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Purpose of review

The application of artificial intelligence (AI) technologies in screening and diagnosing retinal diseases may
play an important role in telemedicine and has potential to shape modern healthcare ecosystems, including
within ophthalmology.

Recent findings

In this article, we examine the latest publications relevant to AI in retinal disease and discuss the currently
available algorithms. We summarize four key requirements underlining the successful application of AI
algorithms in real-world practice: processing massive data; practicability of an AI model in ophthalmology;
policy compliance and the regulatory environment; and balancing profit and cost when developing and
maintaining AI models.

Summary

The Vision Academy recognizes the advantages and disadvantages of AI-based technologies and gives
insightful recommendations for future directions.
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INTRODUCTION

KEY POINTS

� This review summarizes four key requirements
surrounding the application and execution of artificial
intelligence (AI)-enabled technology for diagnosis and
screening of retinal diseases: processing large data
sets; practicability in ophthalmology; policy compliance
and regulatory environment; and balancing profit and
cost in adopting AI-enabled technologies.

� The establishment of AI-enabled technologies may have
potential to improve the efficiency of existing healthcare
pathways, provide better patient-centered services,
minimize the impact of labor shortage, and bridge the
gap between urban and rural areas.

� Cross-sector and cross-disciplinary collaborations will
be important to ensure the integrity of AI healthcare
ecosystems and to have a positive impact on vision
health and preservation through AI-enabled
technologies.
The initial concept of artificial intelligence (AI) was
first coined as far back as 1956 [1]. The concept of
‘‘machine learning’’ and ‘‘deep learning’’ (DL)
were proposed subsequently and demonstrated
great potential in computer learning and decision-
making via various data training techniques [2–4].
AlexNet, which won the ImageNet Large Scale
Visual Recognition Challenge in 2012, set a mile-
stone for DL algorithms to handle large imaging
data sets [5]. Since then, the application of DL
algorithms to color fundus photography has been
adopted for the diagnosis and monitoring of many
retinal diseases, including diabetic retinopathy (DR)
[6–10], age-related macular degeneration (AMD)
[10,11], and retinopathy of prematurity [12]. More-
over, wide-field fundus photography and autofluor-
escence imaging have been used to differentiate
not only referable DR and AMD but retinal vein
occlusion, pathologic myopia, retinal detachment,
vitreomacular interface disease, pathologic myopia,
sickle cell retinopathy, and inherited retinal diseases
by DL-based models [13–19].

In recent years, many studies have applied AI
algorithms to the most modern retinal imaging
modalities, including optical coherence tomography,
to detect or quantify an array of retinal features of
interest (e.g. retinal fluid) [20–23]. AI-enabled tech-
nologies, which use not only different types of images
but also different datamodalities (e.g. structuredmed-
icaldata [24]andgenomicsdata sets [25,26]),havealso
proven to demonstrate robust outcomes.

Such AI-enabled technologies have potential
to be implemented into clinical practice in several
ways. The use of AI technologies to screen or
classify retinal diseases may play a role in teleme-
dicine. They may also assist healthcare providers
with greater speed, repeatability, reproducibility,
and consistency than human graders. Uniting
clinicians with AI systems has been proven to be
synergistic, achieving better performance than
either alone [27]. Therefore, AI-enabled technology
can help clinicians achieve rapid and accurate
decision-making.

Academic institutions and technology compa-
nies (e.g. Google) increasingly engage in AI research
and boost their investment and involvement in this
field [7]. Furthermore, the U.S. National Science and
Technology Council’s Committee on Technology
noted that investments from the U.S. government
in AI-enabled technologies were nearly $1.1 billion
in 2015 and continue to increase [28].

The key issues for deploying AI technologies in
telemedicine or healthcare systems may have a pro-
found and lasting influence on near-future practice
in ophthalmology.
404 www.co-ophthalmology.com
In this article, we summarize four key require-
ments surrounding the application and execution of
AI-enabled technology for diagnosis and screening
in retinal diseases in real-world practice. Informing
and operationalizing an AI healthcare system
includes processing large data sets, practicability
in ophthalmology, policy compliance and regula-
tory environment, and balancing profit and cost in
adopting AI-enabled technologies.
PROCESSING LARGE DATA SETS: DATA
STANDARDIZATION, SHARING, AND
SAFETY

Data processing is crucial before developing an AI
model. It includes data standardization, data shar-
ing system, and the maintenance of data privacy in
the infrastructure of AI systems.
Data standardization in ophthalmology

The high dependency ofmodern ophthalmology on
imaging makes it an attractive field for the develop-
ment of AI models. However, the diversity of pro-
prietary devices, image acquisition, and data storage
processes poses a barrier to research teams. The need
for data standardization has become pivotal, not
only for expanding the scale of AI models but for
providing more effective ways to achieve clinical
benefits. In 2021, the American Academy of Oph-
thalmology suggested that manufacturers of
ophthalmic devices should standardize the format
of digital images, integration of medical data,
and picture archiving to comply with the 12
Digital Imaging and Communications in Medicine
Volume 34 � Number 5 � September 2023
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standards, developed by the American Academy of
Ophthalmology in collaboration with manufac-
turers [29]. Such standardization of file formats in
proprietary databases may streamline further anal-
ysis and increase the interoperability of different
cameras or devices [30].
Data sharing and privacy: are the protections
adequate?

As of 2021, nearly 94 ophthalmic data sets contain-
ing more than 500 000 images were openly acces-
sible [31]. The transparency, accessibility, and
limitations of each data set should be carefully
shared and reported because these factors can affect
the ground truth of image processing, not to men-
tion the extensibility of AI algorithms.

The shared data should be deidentified and
anonymized to comply with privacy and cyberse-
curity frameworks. Data privacy poses challenges
in technological, legal, and ethical fields. It can be
difficult to precisely define data privacy because
traditional deidentification is vulnerable to linkage
attacks from intended third parties [32]. Moreover,
fundus images are now considered uniquely recog-
nizable information due to AI-enabled technology
[33]. Awareness of such biometric identification,
which may breach privacy rights, is crucial in data
processing. Synthetic data generation (e.g. genera-
tive adversarial network) is a feasible way of creating
plausible images for AI training while alsomaintain-
ing confidentiality and provides an anonymization
technique for data privacy [34,35].

Data privacy may also be addressed by collating
all relevant data into trusted research environments
or data decentralization. In federated analysis, the
algorithmic code is sent to each data site for indi-
vidual analysis; then the results are brought back to
the central site for aggregation and further analysis
[36]. Recently, swarm learning was proposed to
provide blockchain-based peer-to-peer data security.
In contrast to federated learning, which requires a
central analytic server, swarm learning produces
complete data decentralization [37]. Comparedwith
traditional centralized data, these new AI-enabled
technologies with data decentralization can pre-
serve privacy by retaining the data in each institu-
tion while still achieving similar outcomes [38].
Ethical considerations and legal liability

In 2021, the American Academy of Ophthalmology
Committee on Artificial Intelligence raised three eth-
ical concerns: transparency, meaning the adequate
explanation or interpretation of theAImodel; respon-
sibility, which addresses moral or legal concerns; and
1040-8738 Copyright © 2023 The Author(s). Published by Wolters Kluwe
scalability of implementation of AI models, which
depends on equality of data distribution andpotential
systemic bias in AI models [39

&

]. AI technologies may
change relationships between physicians, healthcare
organizations, and patients. However, there is still no
universal guidance for legal liability. The American
Medical Association recommends that developers
should take legal liability and maintain insurance
for systemic failure or misdiagnosis from an autono-
mous AI system [40]. The more autonomous the
design of an AI model is, the more reinforcement is
needed in termsof legal liability [41].Different entities
may share liability: physician errors belong to negli-
gence liability; healthcare organization errors belong
to vicarious liability; and manufacturer errors are
attributed to product liability and incomplete disclo-
sure of the actual functions and limitations of an AI
model [42]. Theseentities should take responsibility to
compensate for financial and physical loss to the
injured party [43].
PRACTICABILITY OF ARTIFICIAL
INTELLIGENCE IN CLINICAL TRIALS AND
TELEMEDICINE

As the field of ophthalmic AI evolves, the quality of
reporting results from different AI systems may be
discrepant and incomprehensive. It is necessary to
have consensus in determining adequate descrip-
tion, translation, and appraisal of ophthalmic AI
research to ensure robust algorithms and general-
izability into real-world settings.
Role of physicians and researchers in
clinical trials

In 2020, CONSORT-AI (CONsolidated Standards Of
Reporting Trials–Artificial Intelligence) and SPIRIT-AI
(Standard Protocol Items: Recommendations for
Interventional Trials–Artificial Intelligence) were
announced to provide reporting guidance in AI-
related clinical trials [44

&&

]. Subsequently, other
reporting guidelines (i.e. STARD-AI, DECIDE-AI, and
TRIPOD-AI) further emphasized the transparency of
AI technologies in healthcare. These have presented
new standards for evaluating the results from AI-
related clinical trials [44

&&

,45
&&

,46] and allowed for
clear evidence generation and decision making.
Role of healthcare providers in telemedicine

Healthcare equity has been a major concern due
to the imbalanced distribution of resources
between urban and rural areas. The deployment
of AI screening algorithms accompanied by
well-established infrastructure of cybersecurity,
r Health, Inc. www.co-ophthalmology.com 405
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including cloud-based systems or even home-based
devices, can facilitate the adoptionofAI technologies
and reduce themedical resources gap between urban
and rural areas. On the contrary, the quality of data-
driven technologiesmaybeaffectedby the inequality
of data distribution (e.g. differences between racial
and ethnic groups), which reduces the generalizabil-
ity of theAImodels to specific populations due to the
scarcity of related data. Overemphasizing an AI sys-
tem without carefully considering the condition of
health data poverty has potential to cause harm [47].
Even if AI-enabled technologies represent an oppor-
tunity to overcome some challenges in rural areas,
the general application and clinical interpretation of
AI models should be treated with caution.
POLICY COMPLIANCE AND THE
REGULATORY ENVIRONMENT IN
ARTIFICIAL INTELLIGENCE

Regulatory considerations for AI medical devices or
software should include data security and sourcing,
the design and development of algorithms, and evi-
dence generation fromAI-enabled technologies. Gov-
ernmental regulatory bodies should provide clear
guidance regarding the evidence requirements for
AI medical devices and, to streamline the process of
training, continuous education, and relicensing [43].

For data privacy and confidentiality, in 2016
and 2017 the EU introduced the General Data Pro-
tection Regulation 2016/679 [48], the EU Network
and Information Security Directive 2016/1148 [49],
and the Medical Devices Regulation 2017/745
[50,51]. In the United States, the Health Insurance
Portability and Accountability Act of 1996 covers
confidentiality issues in medical data [43].

For adopting and marketing AI-based instru-
ments and algorithms, different regulatory groups
are responsible for ensuring the security and safety
of the products. The U.S. Food and Drug Adminis-
tration (FDA) announced the Digital Health Innova-
tion Action Plan to streamline the premarket review
and to outline its approach to AI-based frameworks,
known as ‘‘software as medical device’’ [52], which is
a term defined by the International Medical Device
Regulators Forum [42,53]. With regards to the risk of
AI products, three risk classes represent safety and
effectiveness for patients: class I (low risk); class II
(moderate risk); and class III (high risk). AI medical
devices must be evaluated rigorously through appro-
priate regulatory pathways. FDA regulatorypathways
include the 510(k), De Novo Classification, and Pre-
market Approval. The appropriate pathway is deter-
mined by the risk class of the AI medical device and
whether there is a predicate device available on the
market already [54].
406 www.co-ophthalmology.com
In contrast to the United States, which adopts
more market-oriented regulations, the EU takes a
more customer-oriented approach to build the
framework for AI-enabled technologies, with the
Conformitè Européenne playing a critical role in
the licensing of AI products [54]. Many other regu-
latory parties from other countries are involved in
licensing AI-enabled technologies, such as the UK
Conformity Assessed mark and the Chinese
National Medical Products Administration.
BALANCING PROFIT AND COST IN
ADOPTING ARTIFICIAL INTELLIGENCE-
ENABLED TECHNOLOGIES FOR REAL-
WORLD IMPLEMENTATION

For adoption of AI technologies, achieving a prac-
tical balance between profit and cost is another
important issue. Premarketing costs include signifi-
cant effort and workforce in data collection,
research development, and validation. Postmarket-
ing costs include upgrading software, sustaining
hardware over the long term, training operators,
and incorporating new patient data [55,56]. Fund-
ing support can ensure the adoption and ongoing
maintenance of AI services, but only when a balance
between profit and cost is reached can the develop-
ment of AI steadily progress.

The cost of adopting AI-enabled technologies
should be balanced between manufacturing price
and reimbursements as it is considered by and for
healthcare providers. In the example of Singapore’s
national DR screening programs, cost savings of
approximately U.S. $21.9 million were achieved
for a group of 170 000 patients with diabetes who
underwent AI-assisted screening [57]. In the UK, the
National Institute for Health andCare Excellence set
up the Evidence Standards Framework to enable
assessment of digital health technologies and guide
government, developers, and healthcare providers
on the level of evidence for economic and clinical
evaluation [58]. Such guidance can motivate the
application and prevent the overuse of AI-enabled
technologies in the healthcare ecosystem. Govern-
ment, industry, and academia will be the iron tri-
angle for the future implementation of AI-enabled
technologies in screening and diagnosing retinal
diseases.
CURRENT DEVELOPMENTS, FUTURE
DIRECTIONS, AND VISION ACADEMY
RECOMMENDATIONS

Current AI-enabled systems with regulatory compli-
ance are outlined in Table 1, with further details on
their performance provided in Table 2.
Volume 34 � Number 5 � September 2023
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Table 2. Description and notification of current AI systems

AI system Description and notification

IRIS (Intelligent Retinal Imaging Systems,
Pensacola, FL, USA)

IRIS is an FDA class II cleared medical system that has a moderate risk to consumers and
must demonstrate that it is ‘‘substantially equivalent’’ to similar products. The IRIS program
is a cloud-based platform to screen for vision-threatening DR, with sensitivity and
specificity of 66.4% and 72.8%, respectively [77]

ARDA (Google LLC, Mountain View, CA,
USA)

ARDA is a DL algorithm developed by Google Health from >128 000 retinal photographs
of patients from the United States and India and validated in >10 000 photographs from
the UK to detect referrable and sight-threatening DR [7]. The validation study of ARDA
was the first showing robust performance of DL to detect referrable DR with >95% of both
sensitivity and specificity [7]. Later, ARDA was prospectively validated in India [78] and a
nationwide screening program in Thailand [79]

SELENAþ (EyRIS Pte Ltd, Singapore) The Singapore Eye Research Institute and Singapore National Eye Center has developed a
DL-based algorithm, SELENAþ, to screen for referable DR, vision-threatening DR, DR-
related vascular risk factors, suspected glaucoma, and late-stage AMD. It is a multicenter
collaborative research effort with half a million retinal images from people of different
ethnicities such as Caucasians from Australia and the United States, and Singapore
Chinese, Malayans, Indians, Chinese, individuals from Hong Kong, Mexicans, Hispanics,
and African Americans. Real-world application and clinical translation of SELENAþ has
been integrated into the Singapore Integrated Diabetic Retinopathy Programme in recent
years. SELENAþ has significant diagnostic performance in DR, with sensitivity of 91%,
specificity of 90%, and area under the curve of 0.93 [80]

IDx-DR (Digital Diagnostics Inc., Coralville,
IA, USA)

IDx-DR was the first FDA-approved ophthalmic device to autonomously detect DR, including
DME. It can analyze retinal images, detect vision-threatening DR, and provide referral
recommendations [6,81]. The external validation to detect referable DR showed sensitivity
and specificity of 91% and 84%, respectively [79]

Medios AI (Remidio Innovative Solutions Pvt
Ltd., Karnataka, India)

Medios AI is an integrated offline system with a Remidio smartphone-based, nonmydriatic
retinal camera to detect referable DR. The fundus images can be captured by minimally
trained healthcare providers. The sensitivity and specificity of diagnosing referable DR
were 100% and 88.4%, respectively [82]

RetCAD (Thirona Retina BV, Nijmegen,
Netherlands)

This commercially available DL algorithm can determine referable DR and AMD based on a
dataset of CFPs to reduce the workload of screening programs by up to 96%, with
sensitivity of 90.53% and specificity of 97.13%. Patients’ CFPs can be captured by
camera and then transferred to the Thirona server for analysis. The examination report
will provide referable suggestions and visualization of heatmaps [83]

EyeArt (Eyenuk, Inc., Woodland Hills, CA,
USA)

This cloud-based autonomous AI system can detect more-than-mild DR and vision-threatening
DR by submitting fundus photography to the platform. It is designed to work with various
types of retinal cameras. It assesses the quality of uploaded images and explains the
reasons behind grading. This algorithm can provide the grading of DR and report the
results for each eye based on the UK National Health Service diabetic eye screening
program scale. The sensitivity and specificity showed 96% and 98%, respectively [84]

VUNO Med-Fundus AI (VUNO Inc., Seoul,
Korea)

The AI-based VUNO Med-Fundus AI analyzes CFP to detect multiple retinal lesions (areas
under receiver operating characteristic curves for all findings were at 96.2%) [85]. The
area under the receiver operating characteristic curves for DR-related findings was 95%.
It was approved as a class III medical device by the Ministry of Food and Drug Safety in
Korea

THEIA (Toku Eyes, Auckland, New
Zealand)

The New Zealand company Toku Eyes developed THEIA, an AI platform for cloud-based
multimodal image analysis of referable DR and AMD. The THEIA system was developed
from two of the largest screening data sets in Auckland, New Zealand: the Auckland
District Health Board and the Counties Manukau District Health Board. It can analyze
color fundus images, OCT, and OCT-A to provide results about referable DR (sensitivity of
93% and specificity of 63%) and intermediate dry AMD (accuracy of 96%) [86,87]. This
AI system is considered to be useful in reducing the workload in the New Zealand
National Diabetic Retinopathy Screening Program [88]

iPredict (iHealthScreen Inc., Richmond Hill,
NY, USA)

The iPredict AI Eye Screening System offers fully automated diagnosis of referable DR
(sensitivity of 97.0% and specificity of 96.3%) and AMD (sensitivity of 86.6% and
specificity of 92.1%) by analyzing CFPs [89]

Artificial intelligence/big data
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Table 2 (Continued )

AI system Description and notification

Notal Home OCT (Notal Vision, Inc.,
Manassas, VA, USA)

Notal Home OCT, the first FDA-cleared in-home OCT device, which includes an AI algorithm
and monitoring center, is designed to detect AMD. The imaging quality showed great
correlation with in-office OCT for detecting the presence of fluid in 95% agreement with
human graders [90]. A patient’s ability to use an in-home setting for self-imaging without
training demonstrated good capacity with a 95% success rate [91]

OphtAI (Evolucare/ADCIS, Villers-
Bretonneux, France)

OphtAI DR is a semiautomatic AI algorithm that assesses the pathologic lesions and grading
of DR and detects AMD and glaucoma. In a multicenter, head-to-head, real-world
validation study to compare different algorithms in detecting DR, the OphtAI DR algorithm
provided better results (sensitivity of 80.47% and specificity of 81.28%) than an
ophthalmologist [92]. It is also deemed clinically safe and economically efficient in
reducing the costs by more than U.S. $15 per patient [92]

Retmarker (Retmarker, SA, Taveiro,
Portugal)

This AI technology can provide screening for DR and AMD by annotating pathologic
lesions, such as microaneurysms, drusen, hypopigmentation, hyperpigmentation, and
geographic atrophy [93]. The sensitivity in classifying DR is 73.0% for any DR, 85.0% for
referable DR, and 97.9% for proliferative DR [93]. The screening performance of
Retmarker appeared to vary with patients’ age, ethnicity, and camera type. In economic
analysis, the Retmarker was more cost effective than manual grading [93]

RetinaLyze (RetinaLyze System A/S,
Hellerup, Denmark)

The RetinaLyze system is a screening software that can detect DR on nonmydriatic CFPs
(sensitivity of 89.9% and specificity of 85.7%) [94]. It can detect DR lesions, including
microaneurysms and minor hemorrhages (specificity of 71.4%) [95]. It can also evaluate
biological aging [96] and hemoglobin on optic disc photographs [97]

RetinAI Discovery (RetinAI Medical AG,
Bern, Switzerland)

The Discovery platform can analyze medical data and ophthalmic images such as OCT
scans and CFP from a variety of devices. It can help automatically detect the location of
the fovea (mean total location error of 0.101 mm), the quantification of pathologic fluid,
and the segmentation of atrophic retina on OCT in patients with geographic atrophy [98--
100]. It can detect and quantify fluid from DR, DME, AMD, and RVO. The performance of
the AI system showed that the accuracy, specificity, and sensitivity for intraretinal fluid was
0.87, 0.88, 0.84 and 0.93, 0.95, 0.93 and for subretinal fluid was 0.93, 0.93, 0.93
and 0.95, 0.95, 0.95 in the AMD and DME cohorts, respectively [101&,102]

Note: All medical devices approved by the FDA or accredited by the CE mark from January 2015 to January 2023 were collected. These devices were searched
for in the European Database on Medical Devices (EUDAMED) database [74], the FDA website (on the webpage of Artificial Intelligence and Machine Learning-
Enabled Medical Devices) [75], and the FDA 510(k) Premarket Notification [76]. The approved devices were summarized and their performance in related trials
was searched for in PubMed, with the data source cited as the reference.
ARDA, Automatic Retinal Disease Assessment; CFP, color fundus photograph; DME, diabetic macular edema; IRIS, Intelligent Retinal Imaging Systems; OCT,
optical coherence tomography; OCT-A, optical coherence tomography angiography; RVO, retinal vein occlusion; SELENA, Singapore Eye LEsioN Analyzer.
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The Vision Academy recognizes the advantages of AI
technology and recommends the use of them to be
of additive and synergistic value to current stand-
ards of care. In terms of applying such technologies
in diagnosing and screening retinal diseases, we
summarize the following directions and emphasize
several viewpoints important for the future.
Recommendation 1: integration of meta-data
and data sets

The integration of meta-data, includingmultimodal
images and structured clinical information from
multiple data sets with different ethnic groups,
and establishment of a data processing and sharing
system will empower data-driven AI technologies in
ophthalmic practice. Ongoing research will be
needed to build up data storage and sharing systems
in a cybersecurity framework for broader use.
1040-8738 Copyright © 2023 The Author(s). Published by Wolters Kluwe
Recommendation 2: data privacy versus
transparency – a balance or conflict?
While retinal images possess biometric information
that could be reidentified by AI technologies, care
should be taken when collecting and processing
these images. Some novel learning tasks (e.g. gen-
erative adversarial networks) can obscure bioident-
ical information or even provide unsupervised
models for small-scale data sets. The question of
how to universalize data formats will be one of
the key factors for extending the scalability and
generalizability of AI-enabled technologies.

The complexity and inexplicability of AI are
encompassed in the term ‘‘black box phenom-
enon.’’ Black box algorithms have potential to cause
misuse of AI in healthcare ecosystems [74,101

&

].
Transparency of the algorithms is therefore another
critical point to overcome users’ hesitation. Main-
taining adequate balance between data privacy and
r Health, Inc. www.co-ophthalmology.com 409
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transparency should be a concern in the application
of AI-enabled technologies.
Recommendation 3: implementation of
artificial intelligence in clinical practice –
replacement or rectification?

The role of AI-enabled technologies in the real world
is not to replace ophthalmologists but to assist
them and to hybridize both AI models and human
experience for making more efficient and accurate
decisions. Such time-saving abilities could stream-
line medical procedures and give clinicians more
time to communicate with their patients. Improper
implementation of AI could be harmful to doctor–
patient relationships and could affect patients’
trust if AI algorithms were used only for improving
workflow but not patient care.
Recommendation 4: ethical concerns and
regulatory issues

A key hurdle in deploying AI-enabled technologies
in clinical practice is the fear of making an incorrect
decision and harming patients. Legal liability
should be well defined as the implementation of
AI becomesmore popular. Such liability should only
be at the precise claim of screening targeted diseases.
Unlike retinal specialists, the developers of an AI
model should only be liable for the designed algo-
rithm for screening specific diseases. Healthcare
providers should still take full responsibility for
being aware of the capacity of AI models.

The legal boundaries between developers and
healthcare providers are still unresolved, and legis-
lative and governance systemsneed to bemore estab-
lished to refine liability rules and the regulatory
environment. Policy and specific authorities should
be set upnot only for verification ofAImodels but for
data security and legal liability. Cross-sector and
cross-disciplinary collaborations will be important
to ensure the integrity of AI healthcare ecosystems.
Recommendation 5: long-term basis

Continuing education, promotion of practical
application, and user-friendly, understandable
interfaces for healthcare providers are equally
important to streamline the workflow and broaden
the applicability of AI systems. Communication and
collaboration between cross-functional teams,
including ophthalmologists, optometrists, com-
puter scientists, statisticians, data scientists, patient
organizations, and engineers, can have a positive
impact on vision health and preservation through
AI-enabled technologies.
410 www.co-ophthalmology.com
CONCLUSION

The establishment of AI-enabled technologies may
have potential to improve the efficiency of existing
healthcare pathways, provide better patient-cen-
tered services, minimize the impact of labor short-
age, and bridge the gap between urban and rural
areas. However, no advancement in clinical practice
is flawless, so it is necessary for healthcare providers
and legislators to be aware of the limitations of AI-
enabled devices.
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