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PatientHandNet: 3D Open-palm Hand
Reconstruction from Sparse Multi-view Depth

Images
Xinxin Dai, Ran Zhao, Pengpeng Hu, and Adrian Munteanu

Abstract—Accurately reconstructing 3D hand shapes of pa-
tients is important for immobilization device customization,
artificial limb generation, and hand disease diagnosis. Traditional
3D hand scanning requires multiple scans taken around the hand
with a 3D scanning device. These methods require the patients
to keep an open-palm posture during scanning, which is painful
or even impossible for patients with impaired hand functions.
Once multi-view partial point clouds are collected, expensive post-
processing is necessary to generate a high-fidelity hand shape.
To address these limitations, we propose a novel deep-learning
method dubbed PatientHandNet to reconstruct high-fidelity hand
shapes in a canonical open-palm pose from multiple-depth images
acquired with a single-depth camera. The hand poses in the
depth images may vary, hand movements are allowed, facilitating
the 3D scanning process in particular for patients with difficult
conditions. The proposed method has strong operability since it
is insensitive to the input pose, allowing for pose variations in
the input depth images. We also proposed two novel datasets:
a large-scale synthetic dataset to train our model and a real-
world dataset with ground-truth hand biometrics extracted by an
experienced anthropometrist. Extensive experimental results on
the unseen synthetic data and real-world data demonstrate that
the proposed method provides robust and easy-to-use hand shape
reconstruction and outperforms the state-of-the-art methods in
biometric accuracy terms.

Index Terms—3D hand shape, 3D hand reconstruction, multi-
view depth processing, multi-scale features, point cloud process-
ing, hand biometrics.

I. INTRODUCTION

RECONSTRUCTION of the 3D hand shape plays an
important role in hand-centric medical applications, such

as hand immobilization device design [1–3], artificial limb
generation [4, 5], and osteoarthritis evaluation [6, 7], all of
which usually require patients to open their hands for accurate
anthropometric measurements [8]. However, it is difficult for
patients with impaired hand functions [9, 10] to keep an open
palm due to the fact that their hands usually exhibit complex
hand poses caused by tenosynovitis, fracture, or other types
of diseases. Researchers also observed that different hand
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postures cause substantial changes in hand geometry [11].
Therefore, there is a demand for reconstructing the patient’s
hand shape in an open-palm pose while not having access to
such a pose during scanning.

Researchers have attempted to reconstruct hand shapes
from different signals, such as hand anthropometric mea-
surements, RGB images, depth images, and point clouds.
The measurement-based methods need to enter dozens of
different dimensions into a hand sizing system for estimating
hand shape [1]. However, obtaining these measurement values
highly relies on the expertise of the anthropometrist, which
is expensive, time-consuming and prone to errors. The RGB-
based methods require 2D to 3D representations for predicting
3D hand shapes from a single RGB image [12–14]. Such meth-
ods may result in perspective distortions and scale ambiguity
due to the lack of depth information.

With the development of commodity depth cameras, depth
images/point clouds can be easily obtained, encouraging re-
searchers to devise low-cost hand scanners. These methods are
mainly classified into two categories: non-parametric methods
and parametric methods. Non-parametric methods correspond
to traditional 3D hand scanning technologies, including single-
camera and multi-camera scanning. Single-camera scanning
[15, 16] moves a camera around a hand for data acquisition,
which is time-consuming and may fail due to the fast move-
ment of the camera. Multi-camera scanning [17–19] allows
multiple cameras to capture a hand from different views
simultaneously but relies on the quality of external calibra-
tion and requires a professional operation, which makes it
unportable. More importantly, non-parametric methods usually
require the hand to be in a static open-palm pose during scan-
ning. However, maintaining an open-palm pose may induce
pain or maybe simply not possible for patients with certain
conditions. Parametric methods are developed based on the
parametric hand models, which usually factor out the hand
using parameters that control the shape and the pose [20].
Such methods mainly aim to fit the parametric hand models
(e.g. SMPL-X) to the input data in order to obtain the optimal
model parameters. Then an open-palm hand can be generated
by setting the pose parameters to zero. However, such methods
are not robust since a slight change in a parameter may result
in a significant shape/pose variation. To address this issue,
some researchers proposed to regress model vertices instead of
parametric parameters [21, 22]. However, most of these works
pay more attention to hand pose estimation while ignoring the
accuracy of the shape.
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Fig. 1: Schematic diagram of PatientHandNet for open-palm hand shape reconstruction. Our method consists of two steps,
taking as input four partial point clouds from palmar view, dorsal view, ulnar view and radial view of the hand and regressing
the vertices of an open-palm hand. In the 1st step, View-to-View Transformation Network (VVTN) consumes the four partial
hand point clouds and generates four virtual complete hands in the same open-palm pose. The obtained four virtual complete
hands are used to calculate transformation parameters between palmar view, ulnar view, radial view and dorsal view, which
enables to roughly align the input four partial hands to form a holistic representation of hand shape. In the 2nd step, Hand
Shape Reconstruction Network takes as input the four aligned partial point clouds and learns an aggregated feature through
Multi-scale and Multi-view Feature Aggregation module (MMFA). Then the aggregated feature of MMFA is fed into the Hand
Vertex Regression module (HVR) in order to regress the vertices of the open-palm hand shape in a coarse-to-fine manner.
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To address the issues mentioned above, we aim to devise an 
algorithm to reconstruct hand shapes in a canonical open-palm 
pose from sparse multi-view depth images. Specifically, we 
propose a novel method termed PatientHandNet to reconstruct 
a high-fidelity open-palm hand shape from four-depth images. 
Note that we do not restrict the hand pose from the four 
views to be the same. The patient does not necessarily need 
to adopt an open-palm pose nor is required to maintain a 
rigid pose in the four scans. This is illustrated in Fig. 1(a), 
where we collected four depth images of the hand from palmar, 
dorsal, ulnar, and radial views using a single commodity depth 
camera. These depth images cover the whole hand geometry 
with minimal overlap, which implicitly accounts for the spatial 
dependency between adjacent views.

The main contributions in this paper can be summarized as 
follows:

• We proposed, to the best of our knowledge, the first
deep learning-based method, dubbed PatientHandNet, for
reconstructing a high-fidelity open-palm 3D hand shape
from four depth images captured by a single commod-
ity depth camera. The method allows for various pose
variations among the camera shots.

• We proposed a large-scale multi-view synthetic dataset
with a wide variety of hand shapes and hand poses and
corresponding ground truth hand shapes in a canonical
open-palm pose.

• We collected a novel real-world dataset by capturing 18
subjects (13 males and 5 females) via a structure sensor
Mark I employed in an iPad and hired a professional an-
thropometrist to obtain the ground-truth hand biometrics.

• Extensive experiments conducted on both synthetic and
real-world data demonstrate that our method outperforms
the state-of-the-art methods both qualitatively and quan-
titatively.

The rest of the paper is organized as follows. Section
II briefly reviews related works that include non-parametric
and neural parametric hand shape reconstruction. Section III
describes the proposed method and proposed dataset. Section
IV presents the experimental setup and comparison results
among different methods on both synthetic data and real-world
data. In Section V, we discuss the effectiveness of different
modules of our method via detailed ablation studies. The paper
is concluded in Section VI.

II. RELATED WORK

A. Non-parametric hand shape reconstruction

As aforementioned, non-parametric methods can be classi-
fied into multi-camera scanning and single-camera scanning
according to the number of employed sensors. Multi-camera
scanning [17–19, 23] captures the hand surface using multiple
cameras fixed in different positions. The main advantage of
multi-camera scanning is that it enables fast data acquisition
and reduces the negative effect of involuntary movements by
simultaneously acquiring the hand surface from different view-
points. However, it highly depends on the quality of external
calibration and needs a professional operation. In addition, it
lacks mobility due to its expensive setup, configuration and

calibration procedures. In contrast, single-camera scanning is
a more cost-effective alternative to multi-camera scanning due
to its requirement of only one scanner. This scanner held in
the hand moved around the hand to acquire the complete
shape [15, 16]. However, for successful 3D reconstruction,
the acquisition procedure requires successive viewpoints to
contain sufficient redundant information, resulting in time-
consuming computation and potential failures due to the fast
movement of the camera.

Apart from these limitations, non-parametric methods re-
quire the hand to be static and in an open-palm pose during
scanning in order to provide accurate hand measurements;
as mentioned, maintaining a rigid pose is impractical for
regular patients and impossible for patients with impaired
hand functions. To address these problems, we proposed a
high-efficiency, posture-immune method which is improved as
follows: 1) we only employ four depth images captured by a
single camera and the hand poses of these depth images can be
different; 2) our method outputs the hand shapes in an open-
palm pose, which is essential for downstream applications such
as hand biometrics extraction.

B. Neural parametric hand shape reconstruction

With the rapid development of deep learning, neural net-
works have been introduced to address the problem of 3D
hand reconstruction. By literature review, we observe that most
existing methods focus on predicting the hand pose from RGB
images [24–26] or depth images [27–30]. A limited number of
researchers have attempted to reconstruct the hand shape, but
they estimate the pose and shape of the hand simultaneously.
[31] proposed an end-to-end framework for hand shape recon-
struction from a depth image, which embedded model-based
hand pose and shape layers to generate 3D joint positions
and hand meshes. Although such a method can predict hand
mesh directly from the depth image, it suffers from artifacts
due to the difficulty in optimizing complex parameters. [12] is
a self-supervised 3D hand reconstruction network, which not
only predicts 3D mesh but also outputs texture. [32] proposed
an identity-aware hand mesh estimation model by regressing
the parameters of MANO, which can incorporate the identity
information to calibrate the shape parameters. [33] can find
a balance between a parametric and non-parametric model to
improve the accuracy of hand shape and pose. [34] can predict
detailed hand mesh from a single image using the proposed
frequency decomposition loss. However, all of them adopt
parameter regression of the MANO model [35] to predict the
hand pose and shape. Such techniques are less robust since
a slight change in the parameters can significantly change
the shape and pose. [36, 37] directly regressed the 3D joint
positions and mesh vertices of the hand model from RGB
images. [36] can estimate hand mesh from an RGB image
with occlusion and [37] has lightweight stacked structures
that can employ mobile to estimate hand shape from an RGB
image. However, such RGB-based methods are easy to result
in perspective distortions and scale ambiguity in the estimated
outputs. To address the problems of perspective distortions
and scale ambiguity, [38] proposed a vertex regression-based
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method that effectively establishes a one-to-one mapping 
between the voxelized depth map and the voxelized hand 
model. However, the voxelized depth map includes redundant 
information, distracting the attention of the network from 
extracting valuable features [39]. Unlike these methods, we 
focus on hand shape reconstruction by outputting the hand 
shapes in a canonical open-palm pose. Such a strategy will 
force the neural network to pay more attention to the shape 
instead of the pose.

III. PROPOSED METHOD

A. Problem Statement

In this section, we formulate the problem in this study.
Given a set of uncalibrated partial point clouds of a hand
X = {Sn}Nn=1, where Sn = {sni ∈ R3|i = 1, 2, ..., In}
denotes a set of points with In points captured from the nth
view, N is the number of input partial point clouds and is
set to 4 in this study (corresponding to four views of the
hand: palmar, ulnar, dorsal, and radial views). Note that the
poses of these partial hand point clouds can be the same as
well different and the point numbers of each Sn can also be
different. The goal is to devise a low-cost and easy-to-use
method to reconstruct a high-fidelity open-palm hand mesh
with J points Y = {(yj ∈ R3, ez ∈ Z2)|j = 1, 2, ..., J, z =
1, 2, ..., Z} from X , where yi and em are the vertices and
edges of Y respectively. We proposed a two-step deep learning
architecture for this task. Firstly, a transformation network is
trained to estimate the relative transformation relationship T
between X . T is used to align X into X̂ , which is represented
as X̂ = XT . Then we use a shape reconstruction network
to predict open-palm hand shape Y from X̂ . Therefore, there
establish two mappings M1 : X 7−→ T and M2 : X̂ 7−→ Y . T
estimated by M1 can strengthen dependency between adjacent
views, enabling M2 to learn the more robust geometric and
spatial representation of hand shape. To further improve the
performance, we also propose a coarse-to-fine decoder in M2

to utilize local information to refine the vertex coordinates of
the hand. Ultimately, this process yields a high-fidelity open-
palm hand mesh derived from four independent partial point
clouds.

As shown in Fig. 1, PatientHandNet we proposed mainly
consists of two networks: view-to-view transformation net-
work (VVTN) and hand shape reconstruction network
(HSRN). Their procedures are detailed in Algorithm 1.

B. Feature Extractor

Similar to the encoder design of [40, 41], we stack two
simplified PointNet (PN) modules to build the feature ex-
tractor, which is named the Combined PointNet (CPN). The
architecture of CPN is depicted in Fig. 2. The first PN is a
shared multilayer perceptron (MLP) consisting of two layers
with ReLU activation. It takes as input In points represented
as a In×3 matrix where each row denotes the 3D position of a
point sni and converts sni into a point feature vector f li . The set
of f li can be represented as a feature matrix F l where each row
is f li . By means of the point-wise maxpooling operation, F l

is aggregated into a global feature gl. Next, we concatenate

Algorithm 1 PatientHandNet

Input:X : { S1,S2,S3,S4}
Output:Y

1: procedure VVTN ▷ Input:X ▷ Output: T
2: features of X : G(0) ← Ψ1(S1,S2,S3,S4)
3: initialize step t← 0
4: V1

t ,V
2
t ,V

3
t ,V

4
t ← Φ1(G(t))

5: while LV V TN ((G1,G2,G3,G4), (V1
t ,V

2
t ,V

3
t ,V

4
t ))

not converged do
6: t← t+ 1
7: V1

t ,V
2
t ,V

3
t ,V

4
t ←AdamOptimizer(V1

t−1,V
2
t−1,V

3
t−1,

V4
t−1)

8: end while
9: V1,V2,V3,V4 ←V1

t ,V
2
t ,V

3
t ,V

4
t

10: T ←arg min
Rn3,tn3

∑J
j=1 ||Rn3v

n
j + tn3−ϕ(vnj ,V

3)||2, n =

1, 2, 4
11: return T
12: procedure HSRN ▷ Input:X̂ ▷ Output: Y
13: features of X : A(0) ← Ψ̂(Ŝ1, Ŝ2, Ŝ3, Ŝ4)
14: initialize step t← 0
15: Ŷt ←1(A(t))
16: ∆Yt ← Φ̂2(Ŷt)
17: Yt ←t +∆Yt
18: while LHSRN (G3, Ŷt,Yt) not converged do
19: t← t+ 1
20: Yt ←AdamOptimizer( Yt−1)
21: end while
22: Y ← Yt

23: return Y

gl to each f li to obtain a updated feature matrix F̂ l. F̂ l is
further fed into the second PN to learn the final global feature
gh following the similar processing of the first PN. gl and gh

are then concatenated, forming the combined latent vector C.
Such a strategy ensures that C contains both low-level and
high-level features extracted from the input point clouds.

C

PointNet1

MLP

128 256

Maxpooling

5121024
PointNet2

Fig. 2: Architecture of the proposed CPN.

C. View-to-View Transformation Network

As Fig. 1(b) shows, we design a four-branch encoder
since the proposed method takes four partial point clouds
X = {S1,S2,S3,S4} as input. An intuitive alternative is
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(a) (b)

Overlapping Overlapping

Fig. 3: Visual comparisons of overlapping the four partial
scans without and with pre-alignment. (a) Raw partial point
clouds and the overlapping of them by translating their cen-
troids to the origin. (b) Pre-aligned partial point clouds and
the overlapping of them.

to simply leverage four CPNs to consume individual partial
point clouds to obtain four global features of partial point
clouds and then apply a maxpooling operation to fuse these
features to obtain the final global feature. However, such a
solution ignores the spatial relationship among these point
clouds. The input four partial point clouds are captured from
the same hand but uncalibrated (Fig. 3(a)). Our insight is that
the final hand reconstruction can be significantly improved
if the four partial point clouds are pre-aligned (Fig. 3(b))
before extracting their features (comparisons can be seen in
the following ablation studies). However, it is challenging
to pre-align the four partial point clouds because of two
main reasons: (1) low overlaps exist between the palmar-view
point clouds and ulnar-view/radial-view point clouds, and no
overlaps exist between the palmar-view and the dorsal-view
point clouds, which makes the popular Iterative Closest Point
(ICP) algorithm [42] and its variants fail; (2) the hand pose of
the four partial point clouds are different, which is hard to be
addressed using rigid registration. To tackle this problem, we
propose the View-to-View Transformation network (VVTN)
inspired by the work of [43], as shown in Fig. 1(b).

Given the four partial point clouds S1,S2,S3,S4, VVTN
first uses four feature extractors to learn four combined latent
vectors, respectively:

C1 = ψ1(S1|w1) C2 = ψ2(S2|w2)

C3 = ψ3(S3|w3) C4 = ψ4(S4|w4)
(1)

where ψn(·|wn) represents the feature extraction function with
weight wn learned by the CPN, n is the index of views. Then,
it employs a maxpooling operation to fuse these four combined
latent vectors into a global feature:

G = maxpooling(C1,C2,C3,C4;C3,C4;C3) (2)

Therefore, the feature extractor of VVTN Ψ consists of four
ψn(·|wn) and one maxpooling:

G = Ψ(S1, S2, S3, S4|we) (3)

Next, G is further fed into the decoders Φ that consists of
four MLP with reshape operations to predict virtual corre-

spondences [43] represented by four complete hands in the
same open-palm pose:

V1,V2,V3,V4 = Φ(G|wd) (4)

where Vn = {vnj ∈ R3|j = 1, 2, ..., J} denotes the set of
points with J points corresponding to Sn, n is the index
of views. Since V1,V2,V3,V4 have the same number and
order of points, and the same hand shape and pose, the virtual
correspondences are built among V1,V2,V3, and V4. Given
such virtual correspondences, the transformation parameters
among S1,S2,S3, and S4 can be easily calculated and can
be used to align S1,S2,S3,S4 despite they have different
hand poses and little overlaps. Specifically, we take V3 as a
reference view (or target view) corresponding to our final re-
constructed Y . The transformation T = {R̂n3, t̂n3|n = 1, 2, 4}
of {V3,Vn|n = 1, 2, 4} can be estimated by solving the
following optimization:

R̂n3, t̂n3 = arg min
Rn3,tn3

J∑
j=1

||Rn3v
n
j + tn3 − ϕ(vnj ,V

3)||2 (5)

where Rn3 ∈SO(3) and tn3 ∈ R3 are the estimated rotation
matrix and translation vector respectively from the nth view to
the 3th view. Suppoose R̂n3 and t̂n3 are the optimal rotation
and translation, ϕ(vnj ,V

3) is a correspondence function that
maps the point vnj in Vn to its corresponding point in V3.
Each Sn in X can be aligned to S3, which is denoted as Ŝ

n
.

Ŝ
n
= Sn[R̂n3, t̂n3] (6)

Since S3 is a reference view, Ŝ
3

is still S3. Therefore, X̂ is
the composition of Ŝ

1
, Ŝ

2
, Ŝ

3
, Ŝ

4
.

D. Hand Shape Reconstruction Network

The hand shape reconstruction network (HSRN) is an
encoder-decoder architecture. The proposed encoder learns
the aggregated feature in a multi-scale and multi-view man-
ner, named Multi-scale and Multi-view Feature Aggregation
(MMFA). The proposed decoder is able to regress 3D model
vertices using a coarse-to-fine strategy, called Hand Vertex
Regression (HVR).

1) Multi-scale and Multi-view Feature Aggregation: The
pre-aligned partial point clouds X̂ = {Ŝ

1
, Ŝ

2
, Ŝ

3
, Ŝ

4
} are

further fed into MMFA. As its name shows, the MMFA is
designed to learn a feature by aggregating the multi-scale
and multi-view information extracted from the input partial
point clouds. We notice that the palmar-view and dorsal-view
point clouds contain more information of hand length and
breadth, while the ulnar-view and radial-view point clouds are
more informative regarding the hand thickness. Therefore, the
MMFA is designed to include three steps. Firstly, a CPN is
used to extract the feature of a single-view point cloud {Ŝ

3
}.

Next, a CPN is applied to learn the feature of the concatenation
of two point clouds {Ŝ

3
, Ŝ

4
}. Last, another CPN is leveraged

to obtain the feature of the concatenation of all point clouds
{Ŝ

1
, Ŝ

2
, Ŝ

3
, Ŝ

4
}. These features can be represented as:
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Ĉ
3
= ψ̂1(Ŝ

3|ŵ1)

Ĉ
3,4

= ψ̂2(cat(Ŝ
3
, Ŝ

4
)|ŵ2)

Ĉ
1,2,3,4

= ψ̂3(cat(Ŝ
1
, Ŝ

2
, Ŝ

3
, Ŝ

4
)|ŵ3)

(7)

where ψ̂n(·|ŵn) represents the feature extraction function with
weight ŵn learned by the CPN and cat(·) represents the
concatenation operation, and Ĉ

3
, Ĉ

3,4
, Ĉ

1,2,3,4
are three multi-

scale multi-view features, which describe the hand shape from
geometric and spatial perspectives. Ĉ

3
contains geometric in-

formation on the length and breadth of the hand. Ĉ
3,4

not only
improves the hand thickness relative to Ĉ

3
, but also establishes

a relative spatial relationship between Ŝ
3

and Ŝ
4
. Ĉ

1,2,3,4
fuses

the information from all the views, which further enhances the
geometric and spatial representation of the 3D hand. All these
features are finally fused by the maxpooling operation into a
comprehensive representation called aggregated feature A:

A = maxpooling(Ĉ
3
; Ĉ

3,4
; Ĉ

1,2,3,4
) (8)

Therefore, the feature extractor of HSRN Ψ̂ consists of three
ψ̂n(·|ŵn) and one maxpooling:

A = Ψ̂(Ŝ1, Ŝ2, Ŝ3, Ŝ4|ŵe) (9)

2) Hand Vertex Regression: The Hand Vertex Regression
(HVR) takes the aggregated feature A as input and aims to
output a high-fidelity open-palm hand, as shown in Fig. 1(c).
To this end, an MLP is used to directly regress the vertices of
the open-palm hand. However, such a global strategy ignores
the local information of hand. To overcome this limitation,
we proposed a refinement method by embedding a local self-
transformer (ST) with the MPL into our HVR module to
locally refine the vertex coordinates of the reconstructed hand.
We first use one MLP with reshape operation Φ̂1 to predict
the initially reconstructed hand shape, which is represented as
Ŷ:

Ŷ = Φ̂1(A|ŵd1) (10)

Then, each point ŷ of Ŷ will be refined through ST, which is
depicted in Fig. 4. Given jth point ŷj of Ŷ , we first calculate
the attention scores {aj,k|k = 1, 2, ...,K k ≠ j} between
ŷj and its k-nearest neighboring points (k-NN) {ŷj,k|k =
1, 2, ...,K, k ≠ j} as:

aj,k =
exp(MQ(ŷj)⊖MK(ŷj,k))∑K
k=1 exp(MQ(ŷj)⊖MK(ŷj,k))

(11)

where MQ,MK denote the MLPs with different parameters,
and ⊖ denotes the element-wise subtraction. Finally, the point
spatial feature pj of ŷj can be obtained by:

pj =MV (ŷj)⊕
K∑

k=1

aj,k ⊙MV (ŷj,k) (12)

where MV denotes the MPL. ⊕ and ⊙ denote element-wise
addition and Hadamard product, respectively. The point spatial
feature pj is fed to the MLP to produce the displacement

feature dj of ŷj . dj is further used for generating the point
displacement ∆ŷj , which is formulated as:

∆ŷj = tanh(MLP (dj)) (13)

where tanh is the hyper-tangent activation. Therefore, all ŷj
of Ŷ have displacements, which is formulated as:

∆Y = Φ̂2(Ŷ|ŵd2) (14)

where Φ̂2(·|ŵd2) is the ST module with weight ŵd2. Finally,
Ŷ is refined by ∆Y:

Y = Ŷ +∆Y (15)

where Y is the refined hand shape.

-

Element-wise addition

Hadamard productElement-wise subtraction

MPL

pj

Fig. 4: The structure of the self-transformer module.

E. Loss Functions

The proposed model was trained in a supervised end-to-end
manner. As shown in Fig. 1, the proposed PatientHandNet
includes two neural networks. To train our model, we define
the following loss functions to evaluate the reconstruction
errors:

1) VVTN: VVTN has four branches to predict vir-
tual correspondences {V1,V2,V3,V4} corresponding to
{S1,S2,S3,S4}. These branches are supervised by four
SMPL-X hand models with J points in open palm pose,
respectively, which are denoted as {G1,G2,G3,G4} corre-
sponding to the ground truth of {S1,S2,S3,S4}. Therefore,
the loss function of VVTN is defined for these four branches:

LV V TN = L(V1,G1) + L(V2,G2) + L(V3,G3) + L(V4,G4)

=
1

J

J∑
j=1

||v1j − g1j ||2 +
1

J

J∑
i=1

||v2j − g2j ||2

+
1

J

J∑
i=1

||v3j − g3j ||2 +
1

J

J∑
i=1

||v4j − g4j ||2

(16)

where vj ∈ V, gj ∈ G are the j-th corresponding points pair
in V,G.
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open-palm
SMPL-X 

model GT point cloud
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Hand

extraction

Hand
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Fig. 5: The proposed pipeline of synthetic dataset generation. We first utilize FrankMocap to extract pose parameters (θ) of
the SMPL-X model from RGB images. The shape parameters (β) of the SMPL-X model are taken from the SURREAL. Next,
we randomly combine β and θ to generate four posed bodies with the same identity, from which we easily obtain the hand
meshes. The ground-truth open-palm hand meshes can be obtained via resetting the random θ to be the pre-defined θ0. Finally,
we render realistic partial scans from the posed hands via the open-source Blensor.

GTPalmar view Ulnar view Dorsal view Radial view

Fig. 6: Our synthetic meshes with hand shape and pose
variations. Each row is from the same subject with different
hand poses, the last column depicts the ground truth hand
meshes.

2) HSRN: HSRN is supervised by the open-palm hand G3

in a coarse-to-fine manner. We, thus, define the loss as:

LHSRN = L(Ŷ,G3) + L(Y,G3)

=
1

J

J∑
j=1

||ŷj − g3j ||2 +
1

J

J∑
i=1

||yj − g3j ||2
(17)

where ŷj ∈ Ŷ, yj ∈ Y and g3j ∈ G3are the j-th corresponding
points in Ŷ,Y and G3,respectively.

3) Complete loss: Our complete loss is defined by a
weighted sum of LV V TN and LHSRN :

L = α1 × LV V TN + α2 × LHSRN (18)

where α1 and α2 are the weights that control the contribution
of each term.
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Fig. 7: The 13 dimensions of hand accompanying with their
IDs on the hand template and the statistics of lengths of 13
dimensions in our synthetic dataset.

F. Proposed dataset

1) Synthetic dataset: In order to train our model, a large-
scale dataset consisting of inputs with four partial scans of the
same hand and corresponding ground-truth open-palm hand
meshes is necessary. Moreover, the four partial scans may
have the same or different postures. Unfortunately, none of
the existing public hand datasets meets these requirements.
The existing hand datasets lack ground-truth open-palm hand
shapes and most of them only contain single palmar-facing
depth images. An intuitive solution is to collect the dataset
by scanning real-world subjects. However, such a procedure
is extremely expensive and time-consuming for a large-scale
dataset (e.g., 100K samples). To address this problem, we



8propose an innovative method to generate the appropriate 
dataset needed for training the proposed PatientHandNet. Fig. 
5 illustrates the proposed pipeline for generating such a 
dataset.

Generating 3D hand meshes. First, we collected 12K 
images online consisting of female and male subjects per-
forming different motions. Second, a state-of-the-art RGB-
based hand and motion capture system, FrankMocap [44], was 
used to extract the θ and β values of SMPL-X from these 
images. SMPL-X [45] is a generative body model with two key 
parameters: the pose parameter θ and the shape parameter β. 
Given a pair of θ and β, a new human body mesh with specified 
body posture, hand gesture and facial expression can be 
obtained. Therefore, 12K θs and 12K βs were obtained via 
FrankMocap. We observed that the estimated poses looked 
good, while the estimated shapes were less accurate due to the 
inherent scale ambiguity associated with the 2D to 3D 
conversion via FrankMocap. We, thus, dropped the 12K βs and 
used 2103 βs from the SURREAL dataset [46]. Next, a large-
scale body dataset was obtained by a random combination of βs 
and θs. Specifically, we randomly selected a β and four θs to 
create four body models, which had the same body shape but 
different hand poses. By assigning the pre-defined open-palm 
pose (denoted by θ0), another body model with the designed 
open-palm hand shapes was built. The left and right hands were 
easily extracted from these body models to build a sample of 
our dataset (four pairs of posed hands as input and a pair of 
open-palm hands as the ground truth). Using this procedure, we 
generated 300K samples for the proposed dataset. Fig. 6 
depicts samples of the proposed dataset.

Rendering multi-view partial scans. The open-source 
Blender Sensor Simulation plugin Blensor [47] was used to 
render the partial scans of hands. In this study, we set the 
camera as Microsoft Kinect V2 and the scanning distance are 
randomly selected at intervals from 0.5 to 0.8 meters. To mimic 
real-world scanning, we also added a random rotation set at the 
intervals from −10o to 10o in all x, y, z directions; the noise 
was added as well. We rendered the left hand and the right hand 
separately.

As aforementioned, each sample of our hand mesh dataset 
consists of four posed hands and one open-palm ground-truth 
hand. By rendering one partial scan for each posed hand mesh 
from one of the four designed views (palmar, ulnar, dorsal, and 
radial views) completes the data generation process consisting 
of multi-view partial hand scans and corresponding ground-
truth open-palm hand meshes.

Statistics of the synthetic hand dataset. To analyze the 
hand shapes of our proposed dataset, we measured lengths of 
the 13 dominant dimensions [48] based on the open-palm hand 
pose, as shown in Fig. 7. Take hand length as an example 
(Measurement Type #1), 50% of its length is distributed 
between 17 and 22cm, which is consistent with the real-
world hand biometrics statistical result in [49]. Moreover, the 
minimum length and maximum length of hand length are 13 
cm and 25.2 cm, which widely covers the hand length from a 
child to an adult. The other dimensions have similar statistical 
properties.

2) Real-world dataset: Our method also can generalize
well to real-world data, but there exists no publicly available
multi-view real-world dataset that includes ground-truth open-
palm hands. Therefore, we built a novel real-world dataset, as
shown in Fig. 8(a). An iPad with an embedded structure sensor
Mark I was used to scanning 18 different hands (13 males and
5 females) in arbitrary posture from four views of the hand.
A professional anthropometrist extracted hand measurements
according to the 14 dimensions described in Fig. 8(b); these
can be considered as the ground truth values of the real-world
dataset.

(a) Four-view depth images acquisition of  real-world data


(b) Measurement values acquisition of real-world data 

Fig. 8: (a) An iPad embedded with a structure sensor Mark
I is employed to scan a hand and produce four-view depth
images. (b) A professional anthropometrist uses tape to extract
biometrics measurements according to the 14 dimensions
detailed in Fig. 7. The table shows the measurement values.

IV. EXPERIMENTS

We compared the proposed method against the state-of-the-
art shape reconstruction methods based on synthetic data as
well as real-world data, including the following methods: Han-
dAR [13], S2HAND [12], HandOccNet [36], SnowflakeNet
[50], L2H [51] and MobRecon [37].

When we use the unseen synthetic dataset mentioned in
Section.III-G, we randomly select 720 samples, which have
open palm hand as ground truth and no overlapping with
training and validation datasets. These selected data are repre-
sented as point clouds, which can be the input of point-based
methods (SnowflakeNeta [50] and L2H [51]). However, RGB-
based methods ( HandAR [13], S2HAND [12], HandOccNet
[36], MobRecon [37]) require RGB images as input. To ensure
a fair comparison, we obtain RGB images by rendering the
ground-truth open-palm mesh corresponding to the selected
data.

We also evaluate the performance on real-world data. As
described in Section.III-G, the real-world data we collected



9consist of partial point clouds and corresponding ground-
truth hand measurement values extracted by a professional 
anthropometrist. Furthermore, the corresponding RGB images 
are also captured. Therefore, the performance of point-based 
methods and RGB-based methods can be evaluated on real-
world data with ground-truth hand measurement values.

In the end, we conduct ablation experiments based on the 
720 samples to understand the effectiveness of key components 
in our proposed method, including multi-view input, pre-
aligned inputs, multi-scale and multi-view feature learning and 
point-based refinement strategy.

A. Experimental Setup

The training is operated on a desktop PC with Intel(R) Core
i9-10900 CPU @ 2.80GHz and GeForce RTX 3090Ti. Our
training has 200 epochs, and we set α1 = 1, α2 = 0 for the
first 50 and set α1 = 1, α2 = 1 for the rest of the epochs.

B. Evaluation metrics

1) Evaluation Metrics on synthetic data: Since the
synthetic dataset contains the ground-truth open-palm hand,
errors can be computed by comparing the predicted hand
shape and the ground-truth hand shape. To this end, we
employ the widely-used reconstruction evaluation metric:
Chamfer Distance (CD) [52]. The CD error measures the
average nearest squared distance between predicted hand Y
and the ground truth hand G3, which is defined as:

ECD(Y,G3) =
1

2
[
1

|Y|
∑
y∈Y

min
g3∈G3

||y − g3||22

+
1

|G3|
∑

g3∈G3

min
y∈Y

||g3 − y||22]
(19)

2) Evaluation Metrics on real-world data: Unlike the
synthetic dataset, the real-world dataset only contains the
multi-view partial scans as input but lacks the ground-truth
open-palm hand shapes, which makes CD fail. Fortunately, our
collected real-world dataset contains the hand measurement
values measured by a professional anthropometrist, which
are ground-truth measurement values. From the reconstructed
hand shape, hand measurements can be easily extracted.
Therefore, the absolute error (AE) and relative error (RE)
are applied to measure the measurement errors by comparing
the predicted measurement values Mpred and ground-truth
measurement values Mgt. The AE and RE are defined as:

EAE = |Mpred −Mgt| (20)

ERE =
|Mpred −Mgt|

Mgt
× 100 (21)

3) Results on synthetic data: We first compare our results
with different methods on the unseen synthetic data. Fig. 9
depicts quantitative comparisons and each point is colorized
by the point-to-point errors in millimeters between the recon-
structed hand shape and the ground-truth shape. It can be seen
that the results of S2HAND [12] and HandOccNet [36] do
not have the open palm posture but have severe bending on

TABLE I: Mean of absolute and relative anthropometric measure-
ments errors on 5 male real-world data for various noise levels
(Unit:mm)

Measurements σ = 0 σ = 0.1% σ = 0.2% σ = 0.3%

EAE ERE EAE ERE EAE ERE EAE ERE

1-Hand length 1.60 0.74% 2.20 1.13% 2.60 1.21% 3.60 1.60%
2-Palm length 2.20 1.91% 3.00 2.33% 3.80 3.29% 3.60 3.24%
3-Palm width 2.20 2.39% 2.40 2.49% 2.60 2.86% 3.40 3.49%

4-Thumb length 2.00 2.83% 2.00 3.20% 2.00 2.98% 2.20 3.07%
5-Index length 1.40 1.71% 1.80 2.52% 2.80 3.54% 3.00 3.57%

6-Middle length 2.00 2.23% 2.40 2.97% 3.60 4.06% 4.20 4.49%
7-Ring length 2.80 3.44% 3.10 4.11% 3.70 4.57% 4.40 5.23%
8-Little length 2.00 3.23% 2.80 4.78% 3.80 6.00% 4.60 6.90%

9-Palm thickness 1.20 3.90% 1.80 6.57% 3.00 9.87% 3.80 11.81%
10-Thumb girth 2.00 2.66% 2.40 3.52% 3.20 4.30% 3.60 5.08%
11-Index girth 1.20 1.66% 1.40 1.89% 1.40 2.02% 2.20 2.87%

12—Middle girth 1.80 2.61% 2.00 2.42% 2.20 3.18% 3.00 4.03%
13—Ring girth 1.40 2.19% 1.60 2.89% 1.00 1.63% 1.40 2.58%
14—Little girth 2.20 3.94% 2.20 4.04% 2.40 4.48% 2.60 4.53%

TABLE II: Mean of absolute and relative anthropometric mea-
surements errors on 5 female real-world data in different density
(Unit:mm)

Measurements No sampling 2048 1024 512

EAE ERE EAE ERE EAE ERE EAE ERE

1-Hand length 2.00 1.09% 2.00 1.10% 2.60 1.41% 3.20 1.73%
2-Palm length 2.20 2.13% 2.60 2.55% 3.20 3.14% 3.50 3.53%
3-Palm breadth 1.60 1.97% 1.00 1.25% 1.40 1.75% 1.80 2.25%
4-Thumb length 1.80 2.96% 2.20 3.66% 2.00 3.33% 1.80 3.00%
5-Index length 0.80 1.10% 1.20 1.65% 1.60 2.20% 2.00 2.76%

6-Middle length 3.20 3.99% 3.20 3.99% 3.60 4.49% 3.90 4.96%
7-Ring length 2.40 3.29% 2.80 3.84% 3.00 4.15% 3.00 4.11%
8-Little length 2.80 4.74% 3.00 5.06% 3.20 5.43% 3.60 6.13%

9-Palm thickness 1.20 4.99% 1.40 5.76% 2.00 8.08% 2.80 11.17%
10-Thumb girth 2.20 3.41% 2.00 3.08% 2.40 3.72% 3.20 4.97%
11-Index girth 2.60 4.46% 2.60 4.85% 2.70 4.95% 3.00 5.19%

12-Middle girth 2.40 4.06% 2.40 4.06% 2.00 3.43% 2.20 3.83%
13-Ring girth 1.40 2.53% 1.40 2.53% 1.60 2.95% 1.40 2.59%
14-Little girth 2.80 6.37% 3.00 6.79% 3.40 7.64% 3.40 7.67%

the fingers. The results of HandAR [13] produced a severe
deformity on the little finger and the ninth result of them
collapses. The results of SnowflakeNet [50], L2H [51] and
MobRecon [37] have good geometric shapes. However, their
point-to-point errors are larger than our proposed method,
especially MobRecon [37], which demonstrates RGB-based
methods are easy to result in scale ambiguity in the shape.

We also calculate the average value µ, average standard
derivation σ and maximum distance max of Eq.(19) to quan-
titatively evaluate each method and summarize the result in Ta-
ble III. From this we can have two main observations. First, the
performance of the depth-based methods are better compared
to RGB-based methods. For example, our method leads to
12.17 mm, 3.68 mm and 41.55mm improvements of µ, σ, and
max compared with HandAR [13], respectively. This verifies
that 3D information is desired for more accurate hand shape
reconstruction. Second, compared with different depth image-
based methods, our results achieves the best performance
in term of all metrics. Specifically, our method significantly
outperforms SnowflakeNet [50] and L2H [51] in terms of both
µ and σ, which implies that our method has a higher accuracy
for the global hand shape. The improvement of max brought
by our method is also obvious, which indicates that our method
achieves the most accurate local hand shape reconstruction.

4) Results on real-world data: Once our model is success-
fully trained, it generalizes well to real-world data. We further
qualitatively compare the proposed method against different
methods based on our collected real-world dataset, as shown
in Fig. 10. Note that the results of S2HAND [12] and Han-
dOccNet [36] do not have the open palm posture but have bent
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Fig. 9: The visual comparison of hand shape reconstruction error with state-of-the-art methods on synthetic data. From top to
bottom: the results of HandAR[13], S2HAND[12], HandOccNet[36], SnowflakeNet[50], L2H[51], MobRecon[37], our results
and the ground truth. The colored points represent the point-to-point errors in millimeters between reconstructed hand shape
and GT.

fingers, and the results of HandAR [13] obviously have severe
deformation in shape. The results of MobRecon [37] have
various hand postures instead of open palm poses. Despite the
results of SnowflakeNet [50] and L2H [51] looking similar to
ours, our method actually achieves the best results according
to Table IV that shows the quantitative hand measurement
comparisons for five females and five males. Besides, the
average AE and RE of RGB-based methods are larger than
5 mm and 9% respectively, the average AE and RE of depth-
based methods of SnowflakeNet [50] and L2H [51] are larger
than 4 mm and 5%, while our results are less than 3 mm
and 4%. The results on real-world data are consistent with
those on unseen synthetic data, which further demonstrates
the effectiveness of the proposed method.

C. Robustness
In this section, we demonstrate the robustness of our

proposed method on real-world data in different formats.

TABLE III: The average mean, standard deviation and
maximum distance of chamfer distance on synthetic data
(Unit:mm)

Methods µ σ max

HandAR[13] 12.38 4.31 43.84
S2HAND [12] 13.34 3.63 21.93
HandOccNet [36] 13.41 4.90 27.57
SnowflakeNe[50] 0.34 0.75 2.50

L2H [51] 0.43 0.81 2.62
MobRecon [37] 5.98 3.19 19.18

Ours 0.21 0.63 2.29

We randomly selected 5 male real-world subjects’ scans and
introduce different levels of Gaussian noise, specifically σ =
0.1%, 0.2%, 0.3%, to study the effect of noise on our method.
The error results are presented in Table I. Increasing levels
of noise will lead to higher errors. However, the maximum
absolute error still less than 5 mm even with the presence of
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Fig. 10: The visual comparison of hand shape reconstruction error with state-of-the-art methods on real-world data. From top
to bottom: the results of 3 HandAR[13], S2HAND[12], HandOccNet[36], SnowflakeNet[50], L2H[51], MobRecon[37], and
our results.

TABLE IV: Mean of absolute and relative anthropometric measurements errors comparison on real-world data (Unit:mm)

Measurements
Female (5 subjects) Male (5 subjects)

HandAR[13] S2HAND[12] HandOccNet[36] SnowflakeNe[50] L2H[51] MobRecon [37] Ours HandAR[13] S2HAND [12] HandOccNet[36] SnowflakeNe[50] L2H[51] MobRecon [37] Ours

EAE ERE EAE ERE EAE ERE EAE ERE EAE ERE EAE ERE EAE ERE EAE ERE EAE ERE EAE ERE EAE ERE EAE ERE EAE ERE EAE ERE

1- Hand length 63.8 35% 10.0 5.4% 7.6 4.2% 5.2 2.8% 4.8 2.6% 15.4 8.2% 2.0 1.1% 43.0 20.0% 34.4 16.1% 23.6 10.8% 6.6 3.2% 4.6 2.1% 25.4 11.6% 1.6 0.7%
2- Palm length 33.8 33% 8.8 8.6% 5.4 5.4% 5.4 5.2% 5.0 5.0% 10.6 10.2% 2.2 2.1% 26.2 22.1% 18.8 15.6% 14.0 11.5% 5.8 4.9% 3.6 3.0% 17.8 14.6% 2.2 0.9%
3- Palm breadth 29.2 35.9% 8.6 10.5% 8.2 10.0% 3.0 3.7% 3.2 4.1% 11.6 14.2% 1.6 2.0% 21.6 22.3% 21.0 22.2% 18.6 19.5% 4.8 5.1% 5.8 5.9% 17.8 18.6% 2.2 2.4%
4- Thumb length 25.6 42.6% 11.0 18.2% 7.8 12.9% 4.2 6.9% 4.4 7.3% 9.6 15.8% 1.8 3.0% 17.2 24.7% 15.8 23.4% 11.8 16.8% 4.4 6.5% 4.6 6.6% 14.0 0.0% 2.0 2.8%
5- Index length 27.4 37.5% 10.4 14.3% 8.2 11.3% 3.2 4.4% 2.6 3.6% 3.8 5.2% 0.8 1.1% 14.8 17.6% 17.4 21.4% 15.6 19.1% 3.0 3.8% 3.2 4.0% 9.0 10.8% 1.4 1.7%

6- Middle length 29.6 36.5% 7.2 8.8% 4.2 5.1% 4.4 5.5% 3.6 4.5% 7.2 8.7% 3.2 4.0% 18.8 20.0% 15.2 16.4% 12.0 12.8% 3.4 4.0% 4.2 4.7% 9.0 9.6% 2.0 2.2%
7- Ring length 25.4 34.4% 9.8 13.2% 7.6 10.3% 3.4 4.7% 1.8 3.3% 6.6 8.8% 2.4 3.3% 18.4 21.5% 10.6 24.4% 13.4 15.5% 4.6 5.7% 5.0 6.1% 13.0 14.9% 2.8 3.4%
8- Little length 23.4 39.6% 9.0 15.2% 7.4 12.5% 3.8 6.4% 3.0 5.1% 3.4 5.8% 2.8 4.7% 16.8 24.7% 16.0 23.9% 11.0 16.3% 3.6 5.8% 4.4 6.9% 7.4 10.9% 2.4 3.8%

9- Palm thickness 7.2 27.8% 4.6 17.7% 6.0 23.0% 4.6 18.3% 4.2 16.6% 2.8 10.6% 1.2 5.0% 8.8 28.6% 9.2 30.2% 9.0 29.7% 2.2 7.1% 3.6 12.1% 6.2 20.9% 1.2 3.9%
10- Thumb girth 12.8 19.7% 7.8 12.0% 6.8 10.5% 4.4 6.8% 5.6 8.7% 6.0 9.2% 2.2 3.4% 13.8 17.8% 18.2 23.5% 16.4 21.0% 4.0 5.4% 4.4 6.1% 13.2 17.0% 2.0 2.7%
11- Index girth 10.0 17.1% 7.0 11.9% 5.6 9.5% 5.2 8.9% 5.2 9.0% 4.0 6.7% 2.6 4.5% 12.6 17.1% 16.4 23.2% 13.4 18.7% 5.6 7.8% 4.8 6.8% 11.0 15.0% 1.2 1.7%

12- Middle girth 11.2 18.9% 6.6 11.0% 4.8 8.0% 4.4 7.5% 4.2 7.1% 3.8 6.3% 2.4 4.1% 12.8 17.9% 15.8 22.7% 12.2 17.2% 5.2 7.6% 3.4 4.9% 8.2 11.4% 1.8 2.6%
13- Ring girth 9.0 16.2% 5.6 10.1% 6.4 11.6% 3.4 6.2% 4.8 7.8% 5.0 8.9% 1.4 2.5% 9.6 15.0% 12.2 19.2% 10.8 17.0% 5.2 8.3% 4.8 7.6% 7.2 11.1% 1.4 2.2%
14- Little girth 9.2 19.8% 5.0 10.9% 5.2 11.3% 4.0 9.1% 4.4 10.0% 4.6 9.9% 2.8 6.4% 10.4 18.2% 12.4 22.0% 11.0 19.5% 5.2 9.3% 4.0 7.1% 7.0 12.3% 2.2 3.9%

Average 22.7 29.6% 8.0 21.7% 6.5 10.4% 4.2 6.9% 4.1 6.8% 6.7 9.2% 2.1 3.4% 17.5 20.5% 17.4 21.7% 13.8 17.5% 4.5 6.0% 4.3 6.0% 11.9 14.2% 1.9 2.6%

0.3% noise, which is deemed acceptable, which is deemed
acceptable. These results indicate that our method effectively
filters out irrelevant or erroneous information, enabling it to
focus on extracting valuable features for reliable predictions.
Additionally, we conducted experiments on another 5 female
real-world dataset, which we subsampled into three different
point cloud densities: 2048, 1024, and 512. The purpose
was to examine how the density of the point cloud affects
the performance of our method. The error results are shown
in Table II, from which we can see that the errors with
different densities are very close. Therefore, our method can
handle sparse or dense data without affecting its ability to

extract valuable information. In conclusion, our method is able
to adapt well to real-world scenarios where noise and data
irregularities are prevalent.

D. Ablation studies

We take the average value µ, average standard derivation
σ and maximum value max of CD errors to evaluate the
performance of critical components. Details are provided next.

1) Effectiveness of multi-view input: In this section, we
explored the performance of different inputs based on the
proposed method. PatientHandNet takes four depth images
(i.e., palmar, ulnar, dorsal, and radial views of hand) as the



12TABLE V: Comparisons of reconstruction errors with different 
number of depth images (Unit:mm)

single depth image two depth images four depth images

µ 0.443 0.430 0.401
σ 0.153 0.146 0.099

max 1.106 1.034 0.598

TABLE VI: Comparisons of reconstruction errors without and
with pre-aligning raw inputs (Unit:mm)

Wihtout pre-alignment With pre-alignment

µ 0.468 0.401
σ 0.158 0.099

max 1.134 0.598

input since they are the minimal captures necessary in order
to obtain the complete geometry of the hand. We retrain our
network based on a single depth image (dorsal view), two
depth images (dorsal view and radial view) and four depth
images, respectively. Table V compares the reconstruction
errors of them. It can be seen that the results from two depth
images are better than the results from a single depth image,
and the results from four depth images are the best.

2) Effectiveness of pre-aligned inputs: One of our insights
is that the reconstruction accuracy is improved if the raw inputs
are pre-aligned. To validate it, we compared the reconstruction
accuracy for the proposed method without and with the pre-
alignment. As Table VI illustrates, it can be seen that the pre-
alignment of raw inputs can significantly reduce reconstruction
errors. With the help of the proposed VVT module, the input
partial point clouds are aligned to obtain more accurate global
shape information of the complete hand and also introduce the
spatial relationship among inputs.

3) Effectiveness of multi-scale and multi-view feature learn-
ing: MMFA was proposed in our model to learn hierarchically
geometric and spatial features from multi-view inputs for
hand shape reconstruction. To validate its effectiveness, two
variants of our method were proposed, which adopt a single
CPN and multi-scale CPNs to capture geometric and spatial
context, respectively. The variant of using a single CPN inputs
all of views into a CPN to learn features; the multi-scale

TABLE VII: Comparisons of reconstruction errors with a
single CPN and multi-scale CPNs feature learning methods
(Unit:mm)

Without MMFA With MMFA

µ 0.525 0.401
σ 0.179 0.099

max 1.343 0.598

TABLE VIII: Comparisons of reconstruction errors with and
without point-based refinement (Unit:mm)

Without refinement With refinement

µ 0.440 0.401
σ 0.143 0.099

max 1.113 0.598

CPNs are described in Section III-D. The experimental results
are reported in Table VII, from which we can see that the
multi-scale CPNs outperform a single CPN in terms of all
metrics. This implies that multi-scale CPNs are able to learn
more robust geometric and spatial features from different
dimensions and different number of views compared to a
single CPN.

4) Effectiveness of point-based refinement strategy: We
also proposed a point-based refinement strategy to obtain an
accurate reconstructed hand shape. Table VIII compares the
reconstruction errors with and without the refinement step. It
can be seen that the proposed point-based refinement helps to
improve the accuracy of our result significantly. This is mainly
because the self-transformer in the refinement concentrates on
the local spatial context between each point and its neighbors
to further optimize the position of each point.

V. CONCLUSIONS

In this work, we have proposed a novel deep learning-
based framework, PatientHandNet, to reconstruct the open-
palm hand shape from sparse multi-view depth images cap-
tured by a single commodity depth camera. Compared to the
existing methods, our method has the following advantages:
1) we only require four depth images as input acquired with a
single depth camera; 2) the subjects are allowed to change their
hand poses during data acquisition; and 3) we output a high-
fidelity hand mesh in a canonical open-palm pose. This makes
it accurate and convenient for hand biometrics extraction of
patients with impaired hand functions. We also synthesized a
large-scale dataset for training the proposed model and built a
novel real-world dataset that includes multi-view partial hand
scans of 18 subjects and their ground-truth hand biometrics.
Extensive results based on both synthetic data and real-world
scans validated the effectiveness of our method and showed
that it outperforms the state-of-the-art methods.
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