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h i g h l i g h t s g r a p h i c a l a b s t r a c t

• Non-invasive early detection of coronary 
microvascular dysfunction (CMD).

• Vectorcardiogram (VCG) and cardiody-
namicsgram (CDG) features for CMD de-
tection.

• Our proposed multilayer perceptron model: 
accuracy of 0.904 and sensitivity of 0.925.

• Temporal and spatial features of VCG and 
CDG are effective indicators of a CMD.
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Purpose: As a main etiology of myocardial ischemia, coronary microvascular dysfunction (CMD) can occur 
in patients with or without obstructive coronary artery disease. Currently, there is a lack of a non-invasive 
approach for early detection of CMD.
Aim: We aim to develop a multilayer perceptron (MLP) algorithm to achieve non-invasive early detection 
of CMD based on vectorcardiography (VCG) and cardiodynamicsgram (CDG) features.
Methods: Electrocardiograms of 82 CMD patients and 107 healthy controls were collected and synthesized 
into VCGs. The VCGs’ ST-T segments were extracted and fed into a deterministic learning algorithm to 
develop CDGs. Temporal heterogeneity index, spatial heterogeneity index, sample entropy, approximate 
entropy, and complexity index were extracted from VCGs’ ST-T segments and CDGs, entitled as STT- and 
CDG-based features, respectively. The most effective feature subsets were determined from CDG-based, 
STT-based, and the combined features (i.e., all features) via the sequential backward selection algorithm 
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Multilayer perceptron (MLP) as inputs for CDG-, STT-, and CDG-STT-based MLP models optimized with an improved sparrow search 
algorithm, respectively. Finally, the classification capacity of the corresponding models was evaluated via 
five-fold cross-validations and tested on a testing dataset to verify the optimal one.
Results: The CDG-STT-based MLP model had significantly higher evaluated metrics than CDG- and STT-
based ones on the validation dataset, with the accuracy, sensitivity, specificity, F1 score, and AUC of 
0.904, 0.925, 0.870, 0.870, and 0.897 on the testing dataset respectively.
Conclusions: The MLP model based on VCG and CDG features showed high efficiency in identifying CMD. 
The CDG-STT-based MLP model may afford a potential computer-aided tool for non-invasive detection of 
CMD.
© 2023 AGBM. Published by Elsevier Masson SAS. This is an open access article under the CC BY-NC-ND 

license (http://creativecommons .org /licenses /by-nc -nd /4 .0/).
1. Introduction

The coronary arterial system consists the epicardial arteries (di-
ameter ∼ 5 mm) and the coronary microvasculature (diameter <
500 μm) which hold 10% and 90% of the total myocardial blood 
volume, responsible for approximate 25% and 75% of the total 
coronary vascular resistance for coronary blood flow (CBF), respec-
tively [1]. The abnormality in epicardial arteries or/and coronary 
microvasculature system can lead to insufficient CBF to meet my-
ocardial metabolic demand, i.e., myocardial ischemia, which has 
been listed as the leading cause for the global death [2].

Obstructive coronary artery disease (CAD) and coronary mi-
crovascular dysfunction (CMD) are two major causes of myocardial 
ischemia [3]. Obstructive CAD, defined as severe epicardial coro-
nary artery stenosis determined via coronary angiography (CAG, 
diameter severity [DS] ≥ 50%) or a fractional flow reserve (FFR, 
value < 0.75) [4], has been quantitatively investigated and well es-
tablished as a main etiology of myocardial ischemia. However, due 
to the lack of proper tool for microvascular imaging, CMD is not 
fully understood but has attracted increasing attention. Recently, 
CMD has been recognized as a main etiology of myocardial is-
chemia in patients who experience ischemia-like symptoms and 
signs despite non-obstructive CAD (DS < 50%), (e.g., Cardiac syn-
drome X), or after the well-established treatment of obstructive 
CAD [4]. Patients with CMD have higher risks of poor prognosis, re-
hospitalization, adverse cardiovascular events, and mortality [5,6]. 
Therefore, the early and accurate detection of CMD is a significant 
unmet clinical need.

CMD results from the structural or functional abnormalities 
in coronary microvasculature [7]. CMD disables the coronary mi-
crovasculature from dilating to its maximum for increasing CBF to 
cover an increased myocardial metabolic demand, leading to my-
ocardial ischemia [1,3]. CMD can coexist with CAD [5,6] or occur 
in the absence of obstructive CAD where the FFR is normal (FFR ≥
0.8) [8–11]. The prevalence of CMD has reported to be 50% to 65% 
of angina patients with non-obstructive CAD [5], and more than 
50% in patients with obstructive CAD, where FFR can locate in the 
normal range due to the decreased blood flow and pressure drop 
[9]. Therefore, the diagnostic tools of CAD, including FFR, are not 
reliable in detecting CMD.

Although a gold standard for coronary microvascular assess-
ment has not yet been established, the index of microcirculatory 
resistance (IMR) is a well-recognized parameter in diagnosing CMD 
[3,10,12]. The in vivo measurement of IMR is achieved invasively 
by using an intravascular guide wire with the injection of saline 
into coronary artery multiple times [13]. Therefore, it is applied 
only on patients with severe ischemia, and not applicable for the 
early detection of CMD. Other state-of-the-art techniques includ-
ing quantitative imaging are not applied in daily clinical practice 
due to their radiation, high cost, invasiveness, and complicated op-
eration [1]. There is a high need for a non-invasive, accessible, and 
cost-efficient tool for the early detection of CMD in clinical practice 
[14].
2

CMD can lead to ischemic changes in the electrocardiography 
(ECG) [7,14], which provides the possibility of ECG-based non-
invasive detection of CMD. Specially, ischemic ST segment changes 
[15,16], variations in T wave [14,17], standard deviation of normal 
R-R intervals [18], and the prolongation of the heart rate-corrected 
QT interval [17,19] in patients with non-obstructive CAD have been 
validated as indicators of a CMD. These pilot studies verify the pos-
sibility of artificial intelligence algorithms with ECG-based features 
for detection of CMD. However, due to limited number of CMD-
related features and the scarce of data for validation, there is a 
lack of computer-aided diagnostic tool based on machine learn-
ing algorithms. The transformation and in-depth analysis of ECG 
may disclose more CMD-related features. Vectorcardiogram (VCG), 
a special type of ECG, could even provide better performance than 
ECG in detecting myocardial ischemia [20,21]. Some multidimen-
sional VCG features including temporal-heterogeneity index (THI), 
spatial-heterogeneity index (SHI), and entropies showed high effi-
cacy in detecting the temporal and spatial changes in VCG signals 
induced by myocardial ischemia [22]. The cardiac dynamic infor-
mation underlying VCGs’ ST-T segments has been captured for the 
detection of obstructive CAD via cardiodynamicsgram (CDG) con-
structed via the deterministic learning algorithm [23]. The shapes 
of CDGs significantly differ between patients with obstructive CAD 
(irregular shapes) and healthy controls (regular shapes) [23]. Some 
patients with ischemic symptoms showed irregular CDGs, but had 
non-obstructive CAD, where CMD might play a key role. The initial 
observations in existing studies suggest that temporal and entropy 
features of VCG and CDG might be used as the indicators of a CMD 
[22,23]. However, there is a lack of studies on VCG- and CDG-based 
non-invasive detection of CMD. In this study, we aim to investi-
gate the effectiveness of VCG and CDG features in detecting CMD 
and develop an optimized machine learning algorithm as the first 
attempt to fill the gap in patient-specific, non-invasive early detec-
tion of CMD.

2. Materials and methods

The schematic diagram of this work is illustrated in Fig. 1. The 
10-second ECGs were cleansed and denoised, and then synthesized 
into VCGs mathematically. VCGs’ ST-T segments were extracted by 
employing a squeeze and regional approach. Subsequently, CDGs 
were constructed via a deterministic learning algorithm fed with 
VCGs’ ST-T segments. Multidimensional features were extracted 
from CDGs’ and VCGs’ ST-T segments, and entitled as CDG- and 
STT-based features, respectively. Subsequently, the most effective 
feature subsets were determined from CDG-based, STT-based, and 
the combined features, i.e., all features, by adopting the sequential 
backward selection algorithm (SBSA), generating STT-, CDG-, and 
STT-CDG-based multilayer perceptron (MLP) models. The number 
of neurons in hidden layers of MLP models was optimized with a 
modified sparrow search algorithm (SSA). Finally, the classification 
performances of three models were comprehensively evaluated us-
ing five-fold cross-validations on a training-validation dataset and 
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Fig. 1. The schematic diagram of our algorithm. (ECG: electrocardiography, VCG: vectorcardiogram, CDG: cardiodynamicsgram, SBSA: sequential backward selection algorithm, 
and SSA: sparrow search algorithm.)
tested on a testing dataset to identify the best one for the detec-
tion of CMD.

2.1. Data information

In this retrospective study, ECGs and clinical characteristics 
were collected from 189 subjects of two cohorts. Regarding neg-
ative samples, 107 12-lead ECGs (duration: ≥ 10 seconds; reso-
lution: 16-bit with 1 μV/LSB; sampling rate: 500 Hz) were ob-
tained from 107 healthy controls (73 females and 34 males, age: 
36.3±15.1 years) of China Physiological Signal Challenge 2018 
database [24].

As for positive samples, CMD was diagnosed according to stan-
dardized diagnostic criteria proposed by COVADIS (Coronary Va-
somotor Disorders International Study Group): IMR ≥ 25 and FFR 
> 0.8 [10,25]. FFR and IMR were measured in a standard fashion 
by employing a coronary guidewire (St. Jude Medical Inc., Pres-
sureWireCertus, C12008) during maximal hyperemia [25].

Inclusion criteria applied to positive samples were given by: (1) 
absence of epicardial flow-limiting stenosis (FFR ≥ 0.8); (2) exis-
tence of stable or chronic symptoms of myocardial ischemia; (3) 
presence of symptoms of chest pain or tightness but no obvious 
evidence of myocardial ischemia; or (4) presence of objective evi-
dence of myocardial ischemia.

Exclusion criteria for positive samples were described as fol-
lows: (1) existence of unsuccessful measurement of FFR or IMR; 
(2) myocardial infarction occurred within 72 hours after measure-
ment; or (3) existence of the following comorbidities: atrial fibril-
lation, left ventricular hypertrophy, bundle branch blocks, conges-
tive heart failure, pulmonary arterial hypertension, or heart valve 
disease.

All the existing cases with FFR and IMR measurements up 
to December 2022 were comprehensively reviewed in the Sec-
ond Affiliated Hospital of Zhejiang University with approval from 
local ethics committee for sharing and analyzing retrospective 
anonymised patient data. Eventually, 82 patients with CMD and 
their 118 10-second, 12-lead ECGs (sampling rate: 500 Hz; res-
olution: 16-bit with 5 μV/LSB) recorded utilizing a commercially 
available electrocardiograph (Netherlands Philips Electronics Co. 
LTD, PageWriter TC30) were chosen. The local ethics committee 
waived the requirement of written informed consent for partici-
pation. The clinical characteristics of patients with CMD are listed 
in Table 1.

2.2. Signal preprocessing

After ECGs were cleansed, ECGs from healthy controls were seg-
mented into 10-second segments. 319 10-second, 12-lead ECGs 
(201 from healthy controls, 118 from CMD patients) were finally 
selected for further analysis. On the selected ECG segments, the 
3

Table 1
Clinical characteristics of patients with CMD.

Parameter Values*

Basic characteristics
Age, years 67.41±8.99
Female, n (%) 34 (46.34)
Heart rate, bpm 72.00±13.13
Systolic blood pressure, mmHg 132.17±17.16
Diastolic blood Pressure, mmHg 73.47±10.35
Risk factors
Smoking history, n (%) 19 (23.17)
Hypertension, n (%) 44 (53.65)
Diabetes mellitus, n (%) 28 (34.15)

* Quantitative and count variables are shown in mean ± stan-
dard deviation, and number (percentage %), respectively.

baseline drift and low-frequency fluctuations (< 0.5 Hz) were 
eliminated via two moving median filters connected in cascade 
(with length 1.2 and 0.6 seconds respectively) [23] to maximally 
avoid the deformation of ST segment in comparison with the clas-
sical high-pass filter. High-frequency power-line interference and 
electromyogram noise (10-230 Hz) were eliminated via discrete 
wavelet transform (DWT)-based filtering algorithm, which can be 
found in [22].

The VCG consists of three orthonormal leads (leads V x , V y , and 
V z) [21,26] which represent cardiac electric activity in the frontal, 
horizontal, and sagittal planes [27]. VCG reflects both the magni-
tude and spatial information of heart activity in comparison with 
12-lead ECG (leads I, II, III, avR, avL, avF, V1, V2, V3, V4, V5, and 
V6) [28]. The VCGs can be synthesized from 12-lead ECGs [29], as 
exemplified in Equation (1).

⎡
⎣ V x

V y
V z

⎤
⎦=

⎡
⎣ 0.38 −0.07 −0.13 0.05 −0.01 0.14 0.06 0.54

−0.07 0.93 0.06 −0.02 −0.05 0.06 −0.17 0.13
0.11 −0.23 −0.43 −0.06 −0.14 −0.20 −0.11 0.31

⎤
⎦·

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I
I I

V 1
V 2
V 3
V 4
V 5
V 6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(1)

where V x , V y , and V z are the digital voltage values sampled from 
the corresponding leads of VCG. I , I I , V 1, V 2, V 3, V 4, V 5, and V 6
present the digital voltage values sampled from the corresponding 
leads of ECG.

Ultimately, ST-wave onsets were determined on the VCGs utiliz-
ing a squeeze algorithm, and T-wave offsets employing a regional 
approach to obtain ST-T segments for feature extraction [30].
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2.3. Feature extraction

2.3.1. STT-based features
The time series of each VCG lead was obtained by splicing the 

corresponding ST-T segments beat by beat and contained about 
900 to 1200 points, each of which presented digital voltage value 
sampled during ST-T duration. The time series in all VCG leads 
formed VCGs’ three-dimensional (3-D) ST-T loops. SHI and THI
were calculated from VCGs’ 3-D ST-T loops to evaluate CMD-
related spatial and temporal characteristics using Equations (a.1) 
and (a.2) in the Supplementary Material, and entitled as VCGSHI and 
VCGTHI respectively.

Each time series was standardized to have its standard devia-
tion be one. For each VCG lead, sample entropy (SampEn), approx-
imate entropy (ApEn), and complexity index (C I) were calculated 
from the standardized time series to measure the complexity of 
beat-to-beat ST-T segment employing Equations (a.3), (a.4), and 
(a.5) in the Supplementary Material, and entitled as V i SampEn, 
V i ApEn, and V i C I , i = x, y, z.

2.3.2. CDG calculation
The deterministic learning algorithm can accurately model 

the dynamics of the system that generates periodic trajectories, 
and represent it in a time-invariant manner. The VCGs are non-
stationary periodic trajectories generated from the heart moving 
periodically in 3-D space in cardiac cycles (Fig. 2a-b). Therefore, 
the dynamics underlying VCG’ ST-T segments (Fig. 2c-d) can be 
modeled via the deterministic learning algorithm and presented as 
CDG [23].

CDG could be presented as: V̇ stt = F (vstt , η) = [ f1(vxstt(t)),
f2(v ystt(t)), f3(v ystt(t))], V stt(t0) = v0, where V stt = [

vxstt , v ystt ,

vzstt
]

represents VCGs’ ST-T segments, F (V stt; η) is a nonlinear 
function vector and presents the cardiac dynamics underlying the 
ST-T segments, and η is a constant vector of system parameters.

In the deterministic learning algorithm, three localized Radial 
Basis Function (RBF) neural networks were constructed to approx-
imate the cardiac dynamics, i.e., F (V stt; η).

˙̂V stt = −A(V̂ stt − V stt) + ω̂T S(V stt) (2)

where V̂ stt = [
v̂xstt , v̂ ystt , v̂ zstt

]
is the state vector of dynamic RBF 

neural network, A is constant matrix with all entries greater than 
zero, and ω̂ represents the approximate value of the optimal 
weight. Si(V stt) = [si1(V stt − ζ1), . . . , siN(V stt − ζN )] is radial ba-
sis function, si j(·) is Gaussian function, and ζi is distinct points in 
state space.

˙̂ω was updated as follows:

˙̂ω = ˙̃ω = −�S(V stt)Ṽ stt − δ�ω̂ (3)

where Ṽ stt = V̂ stt − V stt , �i = �T
i > 0, ω̃ = ω̂ − ω∗ , ω∗ represents 

the optimal weight, and δ is a constant with small value.
By using three RBF neural networks ω̂T

i Si(V stt), i = 1, 2, 3 with 
an initial weight, ω̂i(0) = 0, the outputs of RBF neural networks 
are the approximation of F (V stt; η) according to Equation (4). Ac-
cordingly, CDG is drawn as the 3-D graphic representation of the 
information (Fig. 2e-f).

F (V stt;η) = ω̄T S(V stt) + err(V stt)

≈
[
ω̄T

1 S1(vxstt), ω̄
T
2 S2(v ystt), ω̄

T
3 S3(vzstt)

]
= [W1 S1, W2 S2, W3 S3] (4)

where ω̄ represent the arithmetic mean of the value of ω̂, and err
are the practical approximation errors.
4

2.3.3. CDG-based features
CDGSHI and CDGTHI were calculated from CDG employing Equa-

tions (a.1) and (a.2) in the Supplementary Material. After W i Si , 
i = 1, 2, 3 was standardized to have its standard deviation be one, 
W i SiSampEn, W i SiApEn, and W i Si C I were calculated employing 
Equations (a.3), (a.4), and (a.5) in the Supplementary Material re-
spectively.

2.4. Feature selection

SBSA [31] was implemented to identify the most effective fea-
ture subset as the input of MLP models for distinguishing CMD 
patients and healthy controls. First, a collection of candidate fea-
ture subset was created on the training-validation dataset. Spe-
cially, the iteration variable n was initially set to be the number 
of initial features. Each subset with n − 1 features was trained and 
evaluated to select the candidate one with the highest five-fold 
cross-validation F1 score as the input of next iteration where the 
subsets with n − 2 features derived from the selected n − 1 ele-
ment subset were evaluated and compared similarly. The iteration 
continued until n = 1. Finally, the optimal feature subset with the 
maximal five-fold cross-validation F1 score was selected from the 
SBSA-generated candidate feature subsets in the iterations.

2.5. CMD detection using MLP models optimized with the modified SSA

2.5.1. MLP model design
Class-imbalance ratio is proposed to evaluate the extent of 

class-imbalance which is a common concern in medical datasets 
[32]. When the class-imbalance ratio is less than 1:9, MLP shows 
high robustness against class-imbalance on real world benchmark 
data [33,34]. In current study, the class-imbalance ratio between 
CMD patients and healthy controls was 1:1.30, which is much 
lower than the threshold value of 1:9 and fully applicable for the 
development of MLP models.

MLP model is a particular case of supervised Artificial Neural 
Network, where each neuron of the architecture implements a lo-
gistic function and has an input layer, several hidden layers, and 
an output layer. For the model design, CDG- and STT-based model 
denoted MLP framework fed with CDG- and STT-based features, re-
spectively. Meanwhile, CDG-STT-based model included both CDG-
and STT-based features as inputs. MLP models with two hidden 
layers were generated using Python 3.7 employing an open-source 
library Scikit-learn (http://scikit -learn .org /stable) to distinguish be-
tween healthy controls and CMD patients.

2.5.2. Hyper-parameters optimization using the modified SSA
Determining the network topology is one of the important as-

pects of MLP. The number of neurons in the input and output 
layers are determined by the number of the inputs and outputs 
respectively [35]. The number of neurons in the hidden layer, re-
ferred to as hyper-parameters of MLP model [36] plays an impor-
tant role for the classification performance and should be deter-
mined before the training, given that it cannot be learned during 
the training process [37,38]. Previous studied has used swarm op-
timization algorithms to determine the number of neurons in the 
hidden layer of MLP model [39,40].

SSA, a novel swarm intelligence optimization algorithm, was 
utilized to optimize the number of neurons in hidden layers of 
MLP model because of its stronger optimization ability and faster 
convergence speed compared with other swarm optimization algo-
rithms [41].

Whereas, two major problems make SSA easy to be trapped into 
local optimal solutions, leading to premature convergence. Firstly, 
the initialization strategy of the basic SSA is a simple random 

http://scikit-learn.org/stable
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Fig. 2. VCG, VCG’s ST-T loops, and CDG. (a) 10-second VCG from a CMD patient. (b) 10-second VCG from a healthy control. (c) VCG’s ST-T loops from a CMD patient. (d) 
VCG’s ST-T loops from a healthy control. (e) CDG from a CMD patient. (f) CDG from a healthy control.
method, making the performance of the algorithm largely depen-
dent on the diversity of the initial populations [42,43]. Secondly, 
the sparrow group gradually clusters around the local optimal po-
sition and has poor population diversity in later iterations, which 
can induce a local aggregation in the optimization process [44]. 
To overcome these limitations, we proposed a modified SSA inte-
grating chaotic map and Gaussian mutation [45] bespoke for the 
hyper-parameters (i.e., the numbers of neurons in the hidden layer 
one and two) optimization (Fig. 3).

SSA simulates the sparrow’s foraging process, and the sparrow 
population consists of the discoverers, participants, and watchmen. 
A discoverer with better fitness value guides the population to-
wards the area with food. The participants obey the discoverers’ 
5

guidance and find food. The identity of the discoverers and the 
participants is not fixed, and they can convert into each other. The 
watchmen warn of environmental threats and decide whether the 
population moves closer to a much safer area.

The position of the ith sparrow was set to be Pi = [
pi1, · · · , pij,

· · · , piD
]
, i = 1, 2, . . . , N , where pij represents the position of the 

ith sparrow in the jth dimension. N and D are the number of 
sparrows and the dimension of the parameters to be optimized.

To overcome the limitations of random initialization strategy 
of SSA, the chaotic variables were calculated using the Bernoulli 
chaotic map in our algorithm [46] to increase the diversity of 
initial positions and enhance the global search ability of the al-
gorithm as follows:
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Fig. 3. The flowchart of MLP models optimized with the modified SSA. (MLP: multilayer perceptron, SBSA: sequential backward selection algorithm, and SSA: sparrow search 
algorithm.)
bi+1 j =
⎧⎨
⎩

bij
(1−λ)

), bij ∈ (0,1 − λ]
(bij−1+λ)

λ
, bij ∈ (1 − λ,1)

,

i = 1, ..., N, j = 1, ..., D (5)

where λ = 0.4 [46].
Then, the chaotic variables were transferred to the solution 

space of the problem to be solved as follows:

pij = pmin + (pmax − pmin) × bij (6)

where pmin and pmax present the minimum and maximum values 
of the parameter to be optimized.

Subsequently, the corresponding fitness function of the ith
sparrow was based on Equation (7), and the minimum fitness 
value was taken as the goal. Better classification performance of 
the algorithm leads to higher F 1 score and lower fitness value.

f un(Pi) = 1 − F 1 score (7)

where F 1 score denotes F1 score of the MLP model on the 
training-validation dataset. F 1 score takes into account precision 
and recall, and is not sensitive to the class-imbalance [47].

In each iteration step, the position of the discoverer was up-
dated as follows:

pt+1
i j =

{
pt

i j · exp(− i
rand(0,1)·itermax

), R2 < ST

pt
i j + Q · L, R2 ≥ ST

(8)

where t is the current iteration time, and itermax represents 
the maximum number of iterations. rand(0, 1) ∈ [0,1] is a ran-
dom number. Q refers to a standard normal distributed random 
number. R2 ∈ [0,1] denotes the warning value, and ST ∈ [0.5,1]
presents the security threshold.

The position of the participant was updated according to the 
following equation.
6

pt+1
i j =

⎧⎨
⎩

Q · exp(
pt

worst−pt
i j

i2 ), i > N/2

pt+1
b +

∣∣∣pt
i j − pt+1

b

∣∣∣ · A+ · R, i ≤ N/2
(9)

where pt
worst denotes the current global worst position in response 

to the highest fitness value, and pt+1
b is the optimal position oc-

cupied by the discoverer in the (t + 1)th iteration. A is a 1 × D
matrix with each factor randomly assigned 1 or −1 only, where 
A+ = AT (A AT )−1. R is a unit row vector of D columns.

The watchman updated its position as follows:

pt+1
i j =

⎧⎪⎪⎨
⎪⎪⎩

pt
best + N(0,1) ·

∣∣∣pt
i j − pt

best

∣∣∣ , f un(Pi) > f unbest

pt
i j + K ·

( ∣∣∣pt
i j−pt

worst

∣∣∣
( f un(Pi)− f unworst )+γ

)
, f un(Pi) = f unbest

(10)

where pt
best is the current global optimal position in response to 

the lowest fitness value. N(0, 1) is a standard normal distributed 
random number. K ∈ [−1,1] is a random number. f unbest and 
f unworst are globally minimal and maximal fitness values in cur-
rent iteration. γ is a very small constant to avoid the denominator 
from being zero.

To prevent the sparrow group from clustering around the lo-
cal optimal position in SSA, Gaussian mutation or Bernoulli chaotic 
variables were adopted after the first iteration to update the posi-
tion of sparrows via comparing individual fitness value and the 
average fitness value, i.e., f unavg of all sparrows [45]. When 
f un(Pi) < f unavg , meaning that the algorithm started clustering, 
the position of ith sparrow was calculated using Gaussian mutation 
to avoid its position from being clustered as Equation (11) and its 
fitness value was calculated.

pijaf ter = pij · (1 + N(0,1)) (11)
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Fig. 4. The flowchart of a modified SSA for the hyper-parameters optimization.
where pijaf ter presents the position of the ith sparrow calculated 
using Gaussian mutation or Bernoulli chaotic variables.

When f un(Pi) ≥ f unavg , meaning that the position of sparrow 
becomes dispersive, chaotic disturbance was performed to prevent 
the position of ith sparrow from being dispersive as Equation (12), 
and its fitness value was updated.

Pijaf ter = pij · (1 + pijnew · 1

NT
)/2 (12)

where NT is the number of pij among all sparrows. pijnew is the 
new position updated based on Equations (5)–(6).
7

The new fitness value of each sparrow was compared with 
the previous one calculated before Gaussian mutation or Bernoulli 
chaotic variables. The lower one was accepted with its correspond-
ing position updated simultaneously. The current global optimal 
position, pt

best, j , and its fitness value, f unbest , were updated as well 
as the current global worst position, pt

worst, j , and its fitness value, 
f unworst , for the next iteration.

Finally, the position with the minimal fitness value was found 
as the optimal hyper-parameters and output to the MLP model. 
The process of the modified SSA is illustrated in Fig. 4.
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Fig. 5. The dataset split for five-fold cross-validation.
The values of N, D , and itermax were set to be 30, 2, and 60, 
respectively. The number of the discoverers and watchmen account 
for 20% and 10%, respectively, and ST = 0.8.

2.6. Experiment and model evaluation

Each subject in positive and negative samples was assigned a 
unique numeric number, and his/her 10-second ECGs were named 
and ranked in accordance with his/her numeric number. In general, 
the first 80% ECGs were split for the training-validation dataset, 
and the last 20% for the testing dataset [48] (Fig. 5). Near the 
cut-off point, the ECGs originating from the same patient might 
be split into the both datasets, which might lead to inaccurate 
classification performance. To solve this problem, these ECGs were 
removed into one dataset only manually to ensure the indepen-
dence of the testing dataset from the train-validation ones. Regard 
to positive samples, there were 95 ECGs on the training-validation 
dataset and 23 ones on the testing dataset. As for negative sam-
ples, the training-validation dataset contained 161 ECGs and the 
testing dataset had 40 ones.

A five-fold cross-validation method was adopted for evaluating 
the classification performance of the constructed models on the 
training-validation dataset (Fig. 5). Then, the trained model with 
hyper-parameters optimized by the modified SSA was tested on 
the testing dataset.

The evaluation metrics consist of accuracy, specificity, sensitiv-
ity, F1 score, and the area under the curve (AUC) of the receiver 
operating characteristic curve [22,49]. AUC of the five-fold cross-
validation was used to adjust hyper-parameters of the MLP model 
[50].

The categorical data were provided as numbers and percent-
ages, and numerical variables as mean ± standard deviation or 
median with interquartile range according to their distributions, 
which were checked by utilizing the Kolmogorov-Smirnov test [51]. 
Our extracted features between healthy controls and CMD patients 
were compared via independent t-test (for normal distribution) or 
Mann-Whitney U test [52] (for non-normal distribution), and eval-
uation metrics between different models by using paired t test (for 
normal distribution) or Wilcoxon signed-sum test (for non-normal 
distribution). Statistical significance was defined as: p ≤ 0.05 [53]. 
The statistical analysis was deployed on SPSS (Version 25.0, IBM 
Corp).
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3. Results

3.1. The results of feature extraction

Fig. 6 shows the STT-based features extracted from healthy 
controls and CMD patients. Compared with healthy controls, pa-
tients with CMD afford significantly higher VCGSHI (Fig. 6a), 
VCGTHI (Fig. 6b), V xC I , V y SampEn, V y ApEn, V z SampEn, and V zC I
(Fig. 6c), but lower V x ApEn (Fig. 6c).

The values of features extracted from CDGs are illustrated in 
Fig. 7. Healthy controls have higher VCGSHI than CMD patients 
(Fig. 7a). It is obvious that the remaining features from patients 
with CMD are significantly higher than those of healthy controls 
(Fig. 7b-c).

3.2. Performance evaluation between CDG-STT-based, STT-based, and 
CDG -based models

The performances of the three models, i.e., CDG-STT-based, STT-
based, and CDG-based models on the training dataset are listed 
in Table 2. That CDG-STT-based model outperforms the other two 
models across all evaluation metrics.

There were significantly differences in accuracy (P = 0.012) 
across the CDG-STT-, CDG-, and STT- models as well as sensitiv-
ity (P = 0.012), F1 score (P = 0.009), and AUC (P = 0.046). Fig. 8
illustrates the comparisons of evaluation metrics on the validation 
dataset between CDG-STT- and CDG-based models, between CDG-
STT- and STT-based models. As a result, the CDG-STT-based model 
shows significantly better performance than CDG-based one in ac-
curacy, F1 score, and AUC. In addition, this model affords signifi-
cantly higher accuracy and sensitivity than STT-based one. Hence, 
CDG-STT-based model was determined as the optimal one for de-
tecting CMD.

The comparisons of the classification performance of the three 
models on the testing dataset indicated the same trend, as listed 
in Table 3. CDG-STT-based model outperforms both CDG- and STT-
based models across all testing evaluation metrics, with all values 
higher than 0.8. Specially, the testing accuracy and sensitivity of 
CDG-STT-based model even reaches 0.905 and 0.925 respectively. 
Hence, CDG-STT-based model was verified as the optimal one for 
the detection of CMD.
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Fig. 6. STT-based features values. (a) Values of VCGSHI. (b) Values of VCGTHI. (c) Values of SampEn, ApEn, and C I extracted from VCGs’ ST-T segments. (The VCG-based features 
between two groups were compared via Mann-Whitney U test. ns presents no significance. *p ≤ 0.05, **p ≤ 0.005, and ***p ≤ 0.001.)

Table 2
The evaluation metrics of the three models on the training dataset.

Models Accuracy Specificity Sensitivity F1 score AUC

CDG-based 0.801±0.027 0.714±0.032 0.850±0.043 0.727±0.024 0.782±0.021
STT-based 0.844±0.059 0.754±0.146 0.907±0.029 0.775±0.068 0.830±0.067
CDG-STT-based 0.967±0.016 0.935±0.044 0.984±0.005 0.893±0.037 0.969±0.022
Table 3
The testing evaluation metrics of the three models.

Models Accuracy Specificity Sensitivity F1 score AUC

CDG-based 0.793 0.739 0.825 0.723 0.782
STT-based 0.825 0.696 0.900 0.744 0.798
CDG-STT-based 0.905 0.870 0.925 0.870 0.897

3.3. Comparison of classification performance of CDG-STT-based MLP 
models optimized with modified SSA and SSA

The CDG-STT-based MLPs optimized with modified SSA and SSA 
are compared on the validation and testing datasets, as listed in 
Tables 4–5, where the model optimized with modified SSA offers 
higher evaluation metrics.
9

4. Discussion

4.1. Comparison with existing studies

Our proposed CDG-STT-based MLP model with the hyper-
parameters optimized with the modified SSA is validated as the 
optimal one for the early detection of CMD. With high perfor-
mance (all testing evaluation metrics over 0.8, specially accuracy 
of 0.905, sensitivity of 0.925), this algorithm offers the possibility 
of non-invasive, low-cost early detection of CMD based on the ECG 
test which is commonly performed in clinical practice.

Obstructive CAD is the leading cause of myocardial ischemia 
and the focus of previous ECG-based artificial intelligence algo-
rithms of myocardial ischemia detection [54], whereas the inves-
tigation on CMD is limited. Recently, standard deviation of normal 
R-R intervals [18], ischemic ST segment changes [15,16], baseline 
heart rate-corrected QT interval [19], and variations in T wave 
[14] have been verified to be indicators of a CMD providing the 
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Fig. 7. Values of CDG-based features. (a) Values of CDGSHI. (b) Values of CDGTHI. (c) Values of SampEn, ApEn, and C I extracted from CDG. (The CDG-based features between 
two groups were compared via Mann-Whitney U test. ns presents no significance. *p ≤ 0.05, **p ≤ 0.005, and ***p ≤ 0.001.)

Table 4
The evaluation metrics on the validation dataset of the CDG-STT-based MLP model optimized with the modified 
SSA and SSA.

Hyper-parameters 
optimization method

Accuracy Specificity Sensitivity F1 score AUC

SSA 0.898±0.054 0.809±0.117 0.945±0.040 0.854±0.081 0.877±0.084
The modified SSA 0.922±0.033 0.876±0.066 0.957±0.027 0.893±0.038 0.916±0.038

P -values 0.084 0.673 0.022* 0.005** 0.130

Note: Data were derived from the five-fold validation.

Table 5
The testing evaluation metrics of the CDG-STT-based MLP model optimized with the modified SSA and SSA.

Hyper-parameters 
optimization method

Accuracy Specificity Sensitivity F1 score AUC

SSA 0.841 0.739 0900 0.773 0.820
The modified SSA 0.905 0.870 0.925 0.870 0.897
possibility for ECG-based CMD detection. However, as far as we 
know, there is a scarcity of computational models for CMD de-
tection. SARA et al. proposed a linear discriminant analysis model 
with T wave area, T Peak-T end, and Y-center of gravity to de-
tect CMD using coronary flow reserve (CFR) [14]. Their model can 
identify the existence of an abnormal CFR with the highest accu-
racy of 66.5 ±0.3% and 74 ±2% for females and males, respectively 
[14]. The authors utilized an abnormal CFR and DS < 50% as the 
standard for selecting CMD patients to exclude the influence of 
epicardial coronary artery stenosis. However, the CFR measurement 
allows for appraisal of the microvasular and epicardial artery func-
10
tion together [6]. In comparison, IMR is directly measured from 
the distal coronary arteries and has a stronger correlation with the 
true microcirculatory resistance than CFR [4]. Therefore, we max-
imally exclude the confounding hemodynamic effect of epicardial 
stenosis by using IMR as the reference of CMD [1,12]. Additionally, 
we used FFR as a direct hemodynamic evaluation to exclude CAD 
patients in positive group.

As far as we known, this is the first attempt on an ECG-based 
automatic CMD detection algorithm using machine learning mod-
els fed with VCG- and CDG-based features. Our proposed model 
hence can detect CMD in suspicious patients in the absence of 
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Fig. 8. The comparison of the classification performance of the three models on 
the validation dataset. (ns presents no significance. *p ≤ 0.05, **p ≤ 0.005, ***p ≤
0.001.)

epicardial flow-limiting stenosis based on resting ECG without any 
extra exercise.

4.2. Effectiveness of ECG-derived features in detecting CMD

CMD-induced myocardial ischemia can lead to a subtle impair-
ment of repolarization and a heterogeneous repolarization process 
[1,17], which could be detected from the temporal and spatial 
properties of the heart vector [55].

VCG represents the trajectory of the tip of the heart vector in 
three-orthogonal dimensions and records both the direction and 
magnitude of the heart vector, where CMD-induced repolarization 
abnormality can be reflected in some variations including altered 
spatial orientations and magnitude of ST vectors [56,57], T loop 
morphology, and the T vector angle [58]. Previous studies have 
indicated that altered T-wave morphology in patients with non-
obstructive CAD could be the indicators of a CMD [14,17]. In ad-
dition, ST-segment elevation could be used to diagnose microvas-
cular obstruction [15]. In our work, the variations in VCGs’ ST-T 
segments are evaluated using VCGSHI, VCGTHS, and entropy fea-
tures, and they are different between healthy controls and patients 
with CMD (Fig. 6). Therefore, they can be considered as indicators 
of a CMD.

CDG can present the rate of CAD-induced ischemic ST-T changes 
in VCG lead and reflect the dynamics on its shapes [23,59]. How-
ever, false-positive cases have been reported in detecting CAD us-
ing CDG results when DS ≥ 50% was determined as the standard 
for diagnosing ischemia. The coronary slow phenomenon, i.e., the 
decrease of blood flow in a coronary artery with non-obstructive 
lesion, was found in the false-positive cases [59]. With these cases 
(DS < 50% with coronary slow phenomenon) counted as posi-
tive, the specificity of CDG-based myocardial ischemia detection 
increased from 82.6% to 85.2%, which indicated that CMD could 
be reflected in CDG features [59]. In accordance with the exist-
ing observations [23,59], our results revealed that patients with 
non-obstructive CAD but CMD have irregular CDG compared with 
healthy controls. The majority of CDG-based features are statisti-
cally different between the CMD and control groups (Fig. 7). Inte-
grating CDG-based features into STT-based ones can significantly 
improve the classification performance (Fig. 8 and Tables 2–3). 
Hence, as effective indicators of a CMD, CDG-based features de-
serve further investigation.
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Fig. 9. The fitness values of the modified SSA and SSA in CDG-STT-based MLP model.

4.3. Comparison between the modified SSA and SSA

The classification performance of CDG-STT-based MLP model 
optimized with our modified SSA is better than this model opti-
mized with SSA, which means that our modified SSA offered better 
hyper-parameters than SSA, as listed in Tables 4–5. Then, the fit-
ness values between the modified SSA and SSA in CDG-STT-based 
MLP model are compared in Fig. 9. It can be seen from Fig. 9
that our modified SSA provides lower fitness value and converges 
faster than SSA. The minimum fitness value of the modified SSA is 
0.0039, while that of SSA is 0.0235.

Our proposed modified SSA had two obvious differences from 
SSA. Firstly, Bernoulli chaotic variables adopted in our algorithm 
for the generation of the initialized populations are more ergodic 
and uniform (Fig. 10) than random variables used in SSA [41], 
which can enhance the randomness of the initial position of spar-
rows and show higher performance than random method in SSA 
[42,45,60–62].

Secondly, Gaussian mutation and Bernoulli chaotic variables 
were carried out in late iterations of SSA to prevent local aggre-
gation in the optimization process and enhance its ability to jump 
out of local optimization. Gaussian function can randomly produce 
new solutions around a given position [63], which is beneficial to 
the algorithm to jump out the local optimum [45,64,65]. Bernoulli 
chaotic disturbance can decrease positions of sparrows and prevent 
becomes dispersive [44].

Therefore, the modified SSA can effectively prevent local aggre-
gation in SSA and determine the global optimum efficiently for the 
optimization problem with a large number of the local optimum 
[45].

4.4. Strengths, limitations, and future directions

Our study has revealed that features calculated from VCGs’ ST-T 
segments and CDGs could be useful to recognize CMD in the ab-
sence of epicardial flow-limiting stenosis. We proposed a modified 
SSA that can achieve the automatical hyper-parameters optimiza-
tion of CDG-STT-based MLP model. The algorithms could be easily 
deployed on conventional ECG acquisition equipment and accepted 
by the physician, given that VCGs and CDGs can be synthesized au-
tomatically from standard ECGs with no extra workload for opera-
tors. Hence, our results open a new pathway towards non-invasive, 
low-cost, and operator-friendly detection of CMD in various appli-
cation scenarios.

However, there are some limitations in our work. First, the 
number of patients with CMD is smaller than that of healthy con-
trols. The measurements of FFR and IMR are invasive and costly, 
which is not commonly performed. Therefore, the number of CMD 
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Fig. 10. The distribution of Bernoulli chaotic variables. (a) The chaotic maps. (b) The histogram of chaotic variables.
patients who underwent full examination is limited. Second, the 
CMD patients are from a single-center cohort. The heterogeneity 
of physiological conditions is not fully considered. Additionally, the 
difference in physiological characteristics may influence the classi-
fication performance, for patients with CMD and healthy controls 
were collected from different cohorts. Furthermore, the differen-
tiation between CMD and obstructive CAD was not included in 
this study but deserves in-depth investigation since they have 
some similarities in terms of their clinical presentations, laboratory 
biomarkers, and some ECG features, but their treatment strategies 
are different. Finally, in this study we focused on ECG-derived fea-
tures whereas multi-model medical data fusion (e.g., radiological 
imaging, hematologic tests, and medical history) may enhance the 
total accuracy of myocardial ischemia diagnosis.

In future studies, multicenter large-scale studies can further 
validate our results and optimize the algorithm by considering the 
difference in physiological features. Based on large datasets, the 
combination of our extracted features with multi-model data fu-
sion (e.g., ultrasonoscopy [66]) could be developed to provide the 
visible results, improve the classification capability and differenti-
ate between CMD and obstructive CAD.

5. Conclusions

In conclusion, SampEn, ApEn, CI, THI, and SHI extracted from 
CDGs’ and VCGs’ ST-T segments could be effective features to rec-
ognize electrocardiographic signatures of CMD. The CDG-STT-based 
MLP model may afford a potential computer-aided tool for non-
invasive detection of CMD.
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