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Abstract— Graph neural network (GNN) models are
increasingly being used for the classification of electroen-
cephalography (EEG) data. However, GNN-based diagnosis
of neurological disorders, such as Alzheimer’s disease
(AD), remains a relatively unexplored area of research.
Previous studies have relied on functional connectivity
methods to infer brain graph structures and used sim-
ple GNN architectures for the diagnosis of AD. In this
work, we propose a novel adaptive gated graph convo-
lutional network (AGGCN) that can provide explainable
predictions. AGGCN adaptively learns graph structures by
combining convolution-based node feature enhancement
with a correlation-based measure of power spectral den-
sity similarity. Furthermore, the gated graph convolution
can dynamically weigh the contribution of various spatial
scales. The proposed model achieves high accuracy in both
eyes-closed and eyes-open conditions, indicating the sta-
bility of learned representations. Finally, we demonstrate
that the proposed AGGCN model generates consistent
explanations of its predictions that might be relevant for
further study of AD-related alterations of brain networks.

Index Terms— Alzheimer’s disease, graph neural net-
work, classification, EEG.
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. INTRODUCTION

HE brain is a complex, densely connected system that
T operates across multiple spatial and temporal scales.
Neurological diseases, such as Alzheimer’s disease (AD), can
alter the connectivity of the brain and thus disrupt brain
function [1], [2], [3], [4]. AD is the most common cause of
dementia and affects millions of patients worldwide [5], [6].
Currently, the diagnosis of AD is typically made using a com-
bination of cognitive and neurological assessments, as well as
neuroimaging techniques, such as positron emission tomogra-
phy (PET) or magnetic resonance imaging (MRI), which can
be time-consuming and expensive [7]. The development of
rapid, economical, and explainable diagnosis methods is thus
of importance [6].

Electroencephalography (EEG) is an economical and
non-invasive neuroimaging method that records the sum of
electrical potentials generated by various brain areas. EEG
is extensively used in the research of AD-related alterations
in brain function and functional connectivity. Although EEG
is not currently used in clinical settings for AD diagnosis,
numerous studies have demonstrated the high effectiveness of
an EEG-based diagnosis of AD [8], [9], [10], [11], [12], [13].

AD causes disruption of synaptic connections across multi-
ple scales [3], [14], [15] and can thus be viewed as a network
disorder [1]. The synaptic disconnection can be observed in
EEG signals as alterations of synchronisation and functional
connectivity (FC) [3], [7]. Furthermore, the slowing of EEG
signals is a reliable characteristic of AD [14], [16], observed as
a shift of spectral power towards low-frequency components.
Graph-theoretic studies of AD also report reduced complexity,
disruption of small-world properties, decreased integration,
and increased segregation [10], [15], [17], [18], [19], [20].
However, one of the challenges in EEG-based predictive
models is the efficient utilisation of the information collected
over multiple electrodes since there is information to be gained
both at the electrode level, e.g. frequency spectrum, and the
cross-electrode level, e.g. FC.

Machine learning-based approaches often require domain
knowledge and rely on manual feature extraction. For example,
Oltu et al. [21] calculate power spectrum density (PSD)
and coherence across multiple EEG electrodes and then use

© 2023 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
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descriptive statistics, such as sum and variance, as input
features. Other feature-based methods use FC [12], [22], [23].
These methods first reconstruct the brain graph via measures
of FC, such as phase lagging index [12], generalised compos-
ite multiscale entropy vector [22], or phase synchronisation
index [23]. The features can then be extracted via statistics [22]
or graph-theoretic measures [12], [23].

In contrast, deep learning methods can extract features
automatically from the input. However, utilising the infor-
mation from multiple electrodes with classical deep learning
methods is challenging. To overcome this issue, several studies
have transformed EEG signals into images to make use of
convolutional neural networks (CNN) [13], [24], [25], [26],
[27], which are efficient in image classification. For instance,
Ieracitano et al. [24] compute the PSD across channels and
compose them to form a channel by PSD image. Bi et al. [26]
use spectral topology images and leverage the colour channels
of an image to represent three frequency bands. Finally,
Huggins et al. [27] create tiled images where each tile
contains the continuous wavelet transform of an EEG elec-
trode. Although these methods utilise multiple channels, the
cross-electrode information is still omitted. A CNN trained on
FC-based adjacency matrices has been proposed to address this
limitation [28]. However, CNN is not well suited for such input
since the adjacency matrix is irregular and non-euclidean.

Graph neural network (GNN) is an extension of CNN
to process graph-structured inputs. Multiple studies propose
GNN-based architectures to process EEG. However, GNN
methods for EEG-based diagnosis of AD are limited [8], [11].
GNN-EEG implementations often include several steps:
(1) input construction, i.e. graph structure and node features;
(2) GNN encoder to learn node embeddings; and (3) aggre-
gation of node embeddings to a graph embedding, which can
be used in the final classification step.

There are various approaches to realise the graph con-
struction in step (1). Node features are commonly defined as
EEG time-series signal [11], [29], [30], [31], or a statistical
summary of the signal in the time domain [32], [33], the
frequency domain [8], [34], or the differential entropy [29],
[34]1, [35], [36], [37], [38]. Based on network neuroscience
literature, many approaches define the brain graph using FC
measures [8], [11], [29], [31], [32], [33], [39], [40]. The
graph structure can also be based on the distance between
EEG electrodes [33], [35], [36]. However, such an approach
largely ignores brain connectivity information. Alternatively,
the brain graph can be automatically learned by the model,
either as a learnable mask shared across samples [29], [34],
[41] or by pairwise node feature distance minimisation regu-
larised by an additional graph loss function [37], [38], [42].
While such approaches are flexible and should converge to
an optimal graph structure with respect to a given learning
task, the learned brain graph might not be representative of the
underlying brain connectivity, i.e. such a graph structure might
overestimate the strength of the task-relevant edges compared
to the underlying connectivity. In this work, we propose an
adaptive graph learning mechanism based on node feature
enhancement via CNN and subsequent graph construction.
This is achieved by using a correlation similarity measure of

power spectral density and sparsified via k-nearest neighbour
(KNN) edge selection. Thus, it combines the strength of the
FC-based and automated graph learning methods. Such a com-
bination overcomes the limitations of fully learnable graphs
described above since the correlation computation is ultimately
detached from the classification task. However, it should be
noted that the adaptively learned graph structure reflects brain
region similarity rather than a functional relationship assumed
by classical FC measures.

The design of GNN encoders in step (2) for EEG applica-
tions has been mainly limited to simple architectures, such as
the Chebyshev graph convolution (ChebConv) [30], [31], [33],
[35], [36], [37], [40], and simple graph convolution (GCN)
[81, [291, [34], [41], [42], [43]. However, we hypothesise that
such node embedding updating mechanisms are not optimal
for EEG tasks. These graph convolutions update node embed-
dings by summing the initial embedding and the aggregated
messages from the neighbouring nodes. Such updating implies
that information from different scales contributes equally to
the final node embeddings, hence graph embeddings as well.
While brain disruptions caused by AD occur across multiple
spatial scales, their predictive power is likely different. There-
fore, a gating mechanism is crucial for filtering and weighting
the information collected across different scales. We propose
to adopt the gated graph convolution [44] to address this issue.

Finally, we implement the aggregation of node embeddings
in step (3) by adopting the adaptive structure-aware pooling
(ASAP) node pooling mechanism [45] to first learn the most
important clusters of nodes, which are in turn concatenated to
form the graph embedding. This is in contrast to the previous
approaches that do not use any node pooling and form graph
embeddings via simple element-wise readout layers [8], [29],
[32], [39], [42], [43], [46] or concatenating all nodes of the
graph [11], [40]. Other node pooling approaches were tested
for EEG applications [46], [47]. In contrast to ASAP pooling,
these approaches pool the graph by selecting a specified
number of nodes without considering their local context within
the graph. Therefore, important information might be lost due
to such node pooling.

In this paper, we propose a novel GNN model for explain-
able AD classification, which can adaptively enhance node
features and dynamically construct brain graph structures as
shown in Fig. 1. The learned brain graphs can then be used
for the interpretation of predictions. Moreover, a clustering-
based node pooling mechanism is adopted to coarsen the brain
graph, thus localising the brain regions that contribute to the
predictions. Finally, we conduct extensive ablation and param-
eter sensitivity experiments to elucidate the importance of the
individual blocks within the proposed model architecture.

[1. DATA

EEG recordings were collected from 20 AD patients and
20 healthy control participants (HC) younger than 70 years.
A detailed description of the experimental design and con-
firmation of the diagnosis is provided in [48]. All the AD
participants were recruited from the Sheffield Teaching Hos-
pital memory clinic. AD participants were diagnosed between
one month and two years before data collection. All of them
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Fig. 1. The architecture of the proposed adaptive gated graph convolutional network. A) The proposed model consists of a graph learning module,
GGCN encoder, ASAP node pooling module, and a three-layer multilayer perception (MLP) outputting the predicted probabilities. B) Graph learning

module takes a N x Dj, node feature matrix as input. Node features are defined as power spectral density from 1 to 45 Hz (D

in = 45) computed
for all N EEG electrodes (N = 23). Then, a 1D CNN enhances them. The brain graph structure is then constructed as a correlation graph between
the outputs from the 1D CNN and made sparse by a k-nearest-neighbour edge selection (Corr-KNN). C) The enhanced node features and the
learned graph structure are then passed to a gated graph convolutional neural network (GGCN) encoder. GGCN applies message passing and
gated recurrent unit (GRU) recursively over R iterations.

were in the mild to moderate stage of the disease at the time
of recording, with an average Mini Mental State Examination
(MMSE) score of 20.1 (sd = 4). High-resolution structural
magnetic resonance imaging (MRI) scans of all patients were
acquired to eliminate alternative causes of dementia. Age and
gender-matched HC participants with normal neuropsycholog-
ical tests and structural MRI scans were recruited. This study
was approved by the Yorkshire and The Humber (Leeds West)
Research Ethics Committee (reference number 14/YH/1070).
All participants gave their informed written consent.
EEG data were acquired using an XLTEK 128-channel
headbox, Ag/AgCL electrodes with a sampling frequency of
2 kHz using a modified 10-10 overlapping a 10-20 interna-
tional electrode placement system with a referential montage
with a linked earlobe reference. The recordings lasted 30 min-
utes, during which the participants were instructed to rest
and not think about anything specific. In case the participants
showed signs of drowsiness, they were prompted. Within
each recording were five-minute-long epochs during which the
participants had their eyes closed, alternating with an equal
duration of eyes-open epochs.
All the recordings were reviewed by an experienced neuro-
physiologist on the XLTEK review station with time-locked

video recordings (Optima Medical LTD). For each partici-
pant, three 12-second-long artefact-free epochs were isolated.
Finally, the following 23 bipolar channels were created: F8—
F4, F7-F3, FA-C4, F3-C3, FA-FZ, FZ-CZ, F3-FZ, T4-C4,
T3-C3, C4-CZ, C3-CZ, CZ-PZ, C4-P4, C3-P3, T4-T6,
T3-T5, P4-PZ, P3-PZ, T6-02, T5-0O1, P4-02, P3-O1 and
01-02 [48]. Bipolar montage was selected to limit the volume
conduction effects to a certain extent.

As a neurophysiologist confirmed the EEG signal to be
artefact-free, we did not further clean the signals. The signals
are filtered using a band-pass Butterworth filter to a range
of 0.5 Hz and 45 Hz and down-sampled to 200 Hz. Finally,

1-second long windows with 50% overlap are created to
increase the sample size.

[1l. METHODS

The proposed adaptive gated graph convolutional network
(AGGCN) model consists of three blocks: a graph learning
module, a GNN encoder and a classifier. The graph learning
module receives a node feature matrix as input, enhances it
using a ID-CNN and learns the brain graph structure. The
GNN encoder then uses the output of the graph learning
module as input, i.e. a featured, weighted, undirected graph.
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The encoder generates a graph embedding used by the classi-
fier to output the predicted probabilities.

A. Node Feature and Graph Learning

The node features are defined as power spectral density
computed from 1-second-long EEG signals with 1 Hz incre-
ments from 1 to 45 Hz. Hence, the input is a node feature
matrix X € RV*Pin D, = 45

The input is then passed to a convolutional neural network
(CNN) with batch normalisation, Lcyy 1D convolutional
layers and a maximum pooling with kernel size 2 and step
size 2. The output is flattened and fed to a fully connected
layer with hidden size hcyy and batch normalisation. This
neural network outputs a matrix of enhanced node features
X e RNXD/’CNN_

A graph structure is then inferred from the enhanced
node features by computing the absolute value of Pearson’s
correlation for each pair of nodes. Thus, a unique graph
structure is learned for each input sample and is defined by an
adjacency matrix A € RV*V with N = 23 being the number
of EEG channels. In order to produce sparse graphs, the
k-nearest-neighbours algorithm is utilised. This means that the
k strongest edges are preserved for each node.

This proposed graph learning module has multiple hyper-
parameters that control its architecture. Namely, these are the
number of convolutional layers Lcyy, the kernel size (which
is equal to the step size), the number of filters, the hidden size
hcnn, the dropout rate dropcyy and the kg yy parameter
that controls the graph sparsity.

B. Graph Neural Network Encoder and Classifier

A graph convolution extends the classical convolution from
the Euclidean domain to the graph domain. The input graph
is given by G = (N, A, X’) where N is the set of nodes, A is
the learned graph, and X' is the enhanced node feature matrix.
A simple graph convolution is defined by the message-passing
mechanism wherein the node embedding of node i is learned
by aggregating information from its 1-hop neighbourhood, i.e.
nodes connected with an edge, as follows:

1 a
X[ =X+0 Z €ijXj,
JEN(@)

(D

where x!

; are the node features of node i at the I™ Tlayer,
x is the i

; th row of the input node feature matrix X, and
© is a learnable linear transformation. N (i) and e;; are the
neighbourhood of node i and the edge weight connecting
nodes i and j given by the adjacency matrix A, respectively.
Stacking L graph convolutional layers then means aggregating
information iteratively from 1-hop to L-hop neighbourhoods,
thus gradually going from local to global information about
the graph.

Note that the aggregated message is added to the initial node
embedding x:. Thus, the entire information collected from
each L-hop neighbourhood is always fully integrated into the
node embedding. However, information might be distributed
unequally across spatial scales in brain graphs. The gated
graph convolution (GGCN) [44] addresses this problem by

introducing a mechanism to decide what information should
be retained at each scale selectively:

1
mi(r+ ) Z eji - ®r+1 'Xj(r)v )
JeN()
x"D = GRUM" P, x"), 3)

where m; are the aggregated messages, » is the aggregation
function, ®F is a learnable matrix for iteration r, which maps
the node features from shape [1, Dpyy] to [1, Dpgyyl, and
GRU is the gated recurrent unit [49]. Briefly, a GRU is a
recurrent neural network layer with update, reset, and input
gates that allow the network to recursively update or forget
information about the input. The node embeddings are learned
recursively up to R iterations with a shared GRU gate, which
is equivalent to stacking R GCN layers.

The node embeddings are then passed through an activation
function and a batch normalisation layer. Finally, the node
embeddings are passed to the node pooling module. The
hyperparameters of the proposed encoder are the number of
iterations R, the hidden size iy y, the activation function, the
aggregation function and the dropout rate dropgyy applied
after the encoder.

1) Node Pooling: After learning the node embeddings, the
model learns a coarsened graph using the ASAP pooling
mechanism [45]. This pooling first learns N clusters, each
centred at one node, also named ego-graphs. The membership
of node j in the ego-cluster centred at node i is given by the
Sij matrix. Note that this is a soft-cluster assignment matrix;
thus, each node can belong to multiple clusters with varying
membership strengths. The clusters are learned as follows:

Sij = aij “
a;j = softmax (GTG (@x{“HxJ-)) J )
x;“ = max Xxj, ©

JEN (@)

where a;; is the attention score and the membership strength,
0 and ©® are learnable vector and matrix, respectively. o is the
LeakyReLU activation function, and x;" is the master® query
representing the initial cluster embedding. The attention scores
are also subject to a dropout probability droppeer. The final
cluster embedding is then calculated as an attention-weighted
sum, which is additionally weighted by the cluster score ¢;:

X =i > aix, (7)
JEN()
where the cluster score ¢; is computed by the local extremum
graph convolution [45]:

¢i =01 - x5+ Z eji - (®2Xi - @3Xj),
JEN()

®)

which is designed to measure the relative importance of each
cluster.
The cluster embedding x{ is then used to select the top
k scoring clusters, which will be included in the coarsened
graph:
i =Topr(X%),ke[l,2,...N],

AP =ST.A.S XP

S=S(,1)
=X°(;, 1)

(€))
(10)
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TABLE |
PERFORMANCE OF THE PROPOSED AGGCN IN EYES CLOSED (EC), EYES OPEN (EO) AND COMBINED (EC+EQ) CONDITIONS
Condition Accuracy AUC Sensitivity Specificity F1
EC 89.1 £ 14 0.895 £ 0.016  92.95 £2.59 85.16 £ 2.45 89.7 + 14
EO 85.56 £ 096 0.834 + 0.015 90.88 &+ 2.01 79.98 + 1.47 86.55 £ 0.98
EC+EO 81.79 £+ 1.26 0.82 £+ 0.016 84.27 +£2.19 7922 +2.05 82.46 £+ 1.27

where Topy is a function that returns the indices of clusters
i. S and XP are the pruned soft-cluster assignment matrix and
the pruned cluster embedding matrix, respectively, and AP is
the adjacency matrix of the coarsened graph.

The graph pooling module has the following hyperparam-
eters: the size of the pooled graph k.., the dropout rate
droppoor and the negative slope of the LeakyReLU activation.

2) Multilayer Perceptron Classifier: The cluster embedding
matrix XP of the coarsened graph returned by the node pooling
module is flattened and fed to a multilayer perceptron (MLP)
classifier. Specifically, a Lz p-layer MLP with hidden size
hypp is utilised with a block of batch normalisation, acti-
vation function, and dropout layers utilised between the fully
connected layers. The final layer outputs a two-dimensional
vector of log probabilities for each class.

The classifier has the following hyperparameters: the num-
ber of layers Lz p, hidden size hysy p, activation function
and dropout rate dropyrp.

C. Model Implementation and Evaluation

The proposed AGGCN model was implemented using
PyTorch 1.10 [50], and PyTorch Geometric 2.0.2 [S51] and
trained on a laptop with Intel i7 CPU, 16 GB RAM and an
NVIDIA RTX 2070 GPU.

The model is trained by minimising the cross-entropy loss.
The model performance is evaluated using repeated (30 times)
10-fold stratified group cross-validation (one group = subject
identifier) and trained on the dataset collected during the eyes-
closed condition. Since all participants have multiple samples,
keeping all the samples from the same participant within the
same fold is crucial to prevent information leakage. In order
to prevent overfitting, another fold is utilised for validation to
implement early stopping and is used to optimise hyperparam-
eters. Thus, in each iteration of the cross-validation, one fold
is used as validation, one fold as testing, and the remaining
eight folds form the training set.

A stochastic gradient descent (SGD) optimiser and an
exponential learning rate scheduler are used to train the model
with a batch size of 128 for 200 epochs. If validation loss does
not decrease for 15 epochs, the training is stopped early. Addi-
tionally, zero-mean Gaussian noise with standard deviation o
is added to the input during training with probability pj,ise
to improve the generalisability of the model. Eventually, the
best model was identified using the average cross-validated F1
score measured on the validation folds. The selected model
was then retrained and tested on the dataset obtained during
the eyes-open condition and the combined dataset from both
conditions. The final results are then reported using the test
folds only. The stability of the performance is assessed by

computing the standard deviation of the samples collected over
the 30-times repeated cross-validation.

Note that the hyperparameters of the proposed model are
optimised using Bayesian optimisation. Ten warm-up random
iterations were used to initialise the optimisation, followed
by 200 optimisation iterations. The optimisation is evaluated
only on the validation sets to prevent overfitting. Moreover,
we carry out parameter-sensitivity experiments to verify the
influence of a few key hyperparameters of the proposed model
architecture. Specifically, these are the number of iterations of
the GGCN encoder, the size of the pooled graphs, the sparsity
of the learned graph and the choice of aggregation function of
the GGCN encoder. Due to the computational cost of running
these experiments, we reduce the number of repeats of the
cross-validation from 30 to 5. The hyperparameters of the
model are reported in our supplementary materials.

[V. RESULTS AND DISCUSSION

In this section, we report the experimental results of our
AGGCN model. As illustrated in Table I, our AGGCN has
shown robust performance across all the conditions. Note that
the best performance was achieved during the EC condition.
This is likely because with eyes closed, the ocular artefacts are
minimised; thus, the underlying dynamics are easier to detect.
The performance remains high even in the EO condition,
suggesting that the proposed model can detect underlying
patterns in both EC and EO conditions. However, the per-
formance decreases significantly on the EC4+EO combined
dataset. We hypothesise that the patterns learned under the
EC and EO conditions share relatively little information; thus,
the EC+EO model performs significantly worse. We explore
this further in section IV-C.

In addition, the hyperparameter values of the optimised
model are reported in Table S1 in Supplementary Materials.

A. Comparison With the Baselines

The proposed model was compared to seven baseline mod-
els proposed in the literature across the three conditions. The
first baseline is the best-performing model from our previous
work [8]. It is a GNN with two spatial graph convolutional
layers, maximum readout and brain graph defined using
the amplitude-envelope-correlation (AEC-GNN). The second
baseline model is the spatio-temporal GNN (STGCN) that uses
temporal convolutions and ChebConv layers and defines the
brain graphs using wavelet coherence [11]. Then, two CNN-
based models, PSD-CNN [24] and Wavelet-CNN [27], trained
on PSD and wavelet transform, respectively, were used. Next,
two traditional machine learning approaches were utilised:
support vector machine trained on node degree computed
from phase lag index graph (NS-SVM) [12], and a logistic
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TABLE Il
THE F1 SCORE AND THE NUMBER OF TRAINABLE PARAMETERS OF THE BASELINE MODELS AND THE PROPOSED
METHOD ACROSS CONDITIONS. THE BEST-PERFORMING MODEL IS HIGHLIGHTED IN BOLD

Model EC EO EC+EO No. of parameters
AEC [8] 81.61 £3.16 7791 £ 1.1 76.74 + 1.87 445,204
MLP [8] 82.01 +4.39 7651 +3.34 7747 £+ 4.26 54,628,354
PSD-CNN [24] 88.15 £ 0.77 80.89 =145 7951 + 1.74 3,420,432
STGNN [11] 46.71 £+ 8.58 4434 £ 733 3825 £ 17.16 662,754
Wavelet-CNN [27]  51.35 £ 5.61  57.52 £ 8.02  59.27 £ 6.44 46,755,208
AM-SVM [52] 863 £ 1.5 838 £ 1.3 80.31 £ 1.3 X
NS-SVM [12] 5593 +£3.04 5032 + 3.36 52.9 4+ 2.08 X
Proposed 89.7 + 14 86.55 + 0.98  82.46 + 1.27 2,208,861

90

+
<m7
u
i
o

80

75

Proposed A B C D E F G

Fig. 2. F1 scores of model variants. The asterisks report the p-value of a
nonparametric Mann-Whitney U test measuring the difference between
AGGCN and the ablated variants.

regression trained on vectorised adjacency matrices obtained
from coherence graphs across seven frequency bands (AM-
SVM) [52]. Finally, we use an MLP model where the input is
a flattened PSD node feature matrix [8] without using graph-
domain information.

Table I shows the fl scores of various models across
different conditions. Note that all seven models were evaluated
under the same setting (e.g. the same 1-second EEG window
samples). We can observe that our proposed AGGCN outper-
forms the baselines across all conditions. Moreover, STGCN
was originally evaluated using a cross-validation setup, which
mixed samples from the same subject in their original
paper. [11]. It is expected that its performance drops signif-
icantly when evaluated using stratified group cross-validation
in our experiments.

B. Model Ablation Study

We perform ablation experiments to determine the contri-
bution of each module of the proposed model. The following
seven ablated variants of the proposed model were tested in
our experiments.

: no node pooling;

B: graph learning replaced with a fully connected graph;
C: GGCN replaced with a R™_order ChebConv (R = 4);
e D: variants A and B combined;

o E: variants A and C combined;

o F: variants B and C combined;

e G: variants A, B and C combined.

The ablation results in Fig. 2 reveal that each of the
proposed modules contributes significantly to the high perfor-

>

mance of the proposed architecture. For variant A, we can
observe that the contribution of the node pooling module
is significant, albeit relatively small. However, this module
reduces the number of parameters of the model and helps to
produce explainable predictions (Fig. 7 and Fig. 8). Without
the node pooling, the final MLP classifier would have N x
honn X hpr p parameters (N = 23), but node pooling reduces
it to kpoot X hgNN X hyrp (kpoor = 3). For variant B, it is
not surprising that its performance decreases significantly as
the graph learning module is replaced with a fully connected
graph. Thus, it cannot leverage graph-domain information
except in the node pooling module.

Next, we demonstrate that the GGCN encoder improves
performance significantly compared to a ChebConv encoder
according to variant C. A ChebConv layer is similar to a
GGCN in its iterative nature, i.e. ChebConv iteratively updates
node embeddings by approximating the eigendecomposition
of graph Laplacian. However, ChebConv does not have any
gating mechanism, which means that information across scales
contributes to the final embedding equally. Since all of the
major modules of the proposed are shown to contribute to the
final performance significantly, it is unsurprising that the rest
of the ablated models with more than one of these modules
perform significantly worse as well (Variants D-G in Fig. 2).
Note that some of the ablated models maintain a relatively
low variance of performance. We speculate this is because the
ablated models can still learn robust embeddings, but some of
the information within the data remains inaccessible, which
would be enabled by the removed module.

The parameter sensitivity experiments also support the opti-
mal values of crucial hyperparameters of the proposed model
(Supplementary Materials, Figs S1-S4). It is worth noting
that the proposed architecture allows training relatively deep
models (using up to eleven GGCN iterations) with only a
minor performance decrease (Fig. S1). We can also observe
that although the optimal values of these hyperparameters
result in the best performance, the performance doesn’t change
much with adjacent values near the optima. This demonstrates
that although the proposed model requires a relatively large
number of hyperparameters to be determined, its performance
remains robust with sub-optimal values, thus suggesting gen-
eralisability potential.

C. Explainability of AGGCN

The proposed model generates plausible and consistent
explanations for its predictions. We generate multiple types
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Fig. 3. Top 30 strongest edges of the AGGCN-learned graphs of AD
and HC cases in EC and EO conditions (average of all samples).

of prediction explanations. Specifically, these are derived
from the following: (1) graph learning, (2) node embed-
ding and GGCN encoder, (3) node pooling, and (4) feature
masking. Except for type (4), these explanations could be
obtained for individual samples. However, we visualise the
diagnosis-averaged explanations to explore the patterns learned
by the proposed model.

1) Graph Learning: The graph learning module learns a
clear difference between the AD and HC cases, as shown
in Fig. 3 (alternatively Fig. S5). The learned brain graphs
show that AD cases have increased connectivity overall, while
HC graphs seem more sparse with few densely connected
regions. A well-defined cluster of densely connected nodes is
present in both groups within the centro-parietal and occipital
regions and a few strong edges in the frontal and temporal
regions. The locations of the strongest edges are consis-
tent across conditions. Fig. 4 then shows the top 30 edges,
where the largest increase/decrease in coupling was observed
in AD. AD seems to have increased coupling strength in
long-distance edges, particularly between frontal and pari-
etal/occipital regions. These increases are quite consistent
between conditions. In contrast, AD cases have decreased
coupling strength, mostly in local connections in the frontal
(EC) and frontal and centro-parietal (EO) regions.

Additionally, we statistically compared the learned graph
structures to determine differences between AD and HC cases
across EC and EO conditions. The results of this analysis are
reported in the supplementary materials (Fig S6).

2) Node Embeddings and GGCN: Another prediction expla-
nation can be derived from the node embeddings obtained
by the GGCN (Fig 5). In particular, we visualise the node

Fig. 4. The differences between AGGCN-learned graphs for AD and
HC cases in EC and EO conditions show the AD-related connectivity
disruption. The average of all samples, the top 30 strongest edges were
preserved. Values above zero indicate AD increase, while values below
zero indicate AD decrease.

Fig. 5. Averaged node embeddings across nodes expressed via the first
component of PCA for AD and HC cases across EC and EO conditions.
Note that embedding value does not suggest increased or decreased
activity within a given area but rather the similarity of nodes.

embeddings obtained after four iterations of GGCN and com-
press them to 1D representation using principal component
analysis (PCA) and extracting the first principal component.
PCA is fitted for each condition separately. The node embed-
dings do not express a change in activity but rather a node
similarity. Generally, the node embedding explanations show
two large regions of similar embeddings. In EC, these are
frontotemporal and centro-parietal regions, and right fron-
totemporal and the rest of the regions for HC and AD,
respectively. The HC similarity region in the EO condition
is reduced from frontotemporal to only the frontal region.
In contrast, the AD similarity region expands from the right
frontotemporal region to the left side. This further highlights
the differences in learned patterns under the EC and EO
conditions, thus explaining the reduced performance in the
combined EC+EO condition.

Next, the role of the gating mechanism is elucidated by
analysing the amount of information gathered at each scale,
i.e. iteration of GGCN (Fig. 6). We measure this by computing
the average Euclidean distance between the initial and updated
node embedding at each iteration, i.e. xl(r) and mErH) in
Eq. 3. For instance, a small distance means a small amount
of information was gathered at that scale. Local information
contributes highly to the node embeddings of the AD cases,
and then the degree of contributions linearly decreases with
increasing graph scale. The opposite pattern is observed for
HC cases, where the later iterations influence the node embed-
dings. This highlights the degradation of global and distributed
information caused by AD since the model can efficiently learn
with fewer iterations, i.e. most information is obtained from
the first three iterations.
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Fig. 7. The average probability of a node being included in the
coarsened graph by the ASAP node pooling module for AD and HC
cases across EC and EO conditions. Averaged from all samples and
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3) Node Pooling Module: The node pooling mechanism can
be exploited to derive two explanations. First, we analyse the
frequency with which each node is included in the coarsened
graph, i.e. pooling frequency (Fig. 7). Second, cluster attention
scores (i.e. g;; in Eq. 5) can be used to identify important hubs
that are highly represented in the clusters learned by the node
pooling module (Fig. 8).

The nodes in parieto-occipital regions are consistently
selected with high pooling frequency for AD and HC cases
across both EC and EO conditions (Fig. 7). Additionally,
in EC condition, HC cases frequently select frontal nodes
while AD cases tend to select central nodes. In contrast,
in the EO condition, there seems to be more variation in the
pooling frequency, with temporal nodes having a high pooling
frequency for AD and HC cases.

Note that the nodes of the pooled graphs are, in fact, cluster
embeddings, i.e. attention weighted sum of node embeddings
(Eq. 7). We visualise the nodes with the highest attention
scores of each cluster to highlight important hubs (Fig. 8).
The attention scores are directed edges from a source node,
transferring information to the cluster centred at the target
node. Alternatively, these scores can be interpreted as a
cluster membership strength. This information transfer should
be interpreted as information flow within the model and
most likely does not reflect an information flow within the
brain.

In EC, AD cases show a large hub at the P4PZ node
with strong long-distance and short-distance to various nodes.
Additionally, there is a smaller hub at the T5OI1. Similarly,
in EO, AD cases have a large hub at the T3C3 node and a

EO EO 0.8
AD HC
0.6
0.4

(F773) (7]
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F404
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[

Fig. 8.  Attention scores learned by the node pooling module (aj; in
Eq. 5), indicating the amount of information transferred from the source
node into a cluster centred at the target node. Averaged for all AD
and HC cases across EC and EO conditions (single strongest edge
preserved for each target cluster node).

smaller one at the T4T6 node. In contrast, HC cases do not
have any apparent hubs in the EC condition, with only a small
hub at the PAPZ node. The attention links also seem to be
rather short-distance. In the EO condition, HC cases show a
large hub at the T602 node and smaller hubs at the P4PZ and
T4T6 nodes.

This variance between EC and EO conditions displayed in
the pooling frequency and attention scores suggests a plausible
answer to why it is challenging for the model to learn joint
representation in the EC+EO combined condition. We spec-
ulate this is caused by the additional dynamics introduced by
the visual processing during the EO condition.

4) Feature Masking: We utilise feature masking to elucidate
the importance of the frequency components summarised at
each node by the node feature vector, i.e. PSD. In this, values
at a selected part of the node feature vectors are replaced by
zeroes and the model is retrained on this modified dataset.
The relative reduction in fl scores was then measured and
visualised in Fig 9 for EC and EO conditions.

In both EC and EO conditions, the frequencies between
6 and 10 Hz are the most important since their masking
reduced performance by 4.82% and 9.18%, respectively. This
fits well with the well-described increase of power as well
as functional connectivity in AD within these frequencies
corresponding to 6 and low o« bands [7], [9]. Similarly,
masking of the [1, 5], [36,40] and [41, 45] frequency ranges
results in a significant performance decrease in both EC and
EO. Additionally, in EO condition, the [11, 15], [16, 20] and
[26, 30] frequency ranges produce a significant performance
decrease.
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Fig. 9. Relative change in F1 score when parts of node features
are masked, showing the importance of frequency components for
the classification task for eyes closed and eyes open conditions. The
asterisks denote the p-value of non-parametric Mann-Whitney U tests
comparing whether the relative change is significantly different from 0.

D. Limitations and Future Work

Although our approach achieves competitive performance,
we identify a few drawbacks. First, the relatively small size
of our dataset imposes a limit on fitting complex models.
We address this issue by segmenting the EEG signals into
short windows. The short window length means that the model
might not be able to represent information from low-frequency
components of the signal.

Next, we do not explore alternative node feature rep-
resentations beyond PSD in this study. PSD is merely a
linear frequency-domain representation of the signal. Including
time-domain and nonlinear information in the node features
might improve the expressiveness of the model. Similarly, the
proposed graph learning mechanism is limited to linear cou-
pling patterns because (1) it is inferred from the node features
and (2) it is expressed as Pearson’s correlation coefficient.
Future work should explore other forms of FC that might
be integrated into the graph learning mechanism and study
ways to include more complex frequency-dependent coupling
information.

Finally, the model architecture might be limited by the
relatively large number of hyper-parameters that need to be
optimised. However, this limitation should be mitigated by
utilising a validation set during the optimisation. Moreover,
we explore the model stability with respect to some of the
important hyperparameters in the parameter sensitivity exper-
iments. These suggest that the achieved performance of the
proposed model is not limited purely to the optimal values of
the hyperparameters.

V. CONCLUSION

This work proposes a novel graph learning model that per-
forms highly in the AD diagnosis task. Additionally, we show
that the model produces robust and clinically relevant explana-
tions for its predictions via the novel graph structure learning
module and the node pooling mechanism. Finally, we highlight
the importance of utilising the gating mechanism within a
message-passing encoder. This allows the model to accurately
represent the multiscale distributed network disruptions dis-
played in the AD cases.
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