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Abstract: Wireless charger production is critical to energy storage, and effective fault diagnosis of
bearings and gears is essential to ensure wireless charging performance with high efficiency, high
tolerance to misalignment, and thermal safety. As minor faults are usually difficult to detect, timely
diagnosis and detection of minor faults can prevent the fault from worsening and ensure the safety
of wireless charging systems. Diagnosing minor faults in bearings and gears with data is a useful
but difficult task. To achieve a satisfactory diagnosis of minor faults in the production of wireless
charging systems related to the mechanical system that produces wireless charging devices, such as
robot arms, this paper proposes a deep learning network based on CNN and LSTM (DTLCL). The
method uses deep learning network, model-based transfer learning and range adaptation technology.
First, a deep neural network is built to extract significant fault features. Second, the deep transfer
network is initialised using model-based transfer learning with a good starting point. Finally, range
adaptation using the maximum mean discrepancy between the features learned from the source
and target ranges is realised by a multi-layer adaptive technology. The effectiveness of the method
was verified using actual measurement data. The training time is 19 s, and the accuracy exceeds
94.5%. The explanation results show that the proposed DTLCL method provides higher accuracy
and robust identification of smaller errors compared to the current combination of integrated and
single non-transmission models. Due to its data-driven nature, the DTLCL method could be used
for fault diagnosis of bearings and gears, which would further promote the application process of
wireless charging.

Keywords: wireless charging applications; transfer learning; minor fault diagnosis; maximum mean
discrepancy; wireless charging equipment

1. Introduction

Bearings and gears are one of the most important components in the manufacture
of wireless chargers. They affect the transmission efficiency, alignment error tolerance,
charging power matching and thermal reliability of wireless charger performance [1–3].
For example, the shaft of the wireless charger is a key component, and the installation of
the shaft is related to the service life and experience of the wireless charger. To enable more
comfortable use and prevent the charger from being difficult to pull out, the modern charger
is equipped with a rotating design, as the shaft causes scratches that reduce the rotation
efficiency. In this regard, bearings and gears are incorporated into the shaft to improve
the flexibility and efficiency of rotation and reduce friction. To improve the stability and
durability of the wireless charger, it is also necessary to add a suitable heat dissipation
function so that the heating mechanism of the charger’s fan can include a heat dissipation
plate and the connecting bearing and gear [4]. In this context, fault diagnosis of bearings
and gears in wireless charging applications is necessary and useful.
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Deep Learning (DL) is a promising tool for automatic feature learning due to its
deep architecture. It is widely used in natural language processing, state monitoring,
speech recognition and other fields. In recent years, according to the rapid development of
artificial intelligence technology, deep learning algorithms such as Stacked Auto-Encoder
(SAE), Deep Belief Network (DBN), Convolutional Neural Networks (CNN), Recurrent
Neural Networks (RNN) and Long Short Memory (LSTM) have been widely used in fault
diagnosis. For example, Jia et al. [5] stacked multiple AEs to extract features from raw
bearing vibration signals without the need for professional technicians. However, due to
the complexity of the original signal data, the AE method, which uses mean square error
(MSE) as a loss function, is not very robust, so the performance is not good. Shao et al. [6]
proposed an improved depth model AE which is a combination of DAE and comparative
AE (CAE). Chen et al. [7] proposed feature extraction methods for bearing fault diagnosis:
DBM and DBN. Li et al. [8] conducted experiments on gear and bearing fault data and
verified that the selection of low-level feature domains has a profound effect on the deep
statistical features of DBM. Shao et al. [9] proposed PSO to optimise the DBN structure for
fault diagnosis. Janssens et al. [10] proposed feature learning based on CNN using two
sensors to detect vibration signals. Guo et al. [11] proposed a hierarchical CNN method
with an adaptive learning rate for bearing fault classification. Ding et al. [12] transformed
the fault diagnosis problem into an image recognition problem. Wang et al. [13] used
1D data with a CNN model. The parameters of the model were determined using the
PSO algorithm. Many results show that DL has strong scalability and generalisation
capability compared to previously used machine learning algorithms (ML) such as Logistic
Regression (LR), k-Nearest Neighbour (k-NN) and Support Vector Machine (SVM) and
does not require manual feature extraction [14–16]. However, DL-enabled methods still
have some limitations, such as: (1) source and target domains are evenly distributed; (2) the
target domain has enough error data. Moreover, it is still difficult to meet both of the above
requirements simultaneously. In practice, the accuracy of the features of the Deep Learning-
based fault diagnosis model is inevitably affected by the number of fault samples and low
quality. Moreover, the effectiveness of fault diagnosis cannot be guaranteed. Therefore, it
is necessary to develop effective models to solve the problem of micro-fault diagnosis of
label-free data in wireless charging devices.

Transfer Learning (TL) is an efficient machine learning method that can use the knowl-
edge in the corresponding source domain to solve the above challenges [17,18]. This is
because TL is a method for transferring data or features from the source domain to the
target domain and improves model performance in the target domain with fewer data or
features by using the source domain with more data or features. In general, TL methods
are divided into model-based transfer learning (MTL), feature-based transfer learning
(FTL), instance-based transfer learning (ITL) and relation-based transfer learning (RTL).
FTL and MTL are two of the most popular methods. In MTL, the initialisation of the target
domain model is usually pre-trained with data from the source domain. MTL is currently
used in fault diagnosis and gives good results [19,20]. FTL can change the properties of
source and target domains by a domain adaptive method to identify a common potential
space. If there is little or no labelling data for the target domain, FTL can be used [21].
The domain-adaptive method often consists of the maximum mean discrepancy (MMD).
MMD is the distribution distance between the computation of the source domain and the
target domain [22]. FTL includes shallow methods such as Transfer Component Analysis
and Joint Distribution Adaptation, and deep methods such as Domain Confusion, Deep
Adaptation Network, Domain Adversarial Neural Network and Deep CORAL (D- CORAL).
Currently, FTL is used in the diagnosis of bearing faults. For example, based on the FTL
method, Sapkota et al. [23] assumed that there are some overlaps between the source
domain and the target domain and proposed a Structural Corresponding Learning (SCL)
method. Nevertheless, the robustness of each model is sometimes low. Sanodiya et al. [24]
proposed training different transformation matrices for the source and target domains to
achieve the goal of transfer learning. Based on the MTL method, Li et al. [25] proposed the
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TransEMDT method, which uses a decision tree to build a robust behaviour recognition
model based on the labelled data. The RTL method is poorly researched and discussed in
only a few articles [26]. There are other transfer learning methods. Yaroslav Ganin et al. [27]
proposed the DANN method to add a confrontation mechanism to neural network training.
Bousmalis et al. [28] from Google Brain extended DANN by proposing a DSN network. TL
in smart manufacturing for fault diagnosis is still in its infancy [29]. The existing methods
cannot be transferred between DL models created at different defect levels and mixed
defects, so early micro-defect diagnosis and multiple defect diagnosis are not solved and
are challenging. Due to limited space, this article focuses on early micro-defect diagnosis.

For this reason, CNN has a good feature extraction capability. In the task of temporal
sequence, LSTM can solve the problem of vanishing gradient caused by the gradual
reduction in gradient without consideration. Considering the advantages of both methods,
this study proposes a Deep Transfer Learning Network (DTLCL) based on CNN and LSTM
for bearing micro-fault diagnosis with unlabelled or sparsely labelled data in wireless
charging applications. The proposed method is based on DL, MTL, FDL and domain
adaptation. First, a deep neural network (DNN) based on CNN and LSTM is built and
pre-trained to learn transferable features, labelling the source domain data as significant
error data. Second, by initialising the model of the target domain, MTL obtains a relatively
good starting point. The network structure and number of neurons in each layer of the
target domain model are identical to that of the DNN. Finally, FTL is used to learn invariant
features in the source and target domains through Deep Domain Adaptation (DDA) [30].
The calculation of MMD loss by a Gaussian and linear kernel function can measure the
distribution distance more effectively. The kernel MMD selection is designed to use the
validation accuracy of the target model to assign an appropriate weighted voting (WV),
which is a popular combination strategy. In this way, DTLCL trained with labelled data of
significant faults can be used to effectively predict unlabelled or poorly labelled micro-fault
diagnostic data. Case studies of varying complexity have shown that the DTLCL method
has advantages over any base model and other existing TL methods. The case studies also
illustrate the relevance of the DTLCL method for wireless charging in a real environment
with signal interference and noise. The summary of the contributions is as follows: a
combined learning method with inheritance depth transfer based on CNN, LSTM and
weighted tuning algorithms is proposed for the adaptive diagnosis of minor faults in rolling
bearings of wireless chargers.

This study makes the following contributions: (1) This method makes use of Deep
Learning and Transfer Learning. Moreover, DNN autonomously extracts features from
unprocessed vibration data in wireless charger manufacturing, which provides excellent
flexibility without the need to manually convert and extract features; (2) MTL is used to
prepare the source domain data to initialise the target domain model and give it a solid
foundation; (3) A linear combination of Gaussian kernels of WV is used to create the
MMD to better assess the differences between the source domain and the target domain;
(4) Compare the case studies with Deep Learning without transfer and the existing tra-
ditional transfer learning. The effectiveness of the method was verified using actual
measurement data. The training time is 19 s, and the accuracy exceeds 94.5%. The explana-
tion results show that the proposed DTLCL method can be more accurate and solid than
the current combination of integrated combinations and single models without transfer or
transfer in identifying small errors.

The rest of this paper is structured as follows. Section 2 introduces the basic theory of
DL and TL. Section 3 explains the framework for deriving the DTLCL method. Section 4
explains the experiment and analyses the experimental results. Section 5 concludes and
discusses limitations, possible applications and difficulties.

2. Basic Theory

In this section, certain TL and DL-related notations are introduced to explicitly express
the problem to be solved.
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2.1. CNN and LSTM

CNN has excelled in many areas because it can learn from older agents through
multiple layers. A CNN consists of input, output and several hidden layers. In the hidden
layer, there are convolutional layers, pooling layers and fully linked layers [31]. First,
convolution is performed by inputting a one-dimensional or two-dimensional input and a
convolution kernel. Second, after convolution, a non-linear activation function is added.
Third, to reduce the size of the output feature map, pooling is usually performed. Fourth,
after a series of iterations of convolution and subsampling, fully connected layers are used
for classification. Finally, a softmax function is performed. Furthermore, backpropagation
is used to optimise the parameters of the CNN by minimising the classification loss.

In a sense, the recurrent neural network (RNN) is the most detailed model [32]. RNNs
can only address problems with short-term dependence. A unique RNN that can handle
both short-term and long-term dependence problems is the LSTM, as time-series data, sig-
nals from smart manufacturing make the LSTM a promising tool for micro-fault diagnosis.

2.2. MMD-Based TL

To solve the problem of micro-error diagnosis for unlabelled data or data with few
labels, transfer learning is introduced as follows. Normally, the data from the source
and target domains do not come from the same distributions. Kernel MMD is a non-
parametric measure of distribution discrepancy. To measure distribution discrepancy more
effectively, most studies have used kernel MMD [33]. The formulation of MMD can be
defined as follows:

D(S, T) =
1

Ns2 ∑Ns
i,j=1 k

(
Si,Sj

)
− 2

NsNt∑
Ns,Nt
i,j=1 k

(
Si,Tj

)
+

1
Nt2 ∑Nt

i,j=1 k
(
Ti,Tj

)
(1)

where Ds is source domain, and Dt is target domain. S =
{
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is source
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(
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2,s

i
3, . . . si

p,

)
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{
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the target domain dataset without the label, in which Nt is the total number of the sample,
Tj =

(
tj
1,t

j
2,t

j
3, . . . tj

q,

)
is the jth sample. k is used to depict a kernel, such as the Gauss kernel.

However, the selection of the MMD kernel by a single Gaussian kernel in [34,35] is
challenging as it affects the feature mapping performance. Moreover, in certain research,
accuracy and resilience are not good [36,37]. Therefore, it is of great importance to develop
new methods to solve this problem.

3. The Proposed Methodology

In this study, a DTLCL method is proposed for the diagnosis of micro-faults with
unlabelled data. Figure 1 shows the flowchart of the proposed system, which mainly
consists of three parts, namely DNN-based CNN and LSTM, MTL and DTLCL design.
DNNs are used to discover features from numerous notable fault samples. A supervised
backpropagation algorithm is used to fine-tune and optimise DNN parameters. Limited
label samples are used to optimise and fine-tune the DNN parameters by minimising the
loss function. They obtain the model DNNs and the model parameters trained with many
samples with severe errors. The network structure of the model DNNt is the same as
that of the DNNs, and the number of neurons in each layer is also the same. MTL can
initialise the DNN used as the target model with a good starting point. This is because
it is often used to pre-train the target model using data from the source domain. It has
recently been used in fault diagnosis and has achieved excellent results [38,39]. DTLCL
was developed by combining DNN, MTL, FTL and domain adaptation to realise transfer
learning from the model of significant faults (DNNs) to the model of smaller faults (DNNt).
The three-layer adaptation of the kernel MMD enables domain adaptation. The choice of
a kernel is difficult. Therefore, a new comprehensive metric has been developed to assist
WV in assigning appropriate voting weights for kernel MMD selection. Finally, DTLCL
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policies can be adaptively created to examine both source and target domain characteristics.
In particular, DTLCL with two different kernels can improve the diversity of DNNs of
the target model and learn features with a small discrepancy between domains, which is
challenging for a single kernel.
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3.1. DNN Construction-Based Deep Learning

In this section, a CNN combination of LSTM models is used as a Deep Neural Net-
work to construct a Deep Transfer Network (DTLCL) because of its excellent feature
learning capability.

3.1.1. Raw Data Pre-Processing

First, significant and minor errors are pre-processed from the acquired vibration
signals. In this study, a new method of overlapping sampling by sliding windows is
proposed. The sampling point is 2048, the step length of deviation (S) is 28, the standard
deviation normalises the data, and then the data is coded in one pass. With this method,
the dataset gets N 620,544 data, the number of training samples is N-(L-S) and the dataset
is divided into training set, verification set and test set in the ratio of 7:2:1 after processing.

Second, training dataset Xs with many significant fault samples and training dataset
Xi with only a few minor fault samples are obtained.

To eliminate the negative effects caused by large differences in the dimensions of the
characteristic variables. Standardisation of the data is particularly important. Min–max
normalisation is used, which can be described as follows:

x∗ =
x−min

max−min
(2)

where x, x∗ is pre-conversion and converted value. max, min is the maximum and mini-
mum value of the original data. If the sample size is uneven, the model may perform well
in the training dataset but not in the test dataset. For this purpose, Synthetic Minority Over-
sampling Technique (SMOTE) is used, which is a synthesis of some classes of oversampling
techniques to make better use of the data [40,41]. Figure 2 shows the principle of SMOTE,
by assuming that some classes are oversampled four times.
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3.1.2. Design DNN Construction

Recent research shows that it is impossible to transfer deep features and classifiers from
the source domain to the target domain using a pure deep high-level model [42,43]. Therefore,
we develop the integrated method of DNN to learn the classifiers and transferable invariant
features of source and target domains by combining the LSTM and CNN models, as shown in
Figure 3. The proposed model includes three convolutional modules, one LSTM module, one
shallow layer, three dense layers and one softmax classifier. One-dimensional convolution was
chosen because the vibration signal contains only one-dimensional data. In certain processes,
initially adding a batch back to the convolution layer and pooling layer may cause the input
to be pulled back to the convolution layer to obey the standard normal distribution. This
can prevent the gradient from disappearing while further speeding up convergence and
training speed. Then, adding the LSTM network after the pooling layer, can solve the problem
of long-term dependence or gradient explosion to better refine the properties. Finally, to
prevent overfitting and improve the generalisation ability, the dropout layer is added to the
full connection layer. The structure of the CNN consists of Convolution, BatchStandardisation
and Maximum Pooling. The input of Convolution is (None, 2048, 1), the output is (None,
128, 16), and the input of BatchStandardisation is (None, 128, 16), the output is (None, 128,
16), the input of MaxPooling1D is (None, 128, 16), the output is (None, 64, 16). After the
CNN structure has been traversed three times, the LSTM network structure is added, whose
input is (None, 16, 32) and output is (None, 16, 4). Table 1 shows the selection of architectural
parameters of the DNN model by grid search and k-fold cross-validation [44].
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Table 1. Architecture parameters’ selection of the DNN model.

Layers Parameters Activation Output Size

Input / / (None, 2048, 1)
conv1D Filters:16, kernel_size: 64, strides: 16 relu (None, 128, 16)

BatchNormalization / / (None, 128, 16)
MaxPooling1D pool_size: 2 relu (None, 64, 16)

conv1D Filter: 16, kernel_size: 64, strides: 16 relu (None, 64, 32)
BatchNormalization / / (None, 64, 32)

MaxPooling1D pool_size: 2 relu (None, 32, 32)
conv1D Filters: 16, kernel_size: 64,strides: 16 relu (None, 32, 32)

BatchNormalization / / (None, 32, 32)
MaxPooling1D pool_size: 2 relu (None, 16, 32)

LSTM recurrent_activation: hard_sigmoid tanh (None, 16, 32)
Flatten / / (None, 512)

Dropout 0.3 (None, 512)
Dense1 / relu (None, 256)
Dense2 / relu (None, 128)
Dense3 / relu (None, 32)

Classifier kernel_regularizer: l1(1 × 10−4) softmax (None, 4)

A deep neural network fault diagnosis model for significant faults is created and
trained, which can be described as follows:

DNNs = Feed f orward( fs1, fs2, . . . , fsN) (3)

[DNNs , θs
,] = train(DNNs, Xs, θs) (4)

DNNs consists of CNN and LSTM. fsj represents the number of neurons in the jth
buried layer of DNNs, j = 1, 2, . . . ., N.

First, as shown in Equation (4), the model DNNs from significant fault is trained. Xs
is a training dataset from significant faults. θs = {θs1, θs2, . . . , θsN} is an initial set of param-
eters for the network DNNs.θsi = {Wsi, bsi} represents the set of parameters of bias and
weight matrix of the input layer and hidden layer in DNNs, which are initialized randomly.

Second, Layer-by-layer training updates DNNs parameters θs
,.

Third, abstract features FsN = σ(WsN . . . (σ(Ws2(σ(Ws1Xs + bs1) + bs2)) + . . . + bsN)
are captured.

Fourth, using FsN as input data, the softmax classifier is trained to update and obtain
the softmax parameters θss

,.
Fifth, DNNs parameters are fine-tuned and optimised using a supervised back-

propagation algorithm. DNNs is optimised by minimizing loss function with labelled
dataset, which can be described as follows:

loss = −
outputsize

∑
i=1

yi.logpi (5)

where pi is actual output probability, and yi is expected output.
As the mode includes CNN and LSTM, the loss function is enhanced as follows:

loss = −
outputsize

∑
i=1

yi.logpi + λ (6)

with
λ =

Fmax
Fcnn + Flstm

, Fmax = max(Fcnn, Flstm), λ ⊂ (0.01, 1) (7)

R =
TP

TP + FN
(8)
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P =
TP

TP + FP
(9)

F =
2× P× R

R + P
(10)

where TP, FN, FP stand for true positive, false negative, and false positive, Fcnn and Flstm
represent the comprehensive index of CNN and LSTM model in training, respectively.

Finally, DNNs and parameters T = {θs
,, θss

,} are trained and obtained by a large
number of significant fault samples.

For minor faults, a deep neural network fault diagnosis model is established and
trained, which can be described as follows:

DNNt = Feed f orward( ft1, ft2, . . . , ftN) (11)

fti = fsi, i = 1 . . . N, (12)

3.2. Transfer from DNNs to DNNt

3.2.1. Transfer of Network Parameters

Because the input dimensions of DNNs and DNNt are the same, the quantity of
neurons in the buried layer is similar. The network parameters from the first layer through
the nth layer of DNNs trained by many significant fault samples are {θs1

,, θs2
,, . . . , θsN

,}.
The network settings for the corresponding layer of DNNt from micro-fault samples are
{θt1

,, θt2
,, . . . , θtN

,}, which can be described as

θti
, = θsi

,, i = 1...N (13)

3.2.2. Domain Adaptation

The main focus of deep network adaptation is the specific number of specific layers
and measurement standards for adaptive adaptation. Figure 4 shows the process of the
adaptive approach. In this method, the initial model mainly consists of the following layers.
Convolutional, standard and maximally pooled functions are run three times, followed by
the addition of LSTM networks, flat layers with dropout processing, several fully connected
layers and the addition of a current number of target sets. The model parameters are
initialised randomly, and the target model is trained with the target dataset. The feature
transfer capability decreases dramatically in the higher layers as the domain discrepancy
increases when deep features eventually transition from universal to particular through the
network. The network adaptation technique used in this work is MMD. The dense1, dense2
and dense3 layers modify the distribution of the learned features. The bottleneck layer of
the transfer model is the layer where the features are extracted. The first three layers of
the classifier are complemented by a layer that uses an adaptive measurement criterion.
One measurement criterion is the loss function. The loss function consists of the multi-class
cross entropy loss and the MMD. Between the source and target domains, the MMD with
multiple kernels is used. The loss of the DTLCL model after optimisation is as follows:

loss = −
n

∑
i=1

yi.logpi + λD (14)

D = αD
(

f s
1 , f t

1
)
+ βD

(
f s
2 , f t

2
)
+ µD

(
f s
3 , f t

3
)

(15)

α + β + µ = 1 (16)

where λ = Fmax
Fcnn+Flstm

, α,β,µ are coefficients, fs
1, ft

1, fs
2, ft

2, fs
3, ft

3 are the output of the layer
dense1, dense2 and dense3 for both source and target domain, D is a multilayer MMD
which is the linear combination of Gaussian kernels.
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Figure 4. The adaptive method.

3.2.3. Weighted Voting for Kernel MMD Selection

The conclusion is that kernel MMD selection for transfer learning is crucial to improve
the accuracy and generalisation ability of transfer learning. Weighted voting is a widely
used combination strategy in which the weight of each model is determined based on its
performance [44]. Suppose there are two base kernels, including Gaussian kernels. The
weights of the two base kernels are w = {W1, W2}. WV takes into account the performance
differences between the base kernels and gives a higher weight to the kernel with a higher
accuracy. The weights of the kernels calculated with WV can be expressed as follows:

wi =
Model_Accuracyi

∑2
i=1 Model_Accuracyi

(17)

where
∑2

i=1 Model_Accuracyi = 1, wi ≥ 0 (18)

and Model_Accuracyi reflects the overall accuracy of the validation of ith kernel.

3.3. Transfer of Softmax Layer Parameters

Since minor faults and significant faults are under different working conditions, they
may have different fault types, so the dimensions of softmax classifier are different. The
transfer strategy of the softmax layer is to transfer only fault types common between minor
and significant faults under different working conditions. Other different fault types are
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initialized randomly. θss
, is the parameter of softmax from DNNs, θts

, is parameter of
softmax from DNNt, which can be described as follows:

θss
, =


w11 w12 w13 . . . w1H
w21 w22 w23 . . . w2H
w31 w32 w33 . . . w3H

. . .
wn1 wn2 wn3 . . . wnH

 (19)

θts
, =


w11 w12 w13 . . . w1H β1(H+1)β1(H+2) . . . β1F
w21 w22 w23 . . . w2H β2(H+1)β2(H+2) . . . β2F
w31 w32 w33 . . . w3H β3(H+1)β3(H+2) . . . β3F

. . .
wn1 wn2 wn3 . . . wnH βn(H+1)βn(H+2) . . . βnF

 (20)

where it is assumed that the status of significant faults is divided into H classes, and the
status of minor faults is divided into F classes, H < F. H classes of significant faults is the
previous class F of minor faults. β stands for random initialization.

3.4. Model Evaluation

Once the model is built, the advantages and disadvantages of the model must be
evaluated using a comprehensive evaluation index (F), Recall (R) and Precision (P). The
index of P and R is simple. F combines the indicators P and R presented in Section 3.1.2.

4. Experiment Verification
4.1. Experimental Platform Construction and Data Description

As an indispensable part of smart manufacturing for wireless charging, the stability
of the wireless charging system is directly affected by the condition of the bearing. In this
section, the validity and significance of the DTLCL method are tested using two different
bearing datasets (dataset A and dataset B). Table 2 provides further details on the datasets.

Table 2. Data details of the bearing data set.

Dataset Load/hp Speed of Rotation/RPM Fault Conditions Samples Size

A 0/1/2/3 1797/1772 1750/1730 N/RF//IF/OF 1200 × 4
B 0/1/2 500/1000/1425 N/RF/IF/OF GPF/GBTF 200 × 6

Case Western Reserve University (CWRU) provided dataset A [45]. The data files
are in MATLAB format. In Figure 5, the experimental platform is depicted. There are
four fault states in dataset A, namely normal fault (N), outer circle fault (OF), inner circle
fault (IF) and rolling element fault (RF). Each fault type has three different fault diameters
(0.007 inch, 0.014 inch and 0.021 inch). The vibration signals are recorded at a sampling
rate of 12 kHz. The test bearings are loaded with four different motor speeds (1797 rpm,
1772 rpm, 1750 rpm and 1730 rpm) and motor loads (0 HP, 1 HP, 2 HP and 3 HP), which
are considered four different working conditions. Each data set includes 1200 samples,
300 samples per condition and 100 samples per fault.

Dataset B comes from the Intelligent Manufacturing Research Institute of Wuhan
University of Technology and is shown in Figure 6a. The platform is driven by a SEW
DRE100M4/BE5/HF/V/FI motor. The motor has the following specifications: 2.2 kW
output power, 1425 RPM rated speed and 4 Nm rated torque. The roller bearing is a
6209-deep groove ball bearing with dimensions of 45 mm inside, 85 mm outside and
19 mm in width. Four vibration sensors record the vibration signals of the bearing at
different positions of the motor drive side, the fan side and the pedestal, respectively,
at different loads and speeds and use them as experimental data to diagnose bearing
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faults with a sampling frequency of 12 kHz. Figure 6b shows the positions of the fault
point sensors.
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Dataset B is divided into six operating states with no failure and varying degrees of
failure severity. Light failure is 0.3 mm, medium failure is 0.6 mm and severe failure is
0.9 mm. The rated speed is 500 rpm, 1000 rpm and 1425 rpm, and the corresponding input
current is 0.0 A, 0.1 A and 0.2 A. Each sample consists of continuously recorded 048 points.
A total of 1200 samples were collected under six different operating conditions. There are
840, 240 and 120 samples for the training, verification and test data sets, respectively. The six
fault conditions are: normal fault (N), outer circle fault (OF), inner circle fault (IF), pitting
fault (GPF), rolling element fault (RF) and broken tooth fault (GBTF). For a mild fault, the
fault diameter was set at 0.0018 inches, for a moderate fault at 0.0036 inches, and for a severe
fault at 0.0054 inch. Table 2 shows the engine speed and load of different faults in data set
A and data set B. Figure 7 shows typical original data collected from four vibration sensors
at different positions in Figure 6a. The acquired data is then recorded and displayed using
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MATLAB 2019. To fit the typical evaluation protocol for unsupervised transfer learning
tasks, the training datasets consist of 90% labelled data in the source domain and unlabelled
data in the target domain, and the test datasets contain the remaining unlabelled data in
the target domain.
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4.2. Experimental Results

To verify the significance of the proposed DTLCL approach, experiments were con-
ducted with the same data set and other methods.

4.2.1. Comparison without Transfer with Individual Models

This study constructs seven different models including DTLCL, CNN, LSTM, AE,
KNN, SVM and MMBT_mmbt [46], which is the Classic SOTA for classification. Table 3
displays each model’s parameters. Both DTLCL and DNN are deep network structure
models, which are composed of CNN and LSTM. Their structures and parameters are the
same. The difference is that DTLCL first trains the DNNs model with many significant
fault samples, then transfers the trained model DNNs to the micro-fault diagnosis model
DNNt , and finally trains the DNNt model with a few micro-fault samples. A deep neural
network model called DNN was trained using only a few micro-fault samples. The training
iteration setting is 1000. The loss in CNN is cross-entropy. The AE encoding layer structure
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is 2048-128-64-6, and the decoding structure is just the opposite. All points in each domain
of KNN have equal weights. The penalty parameter c in SVM is 1.1, its kernel is Gaussian
kernel, and the degree parameter is 3. The dynamic learning rate (LR) is set as 0.01–0.0001
according to the epoch parameter during the training, LR is 0.01–0.0001. After a certain
number of rounds, LR is gradually reduced. Near the completion of training, the learning
rate declines by more than 100 times. In terms of Transfer Learning, since the model has
converged on the original data set, the learning rate needs to be set as 0.0001.

Table 3. The hyper-parameters for models.

Model Hyper-Parameters Iterations

CNN structure: (2048, 1) (128, 32) (64, 32) (2048) (100) (6) 1000
LSTM structure: (2048, 1) (2048, 32) (65,536) (32) (32) (6) 1000

AE encoder: 2048-128-32-6; decoder 6-32-128-2048 1000
KNN n_neighbors: 5; p = 1; weight: uniform; leaf_size: 30 /
SVM Cache size: 200, degree: 3 C:1.1 /

DTLCL structure: (2048, 1) (128, 16) (64, 16) (64, 32) (32, 32) (32, 32)
(16, 32) (16, 32) (512) (512) (32) (32) (6) 1000

DTLCL_A structure: (2048, 1) (128, 16) (64, 16) (64, 32) (32, 32) (32, 32)
(16, 32) (512) (512) (32) (32) (6) 1000

DTLCL_B structure: (2048, 1)-(16, 32)-512-512-32-32-6 1000

The hyper-parameters can strongly influence the results. The parameter settings are
usually divided into grid search, manual search and random search. This study proposes
an improved method of grid search called step heap sorting. First, we set the initial and
maximum values of the network parameters. Second, a fixed step is given to determine the
next parameter to calculate the corresponding result of the parameter. Then the theoretical
results are determined using heap sorting. Finally, the results are automatically compared,
and the optimal parameters are determined, as mentioned in my other public paper.

To further verify that DTLCL combining CNN and LSTM produces better results than
a single model-based transmission method, there is a simultaneous ablation experiment.
The DTLCL model without LSTM is referred to as DTLCL_A based on the CNN-based
transmission model without the LSTM structure, and the DTLCL model without CNN
is referred to as DTLCL_B based on the LSTM-based transmission model without the
CNN structure.

In Dataset A, the error size of 0.021 inches is large and the features are significant. In
dataset B, the error with a magnitude of 0.0036 inches is small and the features are not
obvious. The error with a magnitude of 0.021 inches is the source region and the error with
a magnitude of 0.0036 inches is the target region in this experiment. This study aims to
improve the diagnostic accuracy of errors with a size of 0.0036 inches by transfer learning.

To test the carryover effect from significant errors to smaller errors, two experiments
are conducted in this section. Table 4 shows the conditions for significant and minor errors
in Test 1 and Test 2. There are four types of significant errors, including N, IR, OR and
RF. There are six types of minor errors, including N, IR, OR, RF, GPF, GBTF. The training
dataset, verification dataset and significant error test dataset are divided into 1400, 400 and
100, respectively. The number of training datasets of micro-errors in Test 1 and Test 2 are
different and are 50 and 200, respectively.

Table 4. Operating conditions of significant and minor faults in Test 1 and Test 2.

Working Condition Significant Fault Minor Fault

Load (hp) 1 2
Speed (rpm) 1750 1000

Fault size (inch) 0.021 0.0036
Status type 4 (NRF, IF, OF) 6 (N, RF, IF, OF, GPF, GBTF)
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In Test 1, 2000 training samples are required for each severe fault, and 50 training
samples are required for each minor fault.

In Test 2, for each major defect, there are 2000 training samples, and there are
200 training samples for each minor fault.

The results are shown in the table below. First, Table 5 displays the nine models’
average training, validation, testing accuracy, and training time for Tests 1 and 2 for ten
trials. It can be seen that DTLCL has the highest accuracy, 0.884, 0.876, 0.885 in Test 1
and 0.953, 0.946, 0.945 in Test 2, respectively, in the training, validation and test sets. The
maximum average accuracy rates of the other models without transfer are 0.786, 0.731,
0.723 in test 1 and 0.886, 0.872, 0.877 in test 2. Moreover, the standard deviations of DTLCL
in test 1 are 0.52, 0.43, 0.55 and the loss rates are 0.42, 0.43, 0.43. The standard deviations of
DTLCL in test 2 are 0.32, 0.33, 0.34 and the loss rates are 0.38, 0.36, 0.37. The other models
without transfer’s smallest variances are 0.63, 0.72, 0.64 in Test 1 and 0.43, 0.41, 0.43 in Test 2.
The training time for DTLCL is 18 s in Test 1 and 19 s in Test 2, while the minimum training
time for CNN in other models without transfer costs 22 s in Test 1 and 23 s in Test 2. First,
DTLCL has the characteristics of high accuracy, short detection time and low deviation.
Second, the average error diagnosis accuracy of each model in Test 2 is higher than that
of the corresponding model in Test 1, which demonstrates that the efficiency of DCLCL is
proportional to the number of samples. The result shows that the accuracy and robustness
of fault diagnosis by the proposed DTLCL are significantly improved by transfer learning
and the number of samples.

Table 5. Average results over ten trials for six compared models.

Test Model Accuracy of
Training/Loss

Accuracy of
Validation/Loss

Accuracy of
Testing/Loss Time of Training

Test1 DTLCL (0.884 ± 0.52)/0.42 (0.876 ± 0.43)/0.43 (0.885 ± 0.55)/0.43 18 s
CNN (0.786 ± 0.63)/0.64 (0.731 ± 0.72)/1.66 (0.723 ± 0.64)/1.78 22 s
LSTM (0767 ± 0.51)/1.52 (0.728 ± 0.62)/1.54 (0.707 ± 0.62)/1.53 26 s
DNN (0.602 ± 3.52)/1.57 (0.634 ± 3.52)/1.64 (0.645 ± 3.54)/1.47 35 s

AE (0.540 ± 3.52)/0.75 (0.562 ± 3.87)/1.44 (0.524 ± 3.72)/1.23 24 s
KNN (0.552 ± 1.22) (0.541 ± 1.29) (0.506 ± 1.32) 107 s
SVM (0.679 ± 3.82) (0.651 ± 3.38) (0.661 ± 3.38) 19 s

DTLCL _A (0.802 ± 0.41)/0.61 (0.798 ± 0.51)/0.58 (0.805 ± 0.45)/0.54 17 s
DTLCL _B (0.791 ± 0.58)/0.52 (0.787 ± 0.64)/0.53 (0.784 ± 0.55)/0.57 16 s

MMBT_mmbt (0.754 ± 0.51)/1.43 (0.713 ± 0.63)/1.48 (0.718 ± 0.60)/1.52 25 s

Test2 DTLCL (0.953 ± 0.32)/0.38 (0.946 ± 0.33)/0.36 (0.945 ± 0.34)/0.37 19 s
CNN (0.886 ± 0.43)/0.58 (0.872 ± 0.41)/1.32 (0.877 ± 0.43)/1.22 23 s
LSTM (0854 ± 0.51)/0.62 (0.824 ± 0.52)/1.48 (0.835 ± 0.54)/1.37 30 s
DNN (0.872 ± 2.50)/1.23 (0.874 ± 2.54)/1.35 (0.885 ± 2.51)/1.33 39 s

AE (0.630 ± 3.42)/0.52 (0.664 ± 3.37)/1.12 (0.654 ± 3.22)/1.01 27 s
KNN (0.652 ± 1.01) (0.641 ± 1.12) (0.616 ± 1.28) 118 s
SVM (0.859 ± 3.82) (0.840 ± 3.38) (0.841 ± 3.38) 22 s

DTLCL _A (0.892 ± 0.41)/0.52 (0.898 ± 0.51)/0.53 (0.895 ± 0.45)/0.51 18 s
DTLCL _B (0.863 ± 0.58)/0.54 (0.868 ± 0.64)/0.56 (0.887 ± 0.55)/0.53 17 s

MMBT_mmbt (0.845 ± 0.54)/0.57 (0.831 ± 0.52)/1.38 (0.851 ± 0.53)/1.36 25 s

Note: The results are formatted as average (accuracy ± standard deviation)/error rate.

The particular test accuracy of the different methods in the experiments is shown in
Figure 8. Two points can be intuitively deduced from the analysis of the results in Figure 8.
First, DTLCL has the highest accuracy of the test data set in each experiment, about 80%
in Test 1 and more than 95% in Test 2. Second, the accuracy of the DTLCL test data set is
stable in each experiment. In contrast, alternative approaches without transfer produce
weak, unstable, and less reliable outcomes. The average accuracy of the test data set of each
model in Test 2 is higher than that of the corresponding model in Test 1. These results also
show that the DTLCL method can be more accurate and stable than the other five models
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and is determined by the number of samples. The accuracy of the test dataset increases
with sample size.
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More focused studies have been conducted to further confirm the efficacy of the
proposed DTLCL. In this section, the P, R and F values of several models are presented.
Figure 9 shows the P-values of DTLCL and the other five models in the test data set for
experiments. The P accuracy of DTLCL in Test 1 and Test 2 is the highest, especially in N,
IF, RF, OF. The corresponding P-values of the other models are less than 60% in Test 1 and
70% in Test 2. Less than 50% in Test 1 and 65% in Test 2 show that the P-rate of KNN is
extremely low at six errors. On the other hand, the precision rate is consistent at six errors
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and the value of the precision rate of the DTLCL model has increased to more than 80% in
Test 1 and 95% in Test 2.
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Figure 9. P of different models.

Figure 10 shows the recognition rate of DTLCL and six other models in the test data set.
The results show that DTLCL has a higher recognition rate than the other models, especially
for N, RF, GPF in Test 1 and N, IF, RF, OF, GPF in Test 2. The average recognition rate of the
other models is less than 45% in Test 1 and 90% in Test 2. In contrast, the average recognition
rate of the DTLCL models increases to more than 75% in Test 1 and 92% in Test 2.
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Figure 10. R of different models.

Precision and recall are well developed in DTLCL, but they cannot comprehensively
and objectively evaluate the results of the models. F is a good index to evaluate models
comprehensively. Figure 11 shows the test data set F of DTLCL and other different models.
The F value of the DTL model is greater than 75% for every error, especially for N, OF, IF,
RF, GPF in Test 1 and Test 2. Most of the other models are below 70%. The above results
also confirm that compared to the other models without transmission, the DTLCL approach
performs better.
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Based on the above results, it can be assumed that the indicators of accuracy, precision,
detection and comprehensive assessment are improved by DTLCL. Moreover, the results
of DTLCL are more precise, consistent, and generalizable depending on the number of
samples. From the analysis of the above results, it can be inferred that DTLCL has improved
the indicators of accuracy, precision, detection and comprehensive assessment. Moreover,
depending on the number of samples, the results of DTLCL are more repeatable, accurate
and have high generalisation ability. The accuracy rises with the size of the sample.
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4.2.2. Comparison with Other Models with Transfer

To further demonstrate the transmission performance of the DTLCL model and explain
the reason why this method is better than other fault diagnosis methods under different
working conditions and faults of different degrees, the above training models of CNN, AE
as TCNN, TAE are retained. The well-known deep models such as Xception, InceptionV3,
D- CORAL, DANN can also be transferred. A model for transfer learning in SOTA models
called DistilBERT_transformers is also used in comparative experiments [47]. Thus, TCNN,
TAE, Xception, InceptionV3 are presented for comparison on dataset A and dataset B. A
single Gaussian kernel is used on TCNN, TAE, TANN, TSVM. On DTLCL, a multi-tier
adapter with a Gaussian combination of a linear kernel is used. D-CORAL and DNN
share the same architecture but adapt to the properties of fully connected layer 1 and fully
connected layer 2 by using CORAL loss. DANN has the same structure as DNN for fault
classification but adds a domain classifier for domain adaptation that inputs flat layer
features into the domain classifier.

In Test 3 and Test 4, the number of training samples is the same as in Test 1 with
significant and small errors. Table 6 shows the accuracy and training time of the different
models in the training dataset, validation dataset and test dataset among ten experiments.
The following two effects can be intuitively deduced from the analysis of the results in
Tables 5 and 6. First, the overall accuracy of the models with transfer is better than those
without transfer and the training time is shortened. The average accuracy rates of the test
data set TCNN, TAE, InceptionV3 and Xception with transfer are 0.843, 0.524, 0.630, 0.812
in Test 1 and 0.934, 0.752, 0.715, 0.864 in Test 2, respectively, the time taken is 19 s, 22 s, 80 s,
17 s and 20 s, 24 s, 81 s, 17 s. This shows that DTLCL with a Gaussian combination of linear
kernels reduces the distribution discrepancy and gives better results.

Table 6. Average results over ten trials for five compared models with transfer.

Test Model Accuracy of
Training

Accuracy of
Validation

Accuracy of
Testing Time of Training

Test 3 DTLCL 0.884 0.876 0.885 18 s
D-CORAL 0.834 0.823 0.837 21 s

DANN 0.821 0.818 0.824 22 s
TCNN 0.882 0.841 0.843 19 s

TAE 0.580 0.562 0.524 22 s
InceptionV3 0.612 0.651 0.557 27 s

Xception 0.729 0.749 0.732 17 s
DistilBERT_transformers 0.581 0.579 0.543 23 s

Test 4 DTLCL 0.953 0.946 0.945 19 s
D-CORAL 0.926 0.915 0.933 22 s

DANN 0.911 0.918 0.909 23 s
TCNN 0.956 0.923 0.934 20 s

TAE 0.734 0.781 0.752 24 s
InceptionV3 0.754 0.702 0.715 28 s

Xception 0.871 0.865 0.864 17 s
DistilBERT_transformers 0.712 0.705 0.701 20 s

F allows for a more comprehensive evaluation of the models by taking both P and C
into account. Figure 12 shows the specific F value of the different transfer models in ten
tests. Except for GBTF, the F-value of DTLCL in Test 3 and Test 4 is higher than that of the
other models, exceeding 75%. In particular, for error modes such as OF, RF, IF, the F-values
of DTLCL improve significantly to 75.5% from about 55% in Test 3 and 94.5% from about
76% in Test 4 of the other models. These results show that the proposed DTLCL generally
achieves higher F-values than other models.
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4.3. Experiment Analysis

In this section, the proposed DTLCL approach is compared with alternative learning
methods using different measurement techniques. From the above results, the following
points can be summarised.

(1) DTLCL combines three components: Deep Learning, Model-Based Transfer Learn-
ing and Domain Adaptation. More importantly, DTLCL fully utilises each component to
make it a system. Deep learning models can effectively extract features, and model-based
transfer learning can effectively initialise the DTN built from two different kernel MMDs to
achieve domain adaptation and generate transitive features. One-dimensional Convolu-
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tional Neural Networks can learn features that are domain invariant due to the domain
matching, which uses MMD to reduce the maximum mean among the source domain
and the target domain; (2) In general, the DTLCL model exploits advantages such as deep
learning, transfer learning and domain adaptation, outperforming other non-transfer and
transfer models; (3) Compared to non-transfer models and transfer models, DTLCL does
not require professional manual feature extraction to improve diagnostic results. It reflects
the advantages of unsupervised deep transfer learning; and (4) DTLCL achieves much
higher diagnostic accuracy than other models in Test 1 than in Test 2. This shows that the
test dataset’s accuracy increases with sample size.

The above conclusions show that DTLCL can perform better on unlabelled samples or
micro-samples from the target area under different working conditions and error levels.
The DTLCL model of the non-obvious micro-defect samples will be optimised to improve
the accuracy of micro-defect diagnosis.

5. Conclusions

In this paper, the performance of rolling bearing micro-fault diagnosis for wireless
charger production under different operating situations and fault levels is improved by a
data-driven approach called DTLCL. The proposed approach makes use of transfer learn-
ing and deep learning. To improve the feature extraction capability, multi-kernel MMD
is applied between the source and target domains. The effectiveness of the method was
tested using dataset A and the actual measurement data of the warehouse (dataset B).
The training time is 19 s and the accuracy exceeds 94.5%. The explanation results show
that the proposed DTLCL method provides higher accuracy and robust identification of
smaller errors compared to the current combination of integrated combinations and single
non-transmission models. Thus, the DTLCL method could be used for fault diagnosis of
bearings and gears, further promoting the application process of wireless charging. At the
same time, the WV method can accurately and quickly determine the hyperparameters
of the model, improving the accuracy of the model. As bearings and gears are among the
most critical components in the manufacturing of wireless charging devices, the devel-
oped method can be used to identify the associated micro-defects, which improves the
functionality of wireless charging applications.
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Nomenclature

DL deep learning
SAE stacked auto-encoder
DTLCL a transfer-based deep neural network
MTL model-based transfer learning
DNN deep neural network
DTN deep transfer network
MMD maximum mean discrepancy
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SAE stacked auto-encoder
CNN convolutional neural network
DBN deep belief network
RNN recurrent neural network
LSTM long short-term memory
ML machine learning
SVM support vector machine
LR logistic regression
k-NN k-nearest neighbour
DDA deep domain adaptation
WV weighted voting
TL transfer learning
ITL instance-based transfer learning
FTL feature-based transfer learning
MTL model-based transfer learning
RTL relation-based transfer learning
DNN deep neural network
DDA deep domain adaptation
Ds source domain
Dt target domain
S source domain dataset
Ns the total number of samples
y actual label
Si the ith sample
p the dimensionality of the sample
T target domain dataset without label
Nt the total number of the sample
Tj the jth sample
k the kernel
DNNs the model of significant faults
DNNt the model of minor faults
Xs the training dataset with many significant fault samples
Xi the training dataset with only a few minor fault samples
x* min–max mormalization
x the pre-conversion value
x∗ the converted value
max the maximum value of the original data
min the minimum value of the original data
SMOTE synthetic minority oversampling technique
fsj the number of neurons in the jth hidden layer of the DNNs
Xs the training dataset from significant fault.
θs the initial set of parameters for the network DNNs
θsi the set of parameters of the weight matrix and bias of the input layer
θs

,. layer-by-layer training updates DNNs parameters
FsN abstract features
Fcnn the comprehensive evaluation index for single CNN model training
Flstm the comprehensive evaluation index for single LSTM model training
TP true positive
FP false positive
FN false negative
θss

, parameter of softmax from DNNs
θts

, parameter of softmax from DNNt
β random initialization
P precision
R recall
F comprehensive index
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CWRU Case Western Reserve University
N normal fault
OF outer circle fault
GPF gear pitting fault
IF inner circle fault
GBTF gear broken tooth fault
RF rolling element fault
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