-Elites
procedure designed to evolve levels with a 60% win
rate for the planning agents used. The cells are illu-
minated by win rate, and the red-white arrow points
towards a level with roughly 60% win rate, shown to
the right. We used three behavioral characteristics,
which we will explain using the highlighted elite for
Rolling Horizon Evolution (RHEA). Leniency counts
the number of enemies in the level (1 in this ex-
ample), Reachability adds the lengths of the short-
est paths from agent to goals (2 in the agent-to-key
path, plus 3 in the key-to-goal path), and Space Cov-
erage is the percentage of filled tiles (100%). Each
2D map averages over the remaining feature. 39

List of Figures xix

Figure 4.5 A successful adaptation using ITAE. This figure shows
the RHEA prior, illuminated by performance p(w)
(shown in exponential scale to make changes more
visible). Starting with this prior, we search for a
level that is difficult enough for an MCTS agent. ITAE
first queries a dense level with only one enemy (as
can be seen in the first column), which MCTS finds
too easy. The search then adapts to a harder level
shown in the second column, increasing in reacha-
bility and leniency. Finally, the search finds a level
with approximately 0.6 win rate in the third query. 42

Figure 4.6 An unsuccessful adaptation using ITAE. We illumi-
nate the MCTSprior, illuminated by performance p(w)
(shown in exponential scale to make changes more
visible). In this attempt, no compensatory level was
found in the first 20 iterations of ITAE. This figure
shows the predicted performance in the first and
last iteration, the performance dims as OLETS finds
all the queried levels too easy. 42

Figure 5.1 An example of a Sudoku puzzle. 45
Figure 5.2 A Bayesian Optimization framework for adapting

Sudoku puzzles. This is an adaptation of Fig. 1.1 to
the specific example of Sudokus. 46

Figure 5.3 Example of a dungeon level. 49
Figure 5.4 Priors for both games. This figure illustrates the

prior (i.e. first guess on the player’s completion times,
crafted using expert knowledge) for both games. The
prior for Sudoku states that puzzles that are almost
full are easy (passing by (x = 80, t = 3)), and puzzles
that are sparse are difficult (i.e. (x = 17, t = 600)).
Similarly, the prior for Dungeon Crawler states that
levels without enemies in which the goals are close
by are easy to solve, and levels with distant goals
and several enemies are difficult. We illuminate the
Dungeon Crawler with the completion time speci-
fied by the prior. 50

Figure 5.5 Absolute errors vs. Iteration for Sudoku. We show
the absolute error for each one of the traces. In
both experiments, we see how the error gets pro-
gressively smaller after each iteration. We also no-
tice that the prior of our approach proposed an ini-
tial Sudoku that was closer, on average, to the target
goal. In contrast, the Binary search’s initial guess of
(81−17)/2 proved to be too hard for several players. 53

xx List of Figures

Figure 5.6 The average Sudoku player, and a couple of traces.
(a) shows the result of fitting a GP with all the traces
collected. In a sense, it shows the average Sudoku
player according to our data. (b) and (c) show two
individual traces. In both of these, our framework
took 5 iterations to find a Sudoku with the right level
of difficulty. 54

Figure 5.7 Average error vs. Iteration for Dungeon Crawler.
We show the mean absolute errors per iteration for
both our approach (Bayesian) as well as the two
baselines (doing noisy hill-climbing by taking Gaus-
sian steps, and sampling levels at random). The ag-
gregated error for each method is highlighted as a
horizontal bar, with the exact numerical value shown
in the legend. On average, our method performs
slightly better than the two baselines according to
this metric. A deeper dive into the data shows that,
iteration-wise, our model does not necessarily per-
form better. 55

Figure 5.8 Example playtrace for Dungeon Crawler. The top
row shows the model’s prediction for completion
time in the first and eighth iterations of one play-
trace using our framework. The bottom row shows
the acquisition function. We see how the “ideal level”
according to our system starts in the middle of the
corpus and progressively moves upwards towards
more difficult levels. Indeed, the first level proposed
was solved in 5.4 seconds, and the eighth took 9.6
seconds (these are highlighted using a pink circle). 56

Figure 5.9 Linear regression vs. GP. Modeling with linear re-
gression in log-space can result in unrealistic pre-
dictions of completion time, unlike a GP with an
informative prior. The dashed line (linear regres-
sion of log-times) indicates that sparse puzzles are
easier than full ones, while the continuous blue line
(GP) still predicts sparse levels to be difficult. 57

Figure 6.1 Latent space of MNIST(1). The color map corre-
sponds to the value ofσθ(z). Training a VAE results
in unreliable uncertainty estimates, with areas far
from the training codes having low variance. 67

List of Figures xxi

Figure 6.2 Modeling discrete data using probability vectors.
We show the construction of the one-hot encoding
for an example in SMB. Highlighting a tile xl = t2

(i.e. a breakable stone), a probability vector pl is
constructed such that pl ,2 = 1 and the rest are 0.
After this transformation, each level x becomes a
tensor with 3 dimensions, where the first two cor-
respond to the positions l and the last one corre-
sponds to which tile the level should decode to. . . 69

Figure 6.3 Variational Autoencoder with Categorical Likeli-
hood. This diagram shows how a given discrete se-
quence x ∈ RL is transformed into the parameters
of the approximate Gaussian posterior qφ(z |x) with
parameters µφ(x) and σφ(x)2. This distribution is
sampled (denoted with red dashed arrows), outputting
latent codes z ∈Rd that get transformed via the de-
coder into logits, unnormalized log-probabilites which,
after passing through a Softmax activation, trans-
form into probability vectors, one for each xl , with
l = 1, . . . ,L. 69

Figure 6.4 Three examples from SMB. After our postprocess-
ing of the original SMB levels present in the Video
Game Level Corpus (VGLC), we store a dataset of
2713 levels of shape 14×14. This figure shows three
of these selected at random. 70

Figure 6.5 Taking tiles with maximum probability vs. sam-
pling. After sampling a z at random from the prior,
Fig. 6.5a shows the result of considering the tiles
that maximize the probability per tile (i.e. taking
the argmax) in pθ(x |z). Fig. 6.5b shows two sam-
ples from pθ(x |z), sampling from the Categorical
distributions defined by the probability vectors {p1(z), . . . , p14×14(z)}
given by the decoder. These probability vectors are
visualized, per class, in Fig. 6.6. 71

Figure 6.6 Probability vectors for a sampled z . Using the same
latent code from Fig. 6.5, this figure illustrates the
probabilities p·,c for all tiles tc in the vocabulary
of SMB (Table 6.1). The dominant probability is
“empty space” -, followed by some ground tiles in
the pattern of a platform ladder in X. Enemies E

have a high probability of occurring above the last
step of the ladder. Fig. 6.5a shows the resulting level
from taking, for each position, the token with max-
imum probability, and Fig. 6.5b shows the result of
sampling from the probability vectors. 72

xxii List of Figures

Figure 6.7 Visualizing latent space with a grid. We visualize 2-
dimensional latent spaces using an evenly-spaced
grid of G ×G points in a region of latent space (like
the [−5,5]2 square), plotting the decoded images
side-to-side. This figure schematizes this construc-
tion for G = 5 and highlights the region that corre-
sponds to the level presented in Fig. 6.5a. A version
of this grid with G = 10 is presented in Fig. 9.1a. . . 72

Figure 6.8 A grid of levels in latent space (Zelda). This Fig.
shows a grid of G = 5 levels in the [−1,4]2 square in
latent space (Fig. 6.7). Levels tend to have incom-
plete doors, and falling away from the support of
the data (e.g. the level in the top-left) results in lev-
els that do not correspond to the distribution. . . . 73

Figure 6.9 Three examples from Zelda’s latent space. We show
three examples of levels decoded from the latent
space of Zelda, which come from sampling latent
codes at random. 74

Figure 6.10 Playability in latent space. A grid of latent codes
(Fig. 6.7, with G = 50 and the same limits) is de-
coded and tested using Baumgarten’s A* agent. Blue
colors correspond to playable regions, and white to
non-playable. 76

Figure 7.1 Playable (a) and not playable levels (b) from an
SMB VAE. 79

Figure 7.2 Manifold hypothesis in SMB. SMB levels live close
to a low-dimensional surface on high-dimensional
logit space R14×14×11. We highlight a level on the
surface, which under this hypothesis corresponds
to a training example, and a randomly sampled level
outside of it. The goal of a representation learning
algorithm (like our VAEs) is to approximate this sur-
face. 80

Figure 7.3 Gaussian VAEs as probabilistic charts. Gaussian
VAEs learn a mean surface and estimate the uncer-
tainty around it. Here, we show our latent space
Z ⊆ Rd and its image under the decoder. We map
a point z to µθ(z), with uncertainty σθ(z). 83

Figure 7.4 Translated sigmoidsα(z ;β) as a function of the dis-
tance to the centers minDist(z). For lower values of
the hyperparameter β > 0 we get a translated sig-
moid that raises to 1 faster. 84

List of Figures xxiii

Figure 7.5 Impact of the hyperparameterβ. As shown in Fig. 7.4,
the hyperparameter β governs how “quickly” the
VAE extrapolates to uncertainty in the mechanism
proposed by Skafte, Jørgensen, and Hauberg. This
figure shows the modified decoder’s uncertainty above
and the induced metric volume below. Lower val-
ues of β allow for quicker extrapolation, which in-
duces a “wall” of metric volume. 85

Figure 8.1 From data space to parameter space. Instead of
using the data space (left) to define distances in la-
tent space, using the parameter space (right) allows
for defining latent space geometries to latent spaces
of VAEs that decode to (almost) any distribution. . 91

Figure 8.2 Decoding to several distributions. Using a toy set-
up for the latent space, this figure shows the energy-
minimizing curves that result from pulling back the
Fisher-Rao metric when decoding to several distri-
butions. These are colored by uncertainty, with white
areas corresponding to low entropy. Most curves
follow the support of the data, except for the Bernoulli
decoder. 95

Figure 8.3 Interpolations in a latent space of human motion.
Left shows the latent space of a VAE trained to de-
code to a product of vMF distributions, modeling
the motion of a person walking by specifying the
parameters of a vMF distribution for each bone in
the pose. Highlighted are two interpolations: one
linear in dark red, and an energy-minimizing inter-
polation in green. Right shows the result of decod-
ing these interpolations. By staying within the sup-
port of the data, the geodesic interpolation in green
produces a plausible walking animation. 96

Figure 8.4 Uncertainty calibration in the vMF example. This
figure shows the impact of calibrating the uncer-
tainty of a VAE that decodes to a vMF. After calibra-
tion, the regions outside the support are assigned
high uncertainty, where darker colors correspond
to lower values of the concentration parameter. . . 98

Figure 8.5 Latent space of motion with geodesics. 99

xxiv List of Figures

Figure 9.1 Playability structure in latent space. Fig. 9.1a shows
a 10×10 grid of levels, which are the result of decod-
ing evenly-spaced latent codes in the [−5,5]2 square
(See Fig. 6.7 for a detailed explanation). Fig. 9.1b
shows a 50×50 heatmap with blue corresponding
to playable levels, fading to white where the levels
were not solved by Baumgarten’s A* agent. There is
a clear structure of playability in the latent spaces
of VAEs, with a possibility of avoiding unplayable
regions in interpolations, sampling and optimiza-
tion. Such structure is present for different VAEs
trained on the same dataset, as is shown in Fig. 9.1c. 102

Figure 9.2 Support and playability do not necessarily correlate.103
Figure 9.3 Metric volumes after calibration in a vanilla VAE.

Using the original extrapolation mechanism proposed
by Detlefsen, Hauberg, and Boomsma results in “build-
ing a wall” of metric volume around training codes,
which is shown in Fig. 9.3a. However, as can be
seen in Fig. 9.2, playability and support do not nec-
essarily correlate. We study an alternative for ex-
trapolation, which considers unplayable codes to
be highly uncertain (just like the original extrapola-
tion treated the complement of the support). This
alternative allows for assigning high cost at the bound-
ary between the playable and unplayable parts of
the latent space, but assigns 0 metric volume to all
the unplayable content. By using a hierarchical layer
in the decoder, we are able to assign a high cost to
all unplayable codes (see Fig. 9.6b). 104

Figure 9.4 Comparing the calibration of a vanilla and a hier-
archical VAE. This figure compares two VAEs trained
on SMB, without and with a hierarchical layer. Figs. 9.4a
and 9.4b show a 50× 50 grid of playability, where
blue regions correspond to playable and white to
non-playable. Using the modified decoders for the
vanilla and the hierarchical alternatives, we arrive
at different values for the metric volume in Figs. 9.4c
and 9.4d. Notice how, while the vanilla alternative
only builds a wall around unplayable content, the
hierarchical alternative makes all unplayable codes
expensive. This modification is also present after
decoding a 10× 10 grid of levels, but only for the
hierarchical alternative (Figs. 9.4e and 9.4f). 106

Figure 9.5 One-layer-hierarchical VAE. Red dashed arrows rep-
resent sampling from a Normal distribution. To be
compared with Fig. 6.3. 107

List of Figures xxv

Figure 9.6 Calibrating the decoder to high volume in non-playable
regions We illustrate the process of constructing our
discrete graph approximation P for one of our Zelda
VAEs. Starting with the coarse grid approximation
of how playability is distributed in latent space pre-
sented in Fig. 9.6a, we modify the decoder as de-
scribed in Sec. 9.4. After this calibration, the metric
volume explodes in regions close to non-playable
content, as Fig. 9.6b shows. To choose only the playable
levels, we consider only those that decode to met-
ric volumes lower than a certain threshold, arriving
at the discrete approximation shown in Fig. 9.6c.
Finally, Fig. 9.6d shows levels in the latent space
of this VAE, highlighting examples of playable and
non-playable levels which align with the coarse playa-
bility grid (the example provided is not playable since
it has no doors nor stairs). 108

Figure 9.7 Different degrees of safety when approximating.
For one of our SMB models, we show the initial grid
of playability in Fig. 9.7a, a 50×50 matrix with blue
blocks corresponding to playable parts of the latent
space. Our framework starts with this coarse grid
and builds finer discrete approximations, governed
by a safety hyperparameter s > 0. Small values of
s correspond to being safer, selecting fewer levels
close to the non-playable ones. Figs. 9.7b, 9.7c, 9.7d
and 9.7e show the discrete approximation in a 100×
100 grid when using s ∈ {0.7,0.9,1,1.1} respectively.
Increasing the value of s corresponds to including
more levels, as can be visualized in e.g. the upper-
left corner of these figures. 109

Figure 9.8 Interpolations and diffusions in the jumping re-
gions. This figure presents examples of interpola-
tions and random walks for the regions of latent
space that correspond to levels in which Mario jumps
at least once. More precisely, Figs. 9.8a and 9.8b
show the interpolations and diffusions definied in
the playability graph P . Fig. 9.8c shows example
linear interpolations (used in both baselines) and
Figs. 9.8d and 9.8e show the random walks of the
baselines. Interpolations inside the playability graph
stay away from non-functional levels (shown in white),
sometimes at the cost of getting stuck bottlenecks
(see the upper part of 9.8b). On the other hand, the
baselines touch the regions of the latent space that
correspond to non-functional content often. 111

xxvi List of Figures

Figure 9.9 Comparing playability and diversity. This figure
shows the distributions of playability and diversity,
which are summarized in Table 9.1, where (I) stands
for interpolations and (RW) stands for random walks.
For each VAE we performed 20 interpolations and
10 random walks, selecting the starting points at
random. These quantities were measured in each
interpolation/random walk. Our interpolations and
diffusions have most of their playability mass closer
to 1.0 than the baselines; however, this comes at a
slight cost on diversity: the mass for estimated di-
versities is lower than the baselines. 113

Figure 9.10 Experiments on restricted domain Bayesian Opti-
mization. Fig. 9.10a illustrates how our proposed
restricted domain Bayesian Optimization (RBO) com-
pares against vanilla BO and random sampling when
maximizing the number of jumps in a given level
of SMB. While vanilla BO achieves better optima
than the rest, RBO goes through the optimization
in a safer manner (depending on the safety hyper-
parameter s, see Sec. 9.4). In other words, our pro-
posed method fails to find levels with a high num-
ber of jumps in most of the traces when compared
against the baseline, but it is more likely to sample
playable levels in all the iterations of the optimiza-
tion. We clip the y-axis of the maximum number
of jumps to 50 for easier comparisons, but there
were outliers for Random, BO and RBO going over
50. Fig. 9.10b shows an individual trace for RBO
(s = 1.3). After searching the upper-right corner,
the model explores the lower-left and finds an op-
timum with 18 jump action calls. We highlight the
initial guess and the optima. 116

Figure A.1 Unused latent spaces for Zelda. In Fig. A.1a, the
learned representation is constant columnwise. Figs. A.1b,
A.1c and A.1f show latent spaces that are not con-
vex, splitting the playable regions into different blocks.
Finally, Figs. A.1d, and A.1e show noisy latent spaces.135

List of Tables

Table 4.1 Amount of levels per difficulty: The MAP-Elites pro-
cedure evolves levels, aiming at a 60% win rate. This
table shows the number of levels segmented by win
rate in each evolved corpus. These results show the
diversity in skill among the agents, with the advanced
ones finding most levels too easy, and the basic agents
achieving diversity in their skill landscape. The base-
line controllers find most levels too difficult. 40

Table 4.2 Mean iterations to find a level with ideal difficulty.
This table presents the average number of updates
required to find a level with p(w) ≥ 0.75 for all pairs
of priors and agents. We repeat each experiment 10
times, and we present the number of iterations in
which a compensatory level was successfully found
in less than 20 iterations (e.g. 7/10 means the search
found a level with high enough performance in 7
out of 10 runs), together with the average number
of updates for the successful iterations. These re-
sults show that Bayesian Optimization has poten-
tial for content adaption since we are able to find a
suitable level in a few iterations. However, whether
we are able to find a compensatory level depends
on the skill of the agent, with advanced bots like
OLETS performing too well in all the levels of the
basic agent’s priors. The same can be said for the
Random agent, for which IT&E fails to compensate
in the priors of the advanced agents. 41

Table 5.1 Average time and absolute errors for Sudoku. This
table shows, for iterations ranging between 1 and 8,
the number of unique traces, the average comple-
tion time, and the average absolute error for both
our Bayesian approach and the binary search base-
line. 52

xxvii

xxviii List of Tables

Table 5.2 Average absolute errors for Dungeon Crawler. If
we aggregate all results for the experiments, we see
that our approach (denoted Bayesian) gets an av-
erage absolute error that is significantly lower than
that of the two baselines (noisy hill-climbing and
sampling random levels). This pattern does not nec-
essarily hold for the grouped iterations, where we
fail to see any statistical significance. 54

Table 6.1 Vocabulary in SMB 68
Table 9.1 Comparison between the proposed methods and

baselines for SMB, Zelda, and the jump subman-
ifold. Our method is compared against the base-
lines on two fronts: the playability of the content
decoded, as well as its diversity across the entire in-
terpolation/random walk. Both baselines use lin-
ear interpolation, but “Baseline” corresponds to the
center-seeking random walks, while “Normal” cor-
responds to taking Gaussian steps in latent space.
This table presents the means and standard devi-
ations after running the experiments on 10 differ-
ent VAE runs for SMB, and 4 selected VAE runs for
Zelda. We highlight the highest numbers per col-
umn. This shows that our proposed interpolation
and random walks tend to decode to playable con-
tent more often than the baselines (indeed, the ex-
pected playability is higher for ours). These results
also show that there is a trade-off between this in-
crease in playability and the diversity of the sam-
pled levels, especially when it comes to performing
random walks on Zelda. The final third of the ta-
ble also shows that the reliability holds, even when
considering a different definition of functionality
in SMB levels (i.e. levels in which Mario jumps at
least once). 114

Table 10.1 Instances of the framework. This table summa-
rizes the components of the different instances of
the framework presented in this thesis. 124

Table A.1 Links to open source implementations of experi-
ments. 131

Table A.2 Vocabulary in Zelda 133

List of Tables xxix

Table A.3 Models used in toy experiment. This table describes
the neural networks used for the experiment pre-
sented in Sec. 8.4. Following the notation of Py-
Torch, Linear(a,b) represents an MLP layer with a
input nodes and b output nodes. In each of these
networks, we calibrate the uncertainty using the meth-
ods described in Sec. 7.2, and we specify the β hy-
perparameter present in the translated sigmoid (Eq.
(7.9)). These networks were not trained in any way:
they were initialized using the provided seed. . . . 135

A C R O N Y M S

AI Artificial Intelligence

ARD Automatic Relevance Detection

ARM Autoregressive Model

BO Bayesian Optimization

CMA-ES Covariance Matrix Adaptation - Evolutionary Strategy

DDA Dynamic Difficulty Adjustment

DDGM Diffusion-based model

DGM Deep Generative Model

EBM Energy-based Model

EDPCG Experience-Driven Procedural Content Generation

EI Expected Improvement

ELBO Evidence Lower Bound

ES Evolutionary Strategy

FBM Flow-based Model

FR Fisher-Rao (metric)

GAN Generative Adversarial Network

GP Gaussian Process

GPLVM Gaussian Process - Latent Variable Model

GPR Gaussian Process Regression

GTS Greedy Tree-Search

GVGAI General Video Game AI (framework)

IG Information Geometry

ITAE Intelligent Trial-and-Error

KL Kullback-Leibler (divergence)

LSTM Long Short-Term Memory

LVE Latent Variable Evolution

MAML Model-agnostic Meta Learning

MAP-Elites Intelligent Trial-and-Error

MCTS Monte Carlo Tree Search

OLETS Open Loop Expectimax Tree Search (an agent in the GVGAI
Framework)

OSLA One-Step Look-Ahead

PCA Principal Component Analysis

PCG Procedural Content Generation

PCGML Procedural Content Generation via Machine Learning

xxx

A C R O N Y M S xxxi

RBF Radial Basis Function (kernel)

RBO Restricted Bayesian Optimization

RHEA Rolling Horizon Evolution

RL Reinforcement Learning

RNN Recurrent Neural Network

RS Random Search (an agent in the GVGAI Framework)

SMB Super Mario Bros

SVM Support Vector Machine

UCB Upper-Confidence Bound

VAE Variational Autoencoder

VGDL Video Game Description Language

VGLC Video Game Level Corpus

vMF von Mises-Fisher (distribution)

Part I

I N T R O D U C T I O N

1
I N T R O D U C T I O N

In June of 2016 Hello Games released the video game No Man’s Sky, in
which players get to explore a universe with 264 planets (Higgins, 2014). Ac-
cording to the developers, every planet is different, with unique vegetation,
creatures, and geological formations (Hello Games, 2016). All of this con-
tent is generated on-the-fly, using algorithms to deterministically recreate
the state of the game.

The technology behind this game is an example of Procedural Content Gen-
eration (PCG), i.e. the use of algorithms to generate the content of a video
game (Shaker, Togelius, and Nelson, 2016). This technology has been in
use since as early as the 1980s, with games like Rogue and Elite.

PCG has become its own research field, gaining relevance in Machine Learn-
ing more broadly, as it is an ideal tool to build artificial agents that are more
resilient to changes in their environment, or capable of solving more than
a single task (Cobbe et al., 2020; Risi and Togelius, 2020).

PCG algorithms, like the ones behind the games mentioned above, span
a design space made of all the possible content created by the algorithm.
The size of these design spaces begs the question: How can we efficiently
explore them? More specifically, how can we find content that is personal-
ized to players’ preferences or skills?

This question has been at the center of the research fields of Experience-
Driven PCG (Yannakakis and Togelius, 2011) and Dynamic Difficulty Ad-
justment (Zohaib, 2018, DDA), and is also the focus of this dissertation.
Methods for DDA aim at maximizing engagement by adapting the oppo-
nent’s AI or modifying the level design according to models of the player.
These processes are either highly specific to a certain game type or rely on
expensive data gathering before the system is deployed.

This thesis proposes a framework for quickly adapting content to users,
and gives designers the affordance to target a certain measured value like
completion time or win rate. Shown in Fig. 1.1, the proposed framework
starts with a telemetric to measure, a content generation algorithm, a tar-
get for the telemetric, and optionally a “guess” (or prior) on how the tele-
metric behaves with respect to the content. Our method uses the guess to
propose a piece of content, which is then shown to the user, recording a
value for the telemetric and storing it in a playtrace. These pairs (content,
telemetric) are used to update the prior and repeat the loop.

This framework is based on probabilistic modeling. The main component
is Bayesian Optimization (BO, Shahriari et al., 2016), a black-box optimiza-
tion algorithm that is able to find the targeted level with only a few queries
from the player. For BO to work, a numerical specification of the game con-

3

4 I N T R O D U C T I O N

Figure 1.1: Using Bayesian Optimization to adapt content. This thesis studies
the use of Bayesian Optimization to tailor content to a given player (both artificial
and human). Once a target is set and a prior or “guess” is optionally specified, the
Bayesian Optimization proposes a certain content specification xn+1, the content
generation algorithm creates the new content, serves it to the player, and records
a metric tn+1. This is stored in a playtrace, which is used to update the prior, re-
peating the loop. In contrast to prior methods, this framework allows designers to
target specific difficulties, does not require access to a game’s forward model, and
does not rely on gathering playtraces from players before deployment.

tent needs to be provided (e.g. number of enemies and distances to goals
in a maze-like game). By using Variational Autoencoders (VAEs, Kingma
and Welling, 2014), this numerical representation can be learned automat-
ically. VAEs learn to generate novel samples from a given dataset (e.g. Super
Mario Bros levels), and in the process learn a continuous low-dimensional
latent representation of the content. This relaxes the framework’s require-
ment of a content generation algorithm to just a corpus of levels.

Unfortunately, applying VAEs to video game content comes with a chal-
lenge: these Deep Generative Models (DGMs), usually applied to images
of faces or animals (Karras et al., 2020), learn to generate samples of con-
tent that does not have any functionality requirements; on the other hand,
video game content like game levels need to be functional (i.e. have keys
and doors, or be traversable) (Liu et al., 2020; Summerville et al., 2018).
We address this problem by taking inspiration from methods developed
in other fields like robotics and biology, and propose a solution based on
differential geometry.

This chapter states the research hypotheses of this thesis, lists its contri-
butions, and covers the layout of the thesis, providing a summary of each
chapter.

1.1 R E S E A R C H H Y P O T H E S E S

The main research hypothesis of this dissertation is the following:

Bayesian Optimization is a competitive alternative for dynam-
ically (and safely) adapting content to users due to its sample
efficiency.

1.2 L I S T O F C O N T R I B U T I O N S 5

We test this research hypothesis on several settings: first on planning agents
and a simple dungeon crawler game in Chap. 4, then on actual players and
two games: Sudoku and the same dungeon crawler in Chap. 5.

When improving the framework by adding DGMs to automatically learn
the numerical representations of content, the problem of reliably generat-
ing functional content arises. We formulate a secondary hypothesis on this
front:

Modifying the geometry of the latent space allows for interpo-
lating, sampling, and optimizing playable content reliably in
VAEs trained on tile-based video game levels.

This research hypothesis is explored in Chap. 9, with all the necessary back-
ground explained in the chapters leading up to it: Chap. 6 introduces DGMs
(and VAEs in particular), and Chap. 7 discusses the mathematical tools for
modifying the geometry of the latent space.

1.2 L I S T O F C O N T R I B U T I O N S

This section contains a list of all the research contributions that make this
thesis. During these three-and-a-half years, I participated in 9 research
projects, all of which lead to publications. This thesis describes 4 of them
in depth:

1. „Finding Game Levels with the Right Difficulty in a Few Trials through
Intelligent Trial-and-Error,“ by Miguel González-Duque, Rasmus Berg
Palm, David Ha, and my supervisor Sebastian Risi. Presented at the
Conference on Games (CoG) 2020, and awarded best paper runner-
up.

2. „Fast Game Content Adaptation Through Bayesian-based Player Mod-
elling“ by Miguel González-Duque, Rasmus Berg Palm, and Sebas-
tian Risi. Presented at CoG 2021.

3. „Pulling back information geometry“ by Georgios Arvanitidis, Miguel
González-Duque, Alison Pouplin, Dimitris Kalatzis and my co-supervisor
Søren Hauberg. Presented at the International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) in 2022. All authors share
first authorship.

4. „Mario Plays on a Manifold: Generating Functional Content in La-
tent Space through Differential Geometry“ by Miguel González-Duque,
Rasmus Berg Palm, Søren Hauberg, and Sebastian Risi. Presented at
CoG 2022.

Besides these, I also participated in the following research projects during
my PhD:

• “Learning a behavioral repertoire from demonstrations” by Niels Juste-
sen, Miguel González-Duque, Daniel Cabarcas Jaramillo, Jean-Baptiste
Mouret, Sebastian Risi. Presented at CoG 2020.

6 I N T R O D U C T I O N

• “Towards a framework for human-AI interaction patterns in co-creative
GAN applications” by Imke Grabe, Miguel González-Duque, Sebas-
tian Risi, and Jichen Zhu. Presented at the 3rd Workshop on Human-
AI Co-Creation with Generative Models (HAI-GEN 2022) at the Intel-
ligent User Interfaces conference.

• “Variational Neural Cellular Automata” by Rasmus Berg Palm, Miguel
González-Duque, Shyam Sudhakaran and Sebastian Risi. Presented
at the International Conference on Learning Representations (ICLR)
2022.

• “Bringing robotics taxonomies to continuous domains via GPLVM
on hyperbolic manifolds” by Noémie Jaquier, Leonel Rozo, Miguel
González-Duque, Viacheslav Borovitskiy, and Tamim Asfour. This
paper is still a preprint.1

• “MarioGPT: Open-Ended Text2Level Generation through Large Lan-
guage Models” by Shyam Sudhakaran, Miguel González-Duque, Claire
Glanois, Matthias Freiberger, Elias Najarro, and Sebastian Risi. At the
time of writing, this paper is under review.

1.3 T H E S I S L AY O U T & S U M M A R Y O F C H A P T E R S

This thesis is composed of 4 parts. The first one contains two chapters:
this introduction, and related work on content adaption; the second part
discusses our first two contributions, in which we test the proposed frame-
work for content adaption on planning agents and human players; the third
part focuses on the problem of finding numerical representations of game
content automatically, and reliably generating playable content; the final
part includes a broader discussion, points to possible future work, and con-
cludes. Fig. 1.2 visualizes these parts, including all the chapters and their
interdependencies.

C H A P T E R 2 introduces the problem of adapting game content to users,
surveying the relevant research on Experience-Driven PCG and Dynamic
Difficulty Adjustment, placing our contributions in context.

C H A P T E R 3 provides the mathematical and algorithmic background for
the framework. In it, we introduce Gaussian Processes (GPs) and Bayesian
Optimization (BO), laying out the notation and algorithms used in the fol-
lowing two chapters. This chapter serves as a brief tutorial on GPs and BO,
including a comparison between BO and Covariance Matrix Adaptation -
Evolutionary Strategy (CMA-ES). The reader who is already familiar with
GPs and BO can skim this chapter or skip it completely since the notation
used in this dissertation is standard.

1 I worked on this paper while I was on PhD Sabbatical, working at the Bosch Center for AI.

1.3 T H E S I S L AY O U T & S U M M A R Y O F C H A P T E R S 7

Part 1

Part 2

Part 3

Part 4

1. Introduction

2. The Problem: Generating and
 Serving Game Content

3. An introduction to
 Gaussian Processes and
 Bayesian Optimization

4. Adapting content to
 planning agents using
 Bayesian Optimization

5. Adapting content to
 players using
 Bayesian Optimization

6. An introduction to
 Deep Generative Models
 in video games

7. Towards safe content
 generation using
 differential geometry

8. Defining latent space geometries
 for (almost) any distribution

9. Generating and optimizing
 game content safely

10. Summary - Contributions,
 Discussion & Future Work

Figure 1.2: Thesis layout. This dissertation has 4 different parts. The first one
contains an introduction to the problem, the second one deals with applications
of Gaussian Processes and Bayesian Optimization, the third one dives into auto-
matic content generation using Deep Generative Models, and how to address the
safety problem (i.e. generated content not being playable) using differential ge-
ometry, and the last part contains a summary of the contributions and points to
future work. The second and third parts can be read almost independently, ex-
cept for the final experiments in Chap. 9 which leverage Bayesian Optimization.
Chap. 8 formalizes the discussion on differential geometry, and provides a new
method for defining latent space geometries for (almost) any VAE.

8 I N T R O D U C T I O N

C H A P T E R 4 discusses the first application of our framework, which is
described in our first contribution (González-Duque et al., 2020). In it, we
test using BO for adapting the content of a simple dungeon crawler game
to 8 different planning agents inside the General Video Game AI framework
(Perez-Liebana et al., 2019b). In this experiment, the prior is made using
the Multidimensional Archive of Phenotypic Elites (MAP-Elites) illumina-
tion algorithm (Mouret and Clune, 2015), and the goal consists of finding a
level with approximately 60% win rate for the artificial agents. Results show
that, as long as the artificial agents are not over- or underperforming, our
framework is able to find a compensatory level in a few trials.

C H A P T E R 5 shows an application of our framework to human players.
Two games (Sudoku & the simple dungeon crawler from Chap. 4) are used
to test our system, measuring its ability to adapt content towards a certain
target. In the case of Sudoku, the puzzles are optimized towards puzzles
that take three minutes to solve; for the dungeon crawler, the framework
optimizes for a target of 10 seconds. A comparison against simpler base-
lines shows that our framework is a competitive alternative for adapting
content to users in Sudoku; the same results are shown for the dungeon
crawler, although with more noise and less statistical significance. This
chapter covers the methodology and discussion of our second contribu-
tion (González-Duque, Palm, and Risi, 2021).

C H A P T E R 6 contains an introduction to Deep Generative Models (DGMs),
the main tool for automatically learning representations of game content.
The mathematics of generative modeling are introduced, and the chapter
focuses on Autoregressive Models (ARMs), Generative Adversarial Networks
(GANs) and specifically on Variational Autoencoders (VAEs), which are the
main model used in our experiments. The chapter ends with a discussion
on a problem that arises when using DGMs on certain types of game con-
tent (like tile-based levels): the generated content needs to be functional,
but DGMs learn only the aesthetics. This problem is the focus of the rest of
the dissertation.

C H A P T E R 7 provides an intuitive introduction to differential geometry,
the mathematical toolset used to define safe ways to interpolate, sample,
and optimize in latent space. This chapter follows by explaining how the
geometry of the latent spaces of VAEs can be modified to make certain
regions “expensive” to interpolate through or sample. Applications of dif-
ferential geometry to other fields like robotics and biology are introduced
since they are the inspiration for our methodology. The chapter ends by
listing all the challenges of applying these methods in our setting, which
are then addressed in the next chapters.

C H A P T E R 8 addresses one of the challenges described in Chap. 7, namely
that the process for modifying the latent space geometry of VAEs is highly

1.3 T H E S I S L AY O U T & S U M M A R Y O F C H A P T E R S 9

dependent on the distribution the model decodes to. By using tools from
information geometry, the process of defining latent space geometries can
be generalized to (almost) any decoded distribution. This chapter cov-
ers our third contribution (Arvanitidis, González-Duque, Pouplin, Kalatzis,
and Hauberg, 2022) and is fairly theoretical. A reader with no interest in
differential geometry or latent space geometries can skip it without inter-
rupting the flow of the dissertation.

C H A P T E R 9 discusses how, by modifying the latent space geometry of
a one-layer-hierarchical VAE, we are able to interpolate, sample, and opti-
mize playable game content reliably. In this chapter, we train models on
levels from Super Mario Bros and The Legend of Zelda, and test our pro-
posed methods for latent space exploration against simpler baselines. Re-
sults show that our modified geometry allows for reliably generating playable
content while interpolating, sampling, and optimizing. However, the re-
strictions we impose on the latent space come with a trade-off: the gen-
erated content tends to be less diverse and achieve optima of less qual-
ity. This chapter covers an extension to our fourth contribution (González-
Duque et al., 2022). We submitted this extended version to the IEEE Trans-
actions on Games journal and is currently under review.

C H A P T E R 1 0 summarizes these contributions, provides an overarching
discussion, proposes future work, and concludes.

A P P E N D I X A contains all the technical experimental details (e.g. net-
work specifications, learning rates, and other hyperparameters), which are
omitted from the description of the experimental set-ups to ease the read-
ing of the dissertation. These technical details are presented as links to the
open-source implementations of the experiments.

2
T H E P R O B L E M : G E N E R AT I N G A N D S E R V I N G G A M E
C O N T E N T

In this chapter, we discuss the related work to our main problem: generat-
ing playable game content and adapting it to players. The framework we
propose, which is illustrated in Fig. 1.1, is an example of Experience-Driven
Procedural Content Generation (EDPCG, Yannakakis and Togelius, 2011):
the use of algorithms to generate game and adapt game content automati-
cally, personalizing it to a given user’s experience.

This personalization of game content can take many forms. Karpinskyj,
Zambetta, and Cavedon (2014) separate the work that has been done on
this front in five categories: adapting content to users according to their
preferences, personality, experience, performance, and in-game behavior.
Our method only models the player’s performance according to a telemet-
ric specified by the designer and thus can be better described as a form of
Dynamic Difficulty Adjustment (DDA, Zohaib, 2018).

The goal of this chapter is to put our contributions in context. We start
by covering how the framework fits with the current literature on EDPCG
and follow by reviewing the state-of-the-art in DDA. The chapter concludes
with a summary of this related work, and an outlook for the rest of the dis-
sertation. We postpone the discussion of the related work to deep gener-
ative models until after we explain the models in Chap. 6, as well as how
they fit with our goals of generating playable content in Chap. 7.

2.1 E X P E R I E N C E - D R I V E N P C G

As discussed in the introduction, Procedural Content Generation (PCG) is
defined as the use of algorithms for the generation of game content (Shaker,
Togelius, and Nelson, 2016). PCG systems are varied and have found their
way into video games since the early 1980s. Contemporary examples in-
clude Spelunky (Mossmouth and BlitWorks, 2020), a game with procedu-
rally generated caves, Minecraft (Mojang Studios, 2011), a sandbox game
where players explore, gather resources, and build in massive block-based
worlds, Dwarf Fortress (Kitfox Games, 2003) and No Man’s Sky (Hello Games,
2016), among others.

Some PCG algorithms are search-based (Shaker, Togelius, and Nelson, 2016,
Chap. 2): they consider a representation for the game content, which spans
a searchable design space (or content space). Evolutionary algorithms are
often used to explore these spaces (Capps and Schrum, 2021; Earle et al.,
2021; Edwards, Jiang, and Togelius, 2021; Giacomello, Lanzi, and Loiacono,
2018; Sarkar and Cooper, 2021b; Sarkar, Yang, and Cooper, 2019; Schrum,

11

12 T H E P R O B L E M : G E N E R AT I N G A N D S E R V I N G G A M E C O N T E N T

Volz, and Risi, 2020; Shaker, Shaker, and Togelius, 2013; Tanabe et al., 2021;
Volz et al., 2018).

Experience-driven PCG searches for content according to a model of player
experience. An EDPCG system has the following four components (Yan-
nakakis and Togelius, 2011):

• A model of the player, which can be subjective, e.g. when users pro-
vide their feedback on the experience of playing a game, or objective,
by measuring in-game behavior or other telemetrics like galvanic re-
sponse in the skin, which is a proxy for emotional arousal.

• A measure of content quality, which uses the player model to assess
whether a given piece of content is useful, or fits with the intended
goal of the system (for example making a game fun, engaging, or frus-
trating). This content quality can be evaluated directly from the con-
tent using the player model; using agents as proxies for players (i.e.
by simulation), or by measuring the interaction of the player with the
game.

• A content representation, which can be direct, e.g. representing plat-
formers’ levels using tiles, or indirect, where the content is repre-
sented by a vector of numbers or a list of positions.

• A content generator, which searches the content space to provide
the next piece of content which maximizes quality. This maximiza-
tion process can be exhaustive if the design space is small enough,
or can rely on (black-box) optimization algorithms like Bayesian Op-
timzition (BO), or evolutionary algorithms.

Circling back to our proposed framework (Fig. 1.1), EDPCG gives us the
language to describe exactly how our system interacts and adapts to users.
Ours is an EDPCG system where the model of the player is objective and
data-driven: the value they measure on a telemetric specified by the de-
signer. The content representation is indirect since it is a vector of real
numbers from which content can be generated. The content quality is de-
fined by our prediction of the player’s performance according to the tele-
metric,1 and the content generator is a combination of a designer’s pro-
vided algorithm for generation and BO.

2.2 D Y N A M I C D I F F I C U LT Y A D J U S T M E N T

Our framework personalizes game content according to a player’s perfor-
mance in the game. Other frameworks that adapt game content in this
fashion have been called Dynamic Difficulty Adjustment (DDA, Karpinskyj,
Zambetta, and Cavedon, 2014; Zohaib, 2018). DDA methods adapt the con-
tent of the game to modulate the game’s difficulty, aiming to keep players

1 For those already well-versed in BO, the content quality can be seen as the acquisition func-
tion of the Bayesian Optimization. Chap. 3 gives an introduction to BO and acquisition
functions.

2.2 D Y N A M I C D I F F I C U LT Y A D J U S T M E N T 13

in a state of flow (where the game is neither too easy to be boring, nor too
difficult).

Without using the label “DDA” explicitly, Spronck (2005) considered the on-
line and offline modulation of game AI, adapting to e.g. the player’s tactics
in RPG games (Spronck, Sprinkhuizen-Kuyper, and Postma, 2004) or in a
capture-the-flag task in Quake (Spronck, 2005, Sec. 4.2). For these adap-
tive systems to be used in practice, Spronck calls for systems that are fast
(low computational overhead), effective (need few iterations), robust (to
noise inherent in the evaluations) and effective (in achieving what they set
out to do, like maximizing engagement).

DDA is established as a research field with two papers by Hunicke, where
the system Hamlet is proposed and analyzed (Hunicke, 2005; Hunicke and
Chapman, 2004). This system uses inventory theory to modulate the ac-
cess to resources in Half-Life (Valve Corporation, 1998), mapping states
of the game to actions of the system (e.g. modifying the player’s attack
strength, or placing items like health packs in the playfield).

Plenty of research has followed since. Zohaib (2018) surveys the field from
2009 to 2018, and finds algorithms for DDA that rely on probabilistic mod-
eling, artificial neural networks, and reinforcement learning, among other
techniques. We summarize some of these contributions in the following
paragraphs, focusing on the ones most relevant to our approach, and sepa-
rating them by whether they modulate the opponent’s AI or aspects of the
level design.

2.2.1 DDA that modulate AI

A large body of work has focused on modifying Monte Carlo Tree Search
(MCTS) bots as a way to achieve adaptivity. Since MCTS algorithms’ pre-
diction quality depends on how much compute time it is given, adapting
the compute time is a viable way to make the ghosts’ AI less powerful in
games like Pac-man (Hao et al., 2010; Li et al., 2010; Liu et al., 2009), or a
simple chasing game (Sha et al., 2010). Since MCTS is compute-intensive
in its predictions, proxy policies trained off-line with MCTS traces have also
been considered for this adaptation (Sha et al., 2010).

Instead of modifying MCTS’ access to compute resources, (Demediuk et al.,
2019) modify the MCTS policy to choose the action with appropriate diffi-
culty, instead of the one that maximizes the bot’s chances of winning. This
insight is also at the core of our approach since, as we will see in Chap. 4
and 5, we modify an optimization algorithm to target a certain value for a
telemetric like completion time, instead of maximizing/minimizing it.

Moon and Seo (2020) train a “meta-learned” model for an opponent AI in
an air hockey game using model-agnostic meta-learning (MAML). The in-
sight is: meta-learning algorithms can be used to build bots that are player-
agnostic, i.e. adapt to a player’s style easily and with a few gradient steps.

14 T H E P R O B L E M : G E N E R AT I N G A N D S E R V I N G G A M E C O N T E N T

These are types of DDA that focus on modulating the AI inside the game,
and thus need access to forward models/offline play traces to train proxy
policies. Our framework, on the other hand, modulates levels and not the
AIs therein.

2.2.2 DDA that adapt levels

An example of a DDA system that works by generating levels is Polymorph
(Jennings-Teats, Smith, and Wardrip-Fruin, 2010). Based on previous work
on generating platformer levels using rhythm (Smith et al., 2009), Poly-
morph generates chunks of levels continuously and online using statistical
models of the chunk’s difficulty and of the player’s skill. The authors start
by collecting several traces with a tool that saves features like whether the
level was completed, and how much time the player stood still or walked
backward, among others. These were used to train a Ranked SVM (a type of
regression where the outcome is a ranked list), which is then used to rank
possible next levels using the player’s current features.

Another example is the use of Constructive Primitives, i.e. chunks of plat-
former levels defined by features like the number and position of gaps, en-
emies, coins, etc. Shi and Chen, 2017 reduce the dimensionality of these
constructive primitives, learn which ones are useful using Active Learn-
ing, and choose them dynamically in a DDA set-up. Similarly to us and
to (Demediuk et al., 2019), the goal is to minimize a certain “regret”, which
in this case is the distance to a desired survival rate. The authors formulate
this as an optimization problem using a Markov Decision Process, which
they solve by using Thompson sampling.

Similarly, Bakkes et al. (2014) also construct a system that adapts platformer
levels on-the-fly according to the performance of the player. Their system
leverages two policies learned offline: one that maps game states to player
experiences defined as a Likert scale from 1 (too easy) to 5 (too difficult)
and an exploration policy that returns level parameters informed by the
user’s annotations. Using these, a policy for online adaption can be de-
ployed: using the exploration policy to construct levels, the goal of this pol-
icy is to maximize the probability that the player experience model returns
a 3, and minimizes the probability of churn.

All these methods for creating and adapting levels rely on expensive data
annotations and offline surveys, explorations, or policy training. Our frame-
work can be deployed without these, as we will see in Chap. 5. We argue
that DDA is in a low data regime since, as Spronck points out (Spronck,
2005, Sec. 2.3.4), these systems ought to be fast and efficient.

A sample-efficient method for DDA, and perhaps the most similar to our
proposed approach, also use BO to quickly model the player and adapt
the game content representation to maximize “voluntary time given”, or re-
tention. Khajah (2017) deploys two games in Amazon’s Mechanical Turk:
a Flappy Bird clone, and a “spring ninja” game in which the player must

2.3 C O N C L U S I O N & O U T L O O K 15

determine the force to launch a ninja from one platform to another. The
authors modify three aspects of e.g. Flappy Bird, two explicit: horizontal
and vertical spacing between pipes/platforms, and one implicit: an assis-
tance factor that helps players achieve the goal of the game. This spans a
3-dimensional search space (Khajah et al., 2016).

Using the first traces to build a good general model of retention in this 3D
space, the authors deploy BO and find that it is more sample-efficient than
random search. Similar content representations and experimental find-
ings are discussed for spring ninja.

Although our framework is also based on Bayesian Optimization, what sets
us apart from this work is that, instead of maximizing voluntary time given,
our framework allows for targeting specific values of any telemetric pro-
vided by the designer. We are bringing the idea of optimizing towards a
certain survival rate, win rate, or score for adapting game content using
Bayesian Optimization.

2.3 C O N C L U S I O N & O U T L O O K

This chapter introduced the related work on EDPCG and DDA. Using this
language, the method proposed in this thesis can be framed as an EDPCG
system that targets a certain player’s performance. This system uses an ob-
jective model of the player (namely, their performance according to met-
rics like completion time or win rate) which is entirely data-driven. The
game content is represented indirectly, using real numbers. The content is
optimized towards a certain value for the telemetric, and the content gen-
erator leverages BO and either the PCG generator provided by the designer,
or a corpus of levels.

Systems that modulate and adapt according to the player’s performance
can also be framed as methods for DDA, which aim to keep the player in
flow. In this chapter, we covered related work on DDA systems that modu-
late either game AI or levels. The key novelty of our approach is the sample
efficiency that comes from using BO, and the ability to target specific val-
ues of the telemetric (instead of always maximizing).

This chapter postponed the discussion of the related work on deep genera-
tive models and the playability issues that arise therein. This related work
is discussed thoroughly in Chaps. 6 and 7.

As we discussed in the first chapter, this thesis is structured in 4 parts. The
next two parts deal with applications of Gaussian Processes & BO (Chaps. 3,
4, 5), and with applications of deep generative models and differential ge-
ometry (Chaps. 6, 7, 8 and 9). These two parts can be read almost indepen-
dently. The thesis concludes with a final chapter giving a general discus-
sion, and proposing avenues for future work.

Part II

A P P L I C AT I O N S O F G AU S S I A N P R O C E S S E S

3
A N I N T R O D U C T I O N T O G AU S S I A N P R O C E S S E S A N D
B AY E S I A N O P T I M I Z AT I O N

This thesis proposes a framework for adapting content to users based on
Bayesian Optimization (BO), an algorithm for optimizing black-box func-
tions. In general terms, BO fits a probabilistic model of the objective func-
tion (the function that is being optimized) and uses it to find the next point
to query, balancing exploration and exploitation (Shahriari et al., 2016).

We will focus on a specific type of probabilistic model for our framework:
Gaussian Processes (GP), a non-parametric regression model known for be-
ing sample-efficient and working well in low dimensions, making them
an ideal candidate for modeling player behaviors in our framework (Ras-
mussen and Williams, 2006).

This chapter gives an introduction to GPs and BO, setting up the notation
for the rest of the dissertation. Starting with an introduction to GPs, we
discuss how they regress functions and predict values using Gaussian dis-
tributions defined by a prior and a covariance function, or kernel. These
priors, which are initial guesses as to what the modeled function’s behav-
ior, can be specified using illumination algorithms like Multidimensional
Archive of Phenotypic Elites (MAP-Elites) (Mouret and Clune, 2015). Next,
BO is introduced, followed with an example: simple optimization testbeds
like the Easom or Cross-in-tray functions (Bingham, 2013). Finally, we
give a short comparison of the sample efficiency of BO in these testbeds
against a common evolutionary strategy called Covariance Matrix Adapta-
tion - Evolutionary Stategy (CMA-ES) (Ha, 2017; Hansen and Ostermeier,
1996).

Since the notation and terminology are standard, a reader with background
on GPs and BO could skip to Chap. 4 without losing the thread of the disser-
tation. The only non-standard part of this presentation is the discussion
about building priors using MAP-Elites illumination algorithm (Sec. 3.2),
and the comparison against CMA-ES.

The main references for this chapter are Gaussian processes for machine
learning by Rasmussen and Williams (2006), Probabilistic Numerics: Com-
putation as Machine Learning by Hennig, Osborne, and Kersting (2022)
and the tutorial „Taking the Human Out of the Loop: A Review of Bayesian
Optimization“ by Shahriari et al. (2016). For an interactive presentation
of GPs, we recommend the blog posts by Görtler, Kehlbeck, and Deussen
(2019) and Deisenroth, Luo, and van der Wilk (2020).

19

20 A N I N T R O D U C T I O N T O G A U S S I A N P R O C E S S E S A N D B AY E S I A N O P T I M I Z AT I O N

3.1 A N I N T R O D U C T I O N T O G A U S S I A N P R O C E S S E S

Given some supervised examples D = {(x1, f (x1)), . . . , (xN , f (xN))} (where
x ∈Rd and f is real-valued), the goal of Gaussian Process Regression (GPR)
is to approximate a function f (x) that “captures the pattern” behind the
dataset D. Fig. 3.1 shows an example of such a dataset and pattern, which
are used as a running example in this chapter: approximating the function
f (x) = x sin(x) given 20 noisy samples.1

GPR starts with the assumption that all finite collections of evaluations of f
are normally distributed with a certain mean and covariance, specified by
a prior function µ0(x) ∈R and a kernel (or covariance function) k(x , x ′) ∈R.
This, we denote f ∼ GP(µ0,k) (or just f ∼ GP if the prior and kernel can be
inferred from the context).

More precisely, for any dataset of size N ,

f ∼ GP(µ0,k) ⇐⇒ { f (x1), . . . , f (xN)} ∼ N (µ,K)

where µ= [µ0(x1), . . . ,µ0(xN)],

K = [k(xi , x j)]N
i , j=1.

(3.1)

Notice how this imposes a restriction on the covariance function k: it must
be symmetric positive definite because covariance matrices like K ought to
be symmetric positive definite. Symmetric means that k(x , x ′) = k(x ′, x),
and positive definite means that any matrix [k(xi , x j)]N

i , j has all positive
eigenvalues.

This definition allows us to predict not only a point estimate for f at a new
point x∗, but rather an entire distribution for f (x∗) (including how uncer-
tain we are about the prediction). Under the GP assumption in Eq. (3.1), the
collection { f (x1), . . . , f (xN), f (x∗)} is normally distributed with mean and
covariance given by:

µ̃=
[
µ1: N

µ0(x∗)

]
(N+1)×1

, K̃ =
[

K1: N k∗
k>∗ k(x∗, x∗)

]
(N+1)×(N+1)

whereµ1: N = [µ0(xi)]N
i=1, K1: N = [k(xi , x j)]N

i , j and k∗ = [k(xi , x∗)]N
i=1. Using

this joint distribution, the conditional distribution of f (x∗) given all of the
previous evaluations f = [f (xi)]N

i=1 is given by:

p(f (x∗) | f (x1), . . . , f (xN)) ∼ N (µ∗,σ2
∗)

where µ∗ =µ0(x∗)+k>
∗ K −1

1: N (f −µ1: N)

σ2
∗ = k(x∗, x∗)−k>

∗ K −1
1: N k∗,

(3.2)

where we used properties of the Gaussian distribution (Hennig, Osborne,
and Kersting, 2022, Chap. 3). Fig. 3.1 shows the posterior mean and stan-
dard deviation for all x ∈ [−10,10] in the running example. When close to

1 The code used for visualizing this running example can be found in the following URL:
https://github.com/miguelgondu/examples_in_thesis.

https://github.com/miguelgondu/examples_in_thesis

3.1 A N I N T R O D U C T I O N T O G A U S S I A N P R O C E S S E S 21

Figure 3.1: An example of GP regression. The function f (x) = x sin(x) (the dashed
orange line) is approximated using a GP on a dataset of 20 noisy samples (denoted
with X). The GP regression’s posterior mean µ∗(x) is shown in blue, with a shaded
region representing the uncertainty of one posterior standard deviationσ∗(x) (See
Eq. (3.2)), which is higher when there is no data to support the prediction. This
access to uncertainty in the predictions is not available in other approximations
that are not probabilistic by default, like linear regression or when using neural
networks.

previously seen points, the posterior variance σ2∗ is small and thus the pre-
diction of f (x∗) can be trusted; on the other hand, regions away from the
support (like x = 5) have high variance.

The kernels used in GPR have associated to them certain hyperparameters
which govern global noise or lengthscales that specify how related close-by
points are. Noisy observations can be accounted by introducing a hyper-
parameter σ2

noise in the diagonal of the kernel matrix, replacing K1: N with
(K1: N +σ2

noiseIN), where IN is the identity matrix of size N , in Eq. (3.2).

Fitting a Gaussian Process to a certain dataset means finding the hyperpa-
rameters of the kernel that maximize the likelihood of the data. Plenty of
software allows for quickly fitting Gaussian Processes on regression, classi-
fication and unsupervised learning tasks. In this disseration, we use GPy
(GPy, 2012), scikit-learn (Pedregosa et al., 2011) and GPyTorch (Gardner et
al., 2018).

GPs are considered sample-efficient since they provide good estimates on
low amounts of data, and because the complexity of its inference grows
with the size of the dataset: computing the inverse of K1: N is O(N 3) in com-
plexity. GPs (as well as other kernel methods) are known to scale poorly
with the dimensionality of the input data, and several improvements are
being proposed on this front (Eriksson et al., 2019; Gardner et al., 2018;
Hensman, Matthews, and Ghahramani, 2015; Maus et al., 2022). As we
will see, the usual kernels used for GPR use distance as a proxy for correla-

22 A N I N T R O D U C T I O N T O G A U S S I A N P R O C E S S E S A N D B AY E S I A N O P T I M I Z AT I O N

tion, and the curse of dimensionality implies that distances are no longer
as meaningful in high-dimensional spaces (Binois and Wycoff, 2022).

However, our experiments work on the low-data and low-dimensionality
regime, and so we rely on the vanilla implementation of GPs by computing
the posterior as is specified in Eq. (3.2).

To summarize, GPR works by assuming that finite collections of evalua-
tions of the predicted function f are normally distributed according to a
mean and covariance specified by a prior function µ and kernel k. Un-
der this assumption, the function f can be predicted at new values using
properties from the multivariate Gaussian distribution. These predictions
are not single points, but rather distributions that can be sampled and
which have an uncertainty estimate in the form of the variance. Gaussian
Processes work well on low-data regimes, and they are known to perform
poorly on high dimensional input spaces.

The next two subsections discuss possible choices for priors and kernels,
and their impact on the regression.

3.1.1 Priors

The prior function µ0 : Rd →R in the specification of a Gaussian Process al-
lows us to inject expert knowledge into the regression and to bootstrap our
predictions of the function f with an informed guess. When new informa-
tion arrives, the model changes its predictions if they differ from the prior,
and falls back to the prior outside of the support of the data.2

A common choice for priors in GPs is the zero function µ0(x) ≡ 0. Indeed,
the model itself “picks up” what the shape of the function f should be after
updating it with several data points, and every GPR setup can be modified
to one that has a zero mean by modeling f (x)−µ0(x) instead.3 Fig. 3.2
shows the running example trained on a restricted version of the dataset
(only the points between −2.5 and 2.5 in the domain). Notice that the pre-
diction returns to the prior (which in this case is constant at 0) outside of
the evaluations of the function.

3.1.2 Kernel

The kernel k : Rd ×Rd → R measures the correlation between two given
evaluations f (xi) and f (x j) in terms of their inputs xi and x j . These co-
variance functions are the main design choice when modeling a function
with a Gaussian Process since it spans an (infinite-dimensional) family of
functions with properties dictated by k (e.g. smooth, periodic, etc.) from
which the approximation of f is selected.

2 By support we mean the regions of input space that have data points in them.
3 This follows from the fact that if a vector v ∼ N (w ,Σ), then v −w ∼ N (0,Σ).

3.1 A N I N T R O D U C T I O N T O G A U S S I A N P R O C E S S E S 23

Figure 3.2: Returning to the prior outside the support. The prior in a GP allows
for specifying domain knowledge, since the prediction will “return to it” outside of
the data provided. This figure illustrates this in the running example by restricting
the dataset to the [−2.5,2.5] interval.

In this dissertation, we use the following kernels:4

R A D I A L B A S I S F U N C T I O N (R B F) K E R N E L The RBF kernel uses distance
as a proxy for the correlation of the function evaluations. This correlation
decays smoothly using a Gaussian bell. Its explicit formula is given by

kRBF(x , x ′; θout,θl) = θout exp

(
−1

2
(x −x ′)>(θl)(x −x ′)

)
, (3.3)

where θout > 0 is the output scale, and θl is a d×d-dimensional matrix with
lengthscales in its diagonal and zeros outside of it. If all the entries in the
diagonal of θl are different, we say that the kernel has Automatic Relevance
Detection (abbreviated ARD).

Choosing an RBF kernel to approximate a function implies that the func-
tion being measured is smooth (i.e. infinitely continuously differentiable).

D O T P R O D U C T K E R N E L (also known as the Linear kernel) is given by

kdot(x , x ′;θout,σ0) = θoutx>x ′+σ2
0, (3.4)

where σ2
0 plays the role of a “variance bias”, and θout > 0 is an output scale.

M AT É R N K E R N E L (S) The family of Matérn kernels (Hennig, Osborne,
and Kersting, 2022) is given by

kν(x , x ′; θout,θl) = θout
21−ν

Γ(ν)
(
p

2νr)νKν(
p

2νr), (3.5)

4 For a more general introduction, we recommend (Rasmussen and Williams, 2006, Chap. 4),
or the blogpost by Duvenand (2014).

24 A N I N T R O D U C T I O N T O G A U S S I A N P R O C E S S E S A N D B AY E S I A N O P T I M I Z AT I O N

where r = (x − x ′)>(θl)(x − x ′), θout > 0 and θl are output and lengthscales
(see RBF above), and Kν is the modified Bessel function of the second kind.
In this dissertation we only deal with ν= 5/2:

k5/2(x , x ′; θout,θl) = θout

(
1+p

5r + 5

3
r 2

)
exp

(
−p5r

)
. (3.6)

Unlike the RBF kernel, using the Matérn family does not imply that f is
smooth, thus giving more flexibility to the approximation of the regressed
function.

C O M B I N I N G K E R N E L S Covariance functions like the ones described above
can be combined to generate new kernels. In particular, given two kernels
ka , kb and a positive constantσ> 0,σka , ka+kb and kakb are also valid ker-
nels (Hennig, Osborne, and Kersting, 2022, pg. 33). Görtler, Kehlbeck, and
Deussen (2019) give an interactive presentation of e.g. multiplying kernels,
and the impact it has on the regression.

3.2 B U I L D I N G P R I O R S U S I N G M A P- E L I T E S

To mitigate the fact that GPs fail to scale with the dimensionality of the data,
Cully et al. (2015) propose learning a GP prior using the MAP-Elites illumi-
nation algorithm. Since we leverage this same idea in our first contribution
(Chap. 4), this section explains MAP-Elites as a way to construct priors with
handcrafted dimensions.

1 procedure MAP-Elites(n_iters, n_init):

2 P = ∅ // a map P(behavior) = performance

3 X = ∅ // a map X(behavior) = genotype

4 for iter = 1 → n_iters:

5 if iter < n_init:

6 x ′ = random_solution()

7 else:

8 x = random_selection(X)

9 x ′ = random_mutation(x)
10 b ′ = behavior_descriptor(x ′)
11 p ′ = performance(x ′)
12 if P (b ′) =∅ or P (b ′) < p ′:
13 // update the elite in the cell

14 P (b ′) = p ′
15 X (b ′) = x ′
16 return (P ,X) // behavior-performance map

Algorithm 3.1: MAP-Elites’ pseudocode.

MAP-Elites explores a high-dimensional space through random mutations,
storing the best performing “genotypes” (called elites) in pre-defined cells
in behavior space, which is a hand-crafted description of the genotypes.
The result of running MAP-Elites is an archive of elites with diverse behav-
iors. Since the goal of this algorithm is not to find a single high-performing

3.3 A T U T O R I A L O N B AY E S I A N O P T I M I Z AT I O N 25

individual but rather to understand how elites are distributed in behavior
space, MAP-Elites is usually called an illumination algorithm.

Suppose the high-dimensional search space is S , then the algorithm re-
quires defining five functions to run.

• random_solution(), which returns a random genotype in S .

• random_selection(L), which selects an element from a set L at ran-
dom.

• random_mutation(x), which randomly mutates a genotype x ∈S .

• behavior_descriptor(x), which returns a low-dimensional hand-
crafted description b ∈ Rd of x (usually after running an expensive
experiment, see examples below).

• performance(x), the function to be maximized, or mapped.

The pseudocode of MAP-Elites can be found in Algorithm 3.1. The code
maintains two archives P and X : P keeps track of the performance of
elites that are close to a certain behavior description b, and X maintains
their respective genotypes

For the first n_init iterations, the algorithm randomly samples a genotype
x from search space and evaluates their behavior description b and perfor-
mance p. If the genotype is better performing than the current elite in the
cell associated with b, the cell is updated to maintain x as the new elite with
performance p. After the first n_init iterations, high-performing geno-
types from X are selected at random and then mutated.

As an example, Cully et al. 2015 consider the search space of policies for
robot gaits in a 6-legged robot. The behaviors b ∈ R6 are the different
percentages of “use” for each leg, and the performance is the velocity of
motion. Notice how, to compute the behavior descriptors and the perfor-
mance, expensive simulation or deployment is required.

3.3 A T U T O R I A L O N B AY E S I A N O P T I M I Z AT I O N

Gaussian Processes can be used to optimize black-box objective functions,
i.e. functions that we can only query, and for which we do not have an
analytical closed form. Examples of these functions are the energy of a
complex physical system in terms of the arrangement of particles, the time
a user will spend on a website in terms of the layout and choice of colors,
or the validation set accuracy of a machine learning algorithm in terms of
its hyperparameters (Shahriari et al., 2016).

The black-box optimization algorithm that we will discuss in this section is
called Bayesian Optimization (BO), because it uses a Gaussian Process to
set a prior of the objective function, and updates it when new information
arrives. Since querying the objective function is expensive, it optimizes
a different, easy-to-query function instead: the acquisition function. The
acquisition function uses the GP approximation and its uncertainty esti-
mates to balance exploration and exploitation, proposing a next point to

26 A N I N T R O D U C T I O N T O G A U S S I A N P R O C E S S E S A N D B AY E S I A N O P T I M I Z AT I O N

query that is potentially close to the optima of the objective function. We
explain this in detail in the next subsection.

There are other forms of black-box optimization that are more common in
the game AI community, like evolutionary or genetic algorithms (Ha, 2017;
Salimans et al., 2017); Sec. 3.4 discusses a small comparison between BO
and an evolutionary strategy at the end of this chapter.

3.3.1 Bayesian Optimization step-by-step

Setting up the notation, BO starts with an objective function f : S → R,
a GP prior GP(µ,k), and a choice of acquisition function α : S → R. The
function f is expensive to query, and returns the value we want to optimize;
the acquisition function is selected from a table (and the ones used in this
thesis are explained in the next subsection), and the prior and kernel in the
GP are specified using expert knowledge.

With these, BO works iteratively, proposing a candidate x∗ at each iteration
by maximizing the acquisition function α. This process ends after either a
certain number of iterations or after an optimum of a certain quality has
been reached. 5

1 procedure Bayesian Optimization(

2 f : S →R, // the objective function

3 α : S →R, // the acquisition function

4 µ, // the prior of GP

5 k // the kernel of GP

6 max_iters=max_iters // a bound on the iterations

7):

8 D =∅ // the optimization trace

9 for max_iters iterations:

10 fit f̃ ∼ GP(µ,k) with D // an approx. of the obj. function

11 x∗ = argmaxx∈S α(x ; f̃) // Optimize the acquisition

12 evaluate f (x∗)
13 D ← (x∗, f (x∗))

Algorithm 3.2: Bayesian Optimization pseudocode.

Algorithm 3.2 shows the pseudocode for Bayesian Optimization. Using a
dataset D (which starts empty), we fit a GP using the specified prior and
kernel, arriving at an approximation f̃ of the objective function. This GP
informs the acquisition function α, for which we find the element of the
search space that maximizes it, and call it x∗. Finally, the objective function
is queried at x∗, and the pair (x∗, f (x∗)) is added to the dataset D and the
loop starts again. This interactive process ends after either a fixed number
of iterations have been made, or after f (x∗) is above a certain threshold
specified by the user.

5 The stopping criteria for Bayesian Optimization is a highly researched topic. See for exam-
ple (Makarova et al., 2022).

3.4 E X A M P L E : C O M PA R I N G B AY E S I A N O P T I M I Z AT I O N W I T H E V O L U T I O N A R Y A L G O R I T H M S 27

Sec. 3.4 shows examples of BO on toy optimization functions and compares
it with evolutionary strategies. The next subsection explains the acquisi-
tion functions used in this dissertation.

3.3.2 Acquisition Functions

A key ingredient in the specification of BO is the acquisition function α,
which uses the uncertainty estimates of the Gaussian Process to return an
informed guess of where the optima of f could be. This section covers the
two acquisition functions used in our experiments.6

U P P E R - C O N F I D E N C E B O U N D (U C B) Given a point x ∈S , the UCB is
defined by

αUCB(x ; κ) =µ(x)+κσ(x). (3.7)

In other words, the UCB returns a “confident” guess of where the optimum
might be: the posterior mean value µ(x) of the approximation of the ob-
jective function, plus a weighted uncertainty κσ(x), where σ(x) is the pos-
terior standard deviation and κ > 0 is a hyperparameter which balances
exploration (high values) vs. exploitation (low values).

E X P E C T E D I M P R O V E M E N T (E I) The GP posterior gives access to un-
certainty estimates like expectations w.r.t. f̃ ∼ GP(µ,k). For a point x ∈ S ,
the EI acquisition function measures how much of an improvement f̃ (x)
provides over the current optima in the dataset fbest = maxx∈D{ f (x)}:

αEI(x) = E f̃ (x)∼GP

[
max

(
0, f̃ (x)− fbest

)]
. (3.8)

This expectation has closed form in terms of the posterior mean and vari-
ance of f̃ (x) (Shahriari et al., 2016, Eq. (44)).

3.4 E X A M P L E : C O M PA R I N G B AY E S I A N O P T I M I Z AT I O N W I T H E V O L U -
T I O N A R Y A L G O R I T H M S

Evolutionary strategies and BO are both black-box optimization techniques,
but we argue that they should be used in different regimes. State-of-the-art
algorithms for Bayesian Optimization like Trust Region Bayesian Optimiza-
tion (TuRBO) work on toy problems of at most 200 dimensions (Eriksson et
al., 2019), and surveys on the subject state that realistic tests have only been
made up to 500 dimensions, with a strong focus on problems below 100
(Binois and Wycoff, 2022, Table 1). On the other hand, evolutionary algo-
rithms like CMA-ES (Hansen and Ostermeier, 1996) have been used to op-
timize neural networks with more than 642 parameters in Reinforcement
Learning tasks (Salimans et al., 2017, Sec. 4.1). Evolutionary strategies are

6 This explanation is definitely not exhaustive. See (Shahriari et al., 2016) for a complete
tutorial.

28 A N I N T R O D U C T I O N T O G A U S S I A N P R O C E S S E S A N D B AY E S I A N O P T I M I Z AT I O N

Figure 3.3: Comparing black-box optimization algorithms. This figure summa-
rizes a comparison between BO and ES along two axes: sample efficiency and
dimensionality of the problem. BO is sample efficient and works best on lower di-
mensions; ES requires large amounts of compute, but is parallelizable and works
well in high dimensions.

(a) Easom (b) Cross-in-tray

Figure 3.4: Two test functions to benchmark black-box optimization algorithms.
This figure shows the Easom and Cross-in-tray functions (Eqs. (3.9) and (3.10)),
which are commonly used as benchmarks of black-box optimization algorithms
(Al-Roomi, 2015; Bingham, 2013).

also highly parallelizable, and the process of parallelizing BO depends on
the choice of acquisition function (Eriksson et al., 2019). However, evolu-
tionary algorithms are sample inefficient when compared to Bayesian Opti-
mization. Fig. 3.3 summarizes this comparison along these two axes: sam-
ple efficiency and tolerance to high dimensions.

To provide examples, this section does a brief comparison between CMA-
ES and BO, highlighting the issues raised above.7 Black-box optimization
algorithms are usually tested on a suite of benchmark objective functions
which have plenty of local optima, or shapes not amenable to gradient-
based optimization (Al-Roomi, 2015; Bingham, 2013). This example com-

7 An implementation can be found here: https://github.com/real-itu/benchmarking_

evolution_and_bo/tree/dissertation-plots/experiments/simple_comparison

https://github.com/real-itu/benchmarking_evolution_and_bo/tree/dissertation-plots/experiments/simple_comparison
https://github.com/real-itu/benchmarking_evolution_and_bo/tree/dissertation-plots/experiments/simple_comparison

3.4 E X A M P L E : C O M PA R I N G B AY E S I A N O P T I M I Z AT I O N W I T H E V O L U T I O N A R Y A L G O R I T H M S 29

(a) Iteration #23 of BO on Easom

(b) Iteration #53 of BO on Cross-in-tray

Figure 3.5: Optimizing benchmark functions using BO. This figure shows the GP
approximation and the EI acquisition function at the last step of a BO run for both
Easom and Cross-in-tray. After 23 iterations, BO has a reasonable approxima-
tion of the Easom function, and achieves an optimum of 0.998; on the other hand,
it takes 53 iterations for BO to find an optimum of 2.540 on Cross-in-tray.

parison focuses on two such functions: Easom and Cross-in-tray, shown
in Fig. 3.4. These functions are given by

Easom(x, y) = cos(x)cos(y)exp
(−(x −π)2 − (y −π)2) , (3.9)

Cross-in-tray(x, y) =
∣∣∣∣∣sin(x)sin(y)exp

(∣∣∣∣∣10−
√

x2 + y2

π

∣∣∣∣∣
)∣∣∣∣∣

0.1

. (3.10)

Fig. 3.5 shows the last iteration for BO when deployed on these two test
functions. In this experiment, the optimization stops as soon as an opti-
mum that is at most at 10−2 distance of the global optima is reached. Both
optimizations start with a flat prior (constant at zero), and by maximizing
the acquisition function at each step, they explore the space until finding a
suitable optimum.

Compare this with how an evolutionary strategy approaches optimization:
by maintaining a mean at the best performing element of the sample space,
updating it after sampling from a Gaussian distribution centered at this op-
timum, and querying the objective function on all the samples (Ha, 2017).

30 A N I N T R O D U C T I O N T O G A U S S I A N P R O C E S S E S A N D B AY E S I A N O P T I M I Z AT I O N

(a) Generation # 2 (b) Generation # 6 (c) Generation #13

Figure 3.6: Optimizing Easom using CMA-ES. Using CMA-ES with a population
size of 10 and a random starting point, it takes 13 generations to find a suitable
optimum (i.e. one that is at most 10−2 from the global optima). This implies that
the objective function was called 130 times. This figure shows the populations in
generations 2, 6, and 13.

Fig. 3.6 shows the optimization of the same function using CMA-ES, sam-
pling a population of 10 per generation, or evolution step. This evolution-
ary algorithm is able to optimize the toy function in 13 optimization steps,
using 130 queries to the objective function in total.

Figure 3.7: Num. of objective function
queries in CMA-ES and BO. See the main
text for analysis.

We compare the sample efficiency
of BO and CMA-ES on 50 differ-
ent runs of the optimization pro-
cess on each of the benchmark test
functions. The number of points
queried on the objective function
is measured, and the stopping cri-
teria for both is finding an opti-
mum that is at distance less than
10−2 of the global optima. CMA-
ES has a budget of 100 genera-
tions, and 100 iterations for BO.
The Cross-in-tray function is dif-
ficult for CMA-ES, since the op-
timization has trouble “escaping”
the local optima in each square.
Of the 50 runs for Easom, CMA-ES
found an optimum 41/50 times, and BO 33/50. For Cross-in-tray, CMA-
ES only found a suitable optimum on 5/50 iterations, and BO always found
an optimum. The number of queries BO needs to optimize these bench-
mark functions was, on average, below that of CMA-ES (Fig. 3.7). In other
words, BO is highly sample efficient when it comes to the number of points
that the objective function is evaluated on.

3.5 S U M M A R Y & O U T L O O K 31

3.5 S U M M A R Y & O U T L O O K

This chapter introduces Gaussian Processes (GP) and Bayesian Optimiza-
tion (BO), the main tools for content adaption in our framework. GPs are
an uncertainty-aware method for regression, which starts from the assump-
tion that evaluations of the function are distributed Normally with mean
and covariance specified by prior and kernel functions. Using these un-
certainty estimates, BO approximates the objective function and iteratively
proposes a potential optimum. Compared with evolutionary strategies, BO
is sample-efficient; however, literature reports it does not scale gracefully
to high dimensions.

The next chapters in this part describe two methods that apply BO to adapt
content to users. Chap. 4 uses a prior constructed using MAP-Elites (as
described in Sec. 3.2) to adapt content to planning agents, and in Chap. 5
handcrafted priors are used to optimize game content for players.

4
A D A P T I N G C O N T E N T T O P L A N N I N G A G E N T S U S I N G
B AY E S I A N O P T I M I Z AT I O N

This chapter describes our first contribution (González-Duque et al., 2020),
in which we apply Bayesian Optimization (BO) to the problem of adapting For a tutorial on

Bayesian
Optimization see
Sec. 3.3.

game content to planning agents. Due to its sample efficiency, BO is a great
candidate for optimizing game content to players: it only needs a few itera-
tions to build a model of the agent, and it can be bootstrapped using expert
knowledge.

This experiment starts by building a prior over a corpus of levels evolved
using the MAP-Elites algorithm for one agent, which we then use as a prior
for BO on another agent, aiming to find a level with a certain difficulty. This
serves both as an initial test for our core content adaption algorithm as well
as a study of different planning agents and their “skill landscape”: how well
they perform with respect to different aspects of the levels (e.g. amount of
enemies, or distance to the goal).

We start the chapter by discussing our motivation: the intelligent trial-and-
error algorithm (ITAE), first developed in the field of robotics for adapting
robot movement to changes in the morphology or environment (Cully et
al., 2015). We then dive deeper into the description of the method and the
experimental setup, followed by results, discussion and limitations.1 The
prerequisites of this chapter are the introduction on Gaussian Processes
(GP), BO and MAP-Elites presented in Chap. 3.

4.1 I N T R O D U C T I O N : T H E I N T E L L I G E N T T R I A L - A N D - E R R O R A L G O -
R I T H M

We consider our approach to be a translation of the ITAE algorithm from
the field of robotics to games. We start, then, by discussing what it is and
how it was used in robotics (Cully et al., 2015).

In a few words, the ITAE algorithm is an application of Bayesian Optimiza-
tion, starting with a prior that was evolved using MAP-Elites. As a short
reminder, MAP-Elites maintains a corpus of elites in a grid of behavioral
characteristics (Mouret and Clune, 2015). One example of such elites are MAP-Elites is

explained in detail
in Sec. 3.2.

specifications of a quadruped robot’s gait, with the behavioral features be-
ing how much each leg is used. Another example more relevant to us is
video game levels in a dungeon crawler, with “amount of enemies” or “spar-
sity” as possible behavioral characteristics.

1 The code used for these experiments is available on https://github.com/miguelgondu/

finding_game_levels_paper

33

https://github.com/miguelgondu/finding_game_levels_paper
https://github.com/miguelgondu/finding_game_levels_paper

34 A D A P T I N G C O N T E N T T O P L A N N I N G A G E N T S U S I N G B AY E S I A N O P T I M I Z AT I O N

MAP-Elites

Agent A

Agent B

B.O.

ITAE Updates

Compensatory level

Figure 4.1: Overview of our first experiment. First, we evolve a prior using MAP-
Elites for a given agent A. Each cell in this prior maintains an elite level with ap-
proximately 60% win rate, and we illuminate each cell by how close the elite is to
said performance. We show two such elites. In the second phase of our experi-
ment, we use this prior as a proxy for the difficulty of agent B (potentially different
from agent A). We use Intelligent Trial-and-Error (ITAE) to query and test level, it-
eratively updating the prior to adapt to the new agent. After some iterations, we
are able to find a level with roughly 60% win rate for agent B.

Once a corpus of elites has been evolved, the ITAE algorithm deploys Bayesian
Optimization using it as a starting prior. This bootstraps the optimiza-
tion to find optima quicker but also allows us to modify the corpus when
changes in the environment occur. To test this, the original authors of the
algorithm deploy a motion policy on a 6-legged robot, damage the robot,
run updates of the corpus using Bayesian Optimization, and manage to
find compensatory behaviors quickly.2

Our methodology applies this idea to the problem of adapting levels in a
dungeon crawler. Instead of evolving robot gaits and changing the envi-
ronment in which they are deployed, we evolve 2D video game levels and
change the planning agent that is solving them (from e.g. an agent that
uses greedy tree search to an agent that runs random sampling), with the
goal of presenting a level with roughly 60% win rate. Fig. 4.1 shows an
overview of this process. The next sections dive deeper into the experimen-
tal set-up.

4.2 A B A S I C D U N G E O N C R AW L E R U S I N G G V G A I

The General Video Game AI (GVGAI) Framework allows for quickly compil-
ing and playing games from a text file describing the rules and level (Perez-
Liebana et al., 2019a), written in the Video Game Description Language
(VGDL, see Schaul, 2013). The developers of the framework ran a com-
petition with several tracks, aimed at testing general video game playing
(i.e. agents that can play more than a single game). Researchers have im-
plemented and tested variants of Reinforcement Learning and Planning
agents in the framework (Perez-Liebana et al., 2019b, Chapters 4, 5 and 6).

2 For a video covering said paper, check https://youtu.be/T-c17RKh3uE.

https://youtu.be/T-c17RKh3uE

4.3 B U I L D I N G P R I O R S F O R P L A N N I N G A G E N T S 35

To test our content adaption, we used the Zelda environment inside the GV-
GAI Framework.3 It is a simple dungeon crawler in which the agent must
find a key and walk to a door to leave the level. The level can have enemies
of different speeds and behaviors.4 An example of a level for this environ-
ment can be found in Fig. 4.2a.

4.3 B U I L D I N G P R I O R S F O R P L A N N I N G A G E N T S

BO-based algorithms like ITAE can be bootstrapped by using an adequate
prior, which is a first guess on how the objective function (i.e. the function
we are trying to optimize) is specified. As discussed above, the ITAE algo-
rithm evolves this initial form of the objective function using MAP-Elites.
In this section we describe this initial step: the simple PCG generator used
to create Zelda levels, its mutations, behavioral characteristics, and a de-
scription of the agents we built priors for.

4.3.1 A simple PCG generator

To run MAP-Elites (Algorithm 3.1), two functions need to be specified:

• random_solution() which returns, in our example, a random level,
and

• random_mutation(level) which mutates a level at random.

This section covers their implementation.5 random_solution() starts by
sampling width w and height h at random between 3 and 9. 3 is indeed the
minimum possible width and height, since levels are surrounded by walls,
and 9 was selected after experimentation and visual inspection.

Once w and h have been sampled, there are f = (w−2)(h−2) free positions.
Let i = min(w ,h), we sample a random amount of enemies e between bi /2c
and i . If i > 3, there is enough space to place inner walls, so we sample a
number of inner walls wa between bi /2c and i (otherwise, we set wa = 0).

If the amount of free positions f is less than 3+ e +wa (i.e. the avatar, key,
goal, enemies and inner walls), we expand the level at random by setting
w = w +1 or h = h +1. This ensures that all items can be placed. However,
there need to be passable paths between the avatar, key and door.

An empty level of size w ×h is created, placing the edge walls. The avatar,
key and goal are positioned at random. We compute the shortest paths
from avatar to key, from key to goal, and mark those positions as “occupied”
(thus making sure that the level is solvable). All the enemies e are placed at
random inside the level, and as many inner walls as possible (up to wa) are
placed at random, without blocking the occupied positions.

3 The VGDL description of this game can be found in (Schaul, 2013, Fig. 2).
4 The actual ontology also includes loot for the player to grab. We simplified the environment

by ignoring the loot in our level creation process.
5 These functions were implemented in Python, and the code can be found in the file
zelda_map_elites_utils.py.

https://github.com/miguelgondu/finding_game_levels_paper/blob/7898a6512320f5aaaf04a2113565a3972d8545ed/zelda_map_elites_utils.py
https://github.com/miguelgondu/finding_game_levels_paper/blob/7898a6512320f5aaaf04a2113565a3972d8545ed/zelda_map_elites_utils.py

36 A D A P T I N G C O N T E N T T O P L A N N I N G A G E N T S U S I N G B AY E S I A N O P T I M I Z AT I O N

(a) (b) (c) (d)

Figure 4.2: One random level and its mutations. In Fig. 4.2a we show the outcome
of running random_solution() once, followed by the result of randomly mutat-
ing the level three times. The mutation procedure removed the third row and two
walls in Fig. 4.2b, and a new row and wall were added while removing an enemy
in Fig. 4.2c, and two enemies and a wall were added in Fig. 4.2d.

random_mutation(level), on the other hand, randomly expands/shrinks
the level in both width and height, as well as randomly adding/removing
up to two enemies and inner walls. An example of a randomly generated
level can be found in Fig. 4.2a, and three examples of potential mutations
can be found in Figs. 4.2b, 4.2c and 4.2d.

4.3.2 Behavioral characteristics and performance

We also need to define behavior_descriptor() and performance(level)

to run MAP-Elites. We consider the following behavior descriptors:

• Space coverage: if m is the total amount of tiles inside a level, the
space coverage is f /m, where f is the number of non-empty tiles.

• Leniency: how many enemy tiles there are.

• Reachability: the sum of the A star path lengths from the avatar to
the key, and from the key to the goal.

These behavioral descriptors are chosen under the hypothesis that they
correlate with the difficulty or win rate of the agents. Indeed, the experi-
ments we present in the next sections show that e.g. there is a correlation
between win rate and space coverage for agents that only traverse a few
steps down the game tree, or that the random agent is only able to reliably
finish dense, lenient levels.

On the other hand, and to simulate difficulty adjustment, we decided on a
performance function that measures the distance to 60% win rate over 40
attempts. We choose a custom function of win rate w that is maximized at
this value, given by

p(w) =
{

5
3 w if 0 ≤ w ≤ 0.6

−(25/4)w2 + (15/2)w −5/4 if 0.6 < w ≤ 1
(4.1)

This function is visualized in Fig. 4.3. In summary, to compute the performance
of a given level for a given agent, we let the agent play the level for 40 roll-

4.3 B U I L D I N G P R I O R S F O R P L A N N I N G A G E N T S 37

outs, arriving at a certain win rate w (i.e. the percentage of winned itera-
tions).

There are several ad-hoc choices in this performance function. The win
rate of 60% was selected with the intention of making the levels slightly
easier since it is well known that GVGAI is a hard challenge and that some
of the planning agents struggle to solve levels of even simple games like
the one we use. The shape of the function p was also built ad-hoc, with
the intention of having a linear increment for levels that were harder than
the desired win rate, followed by a quick quadratic drop-off for easier levels.

Figure 4.3: Performance function p(w).

4.3.3 Planning agents

The framework contains several
examples of artificial agents, and
competitions like the planning track
of GVGAI have driven researchers
to implement novel variants of
planning algorithms (Perez-Liebana

et al., 2019a). This section discusses the agents used in our experiment,
and provides references to their original implementations. It must be
noted that implementing these was not part of our contribution, we rather
used already available implementations.

These are split into baseline, basic and advanced agents, according to their
skill level. All these agents have access to a forward model, which allows
them to simulate (stochastic) steps towards the future (Perez-Liebana et
al., 2019b, Chap. 3).

The two baseline agents are simple: DoNothing, which does not perform
any actions while in the game, and Random, which randomly samples ac-
tions at each state. The next two sections briefly describe the basic and
advanced agents. More details can be found in the implementation itself6,
or on (Perez-Liebana et al., 2019b, Chap. 3 and 4).

4.3.3.1 Basic agents

O N E - S T E P L O O K - A H E A D (O S L A) is an agent that chooses the next ac-
tion to take by evaluating all available actions in the current state, mea-
suring the next state with an epsilon-greedy heuristic. The heuristic used
takes into account the number of enemies and the distance to the different
goals inside the level.

G R E E D Y T R E E - S E A R C H (G T S) uses the competition’s allotted time to
greedily explore the game tree: starting with the current state as the root

6 https://github.com/GAIGResearch/GVGAI/tree/master/src/tracks/

singlePlayer.

https://github.com/GAIGResearch/GVGAI/tree/master/src/tracks/singlePlayer
https://github.com/GAIGResearch/GVGAI/tree/master/src/tracks/singlePlayer

38 A D A P T I N G C O N T E N T T O P L A N N I N G A G E N T S U S I N G B AY E S I A N O P T I M I Z AT I O N

of the tree, the agent samples actions, simulates them, and repeats the pro-
cess for the best-performing action. The heuristic this agent uses is the
internal state score.

4.3.3.2 Advanced agents

R A N D O M S E A R C H (R S) creates a population of random playtraces (with
as many individuals as the allotted competition time allows), and sorts it
according to GVGAI’s “Win-Score” heuristic, which returns either the cur-
rent game score or a large positive/negative number if the agent wins/loses.

R O L L I N G H O R I Z O N E V O L U T I O N (R H E A) (Perez et al., 2013) evolves
a population of sequences of actions. Each sequence stores as many ac-
tions as the allotted time allows, and the entire population is evolved using
usual mutations and crossover operations over sequences. The same “Win-
Score” heuristic is used to assess the fitness of the sequences.

M O N T E C A R L O T R E E S E A R C H (M C T S) (Browne et al., 2012) explores
the game tree and estimates the values of the different nodes by running
simulations until an end state, and propagating the results back. The heuris-
tic stored is the same as in the previous two algorithms.

O P E N L O O P E X P E C T I M A X T R E E S E A R C H (O L E T S) (the winner of one
of the legs of the GVGAI framework competition in 2014 and 2018 (Perez-
Liebana et al., 2019a)) Unlike MCTS, OLETS does not perform rollouts, and
it relies on a different heuristic which includes the maximum value of the
children of a given node.

4.3.4 Evolving priors

Using the MAP-Elites set-up described above, we evolved a corpus of lev-
els for each one of the aforementioned agents. We ran 10 generations per
agent, with an initialization of 100 levels, and 50 iterations per generation
after that. Since the environments are stochastic, we evaluate the win rate
of each level using 40 rollouts. The optimization is guided towards maxi-
mizing p(w) in Eq. (4.1).

Fig. 4.4 shows the resulting maps for the different agents, illuminated by
win rate. Since we used three behavioral characteristics, we visualize these
results in the plane spanned by two characteristics, averaging the remain-
ing one.

These maps summarize the different “skill landscapes” of the agents, e.g.
the advanced agents performing well all over, and the basic agents strug-
gling with levels that have too many enemies, or in which the goals are
further away. Table 4.1 shows the number of elite levels with win rate w
inside different intervals, further supporting this observation.

4.3 B U I L D I N G P R I O R S F O R P L A N N I N G A G E N T S 39

OLETS

MCTS

RHEA

RS

GTS

OSLA

Random

Leniency
vs.

Space Cov.

Leniency
vs.

Reachability

Reachability
vs.

Space Cov.
Level w.

 60% win rate

0% 100%Winrate

Figure 4.4: Evolved priors for different planning agents: This figure shows the
final generation of our MAP-Elites procedure designed to evolve levels with a 60%
win rate for the planning agents used. The cells are illuminated by win rate, and
the red-white arrow points towards a level with roughly 60% win rate, shown to
the right. We used three behavioral characteristics, which we will explain using
the highlighted elite for Rolling Horizon Evolution (RHEA). Leniency counts the
number of enemies in the level (1 in this example), Reachability adds the lengths
of the shortest paths from agent to goals (2 in the agent-to-key path, plus 3 in the
key-to-goal path), and Space Coverage is the percentage of filled tiles (100%). Each
2D map averages over the remaining feature.

40 A D A P T I N G C O N T E N T T O P L A N N I N G A G E N T S U S I N G B AY E S I A N O P T I M I Z AT I O N

Easy Medium Hard

Agent 1 ≥ w ≥ 0.8 0.8 > w ≥ 0.6 0.6 > w ≥ 0.4 0.4 > w ≥ 0.2 0.2 > w ≥ 0

OLETS 326 2 1 0 0

MCTS 319 30 5 2 0

RHEA 246 82 13 1 0

RS 268 53 6 1 0

GTS 111 79 69 39 34

OSLA 60 17 22 14 220

Random 48 9 33 41 191

doNothing 0 0 0 0 341

Table 4.1: Amount of levels per difficulty: The MAP-Elites procedure evolves lev-
els, aiming at a 60% win rate. This table shows the number of levels segmented by
win rate in each evolved corpus. These results show the diversity in skill among
the agents, with the advanced ones finding most levels too easy, and the basic
agents achieving diversity in their skill landscape. The baseline controllers find
most levels too difficult.

4.4 D Y N A M I C D I F F I C U LT Y A D J U S T M E N T V I A I TA E

As a proxy for testing dynamic difficulty adjustment, we consider the fol-
lowing all-pairs experiment: for each agent, we use the ITAE algorithm
to find a “compensatory” level with p(w) ≥ 0.75 (which corresponds to
w ≈ 0.6, see Eq. (4.1)) in each of the aforementioned priors. Then we test a
given agent with the priors of all the other agents.

As a short reminder, the ITAE algorithm is Bayesian Optimization boot-
strapped by a prior learned using MAP-Elites. The objective black-box func-
tion is the same performance that guided the evolutionary algorithm: each
level is tested on 40 rollouts, giving us a certain win rate w which is then
passed through the function p(w).

We approximate this objective function using Gaussian Processes with a
Matérn5/2 kernel (Eq. (3.6)), implemented using GPy (GPy, 2012). The ini-
tial kernel hyperparameters are a lengthscale θl with ones in the diagonal,
and noise variance given by σ2

noise = 0.1.

We run 10 attempts to find a compensatory level using Bayesian Optimiza-
tion, and we stop after the first 20 iterations. Our BO scheme used the Up-
per Confidence Bound acquisition function (Eq. (3.7)) with an exploration
hyperparameter of κ= 0.03.7

Table 4.2 shows the average amount of BO iterations needed to find a level
with win rate w such that p(w) ≥ 0.75. First, note that the diagonal has
low numbers for all prior/agent combinations. This highlights the fact that
the elite found for a given agent is indeed a level in which performance
is high, meaning there is no need for adaptation. Secondly, the advanced
agents (especially OLETS) struggle to find a compensatory level in the cor-
pus of basic agents; analogously, OSLA and Random struggle to find a com-
pensatory level in the priors of more advanced agents. We highlight the

7 Sec. A.2.2 in the appendix contains a summary of these training details.

4.4 D Y N A M I C D I F F I C U LT Y A D J U S T M E N T V I A I TA E 41

OLETS MCTS RHEA RS GTS OSLA Random

Prior\Agent

OLETS 1.3 (10/10) 1.2 (10/10) 1.4 (10/10) 1.6 (10/10) 7.1 (9/10) (0/10) (0/10)

MCTS 11.7 (7/10) 1.2 (10/10) 2.1 (10/10) 2.9 (10/10) 6.7 (10/10) 11.7 (10/10) (0/10)

RHEA (0/10) 2.5 (10/10) 1.1 (10/10) 1.0 (10/10) 3.2 (10/10) 15.6 (7/10) (0/10)

RS 5.4 (8/10) 2.0 (10/10) 1.1 (10/10) 1.5 (10/10) 3.7 (10/10) 12.0 (10/10) (0/10)

GTS (0/10) 11.6 (9/10) 7.1 (10/10) 7.5 (8/10) 1.1 (10/10) 11.7 (3/10) 2.6 (10/10)

OSLA (0/10) 10.5 (10/10) 3.8 (10/10) 5.8 (10/10) 5.8 (10/10) 1.2 (10/10) 20.0 (2/10)

Random (0/10) (0/10) (0/10) (0/10) 13.7 (3/10) 3.5 (10/10) 1.3 (10/10)

doNothing (0/10) 8.8 (6/10) 3.0 (1/10) 12.0 (3/10) 2.4 (10/10) 9.5 (2/10) 11.4 (5/10)

Noise baseline (0/10) 15.7 (7/10) 3.9 (10/10) 4.5 (10/10) 1.0 (10/10) (0/10) 2.0 (10/10)

Table 4.2: Mean iterations to find a level with ideal difficulty. This table presents
the average number of updates required to find a level with p(w) ≥ 0.75 for all
pairs of priors and agents. We repeat each experiment 10 times, and we present
the number of iterations in which a compensatory level was successfully found in
less than 20 iterations (e.g. 7/10 means the search found a level with high enough
performance in 7 out of 10 runs), together with the average number of updates
for the successful iterations. These results show that Bayesian Optimization has
potential for content adaption since we are able to find a suitable level in a few
iterations. However, whether we are able to find a compensatory level depends on
the skill of the agent, with advanced bots like OLETS performing too well in all the
levels of the basic agent’s priors. The same can be said for the Random agent, for
which IT&E fails to compensate in the priors of the advanced agents.

lowest non-diagonal term for each agent, noting that a compensatory level
can be found usually in less than 15 iterations for most agents (except in
the aforementioned cases).

Finally, we discuss the noise baseline. It consists of overwriting the doNothing
prior with a random performance per cell, effectively shuffling the levels at
random. In this random arrangement of levels, the GTS and Random agents
find a compensatory level quickly, while the other agents need roughly
more than four iterations.

4.4.1 Example: a successful attempt

To illustrate how ITAE quickly finds a compensatory level, let’s focus on
one of the playtraces that adapt the RHEA prior to the MCTS agent. Fig. 4.5
shows the three iterations required to find a compensatory level. At first,
the system queries two levels that are too easy for MCTS; ITAE then updates
the prior and queries a level with approximately 0.6 win rate in the 3rd it-
eration. The queries start with dense, easy levels, but adapt to one with a
larger distance to the goal and more enemies.

4.4.2 Example: an unsuccessful attempt

It may also happen that no level in the prior works for a given agent. In
Fig. 4.6 we show the 1st and 20th updates of a failed ITAE run for OLETS on
an MCTS prior. The performance shown gets dimmer and dimmer as the
system realizes no candidate satisfies w ≈ 0.6.

42 A D A P T I N G C O N T E N T T O P L A N N I N G A G E N T S U S I N G B AY E S I A N O P T I M I Z AT I O N

Figure 4.5: A successful adaptation using ITAE. This figure shows the RHEA prior,
illuminated by performance p(w) (shown in exponential scale to make changes
more visible). Starting with this prior, we search for a level that is difficult enough
for an MCTS agent. ITAE first queries a dense level with only one enemy (as can be
seen in the first column), which MCTS finds too easy. The search then adapts to a
harder level shown in the second column, increasing in reachability and leniency.
Finally, the search finds a level with approximately 0.6 win rate in the third query.

Figure 4.6: An unsuccessful adaptation using ITAE. We illuminate the MCTS prior,
illuminated by performance p(w) (shown in exponential scale to make changes
more visible). In this attempt, no compensatory level was found in the first 20
iterations of ITAE. This figure shows the predicted performance in the first and
last iteration, the performance dims as OLETS finds all the queried levels too easy.

4.5 D I S C U S S I O N & L I M I TAT I O N S 43

4.5 D I S C U S S I O N & L I M I TAT I O N S

This section discusses the results of our experiments. First, MAP-Elites
allows researchers and practitioners to gain insights about the “skill land-
scape” of several planning agents, depending on the behavioral character-
istics chosen. In our particular experiment, we choose behavioral charac-
teristics that reflect level density, distance to targets and amount of ene-
mies. With these, we are able to determine that, as one would intuitively
expect, shallow-search agents like OSLA prefer dense levels in which the
targets are close-by (see Fig. 4.4). Similar algorithms could be deployed
to understand the current skill landscape of e.g. Reinforcement Learning
agents, or players.

Second, we showed an application of the ITAE algorithm to game content
adaption. This amounted to applying Bayesian Optimization using an UCB
acquisition function and the MAP-Elites priors discussed previously. We
show that ITAE is able to find compensatory levels in a simple dungeon
crawler for most pairs of planning agents in the GVGAI framework, with
exceptions for the agents that are too simple (like the random sampling
agent) or well-performing (like the winner of 2014’s competition, OLETS).

We now summarize some of the limitations of our approach

H A N D C R A F T E D B E H AV I O R A L F E AT U R E S A N D C O N T I N U I T Y Approxi-
mating the performance function p using a Gaussian Process with a Matérn5/2

kernel (see Eq. (3.6)) implies an underlying assumption about its continu-
ity. It is plausible that designers choose behavioral features such that the
evolved performance is not continuous, making our approach not applica-
ble. In Chap. 9 we explore optimizing content using automatically learned
behavioral features using Variational Autoencoders.

S E PA R AT I N G T H E M O D E L I N G F R O M T H E O P T I M I Z AT I O N Our method
could be further improved by modeling the win rate instead of the objective
function we proposed. To be more precise, we placed a Gaussian Process
prior over the performance function p(w), which unfortunately means we
can’t make any assertions about the win rate w itself. A better idea would
then be to predict the win rate of a given level, instead of the transforma-
tion p(w).

Separating the modeling of w from the optimization of p(w) would allow
us to target any win rate. Indeed, we realized that this separation was pos-
sible, and we performed subsequent experiments with this in mind (see
Chap. 5).

C O N T E M P O R A R Y E N V I R O N M E N T B U I L D E R S The GVGAI framework seems
to be deprecated.8 Thankfully, there are contemporary alternatives built
with Reinforcement Learning in mind. Newer implementations or replica-

8 At time of writing, the GVGAI website http://www.gvgai.net/ is down.

http://www.gvgai.net/

44 A D A P T I N G C O N T E N T T O P L A N N I N G A G E N T S U S I N G B AY E S I A N O P T I M I Z AT I O N

tions of this experiment could be performed in software like Griddly (Bam-
ford, Huang, and Lucas, 2022) and GriddlyJS (Bamford et al., 2022).

H O W W O U L D T H I S W O R K F O R H U M A N P L AY E R S ? This experiment
serves as a first stepping stone, exploring applications of Bayesian Opti-
mization to adapt content to users. Applying this idea directly would re-
quire us to either (1) evolve a MAP-Elites prior using human playtraces,
or (2) study how to build agent proxies for human players. The first op-
tion would be expensive, but the second one could be explored via imi-
tation learning or Reinforcement Learning (Kristensen, Valdivia, and Bu-
relli, 2020). We explore simpler alternatives that do not rely on MAP-Elites-
based priors in subsequent research (see Chap. 5), but future work that
directly uses ITAE could rely on a combination of priors, as in (Kaushik,
Desreumaux, and Mouret, 2020). In the next chapter, we discuss an ap-
plication of Bayesian Optimization for adapting content to human players
without using MAP-Elites.

5
A D A P T I N G C O N T E N T T O P L AY E R S U S I N G B AY E S I A N
O P T I M I Z AT I O N

This chapter presents the second application of Bayesian Optimization (BO)
to adapting game content, detailing the results of our contribution (González-
Duque, Palm, and Risi, 2021).

In the previous chapter, we showed how the Intelligent Trial-and-Error al-
gorithm (which is Bayesian Optimization on top of a MAP-Elites prior) can
be used to adapt content between planning agents (Cully et al., 2015; González-
Duque et al., 2020). In this contribution, we test our framework in two sim-
ple games: Sudoku, and the same dungeon crawler used in the previous
chapter. Our system starts by regressing a certain metric (e.g. completion
time) using Gaussian Processes (GPs) and then uses this model to choose
level specifications that optimize towards a certain completion time using
Bayesian Optimization.

This chapter starts by introducing our method with an example in mind,
and continues by discussing the technical details that make this system
work. Afterwards, the experimental details and data collection are discussed,
wrapping up with an analysis and a discussion of the results obtained. Just
like in the previous chapter, we assume familiarity with Gaussian Processes
and Bayesian Optimization as described in Chap. 3.

5.1 I N T R O D U C T I O N : A B AY E S I A N O P T I M I Z AT I O N F R A M E W O R K F O R

D Y N A M I C D I F F I C U LT Y A D J U S T M E N T

Figure 5.1: An example of a
Sudoku puzzle.

To illustrate how our second contribution
works, let’s consider one of the application ex-
amples: Sudoku puzzles. A 9×9 Sudoku puz-
zle consists of a grid of numbers (some pro-
vided, some missing) to be filled out under
constraints. No number should appear more
than once in its own row, column and 3×3 sub-
grid. An example of a Sudoku puzzle is shown
in Fig. 5.1.

Our system works by “encoding” Sudokus as
a certain numerical representation (like the
number of missing digits) and searching this
design space using Bayesian Optimization.

Several numerical encodings could be chosen for Sudokus. For simplicity,
we settle on encoding Sudokus by their number of pre-filled digits.

45

46 A D A P T I N G C O N T E N T T O P L AY E R S U S I N G B AY E S I A N O P T I M I Z AT I O N

Figure 5.2: A Bayesian Optimization framework for adapting Sudoku puzzles.
This is an adaptation of Fig. 1.1 to the specific example of Sudokus.

Our Bayesian framework for Dynamic Difficulty Adjustment in this partic-
ular example of Sudoku puzzles is shown in Fig. 5.2. The design space D is
the set of all Sudokus in a certain corpus, the specification x ∈R is the num-
ber of pre-filled digits, the metric being measured is completion time, the
target tg is 3 minutes (although nothing impedes us from choosing a differ-
ent goal), and the prior is handcrafted using domain expertise: almost-full
Sudokus are easy and take a low completion time, while sparse Sudokus
take progressively more time.

After deploying our framework with these settings, our system (1) queries
the Bayesian optimization with an empty playtrace, returning an initial
number of pre-filled digits x1 which are optimal according to the prior;
(2) generates a Sudoku puzzle with said number of pre-filled digits and (3)
presents it to the user, recording how long they took to finish it. This is
used to (4) update our playtrace, which is used for the next iteration of the
Bayesian Optimization.

Abstracting this process away from Sudoku puzzles, our framework for Dy-
namic Difficulty Adjustment in games using BO starts with

• a design space (e.g. a corpus of levels or a PCG generator),

• an encoding of this design space, which describes the content using
a vector of real numbers x ,

• a metric t ∈R to be measured,

• a target value tg ∈R for this metric,

• and a prior over this design space w.r.t. this metric.

With these, the system starts a BO loop that progressively converges to-
ward the specified target value. This framework is visualized in Fig. 1.1, and
Fig. 5.2 shows an instance of this framework in the specific case of Sudoku
puzzles.

This application of Bayesian Optimization differs from the one we presented
in the first contribution (see Chap. 4) on two fronts:

1. The priors were hand-crafted using expert knowledge about the do-
main, instead of using MAP-Elites.

5.2 M O D E L L I N G P O S I T I V E VA L U E S 47

2. In (González-Duque et al., 2020), our GP surrogate model approx-
imated the “performance function” (a metric of how close the win
rate was from 0.6) instead of the win rate itself. Here, we separate the
modeling from the optimization and approximate the target metric
using a Gaussian Process. This allows us to have a model of e.g. the
completion time of Sudokus for a given player, while the previous
approach does not provide a model for the win rate of the planning
agents we tested.

5.2 M O D E L L I N G P O S I T I V E VA L U E S

Placing a Gaussian Process (GP) prior over metrics like completion time
runs the risk of predicting negative numbers. To force our model to al-
ways predict positive values for metrics like completion time, we choose
to model log(t) instead of t . From our model of log-time, we can easily
recover the actual times using the usual exponential function for real num-
bers.

In all the experiments that follow we will still talk about sampling times
from the Gaussian Process posterior (denoted t (x) ∼ GP), but what we ac-
tually mean is sampling log(t (x)) ∼ GP and passing them through the expo-
nential function. We use the former notation for simplicity in the presen-
tation. The choice of kernels and priors will be made explicit during the
description of the experimental setup.

5.3 S E PA R AT I N G T H E M O D E L I N G F R O M T H E O P T I M I Z AT I O N

How can we use BO to optimize towards a certain target tg , instead of maxi-
mizing/minimizing? If we were to deploy vanilla BO in the Sudoku example See Sec. 3.3 if you

need a refresher on
how Bayesian
Optimization (BO)
works.

explained above, we would be searching for the Sudoku that maximizes the
completion time, instead of the one with a completion time closest to the
target tg .

To remediate this, we propose a modification of the acquisition function.
The setup goes as follows: we are approximating a certain metric t (x) us-
ing a Gaussian Process GP(µ,k), and we want to find values x such that
t (x) ≈ tg . With this notation consider the Expected Improvement acquisi-
tion function αEI, originally given by

αEI(x) = Et (x)∼GP [max(0, t (x)− tbest)] ,

where tbest is the highest recorded value of t (x) in the playtrace (Eq. (3.8)).
Maximizing this would correspond to maximizing the metric t (x).

We modify Expected Improvement to allow it to target any tg : define βEI to
be

β
tg

EI(x) = Et (x)∼GP
[
max(0,−(t (x)− tg)2 + t̃best)

]
(5.1)

where t̃best is the minimum of (t (x)−tg)2 for the values recorded in the play-
trace. Notice how this amounts to evaluating the Expected Improvement

48 A D A P T I N G C O N T E N T T O P L AY E R S U S I N G B AY E S I A N O P T I M I Z AT I O N

of t̃ (x) =−(t (x)− tg)2; in other words, this modified acquisition β
tg

EI is now
maximized at the points x where t (x) is closest to tg .

Recall that the unmodified Expected ImprovementαEI has a closed form in
terms of the mean and standard deviation of the posterior of the Gaussian
Process (see Sec. 3.3.2). This does not happen for our modified version β

tg

EI,
so we have to rely on samples t (x) ∼ GP to compute the expected value in
Eq. (5.1).

Something similar can be said about other acquisition functions like the
Upper Confidence Bound described in Eq. (3.7). If we modify it to instead
maximize (̃t)(x), we end up with

β
tg

UCB(x) =−(
(µ(x)+κσ(x))− tg

)2 , (5.2)

where µ(x) and σ(x) are the GP posterior mean and variance for t (x), and
κ is a hyperparameter which governs how much we want to explore un-
known regions (where σ(x) is high): higher values of κ mean that the opti-
mization will explore uncertain regions more often.1

5.4 E X P E R I M E N TA L S E T- U P

In this section, we describe the games (Sudoku and Dungeon Crawler) in
which the aforementioned framework is tested, how the games are built
and exposed to the public, and how the data is collected and processed.

5.4.1 Description of the corpus, encoding and metrics

S U D O K U As mentioned above, Sudoku puzzles are arranged in 9×9 grids
with 3×3 subgrids, prefilled with a certain amount of digits. The goal of the
game is to fill the empty cells with digits between 1 and 9 such that no digit
repeats itself in its row, column and 3×3 subgrid. Fig. 5.1 shows an example.
We gather all our Sudokus from Kaggle’s 9 million Sudoku puzzles and so-
lutions dataset2 and subsampled only 2000 of them for memory efficiency.

Sudoku is a single-player game with a branching factor that decreases over
time: the more cells a player fills, the fewer actions they can take. More-
over, there are no opponents in Sudoku, and the outcome of each move is
deterministic.

We encode puzzles by the number of prefilled cells. Sudoku experts (Good
Sudoku) discuss patterns inside Sudoku puzzles, like naked singles (when
a cell only has one possible option) or naked pairs (when two cells in dif-
ferent subgrids share the same options). These patterns could be used to
design more elaborate encodings; we settled for the simple encoding given
by the number of pre-filled digits. Our framework aimed to serve puzzles

1 Remember that we are fitting log(t (x)) instead of t (x), so we transform the sumµ(x)+κσ(x)
using the exponential.

2 https://www.kaggle.com/datasets/rohanrao/Sudoku.

https://www.kaggle.com/datasets/rohanrao/Sudoku

5.4 E X P E R I M E N TA L S E T- U P 49

that took tg = 180 seconds. This target goal was chosen ad-hoc, but the
proposed framework would not require any modifications to work with a
different target.

Figure 5.3: Example of a
dungeon level.

D U N G E O N C R AW L E R This dungeon crawler
we used is a clone of the GVGAI version of The
Legend of Zelda (see Sec. 4.2). Re-describing it,
each level contains an avatar, a key and an end
goal. The player must traverse the level, grab
the key and reach the end goal while avoiding
enemies; the player can kill enemies by swing-
ing a sword in the direction the avatar is point-
ing. Two differences between the GVGAI ver-
sion and ours is the way enemies move: en-
emies move on a per-human-move basis in-
stead of every game loop, and the enemies
“face” towards a certain direction, signaling
where they might move next. An example of
a level is shown in Fig. 5.3, and the exact im-
plementation of this game can be found in the
code repositories for this project.3

Unlike Sudoku, the branching factor of this
Dungeon Crawler game remains constant as
the player plays, and there are opponents that
move at random. This game, then, poses a

greater challenge for our methodology, and it tests how resilient BO is
against stochasticity in the evaluations.

We encoded the levels using only two of the behavioral descriptors origi-
nally used for the MAP-Elites evolution in our previous contribution (see
Sec. 4.3.2), namely leniency (number of enemies in the level) and reacha-
bility (lengths of the A-star paths between avatar, key and goal). In this ex-
periment, we aimed at presenting levels that took tg = 10 seconds to solve.

5.4.2 Prior, kernel and acquisition functions

S U D O K U Our handcrafted prior for the Sudoku task (shown in Fig. 5.4a)
was a linear interpolation between the points (x = 80, t = 3) and (x = 17, t =
600).4 In other words, our prior assumes that a Sudoku with only one miss-
ing digit takes only 3 seconds to solve, while a Sudoku with 17 hints (the
theoretically minimum number of hints possible) takes 10 minutes to solve.
We show this prior in Fig. 5.4a.

3 https://github.com/miguelgondu/bayesian_dungeoncrawler/blob/

f9921aa7f94ecf30fcaccc2b5631cea943143596/frontend/src/app/game/game.

component.ts#L529

4 µ0(x) = 600+ (x −17)(600−3)/(17−80).

https://github.com/miguelgondu/bayesian_dungeoncrawler/blob/f9921aa7f94ecf30fcaccc2b5631cea943143596/frontend/src/app/game/game.component.ts#L529
https://github.com/miguelgondu/bayesian_dungeoncrawler/blob/f9921aa7f94ecf30fcaccc2b5631cea943143596/frontend/src/app/game/game.component.ts#L529
https://github.com/miguelgondu/bayesian_dungeoncrawler/blob/f9921aa7f94ecf30fcaccc2b5631cea943143596/frontend/src/app/game/game.component.ts#L529

50 A D A P T I N G C O N T E N T T O P L AY E R S U S I N G B AY E S I A N O P T I M I Z AT I O N

(a) Sudoku (b) Dungeon Crawler

Figure 5.4: Priors for both games. This figure illustrates the prior (i.e. first guess
on the player’s completion times, crafted using expert knowledge) for both games.
The prior for Sudoku states that puzzles that are almost full are easy (passing by
(x = 80, t = 3)), and puzzles that are sparse are difficult (i.e. (x = 17, t = 600)). Sim-
ilarly, the prior for Dungeon Crawler states that levels without enemies in which
the goals are close by are easy to solve, and levels with distant goals and several
enemies are difficult. We illuminate the Dungeon Crawler with the completion
time specified by the prior.

For the surrogate Gaussian Process model, we used an RBF kernel (see
Eq. (3.3)) and modeled log(t) instead of the completion time itself. With
this small modification, the uncertainty of our prior grows as we get further
away from the point (x = 80, t = 3), and we are able to always model pos-
itive values. We used the modified Expected Improvement β

tg

EI described
earlier in Eq. (5.1), taking into account that we had to exponentiate before
computing the difference with tg .

D U N G E O N C R AW L E R To create a prior over the completion time t , we
ran the basic PCG generator from our previous contribution and created
a corpus of 399 randomly generated levels (see Sec. 4.3 in the previous
chapter), with leniencies l ranging between 0 and 24, and reachabilities
r bounded from 4 to 50. These levels were assigned a prior value for their
completion time by interpolating the points (l = 0,r = 4, t = 1) and (l =
14,r = 50, t = 20)5; intuitively, this prior says that levels with no enemies
and close-by goals can be solved in 1 second, and levels with many ene-
mies and distant goals can be solved in 20 seconds, with the completion
time linearly increasing in between. Fig. 5.4b shows this prior, illuminated
by completion time.

After several testing iterations, we settled for a combination of the linear
and the RBF kernel k = kRBF +kDot (see Sec. 3.1.2), and we used a modified

5 µ0(l ,r) = (15/28)l + (1/4)r to be exact.

5.5 D E P L OY I N G T H E E X P E R I M E N T : T W O W E B A P P L I C AT I O N S 51

UCB acquisition function as described in Eq. (5.2) with exploration hyper-
parameter κ= 0.05.6

5.4.3 Baselines

S U D O K U We tested our framework against a binary search baseline. Start-
ing with a guess at the middle of the [17,81] interval, this baseline selects
the next half of the interval depending on whether the puzzle was too dif-
ficult or too easy for a given player. We also gathered traces for a content
adaption experiment based on linear regression, the results of which we
describe only anecdotally. This linear regression baseline fits a line on the
log-times of the users and uses it to select which puzzle to pick in a greedy
fashion. The exact implementation of both these baselines can be found
in the code repositories for this project.7

D U N G E O N C R AW L E R For the Zelda-like game we implemented two base-
lines: a noisy hill-climbing algorithm that starts at the center of the prior,
takes a step using Gaussian noise and re-centers the distribution if the sam-
pled point has performance closer to the target tg = 10. The second base-
line selects levels at random from the corpus. Both implementations are
also available in our repository.8

E VA L U AT I O N M E T R I C The metric we used to evaluate all these compar-
isons was the mean absolute error, defined as

µe (T ; tg) = 1

|T |
∑

t∈T

|t − tg |, (5.3)

where T is a set of times (e.g. the times recorded for our experiment in
Sudoku). We abbreviate the absolute error by e.g. µBay

e to describe the ab-
solute error of our approach (Bayesian), letting the goal tg always be 180 for
Sudoku and 10 for the Dungeon Crawler. Both these target goals were cho-
sen ad-hoc, but our system allows for modifying them without any change
to the methodology.

In our experiments, we will compare the mean absolute error of our ap-
proach against that of the baselines, and to do so we establish a null hy-
pothesis H b

0 which assumes both means to be equal. We test this hypothe-
sis using a two-tailed t-test and decide to reject it if we achieve a p-value of
less than 0.05.

5.5 D E P L OY I N G T H E E X P E R I M E N T : T W O W E B A P P L I C AT I O N S

Both games were built and exposed as web applications. The backend for
these was implemented in Python using Flask, and the Gaussian Process

6 Sec. A.2.3 contains a summary of these details.
7 https://github.com/miguelgondu/bayesian_sudoku

8 https://github.com/miguelgondu/bayesian_dungeoncrawler

https://github.com/miguelgondu/bayesian_sudoku
https://github.com/miguelgondu/bayesian_dungeoncrawler

52 A D A P T I N G C O N T E N T T O P L AY E R S U S I N G B AY E S I A N O P T I M I Z AT I O N

Iteration nBay nbin µ
Bay
t µbin

t µ
Bay
e µbin

e H0 rejected

1 217 76 142.0 ± 78.0 302.6 ± 272.9 72.5± 47.5 135.9± 266.4 yes (p = 0.04)

2 123 41 129.3 ± 110.9 161.2 ± 236.6 76.9± 94.6 122.3± 202.6 no (p = 0.17)

3 81 30 161.0 ± 57.1 249.0 ± 379.7 49.6± 33.8 132.7± 361.8 no (p = 0.22)

4 49 17 191.0 ± 81.5 160.3 ± 48.4 47.6± 66.7 39.5± 33.2 no (p = 0.52)

5 36 13 205.6 ± 127.2 191.9 ± 56.7 60.4± 114.5 44.1± 35.6 no (p = 0.45)

6 22 9 168.0 ± 49.6 210.3 ± 127.4 36.5± 34.9 72.6± 106.5 no (p = 0.35)

7 16 8 180.8 ± 52.9 186.9 ± 65.6 37.3± 36.3 49.1± 40.1 no (p = 0.50)

8 10 6 172.0 ± 42.4 220.7 ± 109.3 29.9± 29.6 79.8± 79.4 no (p = 0.19)

All 288 94 153.10 ± 88.8 235.0 ± 255.8 63.9 ± 67.3 110.5 ± 237.1 yes (p < 0.01)

Table 5.1: Average time and absolute errors for Sudoku. This table shows, for it-
erations ranging between 1 and 8, the number of unique traces, the average com-
pletion time, and the average absolute error for both our Bayesian approach and
the binary search baseline.

Regression implementation of sklearn (Pedregosa et al., 2011). In both
applications, the users were instructed to solve the puzzles/levels as fast as
they could.

For the Sudoku experiment we relied on a simple frontend that did not
show a timer on the puzzle page, nor did it highlight mistakes made by the
users. Once a user submitted a potential solution, our backend analyzed it
for its correctness and computed the GP posterior using only the comple-
tion times of Sudokus that were solved correctly.

The Dungeon Crawler was cloned for online use using an Angular fron-
tend.9 As mentioned previously, this game differs from the original inside
GVGAI on two fronts: enemies show the direction they are facing, and they
only move when the player moves. The movement of the enemies was
stochastic and decided at each step of the player; this implies that the same
level could have two different difficulties since the enemies would move
differently. We familiarized the user with the game mechanics by includ-
ing three tutorial levels before collecting traces, and the GP posterior was
also computed by only using the levels that were successfully solved.

These implementations are also open-source and available in our reposito-
ries.10

5.6 R E S U LT S

S U D O K U Table 5.1 summarizes the results of our Sudoku content adap-
tion experiment, showing the number of traces, average time µt , and av-
erage absolute error µe for both our approach and the binary baseline.11

We received 288 unique traces (i.e. sequences of puzzles) for our approach,
and 94 for the binary baseline; when considering all these, our average er-
ror is significantly lower than that of the baseline.

9 We used and adapted the royalty-free sprites provided by https://www.kenney.nl/.
10 See above, or Table A.1 in the appendix.
11 We only considered the first 8 updates and Sudokus that were solved in less than 3000 sec-

onds.

https://www.kenney.nl/

5.6 R E S U LT S 53

Figure 5.5: Absolute errors vs. Iteration for Sudoku. We show the absolute error
for each one of the traces. In both experiments, we see how the error gets progres-
sively smaller after each iteration. We also notice that the prior of our approach
proposed an initial Sudoku that was closer, on average, to the target goal. In con-
trast, the Binary search’s initial guess of (81−17)/2 proved to be too hard for several
players.

However, diving deeper into the data we realize that this varies depending
on the iteration of the content adaption. The first puzzle presented in our
approach, i.e. the one specified by our hand-crafted prior, proved to be
easy and relatively close to the target for most players (with µBay

t ≈ 142 sec-
onds for the first iteration). In sharp contrast, we see that the first proposal
of the binary search took players roughly 300 seconds on average to solve,
with high variances. We do not see statistical significance when examining
the differences after the first iteration, but both approaches indeed work:
the average error tends to decrease as iterations go up, as illustrated in
Fig. 5.5.

Fig. 5.6a shows the GP posterior resulting from fitting with all correctly
solved Sudokus and their respective completion times. Our method mostly
proposed easy Sudokus, with most of the solved Sudokus (denoted by black
dots) starting on the right-hand side of 50 pre-filled cells, and under the
180-second target. Figs. 5.6b and 5.6c show two traces for different users,
both taking 5 iterations to find a puzzle with completion time close to our
target. For example, the trace shown in Fig. 5.6b is

{(63,115), (61,101), (55,213), (56,223), (58,167)}.

In other words, the framework first proposed puzzles that were too easy
(with 63 and 61 pre-filled digits), followed by two puzzles that proved too
difficult (55 and 56 pre-filled cells); finally, the optimization process found
a good puzzle at 58 hints.

Anecdotally, we found that using linear regression of log-times as a model
of the player resulted in predicted times that were not realistic. One exam-
ple is shown in Fig. 5.9: fitting a linear regression of log-times results in
predicting that very sparse Sudokus correspond to low completion times.

54 A D A P T I N G C O N T E N T T O P L AY E R S U S I N G B AY E S I A N O P T I M I Z AT I O N

(a) (b) (c)

Figure 5.6: The average Sudoku player, and a couple of traces. (a) shows the re-
sult of fitting a GP with all the traces collected. In a sense, it shows the average
Sudoku player according to our data. (b) and (c) show two individual traces. In
both of these, our framework took 5 iterations to find a Sudoku with the right level
of difficulty.

level #s nBay nNH nRand µ
Bay
e µNH

e µRand
e H NH

0 rejected H Rand
0 rejected

1 ≤ i < 5 130 78 112 3.9± 3.5 5.8± 5.6 7.1± 6.7 yes (p = 0.01) yes (p = 0.00)

5 ≤ i < 10 122 82 90 4.4± 5.7 4.9± 5.0 6.3± 6.0 no (p = 0.51) yes (p = 0.02)

10 ≤ i < 15 94 59 50 4.1± 4.3 4.4± 6.8 4.7± 3.8 no (p = 0.75) no (p = 0.42)

15 ≤ i < 20 73 51 35 4.5± 6.0 3.7± 3.1 6.4± 6.4 no (p = 0.32) no (p = 0.15)

20 ≤ i < 25 43 29 27 3.3± 3.2 4.4± 4.9 5.1± 5.4 no (p = 0.30) no (p = 0.12)

25 ≤ i < 30 31 18 16 3.2± 2.3 5.2± 6.2 4.0± 3.1 no (p = 0.20) no (p = 0.40)

30 ≤ i < 35 25 15 11 3.3± 2.4 4.0± 4.0 4.5± 1.9 no (p = 0.57) no (p = 0.12)

All 595 376 360 4.0± 4.7 4.7± 5.3 5.9± 5.7 yes (p = 0.03) yes (p = 0.00)

Table 5.2: Average absolute errors for Dungeon Crawler. If we aggregate all re-
sults for the experiments, we see that our approach (denoted Bayesian) gets an av-
erage absolute error that is significantly lower than that of the two baselines (noisy
hill-climbing and sampling random levels). This pattern does not necessarily hold
for the grouped iterations, where we fail to see any statistical significance.

This speaks to the value of having a Gaussian Process model in which a
prior can be specified.

D U N G E O N C R AW L E R We received 34 unique traces for our proposed
framework12, 21 traces for our hill-climbing baseline, and 30 traces for se-
lecting levels at random.

Table 5.2 shows the average absolute errors, aggregated in groups of 5 for
smoothing and ease of presentation. Similarly to our Sudoku experiment,
we see that our approach performs better when considering all level-time
pairs. However, the margin between ours and the baselines is minimal:
about a second against the noisy hill climb, and two seconds against ran-

12 The avid reader might have noticed that this data differs from the one presented in our CoG
2021 contribution (González-Duque, Palm, and Risi, 2021). We left our web application
running after presenting our results and managed to store several more playtraces for our
Bayesian-based approach.

5.7 D I S C U S S I O N & L I M I TAT I O N S 55

Figure 5.7: Average error vs. Iteration for Dungeon Crawler. We show the mean
absolute errors per iteration for both our approach (Bayesian) as well as the two
baselines (doing noisy hill-climbing by taking Gaussian steps, and sampling levels
at random). The aggregated error for each method is highlighted as a horizontal
bar, with the exact numerical value shown in the legend. On average, our method
performs slightly better than the two baselines according to this metric. A deeper
dive into the data shows that, iteration-wise, our model does not necessarily per-
form better.

dom sampling. This margin is visualized in Fig. 5.7, which plots the average
errors for each iteration.13

We show the first and eighth iterations of an example playtrace in Fig. 5.8.
The more a user plays, the better the surrogate GP approximates their com-
pletion time. In its first iteration, the system proposes a level with 5 ene-
mies and a reachability of 11, which takes the user roughly 5 seconds to
solve. At the eighth iteration, the optimization finds a level that takes the
user 9.6 seconds to solve, with more enemies and a larger distance to the
goals.

5.7 D I S C U S S I O N & L I M I TAT I O N S

Our two experiments show different stories: on the one hand, we see that
our framework was able to reliably find a Sudoku puzzle that takes three
minutes to solve in roughly 7 iterations, maintaining a model of the player’s
completion time as a by-product. We also noticed how Gaussian Processes
allowed for imposing priors and modeling uncertainty, making them more
robust than simpler alternatives like greedy decision-making using linear
interpolation. Similar results were achieved by the binary search baseline,
but only after the first iteration. This speaks to the value of our model’s
initial guess.

On the other hand, the results for our Dungeon Crawler experiment show,
when aggregated, a smaller impact. Our framework showed users levels
that took them, on average, an amount closer to the target goal of tg = 10
seconds. However, this difference is small when compared to the average

13 We removed all solved levels that took more than one minute since the levels were designed
to be fast-paced. More than a minute of completion time would imply, in our eyes, that the
user got distracted.

56 A D A P T I N G C O N T E N T T O P L AY E R S U S I N G B AY E S I A N O P T I M I Z AT I O N

Figure 5.8: Example playtrace for Dungeon Crawler. The top row shows the
model’s prediction for completion time in the first and eighth iterations of one
playtrace using our framework. The bottom row shows the acquisition function.
We see how the “ideal level” according to our system starts in the middle of the
corpus and progressively moves upwards towards more difficult levels. Indeed,
the first level proposed was solved in 5.4 seconds, and the eighth took 9.6 seconds
(these are highlighted using a pink circle).

5.7 D I S C U S S I O N & L I M I TAT I O N S 57

errors of the baselines two baselines. More to the point, our method does
not perform better if we look at the data at the individual iteration level.

This difference in quantitative results between Sudoku and Dungeon Crawler
speaks to the different nature of these games: Sudoku being deterministic,
having a one-dimensional encoding and a lowering branching factor, al-
lowed for easier content adaption than Dungeon Crawler. Future research
could focus on testing this framework in the interface between these two
games: games that are deterministic with a high branching factor, or stochas-
tic games with lowering branching factor.

We now discuss some limitations of our approach and analysis, pointing
towards potential future work

Figure 5.9: Linear regression vs. GP.
Modeling with linear regression in log-
space can result in unrealistic predic-
tions of completion time, unlike a GP
with an informative prior. The dashed
line (linear regression of log-times) indi-
cates that sparse puzzles are easier than
full ones, while the continuous blue line
(GP) still predicts sparse levels to be diffi-
cult.

S E L E C T I N G A G A M E R E P R E S E N -
TAT I O N Our framework relies
on a hand-crafted representation
for game content. A single game
level can be represented in a
plethora of ways. Indeed, we
could have encoded Sudokus not
in terms of their number of pre-
filled cells, but rather in terms of its
naked singles, naked doubles, etc.;
likewise for our dungeon crawler.
In Chap. 9 we explore learning this
representation automatically using
Variational Autoencoders, and we
optimize content from these latent,
automatically learned representa-
tions.

C R A F T I N G A P R I O R In our anal-
ysis, we used hand-crafted priors
for both experiments. These lever-
aged our expert knowledge and as-
sumptions about what impacts the

player’s completion time. We saw in the Sudoku experiment how much of
an impact a good prior can have (see the discussion of Fig. 5.9). Such knowl-
edge might not be available to designers, but alternatives such as boot-
strapping with random playtraces or using artificial agents as proxies for
building priors (Kristensen, Valdivia, and Burelli, 2020) could be explored
in the future.

S A M P L E S I Z E We only managed to collect a low amount of playtraces
for both experiments. For the Dungeon Crawler, in particular, we analyzed
less than 35 traces per method. For a proper analysis to take place, we
would need to collect more data to control for noise.

58 A D A P T I N G C O N T E N T T O P L AY E R S U S I N G B AY E S I A N O P T I M I Z AT I O N

N O I S Y L E V E L S The way the Dungeon Crawler levels were shown was
a source of noise: the same level, when played in two different iterations,
would result in different enemy movements. In other words, the same level
could turn out to be extremely easy in one iteration, and near impossible
in the next.

A D D R E S S I N G P L AY E R I M P R O V E M E N T O V E R T I M E By using the entire
playtrace, we are assuming that the players have a static skill level. This
assumption is often unrealistic, and to address it we could “forget” initial
parts of the trace using a rolling window.

5.8 C O N C L U S I O N

In this contribution, we explored the use of Bayesian Optimization for adapt-
ing content to players. We developed and tested a framework that models a
metric of the player (completion time in both our experiments), and lever-
ages this model to propose new content, aiming to present tasks that mea-
sured close to a certain target tg in the metric being evaluated.

This framework was tested on two games: Sudoku, and a Dungeon Crawler
clone of The Legend of Zelda. For Sudoku, our system was able to find a
puzzle of around 3 minutes to solve in roughly 7 iterations, maintaining a
model of the player’s completion time in the process. This performance
matched that of simpler baselines that do not have player models as by-
products. For the Dungeon Crawler, the results show only a slight improve-
ment with high variance against simpler baselines. Our framework, then,
is an alternative for exploring the design spaces of a given game for a piece
of content that matches certain criteria specified by the developers.

Part III

A P P L I C AT I O N S O F D E E P G E N E R AT I V E M O D E L S A N D
D I F F E R E N T I A L G E O M E T RY

6
A N I N T R O D U C T I O N T O D E E P G E N E R AT I V E M O D E L S I N
V I D E O G A M E S

The third part of the thesis deals with applications of Deep Generative Mod-
els (DGMs): methods for generating novel samples of the distribution of a
given dataset. This chapter gives an introduction to three families of DGMs:
Autoregressive Models (ARMs), Generative Adversarial Networks (GANs),
and Variational Autoencoders (VAEs). The main focus is placed on the lat-
ter since it is the main model used in the experiments described in the fol-
lowing chapters.

This chapter starts with a general introduction to generative modeling, fol-
lowed by an introduction to the three types of models discussed above.
Then, the use of these models in video games is surveyed. Finally, we dis-
cuss an issue that arises when using DGMs for modeling content that is
expected to be functional: the content generated by these models is not guar-
anteed to work (e.g. the video game levels sampled from these models may
not be playable (Liu et al., 2020, Sec. 3), (Summerville et al., 2018, Sec. 4.A)).

The main references for this chapter are Jakub Tomczak’s book Deep Gen-
erative Modeling (Tomczak, 2022), the comparative survey on DGMs by
Bond-Taylor et al. (Bond-Taylor et al., 2022), the survey on using Machine
Learning on Procedural Content Generation (PCGML) by Summerville et
al. (Summerville et al., 2018), and the survey on Deep Learning for PCG by
Liu et al. (Liu et al., 2020).1

6.1 W H AT I S G E N E R AT I V E M O D E L I N G ?

Generative models approximate the distribution of a training set. In other
words, these models assume that the dataset in data space {x1, . . . , xN } ⊆
RD (e.g. images of faces, molecules, video game levels) is sampled from a
probability distribution p(x), and the goal of the model is to approximate
it.

This chapter covers three out of a plethora of modeling choices for the
data’s distribution. In particular, we focus on deep generative models, mod-
els in which the distribution p(x) is approximated using artificial neural
networks. Beyond ARMs, GANs and VAEs, which are our concern for the
rest of the chapter, there are three other main families of DGMs:

1 We would like to argue that there is room for a survey of the use of DGMs in games since,
as this chapter hopefully shows, it is a growing field as of itself. Comparing the affordances
of DGMs would bring value to the PCGML community.

61

62 A N I N T R O D U C T I O N T O D E E P G E N E R AT I V E M O D E L S I N V I D E O G A M E S

F L O W- B A S E D M O D E L S (F B M S) leverage invertible transformations to
map a known distribution (e.g. Gaussian noise) into the distribution of the
data. When a random variable is transformed using an invertible map f ,
the distribution after the transformation can be computed in closed form
using the change of variables rule (Tomczak, 2022, Chap. 3). In flow-based
models, invertible neural networks learn to transform a simple distribution
into p(x) and backwards.

E N E R G Y- B A S E D M O D E L S (E B M S) use the Boltzmann distribution to
approximate p(x). This distribution is given by exp(Eθ(x))/Zθ, where Eθ(x)
is an energy function parametrized by a neural network (Tomczak, 2022,
Chap. 6), giving the distribution plenty of flexibility.

D I F F U S I O N - B A S E D M O D E L S (D D G M S) learn to transform the distri-
bution p(x) into e.g. Gaussian noise by following a diffusion process which
gradually adds noise and simultaneously learns to denoise (Tomczak, 2022,
Sec. 4.5.3).

These three families of DGMs are ripe for application in video game con-
tent since they are also capable of modeling discrete distributions like the
ones that govern tile-based levels (Hoogeboom et al., 2019; 2021); to the
best of our knowledge, they have not found application by the PCGML com-
munity yet.

6.2 A U T O R E G R E S S I V E M O D E L S

One way to approximate p(x) when x = (x1, . . . , xL) is sequential (e.g. a sen-
tence, or an image) is to factor p(x) as

p(x) =
L∏

l=1
p(xl |x1, . . . , xl−1) =

L∏
l=1

p(xl |x<l), (6.1)

followed by modeling these conditional distributions using a neural net-
work. The family of models that consider this factorization is called autore-
gressive.

Two other standard autoregressive models are PixelCNN (Oord et al., 2016)
and PixelRNN (Oord, Kalchbrenner, and Kavukcuoglu, 2016), which account
for a bigger “context” than just the previous recurrent cell.

By modeling p(x) directly, autoregressive models have direct access to the
likelihood of the data (i.e. these models can be used to determine whether
a given piece of content is in-distribution or not). Unfortunately, the use
of recurrent units makes sampling from autoregressive models expensive
(Bond-Taylor et al., 2022, Table 1.).

6.3 G E N E R AT I V E A D V E R S A R I A L N E T W O R K S 63

6.3 G E N E R AT I V E A D V E R S A R I A L N E T W O R K S

Proposed by Goodfellow et al. in 2014, Generative Adversarial Networks
(GANs) learn to sample from the distribution p(x) using a two-player game:
a generator Genθ and a discriminator Discφ, parametrized by neural net-
works with parameters θ and φ, are trained such that (i) the generator cre-
ates content that is misclassified as “real” by the discriminator, and (ii) the
discriminator is able to correctly identify the content generated by Gen as
artificial, and the “real” content.

More precisely, Discφ : RD → {0,1} is a classifier that is fed both samples
from the dataset and content artificially generated by Genφ, and its goal
is to correctly identify the ones that come from the dataset. The genera-
tor Gen: Rd → RD learns to transform random noise z ∈ Rd into samples
x̃ ∈ RD (where d < D). These two networks are trained to optimize the fol-
lowing value (Goodfellow et al., 2014):

min
Genθ

max
Discφ

(
Ex∼p(x)[logDiscφ(x)]+Ez∼N (0,Id)[log(1−Discφ(Genθ(z)))]

)
.

(6.2)

In their vanilla form, GANs are notoriously unstable and difficult to train
(Bond-Taylor et al., 2022). Alternative loss functions have been proposed,
with the promise of more stability during training (Arjovsky, Chintala, and
Bottou, 2017).

GANs have found application in several domains and were considered the
most competitive alternative when it came to generating realistic (uncondi-
tioned) samples of faces, animals and objects (Karras et al., 2020). However,
since 2021 diffusion models are considered the state-of-the-art for generat-
ing realistic samples of images (Dhariwal and Nichol, 2021).

To summarize, GANs are able to synthesize content with high quality, and
have found several applications including the generation of video game
content; the sampling process is fast (involving only a feed-forward pass
through Genθ), but fitting these networks to a dataset is known to be unsta-
ble and difficult.

6.4 VA R I AT I O N A L A U T O E N C O D E R S

Variational Autoencoders (VAEs) (Kingma and Welling, 2014; Rezende, Mo-
hamed, and Wierstra, 2014) are a probabilistic interpretation of the clas-
sical Autoencoders (Rumelhart and McClelland, 1987), a neural network
with a bottleneck. Since VAEs are the main model used in our methods
and contributions, we explain them in detail.

6.4.1 Autoencoders

An autoencoder is composed of two subnetworks: an encoder encφ : RD →
Rd and a decoder decθ : Rd → RD (with trainable parameters θ and φ). In

64 A N I N T R O D U C T I O N T O D E E P G E N E R AT I V E M O D E L S I N V I D E O G A M E S

the original setting (Ballard, 1987; Schmidhuber, 2015) they are trained to
learn an identity mapping that passes through the d-dimensional bottle-
neck:

Loss(θ,φ; {x1, . . . , xN }) =
N∑

n=1
‖xi −decθ(encφ(xi))‖2. (6.3)

Autoencoders learn a low-dimensional latent representation z = encφ(x).
These are considered deterministic quantities in the AE setting, but VAEs
interpret them probabilistically by learning their approximate posterior dis-
tributions.

6.4.2 A distribution over latent variables

Variational Autoencoders were proposed by Kingma and Welling (2014) asThe next three
subsections
summarize

„Auto-Encoding
Variational Bayes“

(Kingma and
Welling, 2014). If the

reader is already
familiarized with

VAEs, they can skip
to Sec. 6.4.6.

an example of efficient variational inference in latent variable models: graph-
ical models in which the data x ∈ RD depends on latent representations
z ∈Rd . The authors formulate the following probabilistic model:

z ∼ p(z) : a prior over the latent variables.

x ∼ pθ(x |z) : a likelihood of the data, depending on z .

z ∼ qφ(z |x) : an approximate posterior of z given x .

The distributions qφ(z |x) and pθ(x |z) are parametrized using neural net-
works and can be seen as probabilistic interpretations of the encoder and
decoder respectively.

The reason why the authors approximate the posterior distribution of the
latent codes given data is that the actual posterior is intractable in most
cases. Indeed, the posterior p(z |x) is given by p(x |z)p(z)/p(x), making the
evidence p(x) a necessary part of the computation. The word variational
in the name refers to approximating this distribution using another one
with a known form, e.g. optimizing the parameters of a multivariate Gaus-
sian to minimize a notion of “distance” (Blei, Kucukelbir, and McAuliffe,
2017, Sec. 2).

To know how to optimize the parameters φ and θ of the encoder and de-
coder, Kingma and Welling derive a lower bound of the evidence p(x). This
lower bound, which we explain in the next subsection, can be easily com-
puted and differentiated using autodifferentiation tools like torch (Paszke
et al., 2019).

6.4 VA R I AT I O N A L A U T O E N C O D E R S 65

6.4.3 The Evidence Lower Bound (ELBO)

Recall that a marginal distribution like p(x) can be written as
∫

pθ(x |z)p(z)dz
as per the sum and product rule (Bishop, 2006, pg. 14). With this in mind,
the authors derive a lower bound on log p(x) as follows:

log p(x) = log

(∫
pθ(x |z)p(z)dz

)
(6.4)

= log

(∫
pθ(x |z)p(z)

qφ(z |x)
qφ(z |x)dz

)
(6.5)

= log

(
Ez∼qφ(z |x)

[
pθ(x |z)p(z)

qφ(z |x)

])
(6.6)

≥ Ez∼qφ(z |x)

[
log

(
pθ(x |z)p(z)

qφ(z |x)

)]
(6.7)

= Ez∼qφ(z |x)
[
log pθ(x |z)

]−Ez∼qφ(z |x)

[
log

(
qφ(z |x)

p(z)

)]
, (6.8)

where Eq. (6.4) holds because of the sum and product rules of probabil-
ity, in Eq. (6.5) we multiplied and divided by qφ(z |x), Eq. (6.6) follows from
the definition of expectation, Eq. (6.7) is an application of Jensen’s inequal-
ity for concave functions, like log, and finally Eq. (6.8) is an application of
properties of logarithms.

The second summand in the right-hand side of Eq. (6.8) is known as the
Kullback-Leibler divergence (KL), denoted more generally by

KL(q(z)||p(z)) = Ez∼q(z)

[
log

(
q(z)

p(z)

)]
. (6.9)

KL measures how similar two distributions are, and can be thought of as
something similar to a distance. The key difference between divergences
and distances is that divergences are not symmetric in their inputs, while
distances are. Moreover, divergences do not necessarily satisfy the triangle
inequality.

For most distributions of interest, the KL divergence can be computed an-
alytically; otherwise, it can be approximated by averaging the log-quotient
after taking samples from z ∼ q(z).2

Substituting the definition of KL in Eq. (6.8), we arrive at the Evidence Lower
Bound (ELBO) objective function L , which is used for optimizing the pa-
rameters φ and θ:

L (θ,φ; x) = Ez∼qφ(z |x)
[
log pθ(x |z)

]−KL(qφ(z |x)||p(z)). (6.10)

The first term of the ELBO is an expected reconstruction error, a probabilis-
tic generalization of the original loss function specified for Autoencoders
in Eq. (6.3).3 The choice of likelihood pθ(x |z) depends on the nature of the

2 This is known as Monte Carlo Integration.
3 Indeed, if we remove the expectation, consider a single z = enc(x), and use a Gaussian

likelihood, we arrive at Eq. (6.3) exactly.

66 A N I N T R O D U C T I O N T O D E E P G E N E R AT I V E M O D E L S I N V I D E O G A M E S

data. If what is being modeled is known to be real numbers, then choos-
ing a Gaussian likelihood is customary; if the variables are probabilities be-
tween 0 and 1 (like in the case of modeling bounded values like the pixels of
MNIST digits), a Bernoulli likelihood would be more appropriate. Each of
these results in a different reconstruction error (the usual sum-of-squares
for the Gaussian likelihood, and binary cross-entropy for the Bernoulli).

The second term is usually described as a regularization, which shapes the
approximate posterior to be similar to the prior p(z), which is usually taken
to be a multivariate Gaussian with identity covariance N (0, Id).

6.4.4 The reparametrization trick

Since maximizing the evidence directly is not tractable, Kingma and Welling
maximize the ELBO (i.e. a lower bound of it) in Eq. 6.10. Computing the gra-
dient of the ELBO w.r.t the parametersφ is not straightforward in its current
form, since we are taking expectations w.r.t the distribution qφ(z |x).

To explain how it is feasible to differentiate the ELBO with respect to φ, we
focus on the case where qφ(z |x) is a multivariate Gaussian with parameters
N (µφ(x),diag(σφ(x))2), where µφ(x) and σφ(x) are d-dimensional vectors
and diag(σφ(x)2) is a matrix with σφ(x)2 in its diagonal.

In this scenario, samples z ∼ qφ(z |x) can be re-written as

z =µφ(x)+ε¯σφ(x)2, ε∼ N (0, Id). (6.11)

This is known as the reparametrization trick: it allows for reparametrizing
the expectation in the ELBO (Eq. 6.10) in this specific example as

Ez∼qφ(z |x)
[
log pθ(x |z)

]= Eε∼N (0,Id)
[
log pθ(x |µφ(x)+ε¯σφ(x)2)

]
. (6.12)

After this reparametrization, it is straightforward to compute the gradient
∇φ of these expectations.

To summarize, the gradient of the ELBO can be computed for distributions
that allow to re-write the sampled latent variables z as a deterministic func-
tion that depends on other random variables that do not involve the param-
eters. Beyond the multivariate Gaussian, several other distributions can
and have been studied in latent space (Davidson et al., 2018; Oord, Vinyals,
and kavukcuoglu, 2017).

6.4.5 Variational Autoencoders

What is discussed in earlier subsections is a general method for doing a
variational approximation of the distributions when facing a latent variable

6.4 VA R I AT I O N A L A U T O E N C O D E R S 67

model. Kingma and Welling discuss Variational Autoencoders as a particu-
lar instance of this framework, where

z ∼p(z) = N (0, Id), i.e. a Normal prior.

x ∼pθ(x |z) = dec(z ;θ), a likelihood approximated using a decoder.

z ∼qφ(z |x) = N (µφ(x),diag(σφ(x)2)), where enc(x ;φ) = [µφ(x),σφ(x)].

The encoder and decoder are neural networks whose parameters can be
optimized by maximizing the ELBO. Since we are approximating the poste-
rior using a multivariate Gaussian, and these allow for reparametrization,
computing the gradients of the ELBO is straightforward. Moreover, the KL
divergence between the prior p(z) and the approximate posterior qφ(z |x)
has closed analytical form, and can be evaluated without resorting to sam-
pling and averaging.

Depending on the likelihood, we will think about the decoder as returning
the parameters of the distribution. For example, in the case where pθ(x |z)
is a Gaussian, the decoder will output dec(z ;θ) = [µθ(z),σθ(z)], both of
these being vectors in data space RD .

6.4.6 An example: MNIST(1)

Figure 6.1: Latent space of
MNIST(1). The color map cor-
responds to the value of σθ(z).
Training a VAE results in unreliable
uncertainty estimates, with areas far
from the training codes having low
variance.

This subsection presents a first ex-
ample of a Variational Autoencoder
trained on only the digits correspond-
ing to class “1” in the MNIST dataset
(Lecun et al., 1998).4 This dataset is
known to have a curved, non-convex
structure in latent space even when
using linear dimensionality reduction
techniques like Principal Component
Analysis (PCA).

We train a VAE5 with a 2-dimensional
latent space that decodes to a multi-
variate Gaussian in data space R28×28.
Fig. 6.1 shows the resulting latent
space. The latent codes correspond
to evaluating µφ(x) in all the training
data.

Unfortunately, VAEs lack good uncertainty quantification (Rybkin, Dani-
ilidis, and Levine, 2021). By this, we mean that the standard deviations
learned by the network encoder and decoder do not reflect any structure in
the data, as can be seen in Fig. 6.1. Arvanitidis, Hansen, and Hauberg (2018)

4 The code for this example is made available in https://github.com/miguelgondu/

examples_in_thesis.
5 The specific details about hidden layers and training hyperparameters can be found in Ap-

pendix. A.3.1.

https://github.com/miguelgondu/examples_in_thesis
https://github.com/miguelgondu/examples_in_thesis

68 A N I N T R O D U C T I O N T O D E E P G E N E R AT I V E M O D E L S I N V I D E O G A M E S

propose a method for properly “calibrating” the uncertainties of VAEs with
Gaussian decoders, and we discuss it using this same example in Sec. 7.2.1.
Examples of latent variable models that properly quantify uncertainty in-
clude GPLVMs (Lawrence, 2003), and modifications of VAEs (Miani et al.,
2022; Rybkin, Daniilidis, and Levine, 2021; Skafte, Jørgensen, and Hauberg,
2019).

6.5 VA E S O N D I S C R E T E I N P U T S : T H E C AT E G O R I C A L L I K E L I H O O D

This thesis studies the application of VAEs for learning a continuous repre-
sentation of discrete, tile-based video game levels. Since this is our primary
focus, this section introduces the relevant terminology and methods.

Tiles Token

t1 = X

t2 = S

empty t3 = -

t4 = ?

t5 = Q

t6 = E

t7 = <

t8 = >

t9 = [

t10 =]

t11 = o

Table 6.1: Vocabulary
in SMB

To model such discrete content, we choose the Cat-
egorical distribution (denoted Cat) as the data like-
lihood pθ(x |z). The Categorical models discrete se-
quences x = (x1, . . . , xL), where each element of the
sequence is one of C possible “tokens” (or tiles, in
the case of video game levels). These set of tiles
are called a vocabulary, and are denoted by V =
{t1, . . . , tC }.

To make this notation more concrete, consider the
example of a level from SMB. The tokens correspond
to the 11 different tiles shown in Table 6.1. In our
setup, a data point x = (x1, . . . , x14×14) corresponds
to a 14×14 level where each xl is a tile in V .

Instead of dealing with discrete data, these tokens
are transformed into their one-hot encoding: prob-
ability vectors pi = (pi ,1, . . . , pi ,C) defined by pi ,c =
[xi = tc], where [a = b] = 1 if a = b and 0 otherwise.6

Fig. 6.2 illustrates an example vector in an SMB level.

With this notation, we can introduce the Categori-
cal distribution more formally. For an individual x,
which takes values in a vocabulary with C tokens,
x ∼ Cat(x|(p1, . . . , pC)) means that the probability of x being tc is given by
pc . Mathematically:

Prob[x = tc] = pc . (6.13)

When it comes to entire sequences x = (x1, . . . , xL), each xl is modeled in-
dependently using a Categorical. In other words, each xl is distributed ac-
cording to Cat(xl |[pl ,1, . . . , pl ,C]) = : Cat(xl |pl). Under this independence
assumption, we write Cat(x |{p1, . . . , pL}) to denote the fact that each xl is
distributed according to the probabilities pl .

6 [a = b] is known as Iverson’s bracket.

6.5 VA E S O N D I S C R E T E I N P U T S : T H E C AT E G O R I C A L L I K E L I H O O D 69

Figure 6.2: Modeling discrete data using probability vectors. We show the con-
struction of the one-hot encoding for an example in SMB. Highlighting a tile
xl = t2 (i.e. a breakable stone), a probability vector pl is constructed such that
pl ,2 = 1 and the rest are 0. After this transformation, each level x becomes a tensor
with 3 dimensions, where the first two correspond to the positions l and the last
one corresponds to which tile the level should decode to.

Figure 6.3: Variational Autoencoder with Categorical Likelihood. This diagram
shows how a given discrete sequence x ∈ RL is transformed into the parameters
of the approximate Gaussian posterior qφ(z |x) with parametersµφ(x) andσφ(x)2.
This distribution is sampled (denoted with red dashed arrows), outputting latent
codes z ∈ Rd that get transformed via the decoder into logits, unnormalized log-
probabilites which, after passing through a Softmax activation, transform into
probability vectors, one for each xl , with l = 1, . . . ,L.

70 A N I N T R O D U C T I O N T O D E E P G E N E R AT I V E M O D E L S I N V I D E O G A M E S

(a) (b) (c)

Figure 6.4: Three examples from SMB. After our postprocessing of the original
SMB levels present in the Video Game Level Corpus (VGLC), we store a dataset of
2713 levels of shape 14×14. This figure shows three of these selected at random.

Circling back to VAEs, the goal is to approximate this likelihood using a
decoder. The latent variable model is setup as follows:

z ∼p(z) = N (0, Id)

x ∼pθ(x |z) = Cat(x |{p1, . . . , pL}), where decθ(z) = [p1(z), . . . , pL(z)],

z ∼qφ(z |x) = N (µφ(x),diag(σφ(x)2)), where encφ(x) = [µφ(x),σφ(x)].
(6.14)

Using the Softmax activation function allows for modeling probability vec-
tors like the pl (z) discussed above. Fig. 6.3 shows a diagram of how such a
VAE could be structured, and it highlights two important terms:

• Logits are the unnormalized log-probabilities, which take values in
all the real numbers. They are the output of the final linear layer be-
fore the Softmax activation function.

• Probs are the probability vectors pl (z), i.e. the result of applying
Softmax to the logits.

Tools like torch.distributions allow for specifying Categorical distribu-
tions in terms of either the logits or the probs.7

6.6 E X A M P L E S O F D I S C R E T E VA E S

This section describes two examples of discrete VAEs: One trained on levels
from SMB, and another one trained on levels from The Legend of Zelda.
We release the first example in an open-source implementation.8 These
implementations can be easily modified to replicate the other experiment.

6.6.1 Super Mario Bros levels

In the Video Game Level Corpus (VGLC) (Summerville et al., 2016), the lev-
els from the original Super Mario Bros (SMB) are available as .txtfiles with

7 https://pytorch.org/docs/stable/distributions.html#categorical

8 https://github.com/miguelgondu/minimal_VAE_on_Mario

https://pytorch.org/docs/stable/distributions.html#categorical
https://github.com/miguelgondu/minimal_VAE_on_Mario

6.6 E X A M P L E S O F D I S C R E T E VA E S 71

(a) argmax (b) 2 samples from pθ(x |z)

Figure 6.5: Taking tiles with maximum probability vs. sampling. After sampling
a z at random from the prior, Fig. 6.5a shows the result of considering the tiles
that maximize the probability per tile (i.e. taking the argmax) in pθ(x |z). Fig. 6.5b
shows two samples from pθ(x |z), sampling from the Categorical distributions de-
fined by the probability vectors {p1(z), . . . , p14×14(z)} given by the decoder. These
probability vectors are visualized, per class, in Fig. 6.6.

the encoding presented in Table 6.1.9 These are post-processed by sliding a
14×14 window arriving at 2713 levels, which are then transformed to their
one-hot encoding. Examples of these 14×14 levels are shown in Fig. 6.4.

We train a VAE10 with the encoder and decoder specified in Eq. (6.14), using
a 2-dimensional latent space. In this example, L = 14×14 and C = 11.

After training, decoding a given z ∈Rd results in 14×14 Categorical distribu-
tions pθ(x |z) = Cat(x |{p1(z), . . . , pL(z)}), one for each tile in a level. Fig. 6.6
shows a heatmap for each one of the probabilities per class in a given de-
coded sample.

Levels can be reconstructed by either sampling from pθ(x |z), or by taking
the maximum probability per tile. Fig. 6.5 shows examples of each. Unless
otherwise stated, we generate levels by taking the maximum probability
per tile instead of sampling. This applies to the other examples presented
in this section, as well as the experiments involving Categorical VAEs.

We can further explore the latent space by decoding an evenly-spaced grid
in the [−5,5]2 square. Given a grid size G , a grid of latent codes is con-
structed by considering G equally-spaced points in the x-axis, as well as
the y-axis. This results in a collection of G2 points {(−5,−5), . . . , (5,5)} in
latent space. Decoding an evenly-spaced grid like this allows for visualiz-
ing the latent space. Fig. 6.7 schematizes this construction and shows the
resulting latent space for the running SMB example.

9 https://github.com/TheVGLC/TheVGLC/tree/master/Super%20Mario%20Bros/

Processed

10 The training details and model hyperparameters are available in Appendix. A.3.2

https://github.com/TheVGLC/TheVGLC/tree/master/Super%20Mario%20Bros/Processed
https://github.com/TheVGLC/TheVGLC/tree/master/Super%20Mario%20Bros/Processed

72 A N I N T R O D U C T I O N T O D E E P G E N E R AT I V E M O D E L S I N V I D E O G A M E S

Figure 6.6: Probability vectors for a sampled z . Using the same latent code from
Fig. 6.5, this figure illustrates the probabilities p·,c for all tiles tc in the vocabu-
lary of SMB (Table 6.1). The dominant probability is “empty space” -, followed by
some ground tiles in the pattern of a platform ladder in X. Enemies E have a high
probability of occurring above the last step of the ladder. Fig. 6.5a shows the re-
sulting level from taking, for each position, the token with maximum probability,
and Fig. 6.5b shows the result of sampling from the probability vectors.

Figure 6.7: Visualizing latent space with a grid. We visualize 2-dimensional la-
tent spaces using an evenly-spaced grid of G ×G points in a region of latent space
(like the [−5,5]2 square), plotting the decoded images side-to-side. This figure
schematizes this construction for G = 5 and highlights the region that corresponds
to the level presented in Fig. 6.5a. A version of this grid with G = 10 is presented in
Fig. 9.1a.

6.7 R E L AT E D W O R K : D G M S I N G A M E S 73

Figure 6.8: A grid of levels in latent space (Zelda). This Fig. shows a grid of G = 5
levels in the [−1,4]2 square in latent space (Fig. 6.7). Levels tend to have incom-
plete doors, and falling away from the support of the data (e.g. the level in the
top-left) results in levels that do not correspond to the distribution.

6.6.2 The Legend of Zelda levels

The VGLC also contains levels from the The Legend of Zelda11. These are
available as .txt files as well and can be post-processed to extract 237 in-
dividual rooms, which are 11×16 in shape.12 The vocabulary is described
in Table A.2 in the appendix, with passable blocks highlighted with “(p)”.

A VAE with a 2-dimensional latent space trained13 on this dataset results in
the latent space visualized in Fig. 6.8, and the result of decoding 3 random
latent codes z ∼ p(z) is shown in Fig. 6.9.

6.7 R E L AT E D W O R K : D G M S I N G A M E S

This section briefly surveys the use of DGMs in video games.

11 https://github.com/TheVGLC/TheVGLC/tree/master/The%20Legend%20of%20Zelda/

Processed

12 This has already been implemented by Schrum, Volz, and Risi. https://github.com/

schrum2/GameGAN/tree/master/data/VGLC/Zelda/Processed.
13 See training details in Appendix A.3.3.

https://github.com/TheVGLC/TheVGLC/tree/master/The%20Legend%20of%20Zelda/Processed
https://github.com/TheVGLC/TheVGLC/tree/master/The%20Legend%20of%20Zelda/Processed
https://github.com/schrum2/GameGAN/tree/master/data/VGLC/Zelda/Processed
https://github.com/schrum2/GameGAN/tree/master/data/VGLC/Zelda/Processed

74 A N I N T R O D U C T I O N T O D E E P G E N E R AT I V E M O D E L S I N V I D E O G A M E S

(a) (b) (c)

Figure 6.9: Three examples from Zelda’s latent space. We show three examples of
levels decoded from the latent space of Zelda, which come from sampling latent
codes at random.

A U T O R E G R E S S I V E M O D E L S A first example of an autoregressive model
consists of using Recurrent Neural Networks (RNNs) to account for the de-
pendence between xl and x<l . Summerville and Mateas (2016) used Long
Short-Term Memory (LSTM) recurrent units to generate levels from SMB.
LSTMs have also been used to blend tile-based game levels like SMB and
Kid Icarus (Sarkar and Cooper, 2018). Recently, LSTM-based generators
have been benchmarked against other DGMs in the game Sokoban (Za-
karia, Fayek, and Hadhoud, 2023).

To the best of our knowledge, PixelCNNs and PixelRNNs (alongside their
contemporary alternatives (Bond-Taylor et al., 2022)), have not yet been
applied to video game content.

G A N S In the specific case of video game content, GANs have been used
for tile-based content like SMB (Volz et al., 2018), Kid Icarus (Sarkar, Yang,
and Cooper, 2019), Zelda (Schrum et al., 2020), several games inside the
General Video Game AI framework (Irfan, Zafar, and Hassan, 2019; Ku-
maran, Mott, and Lester, 2019), Sokoban (Zakaria, Fayek, and Hadhoud,
2023), Mega Man (Capps and Schrum, 2021), and Super Mario Kart (Aw-
iszus, Schubert, and Rosenhahn, 2020) as well levels for DOOM (Giacomello,
Lanzi, and Loiacono, 2018).

Several more applications can be found in (Liu et al., 2020, Sec. 4.4), in-
cluding learning from a single example in both SMB and Minecraft (Aw-
iszus, Schubert, and Rosenhahn, 2020; 2021), and bootstrapping playable
content from a GAN trained on Zelda (Rodriguez Torrado et al., 2020). They
have also been used as a way to represent content in Reinforcement Learn-
ing schemes, aimed at adapting content (Shu, Liu, and Yannakakis, 2021).
Interestingly, these models have also been used as game engines themselves
(Kim et al., 2020).

There is a strong focus on latent variable evolution (LVE), where algorithms
like Covariance Matrix Adaptation - Evolutionary Strategy (CMA-ES, Hansen
and Ostermeier, 1996), and its MAP-Elites variant (CMA-ME, Fontaine et
al., 2020), are used to explore the latent space of the GAN, optimizing to-
wards features like playability, or desired features like floor gaps in plat-
formers (Capps and Schrum, 2021; Edwards, Jiang, and Togelius, 2021; Gia-
comello, Lanzi, and Loiacono, 2018; Irfan, Zafar, and Hassan, 2019; Schrum,

6.8 D G M S & F U N C T I O N A L C O N T E N T 75

Volz, and Risi, 2020; Volz et al., 2018). GANs have also been used in systems
that adapt and balance content. Rajabi et al. (2021) use a Reinforcement
Learning agent to assess the playability and difficulty of levels in the latent
space.

VA E S VAEs have found several applications in video games. Examples
of these include pixel art (Saravanan and Guzdial, 2022), WarCraft 2 and
Super Metroid maps (Karth et al., 2021, used alongside Wave Function Col-
lapse), and a plethora of tile-based levels like Super Mario Bros (SMB), Kid
Icarus, Megaman, Ninja Gaiden, CastleVania, Lode Runner and Sokoban
(Sarkar and Cooper, 2020b; 2021b; Snodgrass and Sarkar, 2020; Zakaria,
Fayek, and Hadhoud, 2023).

An area of focus has been the blending of different games by learning and
exploring a single latent space for more than one game (Sarkar and Cooper,
2020a; 2021a; b; Sarkar, Yang, and Cooper, 2019).

VAEs can also be used in conjunction with AR models. Tanabe et al. (2021)
build stable levels for Angry birds using VAEs with encoders and decoders
based on LSTMs.

6.8 D G M S & F U N C T I O N A L C O N T E N T

Unlike images of faces or objects (Dhariwal and Nichol, 2021; Karras, Laine,
and Aila, 2019; Karras et al., 2020), video game levels like the ones discussed
in our examples need to satisfy a functionality criteria (Liu et al., 2020; Sum-
merville et al., 2018). For example, using the VAE trained on SMB levels
may result in levels with inaccessible parts due to pipes that are too tall or
floor gaps that are too wide. This section discusses the playability of con-
tent produced by our VAEs on the SMB and Zelda examples, briefly surveys
how this issue is being addressed by the community and finishes with an
analogy to other domains like protein modeling and robotics.

P L AY A B I L I T Y S T R U C T U R E I N L AT E N T S PA C E After sampling latent codes
at random from the prior z ∼ p(z), it is fairly common to decode to un-
playable levels. Fig. 7.1b shows an example.14 Similarly, decoded levels of
the Zelda model may contain broken doors or lack doors and stairs at all
(making them unfeasible) (Figs. 6.8 and 6.9).

In the next chapters, we examine the question of how the playable content
is distributed in latent space. To test at scale, we use Robin Baumgarten’s
A* agent as a proxy for human players. This agent, which won the 2009
Mario AI competition, is usually considered super-human in performance
(Togelius, Karakovskiy, and Baumgarten, 2010). This agent is available in

14 Run this experiment yourself! It is available in the code repository with the minimal ex-
ample of a VAE in SMB: https://github.com/miguelgondu/minimal_VAE_on_Mario#
using-the-simulator

https://github.com/miguelgondu/minimal_VAE_on_Mario#using-the-simulator
https://github.com/miguelgondu/minimal_VAE_on_Mario#using-the-simulator

76 A N I N T R O D U C T I O N T O D E E P G E N E R AT I V E M O D E L S I N V I D E O G A M E S

the MarioGAN repositories (Volz et al., 2018).15 Running Baumgarten’s A*
agent in this framework returns a set of telemetrics, including whether the
level was solved, the number of jump action calls, how much of the level
was traversed, etc.

Figure 6.10: Playability in latent
space. A grid of latent codes
(Fig. 6.7, with G = 50 and the same
limits) is decoded and tested us-
ing Baumgarten’s A* agent. Blue
colors correspond to playable re-
gions, and white to non-playable.

To find out how playability is distributed
in latent space, we decode a grid akin to
the one shown in Fig. 6.7, but with size
G = 50 instead of G = 5. For each one
of these evenly-spaced latent codes, we
decode the level and test it using Baum-
garten’s A* agent. Although this simu-
lation is supposed to be deterministic,
experiments show that the same level
returns different telemetrics in different
runs. To account for this stochasticity,
we average the telemetrics over 5 runs.
The resulting playability grid is shown in
Fig. 6.10, with blue regions correspond-
ing to playable levels, and white regions
corresponding to non-playable. We ex-
plore this structure in detail in the next
chapters.

R E L AT E D W O R K O N P L AY A B I L I T Y As this chapter shows, DGMs are
widely used in video games. How do researchers and practitioners deal
with this playability issue in practice?

Plenty of research is devoted to level repair, where the generated levels are
repaired post hoc. Jain et al. (2016) use vanilla AEs to fix small chunks of lev-
els in SMB, since the network learns the structure of already playable data
and can "fix" by encoding and decoding. They note, however, that this only
works for small-sized windows. Zhang et al. (2020) propose a generate-and-
repair scheme in which levels for Zelda are fixed post hoc using a Mixed In-
teger Linear Programming optimization. Their key insight is that the prob-
lem of repairing a given level can be formalized as a minimal edit prob-
lem with constraints (like the uniqueness of the avatar, key and goal, or the
path-connectedness of these). Analogously, Gutierrez and Schrum (2020)
fix Zelda levels generated by a GAN using an approach based on A*.

Another way to compensate for the unplayable content in latent space is
through LVE, discouraging the evolution from picking unplayable levels by
assigning them low fitness scores. This is the approach in (Edwards, Jiang,
and Togelius, 2021; Irfan, Zafar, and Hassan, 2019; Sarkar and Cooper, 2021b;
Schrum, Volz, and Risi, 2020; Volz et al., 2018), among others.

15 https://github.com/CIGbalance/DagstuhlGAN

https://github.com/CIGbalance/DagstuhlGAN

6.8 D G M S & F U N C T I O N A L C O N T E N T 77

F U N C T I O N A L C O N T E N T I N O T H E R D O M A I N S The problem of gener-
ating functional content is not unique to video games. Other domains
consider the same problem: learning continuous representations of their
data using latent variable models and using said models to generate novel
samples. Two examples of such domains include protein modeling and
robotics.

In protein modeling, discrete VAEs have also been used to learn a latent
space of e.g. molecules (Gómez-Bombarelli et al., 2018; Stanton et al., 2022)
using their SMILES representation; the problem of decoding to valid molecules
has been addressed by proposing alternative representations that always
decode to functional content (Krenn et al., 2022). The PCGML community
could take inspiration from such representations, and find alternative ways
to represent game content (as is discussed in (Summerville et al., 2018, Sec.
4.B.)). In robotics, non-Euclidean data is often considered (e.g. quater-
nions for modeling rotations, see (Jaquier and Asfour, 2022)), and there is a
need for respecting this geometric structure when generating trajectories
(i.e. decoding to “valid rotations”).

The next chapter takes inspiration from recent works in these two domains
(Beik-Mohammadi et al., 2021; Detlefsen, Hauberg, and Boomsma, 2022),
and sets the ground for a geometric approach to reliably presenting func-
tional content in tile-based VAEs.

7
T O WA R D S S A F E C O N T E N T G E N E R AT I O N U S I N G
D I F F E R E N T I A L G E O M E T RY

As we saw in the last chapter, we can use Deep Generative Models to ap-
proximate the underlying distribution of a corpus of video game content
encoded as a sequence (or grid) of tiles. Unfortunately, we have no guaran-
tees that the content generated by, say, a Variational Autoencoder (VAE) or
a Generative Adversarial Network (GAN) will be playable. Fig. 7.1 shows a
couple of examples of levels generated from a VAE trained on Super Mario
Bros (SMB). In Fig. 7.1b the player cannot jump over the first pipe, while
Fig. 7.1a has no impossible obstacles.

(a) Playable

(b) Not playable

Figure 7.1: Playable (a) and not
playable levels (b) from an SMB
VAE.

This is a well-known problem in learning-
based procedural content generation
(Summerville et al., 2018, Sec. 4.A),
(Liu et al., 2020, Sec. 3). Researchers
have addressed this problem by includ-
ing constraints to probabilistic genera-
tive models like Markov chains (Snod-
grass and Ontañón, 2016), by fixing the
levels post hoc using e.g. pathfinding
agents (Cooper and Sarkar, 2020), or by
resampling until a playable level is found
(Shu, Liu, and Yannakakis, 2021). Alter-
natives to Deep Generative/probabilistic
models have also been proposed, like di-
rectly solving a constraint optimization
problem at the cost of expensive gener-
ation times (Cooper, 2022; Smith and
Mateas, 2011). Other approaches for ad-
dressing playability (like level repair) are
discussed in Sec. 6.8.

In this thesis, we propose another ap-
proach to the problem of safe content
generation focusing on the specific case
of generating tile-based content using
VAEs. This solution is inspired by recent
applications of differential geometry to Deep Generative Models (Arvani-
tidis, Hansen, and Hauberg, 2018), robotics (Beik-Mohammadi et al., 2021),
and protein modeling (Detlefsen, Hauberg, and Boomsma, 2022). At its
core, our solution modifies distances in latent space, making it “expensive”
for samplers and interpolators to go through regions of unplayable con-
tent.

79

80 T O W A R D S S A F E C O N T E N T G E N E R AT I O N U S I N G D I F F E R E N T I A L G E O M E T R Y

Figure 7.2: Manifold hypothesis in SMB. SMB levels live close to a low-
dimensional surface on high-dimensional logit space R14×14×11. We highlight a
level on the surface, which under this hypothesis corresponds to a training ex-
ample, and a randomly sampled level outside of it. The goal of a representation
learning algorithm (like our VAEs) is to approximate this surface.

This chapter starts by introducing differential geometry from an intuitive
perspective and continues by discussing related works and recent applica-
tions of geometry to DGMs, which serve as a motivation for our geometric
approach to generating functional content. We follow by outlining the chal-
lenges of applying these ideas. The chapter then ends with an outlook of
the rest of this dissertation, explaining how some of these challenges were
addressed.

7.1 A N I N T U I T I V E I N T R O D U C T I O N T O D I F F E R E N T I A L G E O M E T R Y

To describe the concepts of differential geometry that will be relevant in
this thesis, we start by describing our experimental setup.1 In VAEs (andVariational

Autoencoders (VAEs)
are explained in

detail in Chap. 6,
Sec. 6.4.

most other DGMs), a decoder function decθ : Z →RD maps low-dimensional
data in the latent space Z ⊆ Rd to their reconstructions in data space RD

(where d < D). This decoder spans a surface in data space, and differen-
tial geometry studies these surfaces and how distances can be defined on
them.

Let’s make things more tangible by looking at our VAEs trained on the tile-
based representation of SMB levels (see Sec. 6.6.1). Recall that this VAE
is trained to decode the logits l ∈ R14×14×11 of SMB levels, which are then
transformed into probability vectors using the Softmax activation. It is hy-
pothesized that all the logits that decode to SMB levels live on a surface,

1 See (Hauberg, 2022) for a more formal introduction to the geometry of generative models.
This introduction focuses on our setting: tile-based VAEs trained on video game levels.

7.1 A N I N T U I T I V E I N T R O D U C T I O N T O D I F F E R E N T I A L G E O M E T R Y 81

and the goal of a VAE (or any other dimensionality reduction technique) is
to approximate this surface. To illustrate this, we sample logits uniformly at
random in R14×14×11 and compare them with decodings of our VAE trained
on SMB in Fig. 7.2.

Believing that data lies on a low-dimensional surface is known as the Man-
ifold Hypothesis (Bengio, Courville, and Vincent, 2014, Sec. 8). Intuitively
speaking, a manifold is a surface that locally looks like Euclidean space.
This hypothesis is used to justify the fact that dimensionality reduction
works: we should be able to describe content with less numbers than the
data is originally encoded in. These types of algorithms have been ap-
plied to faces (Karras, Laine, and Aila, 2019; Karras et al., 2020), molecules
(Gómez-Bombarelli et al., 2018; Stanton et al., 2022), and SMB levels (Sarkar
and Cooper, 2020b; Volz et al., 2018), among several other types of content.

In the language of differential geometry, learning latent representations
corresponds to learning charts: local approximations of the surface that
match points on the latent space with points on the surface in a one-to-
one fashion (Lee, 2000, Chap. 1). In the case of Variational Autoencoders,
the use of approximate posterior distributions makes these probabilistic
charts, approximating the manifold on average (Fig. 7.3). In other words,
the decoder is a probabilistic approximation of the “true” surface that con-
tains all possible SMB levels.

How do we measure distances on this surface? Given our decoder dec: Z →
RD ,2 consider a curve c : [0,1] → Z that starts at z0 = c(0) and ends at
z1 = c(1). We can measure its length by taking small time steps δt and
adding the differences ‖dec(c(t +δt))−dec(c(t))‖. The limit, as we take
smaller steps and add them, is the following integral:

Length[c] =
∫ 1

0

∥∥∥∥ d

dt
dec(c(t))

∥∥∥∥dt

=
∫ 1

0
‖Jdec(c(t))c ′(t)‖dt

=
∫ 1

0

√
(Jdec(c(t))c ′(t))>(Jdec(c(t))c ′(t))dt

=
∫ 1

0

√
c ′(t)>Jdec(c(t))>Jdec(c(t))c ′(t)dt (7.1)

where Jdec(z) is the Jacobian of the decoder, which can be thought of as a
first-order derivative. More precisely, this Jacobian measures infinitesimal
differences of the decoder:

Jdec(z) ≈
[

dec(z +dzi)−dec(z)

‖dzi‖
]dim(Z)

i=1
, (7.2)

where dzi is a small vector in the i -th direction. This approximation is
made exact when taking the limit ‖dzi‖→ 0. The matrix

M(z) : = Jdec(z)>Jdec(z) (7.3)

2 We omit the parameters θ to unclutter the notation.

82 T O W A R D S S A F E C O N T E N T G E N E R AT I O N U S I N G D I F F E R E N T I A L G E O M E T R Y

is known as the pullback metric (Lee, 2018, Appendix B.). Replacing in
Eq. (7.1), we get

Length[c] =
∫ 1

0

√
c ′(t)>M(c(t))c ′(t)dt . (7.4)

Notice how this equation states that M(z) plays a crucial role in measuring
lengths on the surface.

Using this definition of the length of a curve, we can further define geodesics
as curves that locally minimize length (Lee, 2018, Chap. 4). Geodesics are
to generic surfaces what straight lines are to Euclidean space. In practice,
these geodesics are computed by minimizing a curve’s energy instead of
length (Arvanitidis et al., 2022; Detlefsen, Hauberg, and Boomsma, 2022).

A benefit of using the distances measured directly on the surface in data
space is invariance to reparametrizations. Two training runs of the same
VAE may produce completely different yet similarly performing decoders.
Since their weights are different, the latent embeddings for a pair of points
in the first VAE may be very different from that of the second one. However,
the geodesic distance between this pair of encodings will remain the same
across the two networks since it is measured in data space.

Another important quantity is metric volume (Lee, 2018, Chap. 2), given
by

volume(z) = m(z) =
√

det(M(z)), (7.5)

which corresponds to measuring how “big” the surroundings of z ∈ Z are.
Visually, geodesics will tend to follow the regions of low metric volume.

7.2 M A N I P U L AT I N G T H E G E O M E T R Y O F L AT E N T S PA C E S

The previous section described how lengths and volumes can be measured
in latent space. We now discuss how this geometry can be modified to
our advantage. This theory was developed for Gaussian VAEs in (Arvan-
itidis, Hansen, and Hauberg, 2018) and then adapted to spherical (Beik-
Mohammadi et al., 2021) and Categorical data (Detlefsen, Hauberg, and
Boomsma, 2022).

Circling back to the probability theory involved in VAEs, remember that
they learn two distributions: an approximation of the posterior over the
latent codes qp hi (z |x), which is usually a Normal distribution with mean
and covariance parametrized by the encoder, and a likelihood distribution
pθ(x |z) which, depending on the nature of the data, can be a Normal if the
data is continuous, a Categorical if the data is discrete, etc.

7.2.1 Defining latent space geometries for Gaussian decoders

Let’s start by focusing on the case in which pθ(x |z) is a Normal distribution,
say pθ(x |z) =N (µθ(z),σθ(z)2). The decoder takes the following form:This is known as the

reparametrization
trick. We explain it

in detail in Sec. 6.4.4.

7.2 M A N I P U L AT I N G T H E G E O M E T R Y O F L AT E N T S PA C E S 83

Figure 7.3: Gaussian VAEs as probabilistic charts. Gaussian VAEs learn a mean
surface and estimate the uncertainty around it. Here, we show our latent space
Z ⊆ Rd and its image under the decoder. We map a point z to µθ(z), with uncer-
tainty σθ(z).

decθ(z) =µθ(z)+ε¯σθ(z)2, µθ,σθ : Rd →RD , ε∼ N (0, ID). (7.6)

As discussed above, the image of this decoder in data space RD is a random
surface: a mean surface µθ(Z) with uncertainties around it (see Fig. 7.3).

To compute distances and volumes, we need to compute the pullback met-
ric M(z) = Jdec(z)>Jdec(z) first. Since Eq. (7.6) has a Gaussian random vari-
able in it, M(z) itself becomes a random variable. In other words, we need
to discuss the value that the metric M(z) takes on average.3

Arvanitidis, Hansen, and Hauberg proved that

Eε∼N (0,ID) [M(z)] = Jµθ (z)>Jµθ (z)+ Jσθ (z)>Jσθ (z). (7.7)

Notice that this expression for the pullback contains the Jacobian of the
standard deviation σθ(z). The geometry of the latent space is intimately
linked to how good our uncertainty quantification is (i.e. whether σθ(z) is
high in the parts of the latent space we want to avoid).

VAEs are notorious for their lack of good uncertainty quantification (Ry-
bkin, Daniilidis, and Levine, 2021). Fig. 6.1 shows the value of σθ for a fine
grid in latent space in our MNIST(1) VAE, which was trained on only the
digit “1” (see Sec. 6.4.6). Ideally, we would see that our network has low
variance around the training codes, and is uncertain in the “unknown” re-
gions of latent space.

Several attempts to fix this lack of proper uncertainty quantification have
been proposed. Some are principled, and modify the training of the net-
works to better estimate the uncertainty (Rybkin, Daniilidis, and Levine,
2021; Skafte, Jørgensen, and Hauberg, 2019). However, the community has
found it more practical to rely on post hoc fixes.

Originally, Arvanitidis, Hansen, and Hauberg (2018) proposed training a
Radial Basis Function (RBF) network after training the VAE, encouraging

3 This treatment of the Jacobian as a random variable is not completely formal since it is
only defined for a fixed ε in Eq. (7.6). For a formal treatment, we recommend (Eklund and
Hauberg, 2019), where the authors treat this Gaussian decoder as a random projection of
the function h(z) = [µ(z),σ(z)], given by concatenating the mean and standard deviation.

84 T O W A R D S S A F E C O N T E N T G E N E R AT I O N U S I N G D I F F E R E N T I A L G E O M E T R Y

Figure 7.4: Translated sigmoids α(z ;β) as a function of the distance to the cen-
ters minDist(z). For lower values of the hyperparameter β> 0 we get a translated
sigmoid that raises to 1 faster.

the RBF to assign low variance close to the latent codes of the training set.
A year later Skafte, Jørgensen, and Hauberg proposed a heuristic for train-
ing these variance networks which relies on a “translated sigmoid”, which
works as a semaphore (Skafte, Jørgensen, and Hauberg, 2019, Sec. 3.5).
This proposed heuristic has stuck and was used in e.g. (Arvanitidis et al.,
2022; Detlefsen, Hauberg, and Boomsma, 2022). Since we also use it, we
will discuss it in detail in what remains of this section.

7.2.2 Proper uncertainty quantification using a translated sigmoid

To recap: the geometry of the latent space of a VAE is intimately linked to
the variance output σθ(z), but training VAEs the usual way results in poor
estimates of this uncertainty. Thus, we fix the estimate of the variance post
hoc.

Putting it more formally, we want to replace the standard deviation σθ(z)
that is originally learned by the network with a different one (denoted σ̃θ(z))
which behaves like this:

σ̃θ(z) =
{
σθ(z) if z is close to the training codes,

a large number otherwise.
(7.8)

We achieve this by considering the extrapolation heuristic proposed in (Skafte,
Jørgensen, and Hauberg, 2019): first, train K -means on the latent codes of
the training set, arriving at K different centers C = {c1, . . . ,cK }. Let minDist(z ; C)
be the minimum of the distances {dist(z ,ck)}K

k=1 as a function of z . With
this, define

α(z ; β,C) = Sigmoid

(
minDist(z ; C)−βs

β

)
(7.9)

where β > 0 is a hyperparameter and s ≈ 6.9.4 α(z ;β) is approximately 0
when z is close to the training centers ck , and approximately 1 when far
away. The slope by which this function moves from 0 to 1 is governed by β,
the impact of which is shown in Fig. 7.4.

4 This value is chosen by solving for α(0) ≈ 0. To be exact, we used s = 6.9077542789816375.

7.2 M A N I P U L AT I N G T H E G E O M E T R Y O F L AT E N T S PA C E S 85

(a) Extrapolation of uncertainty σθ(z).

(b) Log-metric volume in latent space.

Figure 7.5: Impact of the hyperparameter β. As shown in Fig. 7.4, the hyperpa-
rameterβ governs how “quickly” the VAE extrapolates to uncertainty in the mecha-
nism proposed by Skafte, Jørgensen, and Hauberg. This figure shows the modified
decoder’s uncertainty above and the induced metric volume below. Lower values
of β allow for quicker extrapolation, which induces a “wall” of metric volume.

Using this “translated sigmoid”, we define σ̃θ(z) by

σ̃θ(z ;β) = (1−α(z ;β))σθ(z)+10α(z ;β). (7.10)

If z is close to the training codes, α(z) ≈ 0 and thus our standard devia-
tion returns what the network learned; on the other hand, if z is far away,
α(z) ≈ 1 and the network decodes to 10 (which is chosen as a token for
high variance). This fulfills our desiderata in Eq. (7.8). Fig. 7.5a shows how
the standard deviation gets corrected for our MNIST(1) example, and the
impact on the metric volume is illustrated in Fig. 7.5b.5

Originally, Skafte, Jørgensen, and Hauberg initializeβ and the centers {ck }K
k=1

as described above, and optimize them during training. We found the opti-
mization unnecessary in practice, and settle for leaving them static.

7.2.3 Defining latent space geometries for Categorical decoders

The extrapolation mechanism described in the previous subsection assumes The reader might
find it helpful to
recall VAEs with
Categorical decoders
(see Sec. 6.5).

that the decoder outputs the parameters of a Gaussian distribution. How
does this extrapolation mechanism work for the Categorical?

5 The code used for generating these Figs. is available in https://github.com/

miguelgondu/examples_in_thesis.

https://github.com/miguelgondu/examples_in_thesis
https://github.com/miguelgondu/examples_in_thesis

86 T O W A R D S S A F E C O N T E N T G E N E R AT I O N U S I N G D I F F E R E N T I A L G E O M E T R Y

Let’s start with a small recap of how Categorical VAEs work: the decoder
learns a discrete probability distribution over a set of tiles, or tokens, de-
noted by {t1, . . . , tC }. More explicitly, a decoder with L outputs decθ(z) =
[p1, . . . , pL] learns a probability vector pl = [pl ,1, . . . , pl ,C] for each position
l ∈ {1, . . . ,L}, estimating the probabilities that the tile in position l is tc for
each c ∈ {1, . . . ,C }. In symbols:

dec(z)l ,c = Prob[tile xl = tc] .

Detlefsen, Hauberg, and Boomsma (2022) modify the extrapolation mech-
anism described for the Gaussian by maximizing the entropy of the Cate-
gorical distribution. In this scenario, maximal variance is achieved when
the probability of each one of the classes is 1/C . With this notation, the
extrapolation modifies the decoder as follows

d̃ec(z)l ,c =α(z ;β)dec(z)l ,c + (1−α(z ;β))(1/C). (7.11)

Putting it another way: the modified extrapolation mechanism decodes to
the probabilities learned during training when close to the training codes,
and decodes to a probability vector that is at random as possible when z is
far from the training codes.

7.3 A N A P P L I C AT I O N I N R O B O T I C S

Robotic data naturally lives on geometrically constrained spaces (Jaquier
and Asfour, 2022; Jaquier et al., 2021). For example, the positions of a robot
arm can be parametrized by their 3D location and the orientation of the
gripper (the combination of which is denoted by R3 ×S3, where S3 are the
quaternions), or by its joint angles (each of which lives in a copy of the
circle, denotedS1). When learning a latent space of such positions or joint
angles, we would need a distribution that decodes to quaternions or the
circle respectively.

In 2021, Beik-Mohammadi et al. used VAEs that decode to the von Mises-
Fisher (vMF) distribution on S3 to learn from demonstrations of a robot
arm with 7 degrees of freedom. Since the vMF distribution also allows for
reparametrization, they derive an expression for the metric volume that is
similar to the one described in Eq. (7.5).

With this latent geometry, they are able to synthesize robot motion safely
even across multiple demonstrations. This is achieved by following geodesic
paths in latent space since these stay within the demonstrations provided
in the training set.

Their application is close in nature to ours: there are regions in latent space
they want to stay within when interpolating between two points, so they
modify the geometry of the latent space to make it “expensive” for the in-
terpolations to go out of the support of the data. In our method, we want
to stay close to playable regions of the latent space when sampling and in-
terpolating.

7.4 A N A P P L I C AT I O N I N P R O T E I N M O D E L I N G 87

One lesson from this application is: when dealing with novel types of data
and distributions (like quaternions and the vMF), the metric needs to be
derived again by computing the respective Jacobians. We consider this to
be a drawback of such an approach.

7.4 A N A P P L I C AT I O N I N P R O T E I N M O D E L I N G

This second application deals with data that is closer in nature to tile-based
video game levels. Proteins and molecules, like tile-based levels, are mod-
eled as sequences of tokens (e.g. as “strings” of amino acids or RNA) (Stan-
ton et al., 2022, Sec. 2.1.).

As is discussed in Sec. 7.2, proper uncertainty quantification is necessary
for the latent space geometry to be well-behaved. The extrapolation mech-
anism for Categorical data described earlier was first proposed by Detlef-
sen, Hauberg, and Boomsma.

Another issue arises: computing the metric M(z) for a Categorical distri-
bution is not as trivial as in the Gaussian case: the data does not live in
continuous, Euclidean space but rather in sequence space. The authors
compute a curve’s energy by measuring the expected squared distance be-
tween the one-hot encodings of the decoded sequences. In short, dealing
with Categorical data forces us to consider different distances.

Detlefsen, Hauberg, and Boomsma study the VAE latent space of aligned se-
quences of amino acids for a specific family of proteins (beta-lactamase),
and find that geometry allows for interpretability. Their latent space re-
sembles a hierarchy, with geodesics generally following a phylogenetic tree
estimated from the protein sequences in the training set.

7.5 A P P LY I N G G E O M E T R Y T O V I D E O G A M E C O N T E N T : C H A L L E N G E S

These three previous sections outline several challenges of learning latent
geometries:

1. Depending on the nature of the data, we need to either modify the
notion of distance or compute the expected metric.

2. Computing expected metrics involves computing Jacobians, which
is involved even when using current autodifferentiation software like
PyTorch (Paszke et al., 2019).6

3. Given a distribution, we need to specify an extrapolation mechanism.
Extrapolating to uncertainty in the Gaussian is different to extrapo-
lating to uncertainty in the Categorical.

6 JAX is a strong competitor in this front. Its approach to automatic dif-
ferentiation has the computation of the Jacobian easily exposed. https:

//jax.readthedocs.io/en/latest/notebooks/autodiff_cookbook.html#

jacobians-and-hessians-using-jacfwd-and-jacrev

https://jax.readthedocs.io/en/latest/notebooks/autodiff_cookbook.html#jacobians-and-hessians-using-jacfwd-and-jacrev
https://jax.readthedocs.io/en/latest/notebooks/autodiff_cookbook.html#jacobians-and-hessians-using-jacfwd-and-jacrev
https://jax.readthedocs.io/en/latest/notebooks/autodiff_cookbook.html#jacobians-and-hessians-using-jacfwd-and-jacrev

88 T O W A R D S S A F E C O N T E N T G E N E R AT I O N U S I N G D I F F E R E N T I A L G E O M E T R Y

4. Something that might not be apparent at first is the sensitivity to
hyperparameters. We glossed over hyperparameters like the “steep-
ness” of the translated sigmoid β or the number of centers K , but
these turn out to be essential for geodesics and random walks to be
well-behaved. Tuning is currently done by hand, using trial-and-error
and relying on qualitative assessments, like how the latent space looks.

5. Since we rely on visual inspection, these methods have mostly been
explored in latent spaces of dimension 2. Scaling them to higher di-
mensions reliably would require finding more robust ways of tuning
the hyperparameters involved.

6. As can be seen in Fig. 7.5b, pulling back the metric from data space
usually translates to building a “wall” of metric volume around the
support of the data. Outside this wall, points are close-by. If safety
is the main concern, we would like all regions outside the region of
interest to be expensive to get to.

In the particular case of video game content, items 1 and 6 are especially
relevant: since our data is Categorical, a different notion of distance needs
to be computed (like Detlefsen, Hauberg, and Boomsma), and we would
like all unplayable regions to be unreachable. Item 2 is being addressed
by developing frameworks on top of PyTorch, which give easy access to
Jacobians (Detlefsen et al., 2021, stochman).

7.6 C O N C L U S I O N & O U T L O O K

This chapter introduced differential geometry as a potential tool to solve
the problem of reliably generating functional content in latent space, ex-
emplified other applications of geometry in DGMs, and outlined several
challenges to overcome in order to apply this theory to video game con-
tent.

In the following chapter, item 1 is addressed by defining latent space ge-
ometries for (almost) any distribution using tools from Information Geom-
etry (IG). Chap. 9 covers a method for learning latent space geometries in
VAEs that decode to tile-based content safely, addressing item 6 and tack-
ling the problem of reliably generating playable content.

8
D E F I N I N G L AT E N T S PA C E G E O M E T R I E S F O R (A L M O S T)
A N Y D I S T R I B U T I O N

This chapter presents a new methodology for learning latent space geome-
tries, one that allows for decoding to (almost) any distribution. This ad-
dresses one of the issues we raised about learning latent space geometries
in the previous chapter: the fact that, for each new distribution, the ex-
pected pullback metric M(z) (see Eq. (7.3)) needs to be re-computed.

Learning latent space geometries in this generalized setting can be achieved
by using the tools of Information Geometry (IG) (Nielsen, 2020; 2022). Infor-
mation geometers have been studying probability distributions from a Rie-
mannian lense, and they have introduced the notion of a statistical man-
ifold H , the manifold of the parameters of a given distribution, coupled
with the Fisher-Rao metric (or the Fisher information matrix).

At its core, this proposed method re-frames the decoder of Variational Au-
toencoders (VAEs): instead of decoding to data space, the decoder returns
the parameters of the distribution in a statistical manifold, from which the
Fisher-Rao metric can be pulled back. In other words, our previous ap-
proaches pulled back the Euclidean metric from data space RD , and now
we focus on pulling back the Fisher-Rao metric from H .

The topics this chapter discusses are theoretical and not exclusively related
to video games. Readers that are not interested in latent space geometries
could skip this chapter without any cost. Still, the math-heavy sections of
this chapter are summarized by giving a short, intuitive description of the
theoretical discussion.

This chapter starts with a formalization of the intuitive presentation of dif-
ferential geometry presented in earlier chapters, followed by the presen-
tation of our novel methodology, including two experiments, and finishes
with a practical implementation in Python using tools like PyTorch (Paszke
et al., 2019) and stochman (Detlefsen et al., 2021). The contents of this
chapter are based on the contribution (Arvanitidis, González-Duque, Pou-
plin, Kalatzis, and Hauberg, 2022).

8.1 R E V I S I T I N G D I F F E R E N T I A L G E O M E T R Y

In Sec. 7.1 the notion of the pullback metric M(z) = Jdec(z)>Jdec(z) was in-
troduced. To re-cap, if c : [0,1] →Z is a curve in latent space and dec: Z →
RD is a decoder, the length of the curve in latent space is measured using
distances in ambient space (Eq. (7.4)):

Length[c] =
∫ 1

0

√
c ′(t)>M(c(t))c ′(t)dt .

89

90 D E F I N I N G L AT E N T S PA C E G E O M E T R I E S F O R (A L M O S T) A N Y D I S T R I B U T I O N

Notice how, to define the length of a curve in latent space, we need to com-
pute an inner product with its derivatives. Geometrically speaking, these
derivatives are vectors that are tangent to the curves. These two facts mo-
tivate the following three mathematical definitions, which formalize what
was previously discussed:

TA N G E N T S PA C E Given a manifold M , its tangent space at a point p ∈
M (denoted TpM) consists of all the derivatives of curves that pass through
p. We denote (and think of) such derivatives as vectors. Indeed, one some-
times considers points on the manifold in a coordinate system, and this
abstract notion of “vectors as derivatives” turns computational, with TpM

being easily identifiable with a real vector space (Lee, 2000).

M E T R I C Secondly, a metric g on M takes two tangent vectors vp , wp at
p and returns a real number g (vp , wp) such that

• it is symmetric, i.e. gp (vp , wp) = gp (wp , vp).

• it is positive definite, i.e. gp (vp , vp) ≥ 0, with equality only when vp

is the zero vector.

A manifold M equipped with a metric is known as a Riemannian man-
ifold. Taking coordinates, metrics are symmetric positive-definite matri-
ces. An example Riemannian manifold is precisely the Euclidean space RD

equipped with the identity matrix I as the metric in all tangent spaces.

P U L L B A C K M E T R I C Finally, the definition of a pullback metric provided
in Eq. 7.3 can be generalized to Riemannian manifolds. If f : Z → (M , g)
is a smooth map, a metric on Z can be defined by computing the inner
product on M and “bringing it back”. This pullback metric, denoted by
(f ∗g), is given by

(f ∗g)z (vz , wz) = g f (z)((d f)z (vz), (d f)z (wz)), (8.1)

where (d f)z is the differential, which maps tangent vectors vz ∈ TzZ to
tangent vectors at T f (z)M . In coordinates, this differential takes the form
of the usual Jacobian matrix described in Eq. (7.2).

S U M M A R Y The intuitive introduction to differential geometry pre-
sented in Sec. 7.1 is formalized by introducing the mathematical def-
initions of the tangent spaces, metrics, Riemannian manifolds, and
pullback metrics.

8.2 D ATA S PA C E V S . PA R A M E T E R S PA C E

Using this language about pullback metrics, the type of pullback metric
discussed in Chap. 7 is described formally. Namely, we were pulling back

8.2 D ATA S PA C E V S . PA R A M E T E R S PA C E 91

Figure 8.1: From data space to parameter space. Instead of using the data space
(left) to define distances in latent space, using the parameter space (right) allows
for defining latent space geometries to latent spaces of VAEs that decode to (al-
most) any distribution.

the Euclidean metric from data space RD . This pullback metric would take
two tangent vectors vz , wz ∈ TzZ in the latent space and output

(dec∗ I)z (vz , wz) = Idec(z)((ddec)z (vz), (ddec)z (wz))

= (Jdec(z)vz)>Idec(z) Jdec(z)wz

but the Euclidean metric Idec(z) is always equal to the identity matrix, which
means that

(dec∗ I)z (vz , wz) = v>
z Jdec(z)>Jdec(z)wz ,

and this implies that the pullback metric (dec∗ I)z is precisely the usual
product of Jacobians discussed in Eq. (7.3).

However, we could also think of the decoder as outputting values in param-
eter space instead, with e.g. dec(z) = (µ(z),σ(z)) in the Gaussian case. For
any distribution p(x |η) (for example N (x |µ,σ), or Cat(x |probs)), its pa-
rameter space (or statistical manifold) is defined as the Riemannian mani-
fold given by its set of parameters H , and the Fisher-Rao metric (Nielsen,
2022) defined by

IFR(η) =
∫
X

[∇η log p(x |η)∇η log p(x |η)>]p(x |η)dx . (8.2)

This change in perspective is illustrated in Fig. 8.1.

The metric IFR measures the covariance of the score function ∇η log p(x |η).
It has seen plenty of use in improving optimization schemes (Amari, 1998;
Martens, 2020), as well as training so-called natural strategies in RL and
evolution (Wierstra et al., 2014).

The main reason for choosing IFR as a reference metric to pull back is that
distances can be computed in parameter space using the Kullback-Leibler
divergence (KL) locally around a given point z ∈ Z . The next section ex-
plains this in detail.

92 D E F I N I N G L AT E N T S PA C E G E O M E T R I E S F O R (A L M O S T) A N Y D I S T R I B U T I O N

S U M M A R Y Instead of using the data space to define distances, we
use the space of parameters of the distribution the VAE decodes to.
This space has a principled way of measuring distances (given by the
Fisher information matrix).

8.3 P U L L I N G B A C K T H E F I S H E R - R A O

Let’s start by re-introducing the KL divergence, which was presented in the
context of training VAEs in Sec. 6.4.3. The KL divergence (Eq. (6.9)) mea-
sures how similar two distributions p(x |η1) and q(x |η2) are, more pre-
cisely:

KL(p ||q) = Ex∼p(x |η1)[log(p(x |η1)/q(x |η2))]

=
∫
X

(log(p(x |η1))− log(q(x |η2)))p(x |η1)dx . (8.3)

These expected values have closed form for most distributions, and they
already come implemented in scientific programming packages for proba-
bility distributions like torch.distributions.

Divergences behave almost like distances, with e.g. the KL divergence be-
tween a distribution p and itself being 0. However, unlike distances, diver-
gences are not symmetric and they do not satisfy the triangle inequality.

The KL divergence and the Fisher-Rao metric are closely linked. It is well-
known that measuring distances with the Fisher-Rao metric amounts to
computing KL divergences locally. Given a curve c : [0,1] → H in parame-
ter space, we measure its length as usual

Length[c] =
∫ 1

0

√
c ′(t)>IFR(c(t))c ′(t)dt .

This inner product inside the square root is, locally, just an evaluation of
the KL divergence: let δt > 0, then it can be shown (Nielsen, 2022, pg. 37)
that

c ′(t)>IFR(c(t))c ′(t) = 2

δt 2
KL(p(x |c(t)), p(x |c(t +δt)))+o(δt 2). (8.4)

Replacing this in the equation for the length and taking δt to be small
enough (so as to make the o(δt 2) term disappear) we have

Length[c] ≈
p

2

δt

∫ 1

0

√
KL(p(x |c(t)), p(x |c(t +δt)))dt . (8.5)

8.4 E X P E R I M E N T : D E C O D I N G T O S E V E R A L D I S T R I B U T I O N S 93

Dividing this curve into T segments of width δt such that δt = 1/T , this in-
tegral can be further approximated by adding up the areas of the rectangles
of shape δt times the integrand:

Length[c] ≈
p

2

δt

∫ 1

0

√
KL(p(x |c(t)), p(x |c(t +δt)))dt

≈
p

2

δt

T−1∑
k=0

δt
√

KL(p(x |c(kδt)), p(x |c((k +1)δt)))

=
T−1∑
k=0

√
2KL(p(x |c(kδt)), p(x |c((k +1)δt))). (8.6)

This gives us a recipe for minimizing the length of a given curve c : divide it
into small subsegments of small width δt , and compute the KL divergence
of the decoded distributions. A similar argument can be used to prove that
the energy of a curve can be approximated by

Energy[c] ≈ 2

δt

T−1∑
k=0

KL(p(x |c(kδt)), p(x |c((k +1)δt))), (8.7)

which is better for optimization schemes, since the divergence term is not
inside of a square root.

In practice, we use the toolset for parametrizing curves using cubic splines
discussed in Sec. 7.1 (Detlefsen et al., 2021, stochman). The approximated
length and energy in Eqs. (8.6) and (8.7) can be minimized with respect to
the parameters of e.g. a cubic spline as long as the distributions allow for
computing the KL divergence with autodifferentiation. An example imple-
mentation is discussed later in this chapter (Sec. 8.6).

S U M M A R Y Measuring the lengths of curves in the space of param-
eters amounts to computing the Kullback-Leibler divergence in a fine
discretization of the curve. Finding the curves that minimize this length
is achieved by minimizing an approximation of the energy, which is
differentiable for most distributions VAEs decode to.

8.4 E X P E R I M E N T : D E C O D I N G T O S E V E R A L D I S T R I B U T I O N S

We start by considering a simple set-up from a hand-crafted latent space
to the parameter space of several distributions. This hand-crafted latent
space is composed of noisy circular data, built by randomly sampling an-
gles and placing points on said angles, with random offsets from the unit
circle.

Using this toy latent space, we constructed decoders that map to several pa-
rameter spaces: for the Normal, Bernoulli, Beta, Dirichlet, and Exponential
distributions. These decoders fdist were randomly initialized neural net-
works from Ztoy =R2 to their parameters.1

1 See Sec. A.3.4 in the appendix for all details. The implementation of these experiments
is also available in: https://github.com/MachineLearningLifeScience/stochman/

tree/black-box-random-geometry/examples/black_box_random_geometries

https://github.com/MachineLearningLifeScience/stochman/tree/black-box-random-geometry/examples/black_box_random_geometries
https://github.com/MachineLearningLifeScience/stochman/tree/black-box-random-geometry/examples/black_box_random_geometries

94 D E F I N I N G L AT E N T S PA C E G E O M E T R I E S F O R (A L M O S T) A N Y D I S T R I B U T I O N

To manipulate these latent space geometries to prefer the support of the
data, the following extrapolations are used:

• For the Normal, we extrapolate to high values of σ(z).

• For the Bernoulli, the “most uncertain” version of the distribution is
given by probs(z) = 1/2.

• For the Beta, the parameters (α(z),β(z)) = (1,1) specify a flat, uni-
form distribution.

• For the Dirichlet, whose samples are probability vectors, α(z) = 1 for
all classes specifies a uniform distribution over them.

• For the Exponential, small values of the parameter (i.e. λ(z) → 0)
increase the distribution’s variance.

Fig. 8.2 shows several geodesics in latent space, these were cubic splines
whose parameters were optimized by minimizing the energy in Eq. (8.7).
Pulling back the Fisher-Rao through the modified decoder allows for inter-
polations that stay within the support of the data.

One problematic latent geometry comes from pulling back the metric for
the Bernoulli distribution, which we highlight in Fig. 8.2. Notice how some
of the geodesics converge to curves outside of the support. We hypothesize
that extrapolating to probs(z) = 1/2 does not provide a “steep” enough dif-
ference. Distributions like the Gaussian allow for an abrupt change, since
σ(z) can be chosen to be as high as desired, but this unboundedness of
the parameters does not happen for the Bernoulli nor the Categorical. The
problem of defining reliable latent space geometries for discrete decoders
is addressed by introducing a hierarchical layer in the decoder in Chap. 9.

8.5 E X P E R I M E N T : M O D E L L I N G H U M A N P O S E S

Poses are encoded in terms of the position and orientation of limbs, data
that naturally lives on the sphere. A human pose, then, can be seen as a
point in a product of spheres (Tournier et al., 2009), data that can be mod-
eled using a product of von Mises-Fisher distributions (vMFs).

Using a VAE that decodes to products of independent vMFs (one for each
bone), we formed a latent space of a walking animation in the CMU mocap
dataset.2 Fig. 8.3 visualizes this latent space with two interpolations high-
lighted: one by minimizing the energy proposed in Eq. (8.7), the other one
linear. This figure also shows the result of decoding these two trajectories
using the calibrated decoder; notice how the energy-minimized interpola-
tion stays within the support of the data, and thus decodes to a plausible
walking trajectory, unlike linear interpolation.

This experiment illustrates how our method for defining latent space ge-
ometries works even for distributions where a closed, analytical form of
the KL divergence is not available. To compute the energy of the curve

2 Sequence. 69_06 from http://mocap.cs.cmu.edu/, cleaned by removing some of the
bones. See exact details in either the implementation or Appendix A.3.5

http://mocap.cs.cmu.edu/

8.5 E X P E R I M E N T : M O D E L L I N G H U M A N P O S E S 95

(a) Bernoulli

(b) Normal (c) Beta

(d) Dirichlet (e) Exponential

Figure 8.2: Decoding to several distributions. Using a toy set-up for the latent
space, this figure shows the energy-minimizing curves that result from pulling
back the Fisher-Rao metric when decoding to several distributions. These are col-
ored by uncertainty, with white areas corresponding to low entropy. Most curves
follow the support of the data, except for the Bernoulli decoder.

96 D E F I N I N G L AT E N T S PA C E G E O M E T R I E S F O R (A L M O S T) A N Y D I S T R I B U T I O N

Figure 8.3: Interpolations in a latent space of human motion. Left shows the la-
tent space of a VAE trained to decode to a product of vMF distributions, modeling
the motion of a person walking by specifying the parameters of a vMF distribu-
tion for each bone in the pose. Highlighted are two interpolations: one linear in
dark red, and an energy-minimizing interpolation in green. Right shows the re-
sult of decoding these interpolations. By staying within the support of the data,
the geodesic interpolation in green produces a plausible walking animation.

presented in Fig. 8.3, we resorted to estimating the KL using samples and
Monte Carlo Integration, based on the open source implementations of hy-
pershperical VAEs (Davidson et al., 2018).

8.6 B L A C K - B O X R A N D O M G E O M E T R I E S , A N I M P L E M E N TAT I O N

To emphasize how general the proposed method is, this section covers how
one would go around implementing this curve energy minimization in the
vMF example explained in the previous section. This implementation is
readily available in stochman, an open-source package with a toolset for
manipulating stochastic manifolds and defining latent space geometries
(Detlefsen et al., 2021).3

8.6.1 a VAE that decodes to a product of vMFs

The mocap data we discussed in the previous section can be distilled into
a tensor of shape b ×nb ×3, where b is the number of points in the dataset
(or batch size), nb is the number of bones present in the pose, and each
bone corresponds to a certain rotation in on the unit sphere in R3. We can
implement, then, a decoder with the following form:

1 class VAE_Motion(torch.nn.Module):

2 """

3 A VAE that decodes to a product of vMF distributions

4 """

5

6 # We omit the initialization and other methods

7 # for clarity

3 This section covers the vMF example script in stochman. In this presentation we often
remove boilerplate code or the handling of batches, focusing instead on the core intuition.
For a working implementation refer to the script itself.

https://github.com/MachineLearningLifeScience/stochman/blob/black-box-random-geometry/examples/black_box_random_geometries/von_mises_fisher_example/vae_w_regularized_uncertainty.py

8.6 B L A C K - B O X R A N D O M G E O M E T R I E S , A N I M P L E M E N TAT I O N 97

8 ...

9 def decode(self, z) -> VonMisesFisher:

10 """

11 Returns the parameters mu and k of

12 the decoded vMF distribution.

13 """

14 # A hidden layer of the decoder

15 h = self.decoder(z)

16

17 # A layer that learns the mean of the vMF

18 mu = self.dec_mu(h)

19

20 # Reshaping it to b x n_bones x 3, and normalizing

21 # it so that it lives in the sphere

22 batch_size, inp = mu.shape

23 mu = mu.view(batch_size, inp // 3, 3)

24 norm_mu = self.norm_2(mu).sqrt()

25 mu = torch.div(mu, norm_mu)

26

27 # A layer that learns the concentration of the vMF

28 k = self.dec_k(h) + 0.01 # avoid collapses and singularities

29

30 # Building a product of n_bones independent

31 # distributions.

32 vMF = VonMisesFisher(loc=mu, scale=k)

33 return vMF

This VAE can be trained by minimizing the ELBO, as is usually done (see
Chap. 6).

8.6.2 Calibrating its uncertainty

Once the VAE has been trained, the uncertainty of the decoder needs to be
calibrated to define regions with low metric volume in latent space. This
can be done by modifying the decode method we described above, and
replacing the learned concentration parameter with one that corresponds
to maximal uncertainty (i.e. κ→ 0).

1 class VAE_motion_with_UQ(VAE_motion):

2 def decode(self, z, reweight=True) -> VonMisesFisher:

3 """

4 A decoder with calibrated uncertainties. It decodes to

5 what it learned close to the training latent codes, and

6 decodes to high uncertainty away from them.

7 """

8 if reweight:

9 zsh = z.shape

10

11 # Flattening extra dimensions that might appear

12 # in the latent codes.

13 z = z.reshape(-1, zsh[-1])

14

15 # Getting what the network originally learned

16 original_vMF_dist = super().decode(z)

17 dec_mu = original_vMF_dist.loc

98 D E F I N I N G L AT E N T S PA C E G E O M E T R I E S F O R (A L M O S T) A N Y D I S T R I B U T I O N

(a) Before calibration (b) After calibration

Figure 8.4: Uncertainty calibration in the vMF example. This figure shows the
impact of calibrating the uncertainty of a VAE that decodes to a vMF. After calibra-
tion, the regions outside the support are assigned high uncertainty, where darker
colors correspond to lower values of the concentration parameter.

18 dec_k = original_vMF_dist.scale

19

20 # Computing the distance to the support of the data

21 # using the translated sigmoid.

22 # 0 close to support, 1 away from it

23 d_to_supp = self.translated_sigmoid(self.min_distance(z))

24

25 # Replacing the concentration to be more

26 # uncertain away from the data.

27 reweighted_k = (1 - d_to_supp) * dec_k \

28 + d_to_supp * (torch.ones_like(dec_k) * self.limit_k)

29

30 # Defining a new vMF with calibrated uncertainties

31 mush = dec_mu.shape

32 ksh = dec_k.shape

33 vMF = VonMisesFisher(

34 loc=dec_mu.view(zsh[:-1] + mush[1:]),

35 scale=reweighted_k.view(zsh[:-1] + ksh[1:]),

36)

37 else:

38 vMF = super().decode(z)

39

40 return vMF

Fig. 8.4 shows the latent space illuminated by average decoded concentra-
tion before and after calibration (i.e. with reweight being False and True

respectively in the above Python code).

8.6.3 Statistical manifolds only need curve energy

Once we have a calibrated decoder that outputs a vMF distribution, we can
directly implement a method that computes the energy of a given curve in
latent space:

1 def curve_energy(self, curve: torch.Tensor) -> torch.Tensor:

8.7 D I S C U S S I O N & L I M I TAT I O N S 99

2 """

3 This method takes a curve of shape n_points x 2 and

4 returns its (approximated) energy.

5 """

6 # Computing the distance between two consecutive points

7 # (i.e. our delta_t)

8 delta_t = (curve[1] - curve[0]).pow(2).sum()

9

10 # Computing the distributions we will compare

11 # The ones corresponding to n

12 dist1 = self.decode(curve[:-1])

13

14 # The ones corresponding to n + 1

15 dist2 = self.decode(curve[1:])

16

17 # Computing the KL divergence between them

18 kl = kl_divergence(dist1, dist2)

19

20 # Returning the approximated energy

21 return 2 * (delta_t ** -1) * kl.sum()

Figure 8.5: Latent space of motion
with geodesics.

The end result of this computation,
the approximated energy described in
Eq. (8.7), is differentiable as long as
the KL divergence computed in line 18
is. This allows optimizing the curve it-
self. Moreover, the implementation of
this curve energy is not specific to the
vMF case: as long as the decoder re-
turns a distribution with differentiable
KL divergence, the curves can be op-
timized so as to minimize the energy.
This motivates our implementation of
a StatisticalManifold in stochman.4

Fig. 8.5 shows 50 different geodesics obtained by minimizing the energy be-
tween randomly selected pairs of points in the latent space of our running
example. The code used to compute these geodesics relies on a discretized
approximation of the latent geometry, which can be easily computed using
the tools present in stochman.5

8.7 D I S C U S S I O N & L I M I TAT I O N S

Pulling back the Fisher-Rao metric from parameter space allows us to de-
fine latent space geometries for almost any distribution. The only require-
ment is that the KL divergence between the distribution and itself be differ-
entiable, which can be achieved using re-parametrization tricks and even

4 https://github.com/MachineLearningLifeScience/stochman/blob/

44a18a0ae547adb84b5db6710c88980f5a9b2b23/stochman/manifold.py#L634

5 Indeed, running the example script outputs Fig. 8.5; an example of how to use this dis-
cretized approximation is available in the last lines of it.

https://github.com/MachineLearningLifeScience/stochman/blob/44a18a0ae547adb84b5db6710c88980f5a9b2b23/stochman/manifold.py#L634
https://github.com/MachineLearningLifeScience/stochman/blob/44a18a0ae547adb84b5db6710c88980f5a9b2b23/stochman/manifold.py#L634
https://github.com/MachineLearningLifeScience/stochman/blob/44a18a0ae547adb84b5db6710c88980f5a9b2b23/examples/black_box_random_geometries/von_mises_fisher_example/vae_w_regularized_uncertainty.py#L224
https://github.com/MachineLearningLifeScience/stochman/blob/44a18a0ae547adb84b5db6710c88980f5a9b2b23/examples/black_box_random_geometries/von_mises_fisher_example/vae_w_regularized_uncertainty.py#L224

100 D E F I N I N G L AT E N T S PA C E G E O M E T R I E S F O R (A L M O S T) A N Y D I S T R I B U T I O N

Monte Carlo integration. This opens the doors for defining latent space
geometries for tasks beyond biology (Detlefsen, Hauberg, and Boomsma,
2022), robotics (Beik-Mohammadi et al., 2021) and procedural content gen-
eration (González-Duque et al., 2022), and the computational tools are
readily available in open source packages like stochman (Detlefsen et al.,
2021).

That being said, we still face several of the limitations outlined in the previ-
ous chapter (Sec. 7.5):

1. The sensitivity to hyperparameters (like the steepness of the extrapo-
lation to uncertainty or the number of cluster centers) is still present,
and fine-tuning them is still a manual process.

2. This dependence on visual inspection forces us to work on lower di-
mensions, with all of our experiments being done in two dimensions.

3. The metric volume is still large only on the border of the support of
the data. Fully safe approaches would assign “high cost” to all re-
gions outside of the support.

4. Pulling back the Fisher-Rao for discrete distributions generates bound-
aries that are not tall enough. This is highlighted in our toy example
(Fig. 8.2a).

The items 3 and 4 are highly relevant for decoding game content safely.
In the following chapter, we will define an alternate version of this latent
space geometry that addresses these two challenges by including a hierar-
chical layer in the decoder of the VAE.

9
G E N E R AT I N G & O P T I M I Z I N G G A M E C O N T E N T S A F E LY

This chapter describes a method for safely interpolating, sampling and op-
timizing content from the latent space of a tile-based Variational Autoen-
coder (VAE). It applies Differential Geometry and Bayesian Optimization
(BO) to the problem of reliably sampling playable content from latent spaces
of Deep Generative Models (DGMs) (González-Duque et al., 2022).

Chap. 6 discussed how DGMs can be used to learn an approximation of the
discrete probability distribution of sequences, including tile-based video
game levels like Super Mario Bros (SMB) or The Legend of Zelda. We saw,
though, that these models learn only aesthetic aspects of game content,
and fail to decode to playable content reliably.

Chap. 7 introduced differential geometry as a potential tool for solving this
problem, and in this chapter we apply it to modify the geometry of the
latent space. That way, playable content can be reliably sampled/interpo-
lated. Additionally, a version of BO that is restricted to playable content is
presented.

This chapter starts by motivating our approach with a hypothesis, tested
empirically: playable content tends to “clump up” in only some regions of
the latent space. After this, we modify the uncertainty quantification al-
gorithms described in Sec. 7.2.3 to extrapolate to uncertainty away from
playable content. This allows us to implement interpolations and diffu-
sions/random walks that stay within playable regions. Additionally, the
restricted version of BO is compared against random sampling and unre-
stricted BO in an optimization experiment.

This method was first proposed in (González-Duque et al., 2022) and was
further expanded to optimization in a journal version that is currently un-
der review in the IEEE Transactions on Games journal. This chapter covers
the description, motivation, theory and results of the journal version of this
paper in depth.

Throughout the chapter, we consider the terms “sampling”, “random walks”
and “diffusion” to be synonyms.

9.1 M O T I VAT I O N : P L AY A B L E C O N T E N T I N L AT E N T S PA C E

In Chap. 6 we trained Variational Autoencoders (VAEs) on tile-based games,
and on a toy example involving simple arithmetic equations. Decoding
a grid of evenly-spaced latent codes and testing their levels with an artifi-
cial agent shows that the latent space has structure for its “valid” content.
Fig. 9.1 visualizes this grid of SMB levels, alongside a heatmap showing
whether the content was playable (blue) or not playable (white). The same

101

102 G E N E R AT I N G & O P T I M I Z I N G G A M E C O N T E N T S A F E LY

(a) Decoded grid of levels (b) Heatmap of playability

(c) Playability heatmaps in three other VAEs

Figure 9.1: Playability structure in latent space. Fig. 9.1a shows a 10×10 grid of
levels, which are the result of decoding evenly-spaced latent codes in the [−5,5]2

square (See Fig. 6.7 for a detailed explanation). Fig. 9.1b shows a 50×50 heatmap
with blue corresponding to playable levels, fading to white where the levels were
not solved by Baumgarten’s A* agent. There is a clear structure of playability in the
latent spaces of VAEs, with a possibility of avoiding unplayable regions in interpo-
lations, sampling and optimization. Such structure is present for different VAEs
trained on the same dataset, as is shown in Fig. 9.1c.

9.2 C A L I B R AT I N G F O R S A F E T Y : C H A L L E N G E S 103

heatmap is shown for 3 different training runs of the VAE in Fig. 9.1c. Our
aim, then, is to approximate this “playability manifold”, and to device algo-
rithms for interpolation, sampling and optimization that reliably sample
content from it. This would open the door to e.g. serving content directly
from latent space, safely.

Figure 9.2: Support and playability
do not necessarily correlate.

In the applications discussed in Chap. 9,
the support of the data plays a key role
in e.g. synthesizing robot movement.
However, this same empirical evalua-
tion of playability in latent space illus-
trates that data support and playability
often do not correlate. Fig. 9.2 shows
the training codes on top of the playa-
bility heatmap discussed earlier. The
network extrapolates to playable levels
in a neighborhood around the training
codes, and there are some regions in-
side the support that reliably decode to
unplayable content. In summary, the
tools for staying within the support of the data need to be modified, adapted
to the playability scenario.

9.2 C A L I B R AT I N G F O R S A F E T Y : C H A L L E N G E S

Our methods for safe interpolation, random walks and optimization rely This section starts
with a fast summary
of Secs. 7.2.2 and
7.2.3.

on modifying the latent space geometry using the tools described in Chap. 7.
In particular, Sec. 7.2.3 introduced a method for modifying the geometry
of the latent spaces of VAEs using Categorical decoders. This method re-
lies on a translated sigmoid function α(z ; β) introduced in Eq. (7.9), which
we replicate here to ease the reading: if {z1, . . . , zN } are the encodings of
the training set, train a K -means algorithm and arrive at K centers C =
{c1, . . . ,cK }. Define minDist(z ; C) be the minimum of the distances {dist(z ,ck)}K

k=1,
then the translated sigmoid is defined as

α(z ; β,C) = Sigmoid

(
minDist(z ; C)−βs

β

)
.

This function is approximately 0 close to the centers C and 1 far away. β is
a hyperparameter that governs the steepness of this transition (see Fig. 7.4).

When using a decoder that learns a Categorical distribution over a vocab-
ulary {t1, . . . , tC } of C tokens (i.e. dec(z)l ,c ≈ Prob[(tile l) = tc]), Detlefsen,
Hauberg, and Boomsma (2022) use this translated sigmoid to extrapolate
to high uncertainty away from the centers C :

d̃ec(z)l ,c = (1−α(z ; C))dec(z)l ,c +α(z ; C)(1/C). (9.1)

For the discrete case, the “wall” of high metric volume generated by this ex-
trapolation mechanism is unsafe when interpolating, even when using our

104 G E N E R AT I N G & O P T I M I Z I N G G A M E C O N T E N T S A F E LY

(a) Using the original extrapolation (b) Extrapolating to 1/C close to unplayable.

Figure 9.3: Metric volumes after calibration in a vanilla VAE. Using the original
extrapolation mechanism proposed by Detlefsen, Hauberg, and Boomsma results
in “building a wall” of metric volume around training codes, which is shown in
Fig. 9.3a. However, as can be seen in Fig. 9.2, playability and support do not nec-
essarily correlate. We study an alternative for extrapolation, which considers un-
playable codes to be highly uncertain (just like the original extrapolation treated
the complement of the support). This alternative allows for assigning high cost
at the boundary between the playable and unplayable parts of the latent space,
but assigns 0 metric volume to all the unplayable content. By using a hierarchical
layer in the decoder, we are able to assign a high cost to all unplayable codes (see
Fig. 9.6b).

alternative formulation based on information geometry (see Sec. 8.4 and
Fig. 8.2a). Fig. 9.3a shows the metric volume using this calibration of the
decoder. Ideally, there would be high metric volume in all the unplayable
regions of latent space instead of a wall around the support.

In summary, two challenges need to be addressed:

1. The extrapolation mechanism should affect unplayable levels instead
of the complement of the support.

2. The metric volume should be high in all non-playable regions, not
only at the boundary between playable and unplayable.

9.3 C A L I B R AT I N G F O R S A F E T Y : P L AY A B L E L E V E L S

To tackle the first challenge described in the previous section, the trans-
lated sigmoid function is modified: instead of having α(z ; β,C) be approx-
imately 0 around the training encoding, we let it be approximately 0 close
to unplayable levels, replacing α(z) with (1−α(z)). In other words, the un-
playable levels become “obstacles”, places where the latent space has high
volume.

This modification starts by identifying where the playable and unplayable
levels are in latent space by decoding a coarse grid of size 50×50 levels and

9.4 C A L I B R AT I N G F O R S A F E T Y : H I G H M E T R I C V O L U M E 105

testing these using Robin Baumgarten’s A* agent.1 These grids are visual-
ized as heatmaps in Figs. 9.1b and 9.1c.

After decoding and simulating this grid, we have a collection of unplayable
latent codes U = {u1,u2, . . . ,uM } ⊆Z scattered around the latent space. In-
stead of fitting K -means to the training codes, these unplayable codes are
used as centers. The translated sigmoid can then be modified to extrap-
olate to uncertainty close to unplayable levels, instead of away from the
training codes.

Mathematically, let minDist(z ; U) be the minimum of the distances be-
tween z and the unplayable codes in U . With this minimum distance, the
translated sigmoid α(µz; β,U) is approximately 0 close to unplayable lev-
els, and approximately 1 away from unplayable levels. We modify Eq. (9.1)
as

d̃ec(z)l ,c =α(z ; U)dec(z)i ,c + (1−α(z ; U))(1/C). (9.2)

Fig. 9.3b shows this new extrapolation mechanism.

Still, this extrapolation procedure only assigns high metric volume to the
border between playable and unplayable levels in latent space. Our goal
is to assign a high metric volume to all unplayable content; that way, the
unplayable levels can be cut off above a certain metric volume.

9.4 C A L I B R AT I N G F O R S A F E T Y : H I G H M E T R I C V O L U M E

Fig. 9.6b shows our goal: high metric volume around all unplayable codes.
To describe how this can be achieved, let’s dive deeper into how our cur-
rent extrapolation mechanism assigns high metric volume around training
codes (or playable levels).

The output of the modified decoder in Eq. (9.2) starts being dec(z) around
playable codes, and gradually gets converted into a constant 1/C close to
unplayable content. At the interface between playable and non-playable,
the Jacobian of the decoder (Eq. (7.2)) achieves high values in the numera-
tor. This translates into high values for the metric volume (Eq. (7.5)).

However, after this transition there is no local change since the decoder
always returns 1/C . In this region, the volume landscape becomes com-
pletely flat, as can be seen in Fig. 9.4c, where the unplayable regions have
almost 0 volume.

Our method addresses this lack of local change around unplayable con-
tent by using a hierarchical layer in the decoder (see Fig. 9.5). Instead of
decoding to a single logit for each level, our network decodes to a Normal
distribution for logits. Putting this change into a mathematical form, this
one-layer-hierarchical decoder is given by:

decθ(z) = Softmax(µθ(z)+ε¯σθ(z)2), (9.3)

1 The size of this initial grid can be considered a hyperparameter. We settle for 50 and do not
explore the impact of considering smaller initial grids.

106 G E N E R AT I N G & O P T I M I Z I N G G A M E C O N T E N T S A F E LY

(a) Playability for vanilla VAE (b) Playability for hierarchical VAE

(c) Metric volume for vanilla VAE (d) Metric volume for hierarchical VAE

(e) Grid of levels for vanilla VAE (f) Grid of levels for hierarchical VAE

Figure 9.4: Comparing the calibration of a vanilla and a hierarchical VAE. This
figure compares two VAEs trained on SMB, without and with a hierarchical layer.
Figs. 9.4a and 9.4b show a 50 × 50 grid of playability, where blue regions corre-
spond to playable and white to non-playable. Using the modified decoders for
the vanilla and the hierarchical alternatives, we arrive at different values for the
metric volume in Figs. 9.4c and 9.4d. Notice how, while the vanilla alternative
only builds a wall around unplayable content, the hierarchical alternative makes
all unplayable codes expensive. This modification is also present after decoding a
10×10 grid of levels, but only for the hierarchical alternative (Figs. 9.4e and 9.4f).

9.5 A P P R O X I M AT I N G T H E P L AY A B I L I T Y M A N I F O L D W I T H A G R A P H 107

Figure 9.5: One-layer-hierarchical VAE. Red dashed arrows represent sampling
from a Normal distribution. To be compared with Fig. 6.3.

where µθ, σθ are learned using feed-forward neural networks, and ε ∼
N (0, ID) (where D = 14×14×11, the shape of the levels in logit space).

Inside this hierarchical layer, the original extrapolation mechanism pro-
posed by Skafte, Jørgensen, and Hauberg (2019) can be leveraged (see Sec. 7.2.1).
Recall that this extrapolation mechanism is devised for networks that de-
code to Gaussian distributions. In particular, and using the notation intro-
duced above, the decoder is modified to be:

d̃ecθ(z) = Softmax
(
µθ(z)+ε¯ σ̃θ(z)2) , (9.4)

where
σ̃θ(z ;β) = (1−α(z ; β,U))σθ(z)+10α(z ; β,U). (9.5)

In summary, our logits will have a high variance when sampled in regions
close to unplayable levels (where α(z ; β,U) ≈ 1), and will decode to what
the network learned in the playable regions.

This high variance in the logits results in high local change, even when tak-
ing small steps in unplayable space. Figs. 9.4e and 9.4f visualize a 10×10
grid of levels, corresponding to evenly spaced latent codes, in both the
previous vanilla VAE and our one-layer-hierarchical VAE. We see that for
the original VAE, the extrapolated levels do not change drastically in the
unplayable regions, but for the hierarchical one, the latent codes in un-
playable parts decode to completely noisy logits, increasing the local dis-
tances.

9.5 A P P R O X I M AT I N G T H E P L AY A B I L I T Y M A N I F O L D W I T H A G R A P H

After calibrating the decoder using the procedure described in the previ-
ous section, the metric volume m(z) (see Eq. (7.5)) becomes a sort of “cost
function” which measures playability for all z ∈ Z . Ideally, such a metric
can be minimized continuously (and this is precisely the reason why we
use differential geometry since it naturally allows for computing shortest
paths (Lee, 2018, Chap 6.)); however, we settle for a discrete approximation
of the playability regions because it provides more stable results in prac-
tice (Arvanitidis et al., 2022; Beik-Mohammadi et al., 2021). This section
describes how we construct this discrete approximation.

Fig. 9.6 shows this process for the latent space of one of our Zelda models.
Since we only want to consider the playable parts presented in Fig. 9.6a,

108 G E N E R AT I N G & O P T I M I Z I N G G A M E C O N T E N T S A F E LY

(a) Coarse grid (b) Metric volume (c) Discrete approximation

Not playable

Playable

(d) Levels in latent space

Figure 9.6: Calibrating the decoder to high volume in non-playable regions We
illustrate the process of constructing our discrete graph approximation P for one
of our Zelda VAEs. Starting with the coarse grid approximation of how playability
is distributed in latent space presented in Fig. 9.6a, we modify the decoder as de-
scribed in Sec. 9.4. After this calibration, the metric volume explodes in regions
close to non-playable content, as Fig. 9.6b shows. To choose only the playable
levels, we consider only those that decode to metric volumes lower than a cer-
tain threshold, arriving at the discrete approximation shown in Fig. 9.6c. Finally,
Fig. 9.6d shows levels in the latent space of this VAE, highlighting examples of
playable and non-playable levels which align with the coarse playability grid (the
example provided is not playable since it has no doors nor stairs).

9.5 A P P R O X I M AT I N G T H E P L AY A B I L I T Y M A N I F O L D W I T H A G R A P H 109

(a) Coarse grid (b) s = 0.7 (c) s = 0.9 (d) s = 1 (e) s = 1.1

Figure 9.7: Different degrees of safety when approximating. For one of our SMB
models, we show the initial grid of playability in Fig. 9.7a, a 50× 50 matrix with
blue blocks corresponding to playable parts of the latent space. Our framework
starts with this coarse grid and builds finer discrete approximations, governed by
a safety hyperparameter s > 0. Small values of s correspond to being safer, se-
lecting fewer levels close to the non-playable ones. Figs. 9.7b, 9.7c, 9.7d and 9.7e
show the discrete approximation in a 100×100 grid when using s ∈ {0.7,0.9,1,1.1}
respectively. Increasing the value of s corresponds to including more levels, as can
be visualized in e.g. the upper-left corner of these figures.

we consider an arbitrarily fine grid in latent space and compute the met-
ric volume m(z) for all points in this approximation. This gives us, after
modifying the decoder, a heatmap like the one presented in Fig. 9.6b with
non-playable levels being “far away”. Our method consists of considering
only the latent codes with metric volume below a certain value, leaving
us with the subset of the grid corresponding to levels that are potentially
playable in Fig. 9.6c. Fig. 9.6d illustrates a coarse grid of levels in latent
space, highlighting examples of playable and non-playable content.

This approach comes with two perks: the grid approximation can be as fine
as desired (e.g. from a 50×50 grid to a 100×100 grid), going beyond the
original grid that was used to construct the first approximation. Secondly,
the height of the threshold can be thought of as a “safety” hyperparameter,
with cutting at lower heights representing a safer approximation. For our
experimental setup we settle on a threshold of s ·E[2 log(m(z))], where s > 0 2log(m(z)) is just

log(det(M(z))),
where M(z) is the
pullback metric
(Eq. (7.3)).
det(M(z)) is known
as the magnification
factor.

is a safety hyperparameter with 0 representing choosing no levels at all, and
1 choosing those that are below the average log-squared-volume.2 Fig. 9.6c
shows the discrete graph approximation resulting from choosing s = 1, and
Fig. 9.7 shows how this hyperparameter impacts the levels that are selected
from the latent space for an SMB model.

In summary, our modified decoder is able to assign high metric volume
m(z) to non-playable levels. To approximate where the playable levels are,
we decode a grid as fine as desired, compute the volume m(z) for all latent
codes in said grid, and discard the ones above a certain value (specified by
a safety hyperparameter s). This discrete grid is used to build a graph of
playable content by connecting neighboring codes, and this graph is later
used to compute safe interpolations and samples. This graph of playable
levels is denoted by P ⊆Z .

2 Log-volume is chosen for visualization since the volume usually grows to large numbers.

110 G E N E R AT I N G & O P T I M I Z I N G G A M E C O N T E N T S A F E LY

9.6 E X P E R I M E N T : I N T E R P O L AT I O N S A N D R A N D O M W A L K S

D E F I N I T I O N S O F F U N C T I O N A L I T Y Safety can have different meanings
for different games. In the case of SMB, safety means playability, tested us-
ing Robin Baumgarten’s A* agent (Sec. 6.8); in the case of Zelda, levels are
defined to be playable if they pass a simple grammar check: the level (i) has
either stairs or doors, (ii) has path-connected doors (iii) has doors that are
complete and in the right locations, and (iv) is surrounded by walls. Two
examples (one playable and one non-playable) are highlighted in Fig. 7.1
for SMB, and in Fig. 9.6d for Zelda.

Moreover, safety does not have to relate to playability directly. Our pro-
posed framework depends entirely on a binary classification of content
and works for staying inside one class. An alternative definition of “safe”
is explored: levels in SMB where the agent jumps at least once.

Summarizing, three definitions of functionality are tested: playability in
SMB according to Baumgarten’s A* agent, coherent levels in Zelda accord-
ing to a simple grammar check, and levels in SMB in which Mario jumps at
least once.

I N T E R P O L AT I O N To interpolate between two latent codes z and z ′ in
P , the A* algorithm (Hart, Nilsson, and Raphael, 1968) is used. This algo-
rithm takes a graph embedded in Euclidean space (such as P , the graph of
playable content) and computes the shortest path using a modification of
Dijkstra’s algorithm (Erickson, 2019, Sec. 8.6). This shortest path is found
by running a search on the graph starting on z , and progressively adding
the neighbors and their heuristic cost to a priority queue. This heuristic
cost includes the edge weight and the Euclidean distance between the cur-
rent node and the target z ′. The algorithm keeps taking the minimizing
element from the priority queue and iterates by adding its neighbors un-
til arriving at the target. Examples of our A* interpolation can be found in
Fig. 9.8a.

R A N D O M W A L K S Starting at a node z0 ∈ P , our random walk samples
uniformly from the neighbors arriving at an intermediate point z1

0 . We then
sample from the neighbors of this point uniformly, arriving at z2

0 . This pro-
cess continues for 25 intermediate, “inner” steps, until arriving at z1 = z25

0 .
This process continues for a given amount of “outer” steps. Different values
for the number of inner steps are not explored, but it could be considered
as a hyperparameter to vary in future implementations. Examples of these
random walks are shown in Fig. 9.8b.

B A S E L I N E S Our graph-based interpolation and diffusion are compared
against linear interpolation (which has been used in game AI settings (Schrum,
Volz, and Risi, 2020)), Gaussian diffusion (i.e. sampling from a small Gaus-
sian at each step), and a center-of-mass baseline that randomly samples a
playable latent code, and takes a step in that direction. This first random

9.6 E X P E R I M E N T : I N T E R P O L AT I O N S A N D R A N D O M W A L K S 111

(a) Our interpolations (b) Our random walks

(c) Linear interpolations (d) Baseline random walks

(e) Normal random walks

Figure 9.8: Interpolations and diffusions in the jumping regions. This figure
presents examples of interpolations and random walks for the regions of latent
space that correspond to levels in which Mario jumps at least once. More precisely,
Figs. 9.8a and 9.8b show the interpolations and diffusions definied in the playabil-
ity graph P . Fig. 9.8c shows example linear interpolations (used in both baselines)
and Figs. 9.8d and 9.8e show the random walks of the baselines. Interpolations in-
side the playability graph stay away from non-functional levels (shown in white),
sometimes at the cost of getting stuck bottlenecks (see the upper part of 9.8b). On
the other hand, the baselines touch the regions of the latent space that correspond
to non-functional content often.

112 G E N E R AT I N G & O P T I M I Z I N G G A M E C O N T E N T S A F E LY

walk baseline is akin to what an evolutionary algorithm would do in its ex-
ploration phases (Ha, 2017), and the second baseline can be thought of
as safer since it always points towards functional content. Fig. 9.8 shows
a comparison of interpolations and random walks for all the approaches
when the definition of functionality is for Mario to jump at least once.

M E A S U R E S T O C O M PA R E In this experiment, the playability of the de-
coded content is assessed. More precisely, we are interested in two quanti-
tative measures: how “safe” is the decoded content, and how diverse is the
content.

Safety was defined earlier in this section. Diversity is defined as the oppo-
site of similarity (Boriah, Chandola, and Kumar, 2008); two levels are simi-
lar if they match in their tiles often. More precisely, given two levels l1 and
l2, their similarity is given by

similarity(l1, l2) = 1

wh

w ,h∑
i , j

[
l1[i , j] = l2[i , j]

]
(9.6)

where both levels are of size (h, w). If both levels are identical, similarity(l1, l2) =
1; if none of their tiles agree, their similarity is 0.

We extend this definition of similarity to collections of levels: if L = {l1, . . . , lM }
is a collection of levels with the same height and width, their similarity is
given by the average of their pair-wise similarities as defined by Eq. (9.6):

similarity({l1, . . . , lM }) = 2

M(M −1)

∑
m<m ′

similarity(lm , lm ′). (9.7)

Finally, diversity then becomes

diversity(L) = 1− similarity(L). (9.8)

As a reference point, the diversity of the entire collection of levels used for
training in SMB and Zelda were 0.17 and 0.23 respectively.

E X P E R I M E N TA L S E T U P Summarizing the previous sections, the meth-
ods for interpolation and random walks in the playability graph are com-
pared against linear interpolation, sampling from Gaussians, and a center-
of-mass seeking baseline. These methods are compared in terms of the
playability and diversity of their decoded content. Playability has three al-
ternate definitions, (i) Whether a Mario level was solved by an A* agent, (ii)
whether a Zelda level was coherent, and (iii) whether Mario jumped at least
once.

After training 10 hierarchical VAEs with different random seeds in both the
SMB and Zelda databases, a grid of 50× 50 evenly-spaced latent codes is
decoded to levels that are measured for functionality/playability. Of the 10
VAEs trained on Zelda, 6 learned constant, non-convex or noisy represen-
tations and were thus discarded from the analysis.3

3 See Appendix A.3.3 for all the training details, including the visualizations of these prob-
lematic latent spaces.

9.6 E X P E R I M E N T : I N T E R P O L AT I O N S A N D R A N D O M W A L K S 113

Figure 9.9: Comparing playability and diversity. This figure shows the distribu-
tions of playability and diversity, which are summarized in Table 9.1, where (I)
stands for interpolations and (RW) stands for random walks. For each VAE we
performed 20 interpolations and 10 random walks, selecting the starting points
at random. These quantities were measured in each interpolation/random walk.
Our interpolations and diffusions have most of their playability mass closer to 1.0
than the baselines; however, this comes at a slight cost on diversity: the mass for
estimated diversities is lower than the baselines.

With this initial coarse grid of 50 × 50, the decoder of these hierarchical
VAEs is calibrated. Then, a 100×100 grid in latent space is decoded, and
the levels above the average log-squared volume E[2 log(m(z))] (i.e. with
a safety value of s = 1) are discarded. The end result of this process is a
playability graph for each latent space.

Each method is tested on 20 interpolations using randomly selected start
and target playable points, and 10 random walks with randomly selected
starting points. For each interpolation, 10 equally spaced points were se-
lected, and random walks take 50 steps. Playability and diversity are aver-
aged4 for each of these interpolations and random walks.

R E S U LT S Fig. 9.9 shows violin plots of the average values of playability
and diversity in these interpolations and random walks. In both opera-
tions, our proposed method is highly reliable, decoding to playable con-
tent almost always (99% functionality in SMB, for example). This stands
in stark contrast against e.g. the Normal baseline (taking steps with Gaus-
sian noise). The center-seeking baseline for diffusion performs better than
the Normal, but lower on average than our proposed method (0.95 vs. 0.99
respectively). These average values are shown in Table 9.1, including one
standard deviation. These margins persist even when considering a dif-

4 As mentioned in Sec. 6.8, Baumgarten’s agent behaved stochastically. We measured playa-
bility by averaging the individual playability of levels (1 for playable and 0 otherwise) after
5 runs.

114 G E N E R AT I N G & O P T I M I Z I N G G A M E C O N T E N T S A F E LY

E[playability] ↑ E[diversity] ↑
Geometry Interpolation Random Walks Interpolation Random Walks

Super Mario Bros

Ours 0.993±0.033 0.996±0.010 0.146±0.034 0.121±0.024

Baseline 0.953±0.084 0.963±0.026 0.154±0.028 0.138±0.026

Normal 0.949±0.093 0.773±0.169 0.155±0.029 0.240±0.026

The Legend of Zelda

Ours 0.961±0.068 0.995±0.011 0.222±0.112 0.099±0.072

Baseline 0.916±0.104 0.874±0.073 0.182±0.104 0.213±0.051

Normal 0.896±0.105 0.567±0.257 0.178±0.107 0.261±0.103

Super Mario Bros (Jump)

E[playability] ↑ E[jumps > 0] ↑

Ours 0.990±0.040 0.995±0.013 0.99±0.01 1.00±0.00

Baseline 0.957±0.078 0.960±0.034 0.90±0.03 0.75±0.08

Normal 0.952±0.083 0.768±0.200 0.90±0.02 0.94±0.02

Table 9.1: Comparison between the proposed methods and baselines for SMB,
Zelda, and the jump submanifold. Our method is compared against the baselines
on two fronts: the playability of the content decoded, as well as its diversity across
the entire interpolation/random walk. Both baselines use linear interpolation, but
“Baseline” corresponds to the center-seeking random walks, while “Normal” cor-
responds to taking Gaussian steps in latent space. This table presents the means
and standard deviations after running the experiments on 10 different VAE runs
for SMB, and 4 selected VAE runs for Zelda. We highlight the highest numbers per
column. This shows that our proposed interpolation and random walks tend to
decode to playable content more often than the baselines (indeed, the expected
playability is higher for ours). These results also show that there is a trade-off be-
tween this increase in playability and the diversity of the sampled levels, especially
when it comes to performing random walks on Zelda. The final third of the table
also shows that the reliability holds, even when considering a different definition
of functionality in SMB levels (i.e. levels in which Mario jumps at least once).

9.7 E X P E R I M E N T : R E S T R I C T E D B AY E S I A N O P T I M I Z AT I O N 115

ferent notion of functionality, given by the levels in which Mario jumps at
least once.

This improvement in reliability comes at a cost. The diversity of the gen-
erated content drops for our model when comparing it to the baselines.
The trade-off between playability and diversity is, in our opinion, to be
expected: baselines that take Normal random steps have the potential of
crossing the boundaries of playability, and land at noisy levels that are di-
verse. This difference in diversity is not remarkable in the case of interpo-
lations, with all methods performing about equal and with high variance.

9.7 E X P E R I M E N T : R E S T R I C T E D B AY E S I A N O P T I M I Z AT I O N

B AY E S I A N O P T I M I Z AT I O N W I T H R E S T R I C T E D D O M A I N Finally, we test For a tutorial on
Bayesian
Optimization, see
Sec. 3.3.

whether our approach allows for running an optimization scheme in which
every step of the optimization is playable. Since P has a rough estimate of
where the playable content in latent space is, restricting the acquisition
function to it should render playable content. We call this approach re-
stricted domain Bayesian Optimization (RBO). Furthermore, RBO is tested
using three different safety hyperparameters s ∈ {1.0,1.1,1.3} to assess its
impact.

RBO is compared against vanilla BO and random sampling on two fronts:
whether the levels sampled at each iteration were playable, and the quality
of the optima.

E X P E R I M E N TA L S E T U P Using one of the latent spaces trained for SMB,
20 different iterations of RBO, BO and random sampling are run, with the
objective of maximizing the number of jumps5 performed by the agent,
each with a budget of 50 inner iterations/samples. Both BO methods use
the default kernel provided by botorch (Balandat et al., 2020),6 and the
acquisition function is bounded between [−5,5] on both axes.

R E S U LT S After running 20 iterations for each of the methods we find
that 16/20 runs of RBO (with s = 1) are completely safe, something that
never happens for the random sampling baseline and only once for vanilla
BO. This unfortunately comes at a trade-off of the quality of the optima.
Fig. 9.10a shows the average playability of these 50 inner iterations for all
20 runs, as well as the maxima obtained. Vanilla BO performs best in terms
of the quality of the optima, and for RBO to be competitive with random
sampling, unsafer latent spaces need to be considered.

5 It is worth emphasizing that the telemetric provided by the agent and simulator are jump
action calls, which are not exactly the same as jump actions performed; we aggregate the
jump action calls throughout the level, which can cause extreme outliers when e.g. the
agent is calling the jump action while still in the air. To be more precise, we are optimizing
the agent’s “intention” to jump, instead of actual jumps.

6 The exact training and model details can be found in Appendix A.2.4.

116 G E N E R AT I N G & O P T I M I Z I N G G A M E C O N T E N T S A F E LY

(a) Playability and optimal jumps in restricted BO and baselines.

Initial point

Optima

(b) An optimization trace for RBO.

Figure 9.10: Experiments on restricted domain Bayesian Optimization.
Fig. 9.10a illustrates how our proposed restricted domain Bayesian Optimization
(RBO) compares against vanilla BO and random sampling when maximizing
the number of jumps in a given level of SMB. While vanilla BO achieves better
optima than the rest, RBO goes through the optimization in a safer manner
(depending on the safety hyperparameter s, see Sec. 9.4). In other words, our
proposed method fails to find levels with a high number of jumps in most of
the traces when compared against the baseline, but it is more likely to sample
playable levels in all the iterations of the optimization. We clip the y-axis of the
maximum number of jumps to 50 for easier comparisons, but there were outliers
for Random, BO and RBO going over 50. Fig. 9.10b shows an individual trace
for RBO (s = 1.3). After searching the upper-right corner, the model explores
the lower-left and finds an optimum with 18 jump action calls. We highlight the
initial guess and the optima.

9.8 L I M I TAT I O N S 117

The trade-off between playability and quality of the optima is made even
more evident when we start to consider higher values for s (which trans-
late to approximations of the playability manifold that are less conserva-
tive). Although these achieve optima of better quality, the number of runs
that are completely safe drops (14/20 for s = 1.1 and 9/20 for s = 1.3). This,
we hypothesize, is because the objective function (amount of jumps) cor-
relates directly with non-playability: when Baumgarten’s agent gets stuck,
it tends to jump in the same region until timeout.

Fig. 9.10b shows one of the 20 trajectories of our restricted BO with s = 1.3.
The optimization process starts by searching the upper-right corner of the
latent space, finding good candidates around the non-playable region. Af-
ter 23 iterations, the acquisition function is maximized in the lower left,
pulling the optimization towards new unexplored areas. After 25/50 itera-
tions, an optimal candidate (with 18 jump action calls) is found.

9.8 L I M I TAT I O N S

We see the following limitations in our approach:

A S S U M I N G P L AY A B I L I T Y S T R U C T U R E For the proposed method to work,
the latent space is assumed to have structure in its playability. That is, large
regions of the latent space are expected to be reliably playable. There are
no theoretical guarantees for this, and it may be the case that the pattern
breaks down after considering even finer grids. Fortunately, we did not run
into these issues for the games we tested, and this playability structure was
visible in several different training runs.

C O M P U TAT I O N A L C O S T O F A P P R O X I M AT I O N Relying on a discrete graph
approximation for computing shortest paths and interpolations forces us
to only tackle latent spaces of low dimensions. Indeed, the memory com-
plexity of building such a grid is O(nd) where n is the grid fineness and d is
the dimension of the latent space. Extending to higher dimensions should
be possible by using tools from differential geometry: the computation of
shortest paths on arbitrary manifolds can be performed by solving a dif-
ferential equation/a continuous minimization problem (Arvanitidis et al.,
2019). These tools could scale gracefully to higher dimensions (Krämer and
Hennig, 2021).

C O M P U TAT I O N A L C O S T O F T H E C O A R S E G R I D The initial step of com-
puting the initial coarse grid approximation may be prohibitively expen-
sive. Anecdotally, we saw good approximations of this latent space with
fewer calls to the simulator when using a form of Active Learning in latent
space: learning the boundary between playable and non-playable content
using a binary classifier and querying the most uncertain points iteratively
(see Uncertainty Sampling, Settles, 2009, Sec. 3.1.).

118 G E N E R AT I N G & O P T I M I Z I N G G A M E C O N T E N T S A F E LY

R E S T R I C T I N G H I N D E R S D I V E R S I T Y A N D O P T I M A Our restriction of
the latent space evidently hinders metrics that correlate with unplayability
and thus difficulty. As we saw in the optimization experiment (see Sec. 9.7),
since jumping correlates heavily with non-playable content, the optima es-
cape the discrete approximation. Complete safety, one of our initial desider-
ata, can only be achieved by highly restricting the latent space.

E VA L U AT I O N Q U A L I T Y A limitation in our evaluation is the use of Robin
Baumgarten’s agent. Said agent is supposed to be deterministic, but we ex-
perienced in practice that the same level could give different results when
running it more than once. After private correspondence with the devel-
oper (as well as other researchers using these tools), we settled for treating
it as a stochastic agent and averaging over 5 runs.

L AT E N T S PA C E D I M E N S I O N By using the extrapolation mechanisms
described in Chap. 7, we are subject to the limitations outlined in Sec. 7.5.
In particular, relying on visual inspection to set most of the hyperparame-
ters related to the approximation of the playability graph (likeβ in Eq. (9.4))
limits us to latent spaces of low dimension (indeed, we only test in latent
dimensions 2).

O P T I M I Z AT I O N O F T H E A C Q U I S I T I O N F U N C T I O N Our proposed safe
alternative to BO (i.e. restricted domain BO) requires us to optimize the
acquisition function inside a restricted subset of the original domain. We
solve this optimization problem using grid search in the graph itself, and
this is prohibitive in higher dimensions. Applying RBO in higher dimen-
sions with a larger restricted domain would require using constrained op-
timization techniques that scale gracefully.

K E R N E L S F O R G R A P H S An alternative to our naïve restriction of the do-
main would be to construct a Gaussian Process Regression on the graph
itself. Recent methods have been developed for building kernels in non-
Euclidean such as graphs or Riemannian manifolds (Borovitskiy et al., 2021),
and these could be leveraged for BO on these restricted settings directly
(Jaquier et al., 2019).

A C O M PA R I S O N A G A I N S T C O N S T R A I N E D B O We compare RBO against
vanilla BO. Future work could include a comparison against a playability-
aware constrained BO (Hernandez-Lobato et al., 2016), which incorporates
an approximation of the playability region alongside the regression of the
objective function. We would still expect such methods to sample unplayable
content while they build a model of where the functional content is, but
they could be safer than the vanilla alternative in, say, the second half of
the optimization process.

9.9 C O N C L U S I O N 119

9.9 C O N C L U S I O N

This chapter discussed a method for safe interpolation, diffusion and op-
timization in the latent space of Categorical VAEs based tools from differ-
ential geometry (which were introduced in Chap. 7). Our method starts by
finding out where the playable content is, decoding a coarse grid and test-
ing it for functionality. This initial approximation is then used to calibrate
the decoder and modify the latent space geometry. The resulting latent
codes have high metric volume in unplayable regions, allowing us to dis-
card those above a certain threshold (which depends on a safety hyperpa-
rameter s). The output of our method is a discrete graph, in which we de-
fine interpolations using Dijkstra’s, random walks by uniformly sampling
neighbors, and optimization by restricting the domain of the acquisition
function.

We compare our method against simpler baselines that are commonly used
by our community (like linear interpolation, or sampling from a Normal),
and we see a clear trade-off: while our method is able to decode to playable
content, the quality of the optima and the diversity of the generated con-
tent lowers.

Part IV

C O N C L U S I O N

10
C O N T R I B U T I O N S , D I S C U S S I O N & F U T U R E W O R K

This chapter summarizes the contributions, results, and discussion of the
methodologies presented in parts 2 and 3 of this dissertation, including an
outlook on future work.

10.1 C O N T R I B U T I O N S

The framework we propose (Fig. 1.1) was tested in several instances: from
adapting content to planning agents in the General Video Game AI’s ver-
sion of Zelda in Chap. 4, to adapting Sudoku puzzles and dungeon crawler
levels to human players in Chap. 5. Table 10.1 summarizes the different
instances in which our framework was used.

One of the core components of the framework is a content generation algo-
rithm, which can be specified by the designer as long as it generates levels
from a vector of numbers. Chap. 6 introduced Deep Generative Models
(DGMs) as a way to relax this requirement: instead of providing a content
generator, the designer can provide a corpus of levels and train a DGM,
which learns the distribution of the data and is able to generate novel con-
tent from said distribution.

A drawback of using DGMs for learning and generating such content au-
tomatically is that game levels have functionality requirements. Through
modifying the geometry of the latent space, we were able to improve the
reliability and safety of Variational Autoencoders (VAEs, a type of DGM)
trained on tile-based data, like levels from the video game Super Mario
Bros (Chap. 9). In the process, we developed novel tools for defining la-
tent space geometries for almost any decoded distribution by re-framing
the problem using Information Geometry in Chap. 8.

To summarize, our contributions are as follows:

1. We propose a framework for content adaption based on Bayesian Op-
timization, which is able to search low-dimensional design spaces ef-
ficiently, finding game content that satisfies metrics specified by the
designer.

2. We tested this framework in four set-ups, using planning agents and
human players.

3. By using DGMs, we relax the requirement of specifying a content gen-
erator; to assure playability we introduce a new way to modify the ge-
ometry of the latent space that penalizes all non-playable content.

4. Using Information Geometry and a shift of perspective from data
space to parameter space, we are able to solve one of the limitations

123

124 C O N T R I B U T I O N S , D I S C U S S I O N & F U T U R E W O R K

Game Player Prior Content generator Target Ref.

Dungeon
Crawler

Planning
agents

Evolved
using MAP-
Elites

Simple PCG generator Win rate of 60% Sec. 4.4

Sudoku Human Handcrafted Selecting from corpus Completion time of 180 sec. Sec. 5.6

Dungeon
Crawler

Human Handcrafted Selecting from corpus Completion time of 10 sec. Sec. 5.6

Super
Mario
Bros

A* agent Constant VAE trained on level ex-
amples

Max. number of jump ac-
tions

Sec. 9.7

Table 10.1: Instances of the framework. This table summarizes the components
of the different instances of the framework presented in this thesis.

of previous methods for defining latent space geometries: they had
only been formally defined for Variational Autoencoders (VAEs) that
decode to Gaussian distributions.

5. These experiments and tools are released open source, see Sec. A.1
for links to these.

However, these contributions require more context. The next section dis-
cusses results and specifies key takeaways to be considered when applying
this framework.

10.2 D I S C U S S I O N

Circling back to the research hypotheses that guide this work (Sec. 1.1), our
main hypothesis was

Bayesian Optimization is a competitive alternative for dynam-
ically (and safely) adapting content to users due to its sample
efficiency.

We tested this hypothesis on four set-ups (Table 10.1). For the first one
(planning agents using a prior built with MAP-Elites), our framework is in-
deed an alternative for dynamically adjusting content as long as the perfor-
mance of the agents is not extreme.

In the presence of noisy evaluations, like the ones present in experiments
involving human players, our framework performs best for games that are
deterministic and have a decreasing branching factor. The only evidence
we have for this claim, however, are the second and third set-ups, where we
deployed our framework using hand-crafted priors in Sudoku and a dun-
geon crawler game respectively. Our framework performed well on Sudoku
puzzles, which have no opponents, are deterministic, and have a decreas-
ing branching factor; less so can be said about dungeon crawler levels.

What makes our framework work better for Sudoku puzzles than for Dun-
geon Crawler levels? We hypothesize that it is the noise present in the
evaluations of the latter: the opponent AI behaved stochastically, making
two runs of the same level potentially resulting in different telemetrics. Fu-
ture work could explore games that are in between Sudoku and Dungeon

10.2 D I S C U S S I O N 125

Crawler in terms of stochasticity and branching factor, exploring the bound-
aries of our framework’s applicability.

That being said, the fact that our proposed framework is able to find Su-
doku puzzles in a few iterations opens doors for plenty of applications.
For example, a designer could take our technology and implementation1

and deploy it in a Sudoku game which allows players to choose a desired
completion time. This is made feasible by our system’s simple, data-driven
model of the player. The same can be hypothesized for other deterministic
puzzle games.

Our second hypothesis was

Modifying the geometry of the latent space allows for interpo-
lating, sampling, and optimizing playable content reliably in
VAEs trained on tile-based video game levels.

This hypothesis arose from the use of latent variable DGMs (more specif-
ically, VAEs on tile-based game levels). We covered how these models are
unreliable when it comes to decoding functional content in Chaps. 6 and
7.

To address this issue, we introduced a new way to modify the metric vol-
ume in latent space in Chap. 9. By approximating the playable regions of
the latent space using a graph, we were able to interpolate, sample and opti-
mize safely; however, this approximation restricts the latent space heavily,
making the levels we sample less diverse, and lowering the possible max-
ima that can be achieved in the optimization.

In our generalization of latent space geometries to (almost) any distribu-
tion (Chap. 8) we emphasize that by “almost”, we mean distributions for
which Kullback-Leibler (KL) divergences can be computed and differenti-
ated. Thankfully, this condition is quite lax: for most distributions of in-
terest, the KL divergence is readily available or can be approximated using
sampling (as long as the sampling allows to back-propagate gradients).

These geometric approaches were tested on latent spaces of only dimen-
sion 2. Therein lies a strong limitation of our approach: latent spaces of
interest in games and beyond usually have latent spaces of higher dimen-
sions, and the methods we propose rely on a visual hyperparameter tuning
process that tweaks the latent geometry to a desired shape.

Still, the methods we propose are able to decode playable content more
reliably than the baselines in use by the community (e.g. linear interpo-
lation). For games that can be represented using 2D latent spaces, our
methodology allows designers to build tools for safe exploration, sampling
and optimization of game content. Designers could also deploy playable
platformer games by stitching together playable segments directly from la-
tent space.

1 Our experiments are open source. See Sec. A.1 in the appendix.

126 C O N T R I B U T I O N S , D I S C U S S I O N & F U T U R E W O R K

10.3 A D D R E S S I N G L I M I TAT I O N S & F U T U R E W O R K

As discussed above, the new methods proposed in this thesis can lead to
future research and potential applications. This section covers how the cur-
rent limitations of our systems could be addressed, and other avenues for
future work.

T E S T I N G M O R E I N S TA N C E S O F T H E F R A M E W O R K Table 10.1 shows
the four instances of the framework that were tested in this thesis. There
are several other possible instances that could be tested: on other deter-
ministic and stochastic games, with varying branching factors. Examples
include deterministic games like Sokoban or slightly stochastic games like
Frogger. The tools for deploying our framework are readily available.

D E P L OY I N G & T E S T I N G AT S C A L E We only acquired a low amount of
playtraces for the second and third instances of our framework. To control
for noise and to get statistical significance, our framework could be tested
on larger scales. Deploying our framework at scale should not be an is-
sue, since the Bayesian Optimization is trained on individual play traces;
aggregates of more players could be considered using contemporary GP
methods that scale gracefully with the number of data points (Hensman,
Matthews, and Ghahramani, 2015).

T O W A R D S N O N - S TAT I C M O D E L S O F T H E P L AY E R By including the en-
tire playtrace of a given player in our experiments, we are implicitly stat-
ing that the player does not improve over time. Naïvely, this could be ad-
dressed by maintaining a playtrace of only the latest pairs of content spec-
ification and telemetric; a more principled approach could leverage Gaus-
sian Processes’ ability to model uncertainty: more uncertainty could be
placed on earlier parts of the playtrace.

T H E C A S E A G A I N S T F L O W The keen-eyed reader might have noticed
that we did not engage with the theory of flow, which is at the basis of Dy-
namic Difficulty Adjustment (DDA). Indeed, we formulate the framework
as targeting a certain telemetric instead of keeping the player in flow. We ar-
gue that there is room for going beyond flow in the way we approach mod-
ulating difficulty since, as designers point out (Anthropy and Clark, 2014,
Chap. 6), the aesthetics of some games are frustration instead of engage-
ment.

G A M E S T H AT C A N A L R E A D Y B E D E V E L O P E D As discussed in the pre-
vious section, there are already a couple of applications that could be built
with the framework we propose: a Sudoku application that learns a data-
driven model of the player and uses our framework to serve puzzles with a
certain predicted completion time, an infinite platformer sampling levels

10.3 A D D R E S S I N G L I M I TAT I O N S & F U T U R E W O R K 127

safely from latent space, and co-creative tools for exploring the playable
regions of latent spaces of such tile-based games.

A D D I N G M O R E I N D U C T I V E B I A S E S T O G A U S S I A N P R O C E S S E S In our
Sudoku experiment (Sec. 5.6), we can expect that the telemetric measured
(completion time) is inversely proportional to the encoding used (number
of pre-filled digits). Such information could be passed to the Gaussian Pro-
cess (GP) as a form of inductive bias (Riihimäki and Vehtari, 2010). Another
potential inductive bias to include is the use of graph kernels (Borovitskiy
et al., 2021) in our restricted Bayesian Optimization scheme (Sec. 9.7). That
way, the acquisition function is naturally restricted to the playable domain.

T O W A R D S G E O M E T R I E S I N H I G H E R D I M E N S I O N S The experiments
covered in Chaps. 8 and 9 explore defining latent geometries in low dimen-
sions only because the uncertainty quantification of the VAEs needs to be
calibrated by hand. We speculate that, by using models with automatic un-
certainty quantification (like Laplacian Autoencoders (Miani et al., 2022),
or even Gaussian Process - Latent Variable Models (Lawrence, 2003)), these
latent space geometries could scale to higher dimensions.

G O I N G B E Y O N D G A N S & VA E S As surveyed in Chap. 6, the game AI
community has focused on applications of Autoregressive Models, Genera-
tive Adversarial Networks, and Variational Autoencoders. Other Deep Gen-
erative Models (DGMs) are ripe for application in this domain (e.g. flow-
based or diffusion-based models). There is a place in the literature for
a survey that focuses on the affordances, applications and evaluation of
DGMs in games, providing example implementations for the community.
Another family of levels that could be included in this analysis are autore-
gressive language-based models; recent work has taken steps in this direc-
tion, implementing models that generate levels based on prompts written
in English (Sudhakaran et al., 2023; Todd et al., 2023).

B R I D G I N G R E S E A R C H F I E L D S The algorithms that inspire our contri-
butions come from two fields: robotics, and biology. Our framework is an
adaptation of the Intelligent Trial-and-Error algorithm for adapting robot
gaits (Cully et al., 2015), and our algorithms for safe interpolation and ex-
trapolation are inspired by recent advancements in robotics and protein
modeling (Beik-Mohammadi et al., 2021; Detlefsen, Hauberg, and Boomsma,
2022). We see a potential for cross-collaboration between these fields: our
community’s focus on quality-diversity and evolutionary algorithms can
be useful for protein optimization, and reliable representations of proteins
can be used as inspiration for that of games (Krenn et al., 2022). In the
particular case of the technology we develop, safe optimization could be
achieved using our restricted BO (Sec. 9.7) on VAEs trained on discrete rep-
resentations of molecules or proteins.

128 C O N T R I B U T I O N S , D I S C U S S I O N & F U T U R E W O R K

10.4 C O N C L U S I O N

This thesis proposes and analyses a framework for adapting game content
to users. Our experiments show that the use of Bayesian Optimization is
a competitive alternative for adapting the content of simple, deterministic
games and that a geometric approach to Deep Generative Models allows
for sampling, interpolating, and optimizing safely in latent space.

The work done in this dissertation opens the doors to new research and
development, from deploying our framework at scale and testing whether
it would work on other instances, to improvements on algorithms for opti-
mization in other domains.

As a final remark, it is worth emphasizing that the ideas that sparked our
research came from other fields than game AI. This is the value of interdis-
ciplinary research. This thesis covered a range of diverse topics, from pure
mathematics (in the form of differential geometry in Chap. 8), to robotics
(Chap. 7), to Experience-Driven Procedural Content Generation (Chap. 2).
We see value in keeping this conversation between fields going and expect
future work to focus on bringing the methods we developed to other fields,
and to bring fresh ideas from other fields into game AI.

Part V

A P P E N D I X

A
T R A I N I N G D E TA I L S & I M P L E M E N TAT I O N S

A.1 L I N K S T O O P E N S O U R C E I M P L E M E N TAT I O N S

Experiment Ref. URL

Example: Gaussian Processes Chap. 3 https://github.com/

miguelgondu/examples_in_thesis

Example: Bayesian Optimization vs.
CMA-ES

Chap. 3 https://github.com/

real-itu/benchmarking_

evolution_and_bo/tree/

6c8d41dfee5925d859e6060cae879e33a2fa184b/

experiments/simple_comparison

Experiment: Framework on planning
agents

Chap. 4 https://github.com/

miguelgondu/finding_game_

levels_paper

Experiment: Sudoku web application Chap. 5 https://github.com/

miguelgondu/bayesian_sudoku

Experiment: Dungeon crawler web
application

Chap. 5 https://github.com/

miguelgondu/bayesian_

dungeoncrawler

Example: VAE trained on MNIST(1) Sec. 6.4.6 https://github.com/

miguelgondu/examples_in_thesis

Example: A minimal VAE on SMB Sec. 6.6.1 https://github.com/

miguelgondu/minimal_VAE_on_

Mario

Example: A minimal VAE on Zelda Sec. 6.6.2 https://github.com/

miguelgondu/minimal_VAE_

on_Mario/tree/dissertation_

experiments

Example: Uncertainty and volume in
MNIST(1)

Sec. 7.2.2 https://github.com/

miguelgondu/examples_in_thesis

Experiment: decoding to several dis-
tributions

Sec. 8.4 https://github.com/

MachineLearningLifeScience/

stochman/tree/

black-box-random-geometry/

examples/black_box_random_

geometries

Experiment: modelling human mo-
tion

Sec. 8.5 https://github.com/

MachineLearningLifeScience/

stochman/tree/

black-box-random-geometry/

examples/black_box_random_

geometries

Experiment: Safely interpolating,
sampling and optimizing

Chap. 9 https://github.com/

miguelgondu/Mario_plays_on_

a_manifold

Table A.1: Links to open source implementations of experiments.

131

https://github.com/miguelgondu/examples_in_thesis
https://github.com/miguelgondu/examples_in_thesis
https://github.com/real-itu/benchmarking_evolution_and_bo/tree/6c8d41dfee5925d859e6060cae879e33a2fa184b/experiments/simple_comparison
https://github.com/real-itu/benchmarking_evolution_and_bo/tree/6c8d41dfee5925d859e6060cae879e33a2fa184b/experiments/simple_comparison
https://github.com/real-itu/benchmarking_evolution_and_bo/tree/6c8d41dfee5925d859e6060cae879e33a2fa184b/experiments/simple_comparison
https://github.com/real-itu/benchmarking_evolution_and_bo/tree/6c8d41dfee5925d859e6060cae879e33a2fa184b/experiments/simple_comparison
https://github.com/real-itu/benchmarking_evolution_and_bo/tree/6c8d41dfee5925d859e6060cae879e33a2fa184b/experiments/simple_comparison
https://github.com/miguelgondu/finding_game_levels_paper
https://github.com/miguelgondu/finding_game_levels_paper
https://github.com/miguelgondu/finding_game_levels_paper
https://github.com/miguelgondu/bayesian_sudoku
https://github.com/miguelgondu/bayesian_sudoku
https://github.com/miguelgondu/bayesian_dungeoncrawler
https://github.com/miguelgondu/bayesian_dungeoncrawler
https://github.com/miguelgondu/bayesian_dungeoncrawler
https://github.com/miguelgondu/examples_in_thesis
https://github.com/miguelgondu/examples_in_thesis
https://github.com/miguelgondu/minimal_VAE_on_Mario
https://github.com/miguelgondu/minimal_VAE_on_Mario
https://github.com/miguelgondu/minimal_VAE_on_Mario
https://github.com/miguelgondu/minimal_VAE_on_Mario/tree/dissertation_experiments
https://github.com/miguelgondu/minimal_VAE_on_Mario/tree/dissertation_experiments
https://github.com/miguelgondu/minimal_VAE_on_Mario/tree/dissertation_experiments
https://github.com/miguelgondu/minimal_VAE_on_Mario/tree/dissertation_experiments
https://github.com/miguelgondu/examples_in_thesis
https://github.com/miguelgondu/examples_in_thesis
https://github.com/MachineLearningLifeScience/stochman/tree/black-box-random-geometry/examples/black_box_random_geometries
https://github.com/MachineLearningLifeScience/stochman/tree/black-box-random-geometry/examples/black_box_random_geometries
https://github.com/MachineLearningLifeScience/stochman/tree/black-box-random-geometry/examples/black_box_random_geometries
https://github.com/MachineLearningLifeScience/stochman/tree/black-box-random-geometry/examples/black_box_random_geometries
https://github.com/MachineLearningLifeScience/stochman/tree/black-box-random-geometry/examples/black_box_random_geometries
https://github.com/MachineLearningLifeScience/stochman/tree/black-box-random-geometry/examples/black_box_random_geometries
https://github.com/MachineLearningLifeScience/stochman/tree/black-box-random-geometry/examples/black_box_random_geometries
https://github.com/MachineLearningLifeScience/stochman/tree/black-box-random-geometry/examples/black_box_random_geometries
https://github.com/MachineLearningLifeScience/stochman/tree/black-box-random-geometry/examples/black_box_random_geometries
https://github.com/MachineLearningLifeScience/stochman/tree/black-box-random-geometry/examples/black_box_random_geometries
https://github.com/MachineLearningLifeScience/stochman/tree/black-box-random-geometry/examples/black_box_random_geometries
https://github.com/MachineLearningLifeScience/stochman/tree/black-box-random-geometry/examples/black_box_random_geometries
https://github.com/miguelgondu/Mario_plays_on_a_manifold
https://github.com/miguelgondu/Mario_plays_on_a_manifold
https://github.com/miguelgondu/Mario_plays_on_a_manifold

132 T R A I N I N G D E TA I L S & I M P L E M E N TAT I O N S

A.2 T R A I N I N G G A U S S I A N P R O C E S S E S

A.2.1 Running example in Chap. 3

The running example for Chap. 3 uses botorch’s SingleTaskGP model,
with a zero prior µ0(x) ≡ 0 and a Matérn5/2 kernel. More details can be
found in their documentation.1

A.2.2 Intelligent trial-and-error in planning agents

In Chap. 4 we test the Intelligent-Trial-and-Error algorithm, which uses
MAP-Elites to build a prior for a Gaussian Process-based Bayesian Opti-
mization.

M A P- E L I T E S D E TA I L S We ran each evolution for 10 generations, the ini-
tial amount of iterations per generation was 100, followed by 50 iterations
with mutations. The behavioral descriptors are described in the Chapter
(leniency, space coverage and reachability, in Sec. 4.3.2), and the perfor-
mance metric’s win rate w was computed using 40 rollouts. A random seed
(23) was chosen for replicability.2 This evolution was implemented using
pymelites3, a Python library we implemented.

B AY E S I A N O P T I M I Z AT I O N We developed and used a library called PyITaE4

for running Bayesian Optimization on top of priors built using MAP-Elites
and pymelites. This library uses GPy to train Gaussian Processes (GPy,
2012). The kernel used was a Matérn5/2 plus noise.5

A.2.3 Gaussian Processes in Sudoku and Dungeon Crawler

S U D O K U The prior is given by:

µ0(h) =µ0(h) = 600+ (h −17)(600−3)/(17−80), (A.1)

where h is the number of hints or prefilled digits. µ0(h) is the straight line
that interpolates between (80,3) and (17,600). The kernel is given by an
RBF plus noise. The Gaussian Processes were trained using scikit-learn

1 https://botorch.org/api/_modules/botorch/models/gp_regression.html#

SingleTaskGP

2 The exact file used is to_run.sh in the repository: https://github.com/miguelgondu/
finding_game_levels_paper/blob/7898a6512320f5aaaf04a2113565a3972d8545ed/

to_run.sh.
3 https://github.com/miguelgondu/pymelites

4 https://github.com/miguelgondu/pyITaE

5 Script used to run the experiment: https://github.com/miguelgondu/finding_game_

levels_paper/blob/7898a6512320f5aaaf04a2113565a3972d8545ed/to_run_itae.

sh

https://botorch.org/api/_modules/botorch/models/gp_regression.html#SingleTaskGP
https://botorch.org/api/_modules/botorch/models/gp_regression.html#SingleTaskGP
https://github.com/miguelgondu/finding_game_levels_paper/blob/7898a6512320f5aaaf04a2113565a3972d8545ed/to_run.sh
https://github.com/miguelgondu/finding_game_levels_paper/blob/7898a6512320f5aaaf04a2113565a3972d8545ed/to_run.sh
https://github.com/miguelgondu/finding_game_levels_paper/blob/7898a6512320f5aaaf04a2113565a3972d8545ed/to_run.sh
https://github.com/miguelgondu/pymelites
https://github.com/miguelgondu/pyITaE
https://github.com/miguelgondu/finding_game_levels_paper/blob/7898a6512320f5aaaf04a2113565a3972d8545ed/to_run_itae.sh
https://github.com/miguelgondu/finding_game_levels_paper/blob/7898a6512320f5aaaf04a2113565a3972d8545ed/to_run_itae.sh
https://github.com/miguelgondu/finding_game_levels_paper/blob/7898a6512320f5aaaf04a2113565a3972d8545ed/to_run_itae.sh

A.3 T R A I N I N G VA R I AT I O N A L A U T O E N C O D E R S 133

instead of PyITaE. The acquisition function used the Expected Improve-
ment described in Eq. (5.1), where we sample the approximation f̃ (x) 10.000
times from the posterior distribution and compute the average of max(0, f̃ (x)−
fbest)

6.

Tiles Description

Floor

- Void (p)

B Block

D Door (p)

F Floor (p)

I Block + Element

L Block

M Monster

O Floor + Element (p)

P Element

S Stairs

U Floor

V Block

W Wall

Table A.2: Vocabulary in
Zelda

D U N G E O N C R AW L E R The prior is given
by:

µ0(l ,r) = (15/28)l + (1/4)r , (A.2)

where l and r are leniency and reachability,
respectively. This is a plane that interpolates
(l = 0,r = 4, t = 1) and (l = 14,r = 50, t = 20).
The kernel used was RBF + Linear plus noise.
The Gaussian Processes were trained using
scikit-learn. The acquisition function was
the Upper Confidence Bound, transformed to
be optimized at the target and passed through
an exponential accordingly.7

A.2.4 Restricted Bayesian Optimization

At each Bayesian Optimization loop, a sin-
gle task GP model was trained using botorch.
The prior was constant (with the value of this
constant a hyperparameter to be optimized),
and the kernel was a Matérn5/2.8

A.3 T R A I N I N G VA R I AT I O N A L A U T O E N C O D E R S

This section details the Variational Autoencoders (VAEs) that were used
in our experiments. As a rule of thumb, our experiments focus on latent
spaces of dimension 2, the batch size was 64, and the optimizer used was
Adam w. a learning rate of 10−3 unless otherwise specified (Kingma and Ba,
2015). The hidden activations are all tanh, and the prior p(z) is given by a
unit Gaussian N (0, I2).

6 https://github.com/miguelgondu/bayesian_sudoku/blob/

80d0716d494d1c5562990190467d980f5ff7318f/sudoku_experiment.py

7 https://github.com/miguelgondu/bayesian_dungeoncrawler/blob/

1f29b1993945575f1af8db1e7dc31964f470d4b2/zelda_experiment.py

8 https://github.com/miguelgondu/Mario_plays_on_a_manifold/blob/

dc2dc597182df6b731ef1ab3e9d4bf0572099b22/experiments/bayesian_

optimization/restricted_domain_bo_on_mario_latent_space.py

https://github.com/miguelgondu/bayesian_sudoku/blob/80d0716d494d1c5562990190467d980f5ff7318f/sudoku_experiment.py
https://github.com/miguelgondu/bayesian_sudoku/blob/80d0716d494d1c5562990190467d980f5ff7318f/sudoku_experiment.py
https://github.com/miguelgondu/bayesian_dungeoncrawler/blob/1f29b1993945575f1af8db1e7dc31964f470d4b2/zelda_experiment.py
https://github.com/miguelgondu/bayesian_dungeoncrawler/blob/1f29b1993945575f1af8db1e7dc31964f470d4b2/zelda_experiment.py
https://github.com/miguelgondu/Mario_plays_on_a_manifold/blob/dc2dc597182df6b731ef1ab3e9d4bf0572099b22/experiments/bayesian_optimization/restricted_domain_bo_on_mario_latent_space.py
https://github.com/miguelgondu/Mario_plays_on_a_manifold/blob/dc2dc597182df6b731ef1ab3e9d4bf0572099b22/experiments/bayesian_optimization/restricted_domain_bo_on_mario_latent_space.py
https://github.com/miguelgondu/Mario_plays_on_a_manifold/blob/dc2dc597182df6b731ef1ab3e9d4bf0572099b22/experiments/bayesian_optimization/restricted_domain_bo_on_mario_latent_space.py

134 T R A I N I N G D E TA I L S & I M P L E M E N TAT I O N S

A.3.1 Example: MNIST(1)

Details about the model, learning rates, batch sizes and epochs are avail-
able online.9 As a short summary, our encoder and decoder were multi-
layer perceptrons and had a single hidden layer of 64 neurons. Since the
goal of this example is to illustrate how to modify latent space geometries,
we train the network for 50 epochs without validating on a test set.

A.3.2 Example: A minimal VAE on SMB

This example is explained in detail in the repository linked above.10. To
summarize, the encoder was a multi-layer perceptron with 3 hidden layers
given by (512, 256, 128) nodes, before splitting into a network that predicts
the mean and another network that predicts the variance, both linear lay-
ers from 128 to 2. The decoder outputs the logits of the Categorical distri-
bution and was symmetric to the encoder.

A.3.3 Example: VAE on The Legend of Zelda

A minimal implementation of a VAE in The Legend of Zelda is available in a
branch of the repository mentioned in the previous section.11

We found the need to reduce the learning rate to 10−4. The encoder and
decoders were the same as in the previous section, but note that the input
size is 11×16 instead of 14×14.

A.3.4 Experiment: decoding to several distributions

In this experiment (Sec. 8.4), we use a toy “decoder” made of a randomly
initialized neural network that maps the latent space to a parameter space.
Table A.3 dives into the specifics of each distribution. An example for yet
another distribution (Poisson) is available online.12

9 https://github.com/miguelgondu/examples_in_thesis/blob/

8324bb253aafa69ccb01d0bfead5626b64f60ffc/Chap_6_and_7/vae.py

10 https://github.com/miguelgondu/minimal_VAE_on_Mario

11 https://github.com/miguelgondu/minimal_VAE_on_Mario/blob/

f4ca190c103637cf22329e5d9fe047ffea49e991/zelda.py

12 https://github.com/MachineLearningLifeScience/stochman/blob/

44a18a0ae547adb84b5db6710c88980f5a9b2b23/examples/black_box_random_

geometries/toy_example/non_gaussian_decoder.py

https://github.com/miguelgondu/examples_in_thesis/blob/8324bb253aafa69ccb01d0bfead5626b64f60ffc/Chap_6_and_7/vae.py
https://github.com/miguelgondu/examples_in_thesis/blob/8324bb253aafa69ccb01d0bfead5626b64f60ffc/Chap_6_and_7/vae.py
https://github.com/miguelgondu/minimal_VAE_on_Mario
https://github.com/miguelgondu/minimal_VAE_on_Mario/blob/f4ca190c103637cf22329e5d9fe047ffea49e991/zelda.py
https://github.com/miguelgondu/minimal_VAE_on_Mario/blob/f4ca190c103637cf22329e5d9fe047ffea49e991/zelda.py
https://github.com/MachineLearningLifeScience/stochman/blob/44a18a0ae547adb84b5db6710c88980f5a9b2b23/examples/black_box_random_geometries/toy_example/non_gaussian_decoder.py
https://github.com/MachineLearningLifeScience/stochman/blob/44a18a0ae547adb84b5db6710c88980f5a9b2b23/examples/black_box_random_geometries/toy_example/non_gaussian_decoder.py
https://github.com/MachineLearningLifeScience/stochman/blob/44a18a0ae547adb84b5db6710c88980f5a9b2b23/examples/black_box_random_geometries/toy_example/non_gaussian_decoder.py

A.3 T R A I N I N G VA R I AT I O N A L A U T O E N C O D E R S 135

(a) (b) (c)

(d) (e) (f)

Figure A.1: Unused latent spaces for Zelda. In Fig. A.1a, the learned representa-
tion is constant columnwise. Figs. A.1b, A.1c and A.1f show latent spaces that are
not convex, splitting the playable regions into different blocks. Finally, Figs. A.1d,
and A.1e show noisy latent spaces.

Geometries for multiple distributions (Sec. 8.4)

Distribution Module MLP Seed for randomness β in σ̃β

Normal
µ Linear(2,3)

1 0.08
σ Linear(2,3), Softplus()

Bernoulli p Linear(2,15), Sigmoid() 1 0.02

Beta
α Linear(2,3), Softplus()

1 0.018
β Linear(2,3), Softplus()

Dirichlet α Linear(2,3), Softplus() 17 0.018

Exponential λ Linear(2,3), Softplus() 17 0.018

Table A.3: Models used in toy experiment. This table describes the neural net-
works used for the experiment presented in Sec. 8.4. Following the notation of
PyTorch, Linear(a,b) represents an MLP layer with a input nodes and b output
nodes. In each of these networks, we calibrate the uncertainty using the methods
described in Sec. 7.2, and we specify the β hyperparameter present in the trans-
lated sigmoid (Eq. (7.9)). These networks were not trained in any way: they were
initialized using the provided seed.

136 T R A I N I N G D E TA I L S & I M P L E M E N TAT I O N S

A.3.5 Experiment: modeling human poses

Sec. 8.5 showcases how to define a latent space geometry when decoding to
a von Mises-Fisher distribution. The implementation is available online.13

A.4 S A F E I N T E R P O L AT I O N A N D S A M P L I N G

The implementation of the interpolation, diffusion and optimization algo-
rithms discussed in Chap. 9 are available online.14

In this experiment, we used a one-layer-hierarchical VAE instead. The spec-
ification of these VAEs, as well as the particular hyperparameters, are dis-
cussed in the next two paragraphs for both models.

S U P E R M A R I O B R O S The encoder is the same as in Sec. A.3.2; however,
the decoder returns the parameters of a normal distribution, i.e. there
are two additional linear layers Linear(142,142) that learn the parameters
µdec(z) and σdec(z). These are sampled and passed through a Softmax to
predict SMB levels.

T H E L E G E N D O F Z E L D A The construction of the VAE is analogous to
SMB, except for the fact that the input and output dimensions are 11 ×
16 instead of 14 × 14. The learning rate used was 10−4. We mention in
Chap. 9 that only 4 out of the 10 VAEs trained on this dataset were used.
The remaining 6 learned flat, non-convex or noisy representations, which
we show in Fig. A.1.

13 https://github.com/MachineLearningLifeScience/stochman/tree/

44a18a0ae547adb84b5db6710c88980f5a9b2b23/examples/black_box_random_

geometries/von_mises_fisher_example

14 https://github.com/miguelgondu/Mario_plays_on_a_manifold

https://github.com/MachineLearningLifeScience/stochman/tree/44a18a0ae547adb84b5db6710c88980f5a9b2b23/examples/black_box_random_geometries/von_mises_fisher_example
https://github.com/MachineLearningLifeScience/stochman/tree/44a18a0ae547adb84b5db6710c88980f5a9b2b23/examples/black_box_random_geometries/von_mises_fisher_example
https://github.com/MachineLearningLifeScience/stochman/tree/44a18a0ae547adb84b5db6710c88980f5a9b2b23/examples/black_box_random_geometries/von_mises_fisher_example
https://github.com/miguelgondu/Mario_plays_on_a_manifold

B I B L I O G R A P H Y

Al-Roomi, Ali R. (2015). Unconstrained Single-Objective Benchmark Func-
tions Repository. Halifax, Nova Scotia, Canada. URL: https://www.al-
roomi.org/benchmarks/unconstrained.

Amari, Shun-ichi (1998). „Natural Gradients work Efficiently in Learning.“
en. In: Neural Computation 10.

Anthropy, Anna and Naomi Clark (2014). A Game Design Vocabulary. Upper
Saddle River, NJ, USA: Addison-Wesley Professional. ISBN: 978-0-321-
90200-5.

Arjovsky, Martin, Soumith Chintala, and Léon Bottou (2017). „Wasserstein
Generative Adversarial Networks.“ en. In: Proceedings of the 34th In-
ternational Conference on Machine Learning. PMLR, pp. 214–223. URL:
https://proceedings.mlr.press/v70/arjovsky17a.html.

Arvanitidis, Georgios, Lars Kai Hansen, and Søren Hauberg (2018). „Latent
Space Oddity: on the Curvature of Deep Generative Models.“ In: Inter-
national Conference on Learning Representations (ICLR).

Arvanitidis, Georgios, Søren Hauberg, Philipp Hennig, and Michael Schober
(2019). „Fast and Robust Shortest Paths on Manifolds Learned from
Data.“ en. In: Proceedings of the 22nd International Conference on Ar-
tificial Intelligence and Statistics (AISTATS), p. 10.

Arvanitidis, Georgios, Miguel González-Duque, Alison Pouplin, Dimitrios
Kalatzis, and Soren Hauberg (2022). „Pulling back information geom-
etry.“ en. In: Proceedings of The 25th International Conference on Ar-
tificial Intelligence and Statistics. PMLR, pp. 4872–4894. URL: https:
//proceedings.mlr.press/v151/arvanitidis22b.html.

Awiszus, Maren, Frederik Schubert, and Bodo Rosenhahn (2020). „TOAD-
GAN: Coherent Style Level Generation from a Single Example.“ en. In:
Proceedings of the AAAI Conference on Artificial Intelligence and Inter-
active Digital Entertainment 16.1, 10–16. ISSN: 2334-0924, 2326-909X.
DOI: 10.1609/aiide.v16i1.7401.

— (2021). „World-GAN: a Generative Model for Minecraft Worlds.“ en. In:
2021 IEEE Conference on Games (CoG). Copenhagen, Denmark: IEEE,
1–8. ISBN: 978-1-66543-886-5. DOI: 10.1109/CoG52621.2021.9619133.
URL: https://ieeexplore.ieee.org/document/9619133/.

Bakkes, Sander, Shimon Whiteson, Guangliang Li, George Viorel Visniuc,
Efstathios Charitos, Norbert Heijne, and Arjen Swellengrebel (2014).
„Challenge balancing for personalised game spaces.“ en. In: 2014 IEEE
Games Media Entertainment. Toronto, ON: IEEE, 1–8. ISBN: 978-1-4799-
7545-7. DOI: 10.1109/GEM.2014.7047971. URL: http://ieeexplore.
ieee.org/document/7047971/.

Balandat, Maximilian, Brian Karrer, Daniel R. Jiang, Samuel Daulton, Ben-
jamin Letham, Andrew Gordon Wilson, and Eytan Bakshy (2020). „BoTorch:

137

https://www.al-roomi.org/benchmarks/unconstrained
https://www.al-roomi.org/benchmarks/unconstrained
https://proceedings.mlr.press/v70/arjovsky17a.html
https://proceedings.mlr.press/v151/arvanitidis22b.html
https://proceedings.mlr.press/v151/arvanitidis22b.html
https://doi.org/10.1609/aiide.v16i1.7401
https://doi.org/10.1109/CoG52621.2021.9619133
https://ieeexplore.ieee.org/document/9619133/
https://doi.org/10.1109/GEM.2014.7047971
http://ieeexplore.ieee.org/document/7047971/
http://ieeexplore.ieee.org/document/7047971/

138 B I B L I O G R A P H Y

A Framework for Efficient Monte-Carlo Bayesian Optimization.“ In: Ad-
vances in Neural Information Processing Systems 33. URL: http : / /
arxiv.org/abs/1910.06403.

Ballard, Dana H. (1987). In: Proceedings of the Sixth National Conference on
Artificial Intelligence.

Bamford, Chris, Shengyi Huang, and Simon Lucas (2022). „Griddly: A plat-
form for AI research in games.“ In: 2011.06363. arXiv:2011.06363 [cs].
URL: http://arxiv.org/abs/2011.06363.

Bamford, Christopher, Minqi Jiang, Mikayel Samvelyan, and Tim Rocktäschel
(2022). „GriddlyJS: A Web IDE for Reinforcement Learning.“ In: Thirty-
sixth Conference on Neural Information Processing Systems Datasets
and Benchmarks Track. URL: https://openreview.net/forum?id=
YmacJv0i_UR.

Beik-Mohammadi, Hadi, Søren Hauberg, Georgios Arvanitidis, Gerhard Neu-
mann, and Leonel Rozo (2021). „Learning Riemannian Manifolds for
Geodesic Motion Skills.“ en. In: Robotics: Science and Systems XVII. Robotics:
Science and Systems Foundation. ISBN: 978-0-9923747-7-8. DOI: 10.
15607/RSS.2021.XVII.082. URL: http://www.roboticsproceedings.
org/rss17/p082.pdf.

Bengio, Yoshua, Aaron Courville, and Pascal Vincent (2014). „Representa-
tion Learning: A Review and New Perspectives.“ In: arXiv:1206.5538.
arXiv:1206.5538 [cs]. URL: http://arxiv.org/abs/1206.5538.

Bingham, Derek (2013). Optimization Test Functions and Datasets. Accessed:
20-03-2023. URL: https://www.sfu.ca/~ssurjano/optimization.
html.

Binois, Mickaël and Nathan Wycoff (2022). „A Survey on High-dimensional
Gaussian Process Modeling with Application to Bayesian Optimization.“
en. In: ACM Transactions on Evolutionary Learning and Optimization
2.2, 1–26. ISSN: 2688-299X, 2688-3007. DOI: 10.1145/3545611.

Bishop, Christopher M. (2006). Pattern Recognition and Machine Learn-
ing (Information Science and Statistics). Berlin, Heidelberg: Springer-
Verlag. ISBN: 0387310738.

Blei, David M., Alp Kucukelbir, and Jon D. McAuliffe (2017). „Variational In-
ference: A Review for Statisticians.“ en. In: Journal of the American Sta-
tistical Association 112.518, 859–877. ISSN: 0162-1459, 1537-274X. DOI:
10.1080/01621459.2017.1285773.

Bond-Taylor, Sam, Adam Leach, Yang Long, and Chris G. Willcocks (2022).
„Deep Generative Modelling: A Comparative Review of VAEs, GANs,
Normalizing Flows, Energy-Based and Autoregressive Models.“ In: IEEE
Transactions on Pattern Analysis and Machine Intelligence 44.11. arXiv:2103.04922
[cs, stat], 7327–7347. ISSN: 0162-8828, 2160-9292, 1939-3539. DOI: 10.
1109/TPAMI.2021.3116668.

Boriah, Shyam, Varun Chandola, and Vipin Kumar (2008). „Similarity Mea-
sures for Categorical Data: A Comparative Evaluation.“ In: Proceedings
of the 2008 SIAM International Conference on Data Mining. Society for
Industrial and Applied Mathematics, 243–254. ISBN: 978-0-89871-654-

http://arxiv.org/abs/1910.06403
http://arxiv.org/abs/1910.06403
http://arxiv.org/abs/2011.06363
https://openreview.net/forum?id=YmacJv0i_UR
https://openreview.net/forum?id=YmacJv0i_UR
https://doi.org/10.15607/RSS.2021.XVII.082
https://doi.org/10.15607/RSS.2021.XVII.082
http://www.roboticsproceedings.org/rss17/p082.pdf
http://www.roboticsproceedings.org/rss17/p082.pdf
http://arxiv.org/abs/1206.5538
https://www.sfu.ca/~ssurjano/optimization.html
https://www.sfu.ca/~ssurjano/optimization.html
https://doi.org/10.1145/3545611
https://doi.org/10.1080/01621459.2017.1285773
https://doi.org/10.1109/TPAMI.2021.3116668
https://doi.org/10.1109/TPAMI.2021.3116668

B I B L I O G R A P H Y 139

2. DOI: 10.1137/1.9781611972788.22. URL: https://epubs.siam.
org/doi/10.1137/1.9781611972788.22.

Borovitskiy, Viacheslav, Iskander Azangulov, Alexander Terenin, Peter Mostowsky,
Marc Deisenroth, and Nicolas Durrande (2021). „Matérn Gaussian Pro-
cesses on Graphs.“ en. In: Proceedings of The 24th International Con-
ference on Artificial Intelligence and Statistics. PMLR, 2593–2601. URL:
https://proceedings.mlr.press/v130/borovitskiy21a.html.

Browne, Cameron B., Edward Powley, Daniel Whitehouse, Simon M. Lucas,
Peter I. Cowling, Philipp Rohlfshagen, Stephen Tavener, Diego Perez,
Spyridon Samothrakis, and Simon Colton (2012). „A Survey of Monte
Carlo Tree Search Methods.“ en. In: IEEE Transactions on Computa-
tional Intelligence and AI in Games 4.1, pp. 1–43. ISSN: 1943-068X, 1943-
0698. DOI: 10.1109/TCIAIG.2012.2186810.

Capps, Benjamin and Jacob Schrum (2021). „Using multiple generative ad-
versarial networks to build better-connected levels for mega man.“
en. In: Proceedings of the Genetic and Evolutionary Computation Con-
ference. Lille France: ACM, 66–74. ISBN: 978-1-4503-8350-9. DOI: 10.
1145/3449639.3459323. URL: https://dl.acm.org/doi/10.1145/
3449639.3459323.

Cobbe, Karl, Christopher Hesse, Jacob Hilton, and John Schulman (2020).
„Leveraging Procedural Generation to Benchmark Reinforcement Learn-
ing.“ In: arXiv:1912.01588. arXiv:1912.01588 [cs, stat]. URL: http://
arxiv.org/abs/1912.01588.

Cooper, Seth (2022). „Sturgeon: Tile-Based Procedural Level Generation via
Learned and Designed Constraints.“ en. In: Proceedings of the AAAI
Conference on Artificial Intelligence and Interactive Digital Entertain-
ment 18.11, 26–36. ISSN: 2334-0924. DOI: 10 . 1609 / aiide . v18i1 .
21944.

Cooper, Seth and Anurag Sarkar (2020). „Pathfinding Agents for Platformer
Level Repair.“ In: Proceedings of the Experimental AI in Games (EXAG)
Workshop at AIIDE.

Cully, Antoine, Jeff Clune, Danesh Tarapore, and Jean-Baptiste Mouret (2015).
„Robots that can adapt like animals.“ In: Nature 521.7553, pp. 503–507.
ISSN: 1476-4687. DOI: 10.1038/nature14422.

Davidson, Tim R., Luca Falorsi, Nicola De Cao, Thomas Kipf, and Jakub M.
Tomczak (2018). „Hyperspherical Variational Auto-Encoders.“ In: 34th
Conference on Uncertainty in Artificial Intelligence (UAI-18).

Deisenroth, Marc Peter, Yicheng Luo, and Mark van der Wilk (2020). A Prac-
tical Guide to Gaussian Processes. Accessed: 20-03-2023. URL: https:
//infallible-thompson-49de36.netlify.app/.

Demediuk, Simon, Marco Tamassia, Xiaodong Li, and William L. Raffe (2019).
„Challenging AI: Evaluating the Effect of MCTS-Driven Dynamic Diffi-
culty Adjustment on Player Enjoyment.“ In: ACM International Confer-
ence Proceeding Series. ISSN: 9781450366038. DOI: 10.1145/3290688.
3290748.

https://doi.org/10.1137/1.9781611972788.22
https://epubs.siam.org/doi/10.1137/1.9781611972788.22
https://epubs.siam.org/doi/10.1137/1.9781611972788.22
https://proceedings.mlr.press/v130/borovitskiy21a.html
https://doi.org/10.1109/TCIAIG.2012.2186810
https://doi.org/10.1145/3449639.3459323
https://doi.org/10.1145/3449639.3459323
https://dl.acm.org/doi/10.1145/3449639.3459323
https://dl.acm.org/doi/10.1145/3449639.3459323
http://arxiv.org/abs/1912.01588
http://arxiv.org/abs/1912.01588
https://doi.org/10.1609/aiide.v18i1.21944
https://doi.org/10.1609/aiide.v18i1.21944
https://doi.org/10.1038/nature14422
https://infallible-thompson-49de36.netlify.app/
https://infallible-thompson-49de36.netlify.app/
https://doi.org/10.1145/3290688.3290748
https://doi.org/10.1145/3290688.3290748

140 B I B L I O G R A P H Y

Detlefsen, Nicki S., Alison Pouplin, Cilie W. Feldager, Cong Geng, Dimitris
Kalatzis, Helene Hauschultz, Miguel González-Duque, Frederik War-
burg, Marco Miani, and Søren Hauberg (2021). „StochMan.“ In: GitHub.
Note: https://github.com/MachineLearningLifeScience/stochman/.

Detlefsen, Nicki Skafte, Søren Hauberg, and Wouter Boomsma (2022). „Learn-
ing meaningful representations of protein sequences.“ en. In: Nature
Communications 13.1, p. 1914. ISSN: 2041-1723. DOI: 10.1038/s41467-
022-29443-w.

Dhariwal, Prafulla and Alexander Nichol (2021). „Diffusion models beat
GANs on image synthesis.“ In: Advances in neural information process-
ing systems. Ed. by M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang,
and J. Wortman Vaughan. Vol. 34. Curran Associates, Inc., pp. 8780–
8794. URL: https://proceedings.neurips.cc/paper/2021/file/
49ad23d1ec9fa4bd8d77d02681df5cfa-Paper.pdf.

Duvenand, David (2014). The Kernel Cookbook: Advice on Covariance func-
tions. Accessed: 20-03-2023. URL: https://www.cs.toronto.edu/
~duvenaud/cookbook/.

Earle, Sam, Justin Snider, Matthew C. Fontaine, Stefanos Nikolaidis, and
Julian Togelius (2021). „Illuminating Diverse Neural Cellular Automata
for Level Generation.“ In: arXiv:2109.05489 [cs]. arXiv: 2109.05489. URL:
http://arxiv.org/abs/2109.05489.

Edwards, Maria, Ming Jiang, and Julian Togelius (2021). „Search-Based Ex-
ploration and Diagnosis of TOAD-GAN.“ en. In: Proceedings of the AAAI
Conference on Artificial Intelligence and Interactive Digital Entertain-
ment 17.1, 140–147. ISSN: 2334-0924, 2326-909X. DOI: 10.1609/aiide.
v17i1.18901.

Eklund, David and Søren Hauberg (2019). „Expected path length on ran-
dom manifolds.“ In: arXiv preprint.

Erickson, Jeff (2019). Algorithms. URL: http://algorithms.wtf.
Eriksson, David, Michael Pearce, Jacob Gardner, Ryan D Turner, and Matthias

Poloczek (2019). „Scalable Global Optimization via Local Bayesian Op-
timization.“ In: Advances in Neural Information Processing Systems. Vol. 32.
Curran Associates, Inc. URL: https://papers.nips.cc/paper/2019/
hash/6c990b7aca7bc7058f5e98ea909e924b-Abstract.html.

Fontaine, Matthew C., Julian Togelius, Stefanos Nikolaidis, and Amy K. Hoover
(2020). „Covariance matrix adaptation for the rapid illumination of be-
havior space.“ en. In: Proceedings of the 2020 Genetic and Evolutionary
Computation Conference. Cancún Mexico: ACM, 94–102. ISBN: 978-1-
4503-7128-5. DOI: 10.1145/3377930.3390232. URL: https://dl.
acm.org/doi/10.1145/3377930.3390232.

GPy (2012). GPy: A Gaussian process framework in python. http://github.
com/SheffieldML/GPy.

Gage, Zach and Jack Schlesinger. Good Sudoku. https://www.playgoodsudoku.
com/. Accessed: 17-01-2023.

Gardner, Jacob R, Geoff Pleiss, David Bindel, Kilian Q Weinberger, and An-
drew Gordon Wilson (2018). „GPyTorch: Blackbox Matrix-Matrix Gaus-

https://doi.org/10.1038/s41467-022-29443-w
https://doi.org/10.1038/s41467-022-29443-w
https://proceedings.neurips.cc/paper/2021/file/49ad23d1ec9fa4bd8d77d02681df5cfa-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/49ad23d1ec9fa4bd8d77d02681df5cfa-Paper.pdf
https://www.cs.toronto.edu/~duvenaud/cookbook/
https://www.cs.toronto.edu/~duvenaud/cookbook/
http://arxiv.org/abs/2109.05489
https://doi.org/10.1609/aiide.v17i1.18901
https://doi.org/10.1609/aiide.v17i1.18901
http://algorithms.wtf
https://papers.nips.cc/paper/2019/hash/6c990b7aca7bc7058f5e98ea909e924b-Abstract.html
https://papers.nips.cc/paper/2019/hash/6c990b7aca7bc7058f5e98ea909e924b-Abstract.html
https://doi.org/10.1145/3377930.3390232
https://dl.acm.org/doi/10.1145/3377930.3390232
https://dl.acm.org/doi/10.1145/3377930.3390232
http://github.com/SheffieldML/GPy
http://github.com/SheffieldML/GPy
https://www.playgoodsudoku.com/
https://www.playgoodsudoku.com/

B I B L I O G R A P H Y 141

sian Process Inference with GPU Acceleration.“ In: Advances in Neural
Information Processing Systems.

Giacomello, Edoardo, Pier Luca Lanzi, and Daniele Loiacono (2018). „DOOM
Level Generation Using Generative Adversarial Networks.“ In: 2018 IEEE
Games, Entertainment, Media Conference (GEM), pp. 316–323. DOI: 10.
1109/GEM.2018.8516539.

González-Duque, Miguel, Rasmus Berg Palm, and Sebastian Risi (2021). „Fast
Game Content Adaptation Through Bayesian-based Player Modelling.“
en. In: 2021 IEEE Conference on Games (CoG). Copenhagen, Denmark:
IEEE, pp. 01–08. ISBN: 978-1-66543-886-5. DOI: 10.1109/CoG52621.
2021.9619018. URL: https://ieeexplore.ieee.org/document/
9619018/.

González-Duque, Miguel, Rasmus Berg Palm, David Ha, and Sebastian Risi
(2020). „Finding Game Levels with the Right Difficulty in a Few Tri-
als through Intelligent Trial-and-Error.“ In: 2020 IEEE Conference on
Games (CoG), pp. 503–510. DOI: 10.1109/CoG47356.2020.9231548.

González-Duque, Miguel, Rasmus Berg Palm, Søren Hauberg, and Sebas-
tian Risi (2022). „Mario Plays on a Manifold: Generating Functional
Content in Latent Space through Differential Geometry.“ In: 2022 IEEE
Conference on Games (CoG), pp. 385–392. DOI: 10.1109/CoG51982.
2022.9893612.

Goodfellow, Ian, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio (2014). „Gen-
erative Adversarial Nets.“ In: Advances in Neural Information Process-
ing Systems. Vol. 27. Curran Associates, Inc. URL: https://papers.
nips.cc/paper/2014/hash/5ca3e9b122f61f8f06494c97b1afccf3-

Abstract.html.
Gutierrez, Jake and Jacob Schrum (2020). „Generative Adversarial Network

Rooms in Generative Graph Grammar Dungeons for The Legend of
Zelda.“ In: 2020 IEEE Congress on Evolutionary Computation (CEC),
1–8. DOI: 10.1109/CEC48606.2020.9185631.

Gómez-Bombarelli, Rafael, Jennifer N. Wei, David Duvenaud, José Miguel
Hernández-Lobato, Benjamín Sánchez-Lengeling, Dennis Sheberla, Jorge
Aguilera-Iparraguirre, Timothy D. Hirzel, Ryan P. Adams, and Alán Aspuru-
Guzik (2018). „Automatic Chemical Design Using a Data-Driven Con-
tinuous Representation of Molecules.“ en. In: ACS Central Science 4.2,
268–276. ISSN: 2374-7943, 2374-7951. DOI: 10.1021/acscentsci.7b00572.

Görtler, Jochen, Rebecca Kehlbeck, and Oliver Deussen (2019). „A Visual
Exploration of Gaussian Processes.“ en. In: Distill 4.4, e17. ISSN: 2476-
0757. DOI: 10.23915/distill.00017.

Ha, David (2017). „A Visual Guide to Evolution Strategies.“ In: blog.otoro.net.
URL: https://blog.otoro.net/2017/10/29/visual-evolution-
strategies/.

Hansen, N. and A. Ostermeier (1996). „Adapting arbitrary normal muta-
tion distributions in evolution strategies: the covariance matrix adap-

https://doi.org/10.1109/GEM.2018.8516539
https://doi.org/10.1109/GEM.2018.8516539
https://doi.org/10.1109/CoG52621.2021.9619018
https://doi.org/10.1109/CoG52621.2021.9619018
https://ieeexplore.ieee.org/document/9619018/
https://ieeexplore.ieee.org/document/9619018/
https://doi.org/10.1109/CoG47356.2020.9231548
https://doi.org/10.1109/CoG51982.2022.9893612
https://doi.org/10.1109/CoG51982.2022.9893612
https://papers.nips.cc/paper/2014/hash/5ca3e9b122f61f8f06494c97b1afccf3-Abstract.html
https://papers.nips.cc/paper/2014/hash/5ca3e9b122f61f8f06494c97b1afccf3-Abstract.html
https://papers.nips.cc/paper/2014/hash/5ca3e9b122f61f8f06494c97b1afccf3-Abstract.html
https://doi.org/10.1109/CEC48606.2020.9185631
https://doi.org/10.1021/acscentsci.7b00572
https://doi.org/10.23915/distill.00017
https://blog.otoro.net/2017/10/29/visual-evolution-strategies/
https://blog.otoro.net/2017/10/29/visual-evolution-strategies/

142 B I B L I O G R A P H Y

tation.“ In: Proceedings of IEEE International Conference on Evolution-
ary Computation, 312–317. DOI: 10.1109/ICEC.1996.542381.

Hao, Ya’nan, Suoju He, Junping Wang, Xiao Liu, jiajian Yang, and Wan Huang
(2010). „Dynamic Difficulty Adjustment of Game AI by MCTS for the
game Pac-Man.“ In: 2010 Sixth International Conference on Natural
Computation. Vol. 8, 3918–3922. DOI: 10.1109/ICNC.2010.5584761.

Hart, Peter E., Nils J. Nilsson, and Bertram Raphael (1968). „A Formal Ba-
sis for the Heuristic Determination of Minimum Cost Paths.“ In: IEEE
Transactions on Systems Science and Cybernetics 4.2, pp. 100–107. DOI:
10.1109/TSSC.1968.300136.

Hauberg, Søren (2022). „Differential geometry for generative modeling.“
en. In: URL: http://www2.compute.dtu.dk/~sohau/weekendwithbernie.

Hello Games (2016). No Man’s Sky (Press Kit). Accessed: 23-03-2023. URL:
https://www.nomanssky.com/press/#features.

Hennig, Philipp, Michael A. Osborne, and Hans P. Kersting (2022). Proba-
bilistic Numerics: Computation as Machine Learning. Cambridge Uni-
versity Press. DOI: 10.1017/9781316681411.

Hensman, James, Alexander Matthews, and Zoubin Ghahramani (2015). „Scal-
able Variational Gaussian Process Classification.“ In: Proceedings of
the Eighteenth International Conference on Artificial Intelligence and
Statistics. Ed. by Guy Lebanon and S. V. N. Vishwanathan. Vol. 38. Pro-
ceedings of Machine Learning Research. San Diego, California, USA:
PMLR, pp. 351–360. URL: https://proceedings.mlr.press/v38/
hensman15.html.

Hernandez-Lobato, Jose Miguel, Michael A Gelbart, Ryan P Adams, Matthew
W Hoffman, and Zoubin Ghahramani (2016). „A General Framework
for Constrained Bayesian Optimization using Information-based Search.“
en. In: Journal of Machine Learning Research, p. 53.

Higgins, Chris (2014). No Man’s Sky would take 5 billion years to explore.
Accessed: 23-03-2023. URL: https://www.wired.co.uk/article/
no-mans-sky-planets.

Hoogeboom, Emiel, Jorn Peters, Rianne van den Berg, and Max Welling
(2019). „Integer Discrete Flows and Lossless Compression.“ In: Advances
in Neural Information Processing Systems. Vol. 32. Curran Associates,
Inc. URL: https://proceedings.neurips.cc/paper/2019/hash/
9e9a30b74c49d07d8150c8c83b1ccf07-Abstract.html.

Hoogeboom, Emiel, Didrik Nielsen, Priyank Jaini, Patrick Forré, and Max
Welling (2021). „Argmax flows and multinomial diffusion: Learning cat-
egorical distributions.“ In: Advances in neural information processing
systems. Ed. by M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and
J. Wortman Vaughan. Vol. 34. Curran Associates, Inc., pp. 12454–12465.
URL: https : / / proceedings . neurips . cc / paper / 2021 / file /
67d96d458abdef21792e6d8e590244e7-Paper.pdf.

Hunicke, Robin (2005). „The case for dynamic difficulty adjustment in games.“
en. In: Proceedings of the 2005 ACM SIGCHI International Conference
on Advances in computer entertainment technology - ACE ’05. Valencia,

https://doi.org/10.1109/ICEC.1996.542381
https://doi.org/10.1109/ICNC.2010.5584761
https://doi.org/10.1109/TSSC.1968.300136
http://www2.compute.dtu.dk/~sohau/weekendwithbernie
https://www.nomanssky.com/press/#features
https://doi.org/10.1017/9781316681411
https://proceedings.mlr.press/v38/hensman15.html
https://proceedings.mlr.press/v38/hensman15.html
https://www.wired.co.uk/article/no-mans-sky-planets
https://www.wired.co.uk/article/no-mans-sky-planets
https://proceedings.neurips.cc/paper/2019/hash/9e9a30b74c49d07d8150c8c83b1ccf07-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/9e9a30b74c49d07d8150c8c83b1ccf07-Abstract.html
https://proceedings.neurips.cc/paper/2021/file/67d96d458abdef21792e6d8e590244e7-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/67d96d458abdef21792e6d8e590244e7-Paper.pdf

B I B L I O G R A P H Y 143

Spain: ACM Press, 429–433. ISBN: 978-1-59593-110-8. DOI: 10.1145/
1178477.1178573. URL: http://portal.acm.org/citation.cfm?
doid=1178477.1178573.

Hunicke, Robin and Vernell Chapman (2004). „AI for dynamic difficulty ad-
justment in games.“ In: AAAI Workshop - Technical Report WS-04-04,
91–96.

Irfan, Ayesha, Adeel Zafar, and Shahbaz Hassan (2019). „Evolving Levels
for General Games Using Deep Convolutional Generative Adversarial
Networks.“ In: 2019 11th Computer Science and Electronic Engineering
(CEEC), 96–101. DOI: 10.1109/CEEC47804.2019.8974332.

Jain, Rishabh, Aaron Isaksen, Christoffer Holmgård, and Julian Togelius (2016).
„Autoencoders for Level Generation, Repair, and Recognition.“ In: Pro-
ceedings of the ICCC Workshop on Computational Creativity and Games.
Association for Computational Creativity.

Jaquier, N, L. Rozo, S. Calinon, and M. Bürger (2019). „Bayesian Optimiza-
tion meets Riemannian Manifolds in Robot Learning.“ In: In Proc of
the Conference on Robot Learning (CoRL). Osaka, Japan.

Jaquier, Noémie and Tamim Asfour (2022). „Riemannian geometry as a uni-
fying theory for robot motion learning and control.“ In: International
Symposium on Robotics Research (ISRR). Blue Sky. Geneva, Switzerland.

Jaquier N. Borovitskiy, V., A. Smolensky, A. Terenin, T. Asfour, and L. Rozo
(2021). „Geometry-aware Bayesian Optimization in Robotics using Rie-
mannian Matérn Kernels.“ In: Conference on Robot Learning (CoRL).

Jennings-Teats, Martin, Gillian Smith, and Noah Wardrip-Fruin (2010). „Poly-
morph: dynamic difficulty adjustment through level generation.“ en.
In: Proceedings of the 2010 Workshop on Procedural Content Genera-
tion in Games. Monterey California: ACM, 1–4. ISBN: 978-1-4503-0023-
0. DOI: 10.1145/1814256.1814267. URL: https://dl.acm.org/doi/
10.1145/1814256.1814267.

Karpinskyj, Stephen, Fabio Zambetta, and Lawrence Cavedon (2014). „Video
game personalisation techniques: A comprehensive survey.“ en. In: En-
tertainment Computing 5.4, 211–218. ISSN: 18759521. DOI: 10.1016/j.
entcom.2014.09.002.

Karras, Tero, Samuli Laine, and Timo Aila (2019). „A Style-Based Generator
Architecture for Generative Adversarial Networks.“ In: 2019 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4396–
4405. DOI: 10.1109/CVPR.2019.00453.

Karras, Tero, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen,
and Timo Aila (2020). „Analyzing and Improving the Image Quality
of StyleGAN.“ en. In: 2020 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR). Seattle, WA, USA: IEEE, 8107–8116.
ISBN: 978-1-72817-168-5. DOI: 10 . 1109 / CVPR42600 . 2020 . 00813.
URL: https://ieeexplore.ieee.org/document/9156570/.

Karth, Isaac, Batu Aytemiz, Ross Mawhorter, and Adam M. Smith (2021).
„Neurosymbolic Map Generation with VQ-VAE and WFC.“ en. In: The
16th International Conference on the Foundations of Digital Games (FDG)

https://doi.org/10.1145/1178477.1178573
https://doi.org/10.1145/1178477.1178573
http://portal.acm.org/citation.cfm?doid=1178477.1178573
http://portal.acm.org/citation.cfm?doid=1178477.1178573
https://doi.org/10.1109/CEEC47804.2019.8974332
https://doi.org/10.1145/1814256.1814267
https://dl.acm.org/doi/10.1145/1814256.1814267
https://dl.acm.org/doi/10.1145/1814256.1814267
https://doi.org/10.1016/j.entcom.2014.09.002
https://doi.org/10.1016/j.entcom.2014.09.002
https://doi.org/10.1109/CVPR.2019.00453
https://doi.org/10.1109/CVPR42600.2020.00813
https://ieeexplore.ieee.org/document/9156570/

144 B I B L I O G R A P H Y

2021. Montreal QC Canada: ACM, 1–6. ISBN: 978-1-4503-8422-3. DOI:
10.1145/3472538.3472584. URL: https://dl.acm.org/doi/10.
1145/3472538.3472584.

Kaushik, Rituraj, Pierre Desreumaux, and Jean-Baptiste Mouret (2020). „Adap-
tive Prior Selection for Repertoire-Based Online Adaptation in Robotics.“
In: Frontiers in Robotics and AI 6, p. 151. ISSN: 2296-9144. DOI: 10 .
3389/frobt.2019.00151.

Khajah, Mohammad M. (2017). „Optimizing Game Engagement via Non-
parametric Models and Manipulations of Difficulty, Tension, and Per-
ceived Performance.“ PhD thesis. ProQuest Dissertations Publishing:
University of Colorado at Boulder.

Khajah, Mohammad M., Brett D. Roads, Robert V. Lindsey, Yun-En Liu, and
Michael C. Mozer (2016). „Designing Engaging Games Using Bayesian
Optimization.“ en. In: Proceedings of the 2016 CHI Conference on Hu-
man Factors in Computing Systems. San Jose California USA: ACM, 5571–5582.
ISBN: 978-1-4503-3362-7. DOI: 10.1145/2858036.2858253. URL: https:
//dl.acm.org/doi/10.1145/2858036.2858253.

Kim, Seung Wook, Yuhao Zhou, Jonah Philion, Antonio Torralba, and Sanja
Fidler (2020). „Learning to Simulate Dynamic Environments With GameGAN.“
en. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition (CVPR). Seattle, WA, USA: IEEE, 1228–1237. ISBN: 978-1-72817-
168-5. DOI: 10.1109/CVPR42600.2020.00131. URL: https://ieeexplore.
ieee.org/document/9156900/.

Kingma, Diederik P. and Jimmy Ba (2015). „Adam: A Method for Stochas-
tic Optimization.“ In: 3rd International Conference on Learning Repre-
sentations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference
Track Proceedings. Ed. by Yoshua Bengio and Yann LeCun. URL: http:
//arxiv.org/abs/1412.6980.

Kingma, Diederik P. and Max Welling (2014). „Auto-Encoding Variational
Bayes.“ en. In: International Conference on Learning Representations.
URL: https://openreview.net/forum?id=33X9fd2-9FyZd.

Kitfox Games (2003). Dwarf Fortress (Press Kit). Accessed: 28-03-2023. URL:
https://www.kitfoxgames.com/press/dwarf_fortress/index.

html.
Krenn, Mario et al. (2022). „SELFIES and the future of molecular string rep-

resentations.“ en. In: Patterns 3.10, p. 100588. ISSN: 26663899. DOI: 10.
1016/j.patter.2022.100588.

Kristensen, Jeppe Theiss, Arturo Valdivia, and Paolo Burelli (2020). „Esti-
mating Player Completion Rate in Mobile Puzzle Games Using Rein-
forcement Learning.“ In: 2020 IEEE Conference on Games (CoG), pp. 636–
639. DOI: 10.1109/CoG47356.2020.9231581.

Krämer, Nicholas and Philipp Hennig (2021). „Linear-Time Probabilistic
Solution of Boundary Value Problems.“ In: Advances in Neural Infor-
mation Processing Systems. Vol. 34. Curran Associates, Inc., 11160–11171.
URL: https : / / proceedings . neurips . cc / paper / 2021 / hash /
5ca3e9b122f61f8f06494c97b1afccf3-Abstract.html.

https://doi.org/10.1145/3472538.3472584
https://dl.acm.org/doi/10.1145/3472538.3472584
https://dl.acm.org/doi/10.1145/3472538.3472584
https://doi.org/10.3389/frobt.2019.00151
https://doi.org/10.3389/frobt.2019.00151
https://doi.org/10.1145/2858036.2858253
https://dl.acm.org/doi/10.1145/2858036.2858253
https://dl.acm.org/doi/10.1145/2858036.2858253
https://doi.org/10.1109/CVPR42600.2020.00131
https://ieeexplore.ieee.org/document/9156900/
https://ieeexplore.ieee.org/document/9156900/
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://openreview.net/forum?id=33X9fd2-9FyZd
https://www.kitfoxgames.com/press/dwarf_fortress/index.html
https://www.kitfoxgames.com/press/dwarf_fortress/index.html
https://doi.org/10.1016/j.patter.2022.100588
https://doi.org/10.1016/j.patter.2022.100588
https://doi.org/10.1109/CoG47356.2020.9231581
https://proceedings.neurips.cc/paper/2021/hash/5ca3e9b122f61f8f06494c97b1afccf3-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/5ca3e9b122f61f8f06494c97b1afccf3-Abstract.html

B I B L I O G R A P H Y 145

Kumaran, Vikram, Bradford Mott, and James Lester (2019). „Generating
Game Levels for Multiple Distinct Games with a Common Latent Space.“
en. In: Proceedings of the AAAI Conference on Artificial Intelligence and
Interactive Digital Entertainment 15.11, 102–108. ISSN: 2334-0924.

Lawrence, Neil (2003). „Gaussian Process Latent Variable Models for Visual-
isation of High Dimensional Data.“ In: Advances in Neural Information
Processing Systems. Vol. 16. MIT Press. URL: https://proceedings.
neurips.cc/paper/2003/hash/9657c1fffd38824e5ab0472e022e577e-

Abstract.html.
Lecun, Y., L. Bottou, Y. Bengio, and P. Haffner (1998). „Gradient-based learn-

ing applied to document recognition.“ In: Proceedings of the IEEE 86.11,
pp. 2278–2324. DOI: 10.1109/5.726791.

Lee, John M. (2000). Introduction to Smooth Manifolds. Springer.
— (2018). Introduction to Riemannian Manifolds. Springer.
Li, Xinyu, Suoju He, Yue Dong, Qing Liu, Xiao Liu, Yiwen Fu, Zhiyuan Shi,

and Wan Huang (2010). „To create DDA by the approach of ANN from
UCT-created data.“ In: 2010 International Conference on Computer Ap-
plication and System Modeling (ICCASM 2010). Vol. 8, pp. V8–475–V8–
478. DOI: 10.1109/ICCASM.2010.5620008.

Liu, Jialin, Sam Snodgrass, Ahmed Khalifa, Sebastian Risi, Georgios N. Yan-
nakakis, and Julian Togelius (2020). „Deep learning for procedural con-
tent generation.“ en. In: Neural Computing and Applications 33.1, pp. 19–
37. ISSN: 0941-0643, 1433-3058. DOI: 10.1007/s00521-020-05383-8.

Liu, Xiao, Yao Li, Suoju He, Yiwen Fu, Jiajian Yang, Donglin Ji, and Yang
Chen (2009). „To Create Intelligent Adaptive Game Opponent by Using
Monte-Carlo for the Game of Pac-Man.“ In: 2009 Fifth International
Conference on Natural Computation. Vol. 5, 598–602. DOI: 10.1109/
ICNC.2009.633.

Makarova, Anastasia, Huibin Shen, Valerio Perrone, Aaron Klein, Jean Bap-
tiste Faddoul, Andreas Krause, Matthias Seeger, and Cedric Archam-
beau (2022). „Automatic Termination for Hyperparameter Optimiza-
tion.“ en. In: Proceedings of the First International Conference on Auto-
mated Machine Learning. PMLR, pp. 7/1–21. URL: https://proceedings.
mlr.press/v188/makarova22a.html.

Martens, James (2020). „New insights and perspectives on the natural gra-
dient method.“ In: Journal of Machine Learning Research 21.146. Cita-
tion Key: JMLR:v21:17-678, pp. 1–76.

Maus, Natalie, Haydn Thomas Jones, Juston Moore, Matt Kusner, John Brad-
shaw, and Jacob R. Gardner (2022). „Local Latent Space Bayesian Opti-
mization over Structured Inputs.“ In: Advances in Neural Information
Processing Systems. Ed. by Alice H. Oh, Alekh Agarwal, Danielle Bel-
grave, and Kyunghyun Cho. URL: https://openreview.net/forum?
id=nZRTRevUO-.

Miani, Marco, Frederik Warburg, Pablo Moreno-Muñoz, Nicki Skafte Detlef-
sen, and Søren Hauberg (2022). „Laplacian Autoencoders for Learning

https://proceedings.neurips.cc/paper/2003/hash/9657c1fffd38824e5ab0472e022e577e-Abstract.html
https://proceedings.neurips.cc/paper/2003/hash/9657c1fffd38824e5ab0472e022e577e-Abstract.html
https://proceedings.neurips.cc/paper/2003/hash/9657c1fffd38824e5ab0472e022e577e-Abstract.html
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/ICCASM.2010.5620008
https://doi.org/10.1007/s00521-020-05383-8
https://doi.org/10.1109/ICNC.2009.633
https://doi.org/10.1109/ICNC.2009.633
https://proceedings.mlr.press/v188/makarova22a.html
https://proceedings.mlr.press/v188/makarova22a.html
https://openreview.net/forum?id=nZRTRevUO-
https://openreview.net/forum?id=nZRTRevUO-

146 B I B L I O G R A P H Y

Stochastic Representations.“ In: Advances in Neural Information Pro-
cessing Systems (NeurIPS).

Mojang Studios (2011). Minecraft (Press Kit). Accessed: 28-03-2023. URL:
https://www.igdb.com/games/minecraft/presskit.

Moon, Hee-Seung and Jiwon Seo (2020). „Dynamic Difficulty Adjustment
via Fast User Adaptation.“ en. In: Adjunct Publication of the 33rd An-
nual ACM Symposium on User Interface Software and Technology. Vir-
tual Event USA: ACM, 13–15. ISBN: 978-1-4503-7515-3. DOI: 10.1145/
3379350 . 3418578. URL: https : / / dl . acm . org / doi / 10 . 1145 /
3379350.3418578.

Mossmouth and BlitWorks (2020). Spelunky 2 (Press Kit). Accessed: 28-03-
2023. URL: https://www.igdb.com/games/spelunky-2/presskit.

Mouret, Jean-Baptiste and Jeff Clune (2015). „Illuminating search spaces
by mapping elites.“ In: arXiv:1504.04909. arXiv:1504.04909 [cs, q-bio]
Citation Key: Mouret:MAP-Elites:2015. DOI: 10.48550/arXiv.1504.
04909. URL: http://arxiv.org/abs/1504.04909.

Nielsen, Frank (2020). „An Elementary Introduction to Information Geom-
etry.“ In: Entropy 22.10. ISSN: 1099-4300. DOI: 10.3390/e22101100.
URL: https://www.mdpi.com/1099-4300/22/10/1100.

— (2022). „The Many Faces of Information Geometry.“ en. In: Notices of
the American Mathematical Society 69.01, p. 1. ISSN: 0002-9920, 1088-
9477. DOI: 10.1090/noti2403.

Oord, Aaron Van den, Nal Kalchbrenner, Lasse Espeholt, Oriol Vinyals, Alex
Graves, et al. (2016). „Conditional image generation with pixelcnn de-
coders.“ In: Advances in neural information processing systems 29.

Oord, Aaron van den, Oriol Vinyals, and koray kavukcuoglu (2017). „Neu-
ral Discrete Representation Learning.“ In: Advances in Neural Informa-
tion Processing Systems. Vol. 30. Curran Associates, Inc. URL: https://
proceedings.neurips.cc/paper/2017/hash/7a98af17e63a0ac09ce2e96d03992fbc-

Abstract.html.
Oord, Aäron van den, Nal Kalchbrenner, and Koray Kavukcuoglu (2016).

„Pixel Recurrent Neural Networks.“ In: Proceedings of The 33rd Inter-
national Conference on Machine Learning. Ed. by Maria Florina Bal-
can and Kilian Q. Weinberger. Vol. 48. Proceedings of Machine Learn-
ing Research. New York, New York, USA: PMLR, pp. 1747–1756. URL:
https://proceedings.mlr.press/v48/oord16.html.

Paszke, Adam et al. (2019). „PyTorch: An Imperative Style, High-Performance
Deep Learning Library.“ In: Advances in Neural Information Processing
Systems. Vol. 32. Curran Associates, Inc. URL: https://proceedings.
neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-

Abstract.html.
Pedregosa, F. et al. (2011). „Scikit-learn: Machine Learning in Python.“ In:

Journal of Machine Learning Research 12, pp. 2825–2830.
Perez-Liebana, Diego, Jialin Liu, Ahmed Khalifa, Raluca D. Gaina, Julian To-

gelius, and Simon M. Lucas (2019a). „General Video Game AI: a Multi-
Track Framework for Evaluating Agents, Games and Content Genera-

https://www.igdb.com/games/minecraft/presskit
https://doi.org/10.1145/3379350.3418578
https://doi.org/10.1145/3379350.3418578
https://dl.acm.org/doi/10.1145/3379350.3418578
https://dl.acm.org/doi/10.1145/3379350.3418578
https://www.igdb.com/games/spelunky-2/presskit
https://doi.org/10.48550/arXiv.1504.04909
https://doi.org/10.48550/arXiv.1504.04909
http://arxiv.org/abs/1504.04909
https://doi.org/10.3390/e22101100
https://www.mdpi.com/1099-4300/22/10/1100
https://doi.org/10.1090/noti2403
https://proceedings.neurips.cc/paper/2017/hash/7a98af17e63a0ac09ce2e96d03992fbc-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/7a98af17e63a0ac09ce2e96d03992fbc-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/7a98af17e63a0ac09ce2e96d03992fbc-Abstract.html
https://proceedings.mlr.press/v48/oord16.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html

B I B L I O G R A P H Y 147

tion Algorithms.“ In: IEEE Transactions on Games 11.3. arXiv:1802.10363
[cs], pp. 195–214. DOI: 10.1109/TG.2019.2901021.

Perez-Liebana, Diego, Simon M. Lucas, Raluca D. Gaina, Julian Togelius,
Ahmed Khalifa, and Jialin Liu (2019b). General Video Game Artificial
Intelligence. Vol. 3. 2. https://gaigresearch.github.io/gvgaibook/.
Morgan & Claypool Publishers, pp. 1–191.

Perez, Diego, Spyridon Samothrakis, Simon Lucas, and Philipp Rohlfsha-
gen (2013). „Rolling horizon evolution versus tree search for naviga-
tion in single-player real-time games.“ en. In: Proceeding of the fifteenth
annual conference on Genetic and evolutionary computation confer-
ence - GECCO ’13. Amsterdam, The Netherlands: ACM Press, p. 351.
ISBN: 978-1-4503-1963-8. DOI: 10.1145/2463372.2463413. URL: http:
//dl.acm.org/citation.cfm?doid=2463372.2463413.

Rajabi, M, M Ashtiani, B Minaei-Bidgoli, and O Davoodi (2021). „A dynamic
balanced level generator for video games based on deep convolutional
generative adversarial networks.“ en. In: Scientia Iranica, p. 18.

Rasmussen, Carl Edward and Christopher K. I. Williams (2006). Gaussian
processes for machine learning. Adaptive computation and machine
learning. MIT Press, pp. I–XVIII, 1–248. ISBN: 026218253X.

Rezende, Danilo Jimenez, Shakir Mohamed, and Daan Wierstra (2014). „Stochas-
tic Backpropagation and Approximate Inference in Deep Generative
Models.“ In: Proceedings of the 31st International Conference on Ma-
chine Learning. Ed. by Eric P. Xing and Tony Jebara. Vol. 32. Proceed-
ings of Machine Learning Research 2. Bejing, China: PMLR, pp. 1278–
1286. URL: https://proceedings.mlr.press/v32/rezende14.
html.

Riihimäki, Jaakko and Aki Vehtari (2010). „Gaussian processes with mono-
tonicity information.“ en. In: Proceedings of the Thirteenth International
Conference on Artificial Intelligence and Statistics. JMLR Workshop and
Conference Proceedings, 645–652. URL: https://proceedings.mlr.
press/v9/riihimaki10a.html.

Risi, Sebastian and Julian Togelius (2020). „Increasing generality in machine
learning through procedural content generation.“ In: Nature Machine
Intelligence 2.8, 428–436. ISSN: 2522-5839. DOI: 10.1038/s42256-020-
0208-z.

Rodriguez Torrado, Ruben, Ahmed Khalifa, Michael Cerny Green, Niels Juste-
sen, Sebastian Risi, and Julian Togelius (2020). „Bootstrapping Con-
ditional GANs for Video Game Level Generation.“ en. In: 2020 IEEE
Conference on Games (CoG). Osaka, Japan: IEEE, 41–48. ISBN: 978-1-
72814-533-4. DOI: 10.1109/CoG47356.2020.9231576. URL: https:
//ieeexplore.ieee.org/document/9231576/.

Rumelhart, David E. and James L. McClelland (1987). „Learning Internal
Representations by Error Propagation.“ In: Parallel Distributed Pro-
cessing: Explorations in the Microstructure of Cognition: Foundations,
pp. 318–362.

https://doi.org/10.1109/TG.2019.2901021
https://gaigresearch.github.io/gvgaibook/
https://doi.org/10.1145/2463372.2463413
http://dl.acm.org/citation.cfm?doid=2463372.2463413
http://dl.acm.org/citation.cfm?doid=2463372.2463413
https://proceedings.mlr.press/v32/rezende14.html
https://proceedings.mlr.press/v32/rezende14.html
https://proceedings.mlr.press/v9/riihimaki10a.html
https://proceedings.mlr.press/v9/riihimaki10a.html
https://doi.org/10.1038/s42256-020-0208-z
https://doi.org/10.1038/s42256-020-0208-z
https://doi.org/10.1109/CoG47356.2020.9231576
https://ieeexplore.ieee.org/document/9231576/
https://ieeexplore.ieee.org/document/9231576/

148 B I B L I O G R A P H Y

Rybkin, Oleh, Kostas Daniilidis, and Sergey Levine (2021). „Simple and Ef-
fective VAE Training with Calibrated Decoders.“ en. In: Proceedings of
the 38th International Conference on Machine Learning. PMLR, 9179–9189.
URL: https://proceedings.mlr.press/v139/rybkin21a.html.

Salimans, Tim, Jonathan Ho, Xi Chen, Szymon Sidor, and Ilya Sutskever
(2017). „Evolution Strategies as a Scalable Alternative to Reinforcement
Learning.“ In: arXiv:1703.03864. arXiv:1703.03864 [cs, stat]. URL: http:
//arxiv.org/abs/1703.03864.

Saravanan, Akash and Matthew Guzdial (2022). „Pixel VQ-VAEs for Improved
Pixel Art Representation.“ In: Experimental AI in Games (EXAG), AIIDE
2022 Workshop.

Sarkar, Anurag and Seth Cooper (2018). „Blending Levels from Different
Games using LSTMs.“ In: Proceedings of the Experimental AI in Games
(EXAG) Workshop at AIIDE.

— (2020a). „Sequential Segment-based Level Generation and Blending
using Variational Autoencoders.“ In: Proceedings of the 11th Workshop
on Procedural Content Generation in Games.

— (2020b). „Towards Game Design via Creative Machine Learning (GD-
CML).“ In: 2020 IEEE Conference on Games (CoG), 744–751. DOI: 10.
1109/CoG47356.2020.9231927.

— (2021a). „Dungeon and Platformer Level Blending and Generation us-
ing Conditional VAEs.“ In: Proceedings of the IEEE Conference on Games
(CoG).

— (2021b). „Generating and Blending Game Levels via Quality-Diversity
in the Latent Space of a Variational Autoencoder.“ In: Proceedings of
the Foundations of Digital Games.

Sarkar, Anurag, Zhihan Yang, and Seth Cooper (2019). „Controllable Level
Blending between Games using Variational Autoencoders.“ In: Proceed-
ings of the EXAG Workshop at AIIDE.

Schaul, Tom (2013). „A video game description language for model-based
or interactive learning.“ en. In: 2013 IEEE Conference on Computational
Inteligence in Games (CIG). Niagara Falls, ON, Canada: IEEE, pp. 1–8.
ISBN: 978-1-4673-5311-3. DOI: 10 . 1109 / CIG . 2013 . 6633610. URL:
http://ieeexplore.ieee.org/document/6633610/.

Schmidhuber, Juergen (2015). „Deep Learning in Neural Networks: An Overview.“
In: Neural Networks 61. arXiv:1404.7828 [cs], 85–117. ISSN: 08936080.
DOI: 10.1016/j.neunet.2014.09.003.

Schrum, Jacob, Vanessa Volz, and Sebastian Risi (2020). „CPPN2GAN: Com-
bining Compositional Pattern Producing Networks and GANs for Large-
Scale Pattern Generation.“ In: Proceedings of the 2020 Genetic and Evo-
lutionary Computation Conference. GECCO ’20. Cancún, Mexico: Asso-
ciation for Computing Machinery, 139–147. ISBN: 9781450371285. DOI:
10.1145/3377930.3389822. URL: https://doi.org/10.1145/
3377930.3389822.

Schrum, Jacob, Jake Gutierrez, Vanessa Volz, Jialin Liu, Simon Lucas, and
Sebastian Risi (2020). „Interactive evolution and exploration within la-

https://proceedings.mlr.press/v139/rybkin21a.html
http://arxiv.org/abs/1703.03864
http://arxiv.org/abs/1703.03864
https://doi.org/10.1109/CoG47356.2020.9231927
https://doi.org/10.1109/CoG47356.2020.9231927
https://doi.org/10.1109/CIG.2013.6633610
http://ieeexplore.ieee.org/document/6633610/
https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.1145/3377930.3389822
https://doi.org/10.1145/3377930.3389822
https://doi.org/10.1145/3377930.3389822

B I B L I O G R A P H Y 149

tent level-design space of generative adversarial networks.“ en. In: Pro-
ceedings of the 2020 Genetic and Evolutionary Computation Confer-
ence. Cancún Mexico: ACM, 148–156. ISBN: 978-1-4503-7128-5. DOI:
10.1145/3377930.3389821. URL: https://dl.acm.org/doi/10.
1145/3377930.3389821.

Settles, Burr (2009). Active Learning Literature Survey. Computer Sciences
Technical Report 1648. University of Wisconsin–Madison. URL: http:
//axon.cs.byu.edu/~martinez/classes/778/Papers/settles.

activelearning.pdf.
Sha, Lingdao, Souju He, Junping Wang, Jiajian Yang, Yuan Gao, Yidan Zhang,

and Xinrui Yu (2010). „Creating appropriate challenge level game op-
ponent by the use of dynamic difficulty adjustment.“ In: 2010 Sixth
International Conference on Natural Computation. Vol. 8, 3897–3901.
DOI: 10.1109/ICNC.2010.5584744.

Shahriari, Bobak, Kevin Swersky, Ziyu Wang, Ryan P. Adams, and Nando
de Freitas (2016). „Taking the Human Out of the Loop: A Review of
Bayesian Optimization.“ In: Proceedings of the IEEE 104.1, pp. 148–175.
DOI: 10.1109/JPROC.2015.2494218.

Shaker, Mohammed, Noor Shaker, and Julian Togelius (2013). „Evolving
Playable Content for Cut the Rope through a Simulation-Based Ap-
proach.“ en. In: Proceedings of the AAAI Conference on Artificial In-
telligence and Interactive Digital Entertainment 9.1, 72–78. ISSN: 2334-
0924, 2326-909X. DOI: 10.1609/aiide.v9i1.12690.

Shaker, Noor, Julian Togelius, and Mark J. Nelson (2016). Procedural Con-
tent Generation in Games. en. Computational Synthesis and Creative
Systems. Cham: Springer International Publishing. ISBN: 978-3-319-42714-
0. DOI: 10.1007/978-3-319-42716-4. URL: http://link.springer.
com/10.1007/978-3-319-42716-4.

Shi, Peizhi and Ke Chen (2017). „Learning Constructive Primitives for Real-
Time Dynamic Difficulty Adjustment in Super Mario Bros.“ en. In: IEEE
Transactions on Games 10.2, 155–169. ISSN: 2475-1502, 2475-1510. DOI:
10.1109/TCIAIG.2017.2740210.

Shu, Tianye, Jialin Liu, and Georgios N. Yannakakis (2021). „Experience-
Driven PCG via Reinforcement Learning: A Super Mario Bros Study.“
In: 2021 IEEE Conference on Games (CoG), 1–9. DOI: 10.1109/CoG52621.
2021.9619124.

Skafte, Nicki, Martin Jørgensen, and Søren Hauberg (2019). „Reliable train-
ing and estimation of variance networks.“ In: Advances in Neural Infor-
mation Processing Systems. Vol. 32. Curran Associates, Inc. URL: https:
//papers.nips.cc/paper/2019/hash/07211688a0869d995947a8fb11b215d6-

Abstract.html.
Smith, Adam M. and Michael Mateas (2011). „Answer Set Programming

for Procedural Content Generation: A Design Space Approach.“ en. In:
IEEE Transactions on Computational Intelligence and AI in Games 3.3,
187–200. ISSN: 1943-068X, 1943-0698. DOI: 10.1109/TCIAIG.2011.
2158545.

https://doi.org/10.1145/3377930.3389821
https://dl.acm.org/doi/10.1145/3377930.3389821
https://dl.acm.org/doi/10.1145/3377930.3389821
http://axon.cs.byu.edu/~martinez/classes/778/Papers/settles.activelearning.pdf
http://axon.cs.byu.edu/~martinez/classes/778/Papers/settles.activelearning.pdf
http://axon.cs.byu.edu/~martinez/classes/778/Papers/settles.activelearning.pdf
https://doi.org/10.1109/ICNC.2010.5584744
https://doi.org/10.1109/JPROC.2015.2494218
https://doi.org/10.1609/aiide.v9i1.12690
https://doi.org/10.1007/978-3-319-42716-4
http://link.springer.com/10.1007/978-3-319-42716-4
http://link.springer.com/10.1007/978-3-319-42716-4
https://doi.org/10.1109/TCIAIG.2017.2740210
https://doi.org/10.1109/CoG52621.2021.9619124
https://doi.org/10.1109/CoG52621.2021.9619124
https://papers.nips.cc/paper/2019/hash/07211688a0869d995947a8fb11b215d6-Abstract.html
https://papers.nips.cc/paper/2019/hash/07211688a0869d995947a8fb11b215d6-Abstract.html
https://papers.nips.cc/paper/2019/hash/07211688a0869d995947a8fb11b215d6-Abstract.html
https://doi.org/10.1109/TCIAIG.2011.2158545
https://doi.org/10.1109/TCIAIG.2011.2158545

150 B I B L I O G R A P H Y

Smith, Gillian, Mike Treanor, Jim Whitehead, and Michael Mateas (2009).
„Rhythm-Based Level Generation for 2D Platformers.“ In: Proceedings
of the 4th International Conference on Foundations of Digital Games.
FDG ’09. Orlando, Florida: Association for Computing Machinery, 175–182.
ISBN: 9781605584379. DOI: 10.1145/1536513.1536548. URL: https:
//doi.org/10.1145/1536513.1536548.

Snodgrass, Sam and Santiago Ontañón (2016). „Controllable Procedural
Content Generation via Constrained Multi-Dimensional Markov Chain
Sampling.“ en. In: Proceedings of the Twenty-Fifth International Joint
Conference on Artificial Intelligence (IJCAI-16), p. 7.

Snodgrass, Sam and Anurag Sarkar (2020). „Multi-Domain Level Genera-
tion and Blending with Sketches via Example-Driven BSP and Varia-
tional Autoencoders.“ en. In: International Conference on the Founda-
tions of Digital Games. Bugibba Malta: ACM, 1–11. ISBN: 978-1-4503-
8807-8. DOI: 10.1145/3402942.3402948. URL: https://dl.acm.
org/doi/10.1145/3402942.3402948.

Spronck, Pieter (2005). „Adaptive Game AI.“ PhD thesis. Maastricht, The
Netherlands: Maastricht University Press.

Spronck, Pieter, Ida Sprinkhuizen-Kuyper, and Eric Postma (2004). „On-
line Adaptation of Game Opponent AI with Dynamic Scripting.“ In:
International Journal of Intelligent Games and Simulation 3.1. Ed. by
Neville Gough and Qasim Mehdi, pp. 45–53. ISSN: 1477-2043.

Stanton, Samuel, Wesley Maddox, Nate Gruver, Phillip Maffettone, Emily
Delaney, Peyton Greenside, and Andrew Gordon Wilson (2022). „Ac-
celerating Bayesian Optimization for Biological Sequence Design with
Denoising Autoencoders.“ In: Proceedings of the 39th International Con-
ference on Machine Learning. Ed. by Kamalika Chaudhuri, Stefanie Jegelka,
Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato. Vol. 162. Pro-
ceedings of Machine Learning Research. PMLR, pp. 20459–20478. URL:
https://proceedings.mlr.press/v162/stanton22a.html.

Sudhakaran, Shyam, Miguel González-Duque, Claire Glanois, Matthias Freiberger,
Elias Najarro, and Sebastian Risi (2023). „MarioGPT: Open-Ended Text2Level
Generation through Large Language Models.“ In: arXiv:2302.05981. arXiv:2302.05981
[cs]. URL: http://arxiv.org/abs/2302.05981.

Summerville, Adam J and Michael Mateas (2016). „Super Mario as a String:
Platformer Level Generation Via LSTMs.“ en. In: Proceedings of 1st In-
ternational Joint Conference of DiGRA and FDG.

Summerville, Adam James, Sam Snodgrass, Michael Mateas, and Santiago
Onta n’on Villar (2016). „The VGLC: The Video Game Level Corpus.“ In:
Proceedings of the 7th Workshop on Procedural Content Generation.

Summerville, Adam, Sam Snodgrass, Matthew Guzdial, Christoffer Holm-
gard, Amy K. Hoover, Aaron Isaksen, Andy Nealen, and Julian Togelius
(2018). „Procedural Content Generation via Machine Learning (PCGML).“
In: IEEE Transactions on Games 10.3, pp. 257–270. DOI: 10.1109/tg.
2018.2846639.

https://doi.org/10.1145/1536513.1536548
https://doi.org/10.1145/1536513.1536548
https://doi.org/10.1145/1536513.1536548
https://doi.org/10.1145/3402942.3402948
https://dl.acm.org/doi/10.1145/3402942.3402948
https://dl.acm.org/doi/10.1145/3402942.3402948
https://proceedings.mlr.press/v162/stanton22a.html
http://arxiv.org/abs/2302.05981
https://doi.org/10.1109/tg.2018.2846639
https://doi.org/10.1109/tg.2018.2846639

B I B L I O G R A P H Y 151

Tanabe, Takumi, Kazuto Fukuchi, Jun Sakuma, and Youhei Akimoto (2021).
„Level generation for angry birds with sequential VAE and latent vari-
able evolution.“ en. In: Proceedings of the Genetic and Evolutionary
Computation Conference. Lille France: ACM, 1052–1060. ISBN: 978-1-
4503-8350-9. DOI: 10.1145/3449639.3459290. URL: https://dl.
acm.org/doi/10.1145/3449639.3459290.

Todd, Graham, Sam Earle, Muhammad Umair Nasir, Michael Cerny Green,
and Julian Togelius (2023). „Level Generation Through Large Language
Models.“ In: arXiv:2302.05817. arXiv:2302.05817 [cs]. URL: http : / /
arxiv.org/abs/2302.05817.

Togelius, Julian, Sergey Karakovskiy, and Robin Baumgarten (2010). „The
2009 Mario AI Competition.“ In: IEEE Congress on Evolutionary Com-
putation, pp. 1–8. DOI: 10.1109/CEC.2010.5586133.

Tomczak, Jakub M. (2022). Deep Generative Modeling. en. Cham: Springer
International Publishing. ISBN: 978-3-030-93157-5. DOI: 10.1007/978-
3-030-93158-2. URL: https://link.springer.com/10.1007/978-
3-030-93158-2.

Tournier, Maxime, Xiaomao Wu, Nicolas Courty, Elise Arnaud, and Lionel
Reveret (2009). „Motion compression using principal geodesics anal-
ysis.“ In: Computer Graphics Forum. Vol. 28. 2. Wiley Online Library,
pp. 355–364.

Valve Corporation (1998). Half-Life. PC. Accessed: 28-03-2023. URL: https:
//www.igdb.com/games/half-life/presskit.

Volz, Vanessa, Simon M. Lucas, Jacob Schrum, Adam Smith, Jialin Liu, and
Sebastian Risi (2018). „Evolving Mario levels in the latent space of a
deep convolutional generative adversarial network.“ In: GECCO 2018 -
Proceedings of the 2018 Genetic and Evolutionary Computation Confer-
ence, 221–228. ISSN: 9781450356183. DOI: 10.1145/3205455.3205517.

Wierstra, Daan, Tom Schaul, Tobias Glasmachers, Yi Sun, Jan Peters, and
Jürgen Schmidhuber (2014). „Natural evolution strategies.“ In: Journal
of Machine Learning Research 15.27. Citation Key: JMLR:v15:wierstra14a,
pp. 949–980.

Yannakakis, Georgios N. and Julian Togelius (2011). „Experience-Driven
Procedural Content Generation.“ In: IEEE Transactions on Affective Com-
puting 2.3, 147–161. ISSN: 1949-3045. DOI: 10.1109/T-AFFC.2011.6.

Zakaria, Yahia, Magda Fayek, and Mayada Hadhoud (2023). „Procedural
Level Generation for Sokoban via Deep Learning: An Experimental Study.“
In: IEEE Transactions on Games 15.1, 108–120. ISSN: 2475-1510. DOI:
10.1109/TG.2022.3175795.

Zhang, Hejia, Matthew Fontaine, Amy Hoover, Julian Togelius, Bistra Dilk-
ina, and Stefanos Nikolaidis (2020). „Video Game Level Repair via Mixed
Integer Linear Programming.“ en. In: Proceedings of the AAAI Confer-
ence on Artificial Intelligence and Interactive Digital Entertainment 16.1,
151–158. ISSN: 2334-0924, 2326-909X. DOI: 10.1609/aiide.v16i1.
7424.

https://doi.org/10.1145/3449639.3459290
https://dl.acm.org/doi/10.1145/3449639.3459290
https://dl.acm.org/doi/10.1145/3449639.3459290
http://arxiv.org/abs/2302.05817
http://arxiv.org/abs/2302.05817
https://doi.org/10.1109/CEC.2010.5586133
https://doi.org/10.1007/978-3-030-93158-2
https://doi.org/10.1007/978-3-030-93158-2
https://link.springer.com/10.1007/978-3-030-93158-2
https://link.springer.com/10.1007/978-3-030-93158-2
https://www.igdb.com/games/half-life/presskit
https://www.igdb.com/games/half-life/presskit
https://doi.org/10.1145/3205455.3205517
https://doi.org/10.1109/T-AFFC.2011.6
https://doi.org/10.1109/TG.2022.3175795
https://doi.org/10.1609/aiide.v16i1.7424
https://doi.org/10.1609/aiide.v16i1.7424

152 B I B L I O G R A P H Y

Zohaib, Mohammad (2018). „Dynamic Difficulty Adjustment (DDA) in Com-
puter Games: A Review.“ en. In: Advances in Human-Computer Inter-
action 2018, 1–12. ISSN: 1687-5893, 1687-5907. DOI: 10.1155/2018/
5681652.

https://doi.org/10.1155/2018/5681652
https://doi.org/10.1155/2018/5681652

	Dedication
	Resumé
	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Acronyms
	Introduction
	1 Introduction
	1.1 Research hypotheses
	1.2 List of contributions
	1.3 Thesis layout & summary of chapters

	2 The problem: generating and serving game content
	2.1 Experience-Driven PCG
	2.2 Dynamic Difficulty Adjustment
	2.3 Conclusion & outlook

	Applications of Gaussian Processes
	3 An introduction to Gaussian Processes and Bayesian Optimization
	3.1 An introduction to Gaussian Processes
	3.2 Building priors using MAP-Elites
	3.3 A tutorial on Bayesian Optimization
	3.4 Example: Comparing Bayesian Optimization with evolutionary algorithms
	3.5 Summary & outlook

	4 Adapting content to planning agents using Bayesian Optimization
	4.1 Introduction: the intelligent trial-and-error algorithm
	4.2 A basic dungeon crawler using GVGAI
	4.3 Building priors for planning agents
	4.4 Dynamic Difficulty Adjustment via ITAE
	4.5 Discussion & limitations

	5 Adapting content to players using Bayesian Optimization
	5.1 Introduction: a Bayesian Optimization Framework for Dynamic Difficulty Adjustment
	5.2 Modelling positive values
	5.3 Separating the modeling from the optimization
	5.4 Experimental set-up
	5.5 Deploying the experiment: two web applications
	5.6 Results
	5.7 Discussion & limitations
	5.8 Conclusion

	Applications of Deep Generative Models and Differential Geometry
	6 An introduction to Deep Generative Models in video games
	6.1 What is generative modeling?
	6.2 Autoregressive models
	6.3 Generative Adversarial Networks
	6.4 Variational Autoencoders
	6.5 VAEs on Discrete inputs: the Categorical likelihood
	6.6 Examples of discrete VAEs
	6.7 Related work: DGMs in games
	6.8 DGMs & functional content

	7 Towards safe content generation using differential geometry
	7.1 An intuitive introduction to differential geometry
	7.2 Manipulating the geometry of latent spaces
	7.3 An application in robotics
	7.4 An application in protein modeling
	7.5 Applying geometry to video game content: challenges
	7.6 Conclusion & outlook

	8 Defining latent space geometries for (almost) any distribution
	8.1 Revisiting differential geometry
	8.2 Data space vs. parameter space
	8.3 Pulling back the Fisher-Rao
	8.4 Experiment: decoding to several distributions
	8.5 Experiment: Modelling human poses
	8.6 Black-box random geometries, an implementation
	8.7 Discussion & limitations

	9 Generating & optimizing game content safely
	9.1 Motivation: Playable content in latent space
	9.2 Calibrating for safety: challenges
	9.3 Calibrating for safety: playable levels
	9.4 Calibrating for safety: high metric volume
	9.5 Approximating the playability manifold with a graph
	9.6 Experiment: interpolations and random walks
	9.7 Experiment: restricted Bayesian Optimization
	9.8 Limitations
	9.9 Conclusion

	Conclusion
	10 Contributions, Discussion & Future Work
	10.1 Contributions
	10.2 Discussion
	10.3 Addressing limitations & future work
	10.4 Conclusion

	Appendix
	A Training details & Implementations
	A.1 Links to open source implementations
	A.2 Training Gaussian Processes
	A.3 Training Variational Autoencoders
	A.4 Safe interpolation and sampling

	Bibliography

