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uality-Guaranteed and Cost-Efective Population Health Profiling: A

Deep Active Learning Approach

LONG CHEN and JIANGTAO WANG ∗, Center for Intelligent Healthcare, Coventry University, UK

PIYUSHIMITA (VONU) THAKURIAH, Rutgers Urban and Civic Informatics Lab, Rutgers University, New

Brunswick, New Jersey, US

Reliability and cost are two primary consideration for proiling population-scale prevalence (PPP) of multiple None Com-

municable Diseases (NCDs). In this paper, we exploit intra-disease and inter-disease correlation in diferent traditionally-

sensed-areas (TS-A) to reduce the required number of the proiling task allocated without compromising the data reliability.

Speciically, we propose a novel approach called Compressive Population Health TS-A Selection (CPH-TS), which blends

the state-of-the-art proile inference, data augmentation and active learning in a uniied deep learning framework. It can

actively select a minimum number of TS-A regions for proiling task allocation in each proiling cycle, while deducting of the

missing data of the unproiled regions with a probabilistic guarantee of reliability. We evaluate our approach on real-world

prevalence datasets of London, which shows the efectiveness of CPH-TS. In general, CPH-TS assigned 11.1-27.3% fewer tasks

than baselines, assigning tasks to only 34.7% of the sub-regions while the proiling error below 5% for 95% of the cycles.

CCS Concepts: · Applied computing→ Health informatics.

Additional Key Words and Phrases: Proiling of Prevalence, Spatio-temporal Correlations, Generative Adversarial Network,

Convolutional Neural Networks (CNN).

1 INTRODUCTION

Non-communicable diseases (NCDs), such as heart attack, hypertension, and cancer, is one of the most common

causes of death in UK. Quantifying and understanding the NCDs patterns and trends is the central task for the

healthcare authorities to manage the health intervention programs. Generally speaking, one can handle this task

via population health surveillance, which is a institutional sensing that collects information of the health status

of a population.

At the core of population health surveillance is the so-called proiling population-scale prevalence (PPP),

which aims to proile the morbidity rate of multiple NCDs. There are two popular ways to conduct PPP, which

are clinical-record integration and residential survey. Unfortunately, none of them is a trivial task for NCDs

surveillance [24]. The former entails the access of private health data, which is sensitive and thus needs some

extra work to ensure the anonymity when conducting the data integration. The latter requires the recruitment of

a residents group, which acts as the representative for the entire population. Each resident will be assigned with

an interview or questionnaires, which is time consuming and costly for the process of survey administration.
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Fig. 1. Basic Vision of TS-A selection for Compressive Population Health of London in 20144

[12] proposed a new compressive population health paradigm, which can infer the prevalence rate of unknown

regions automatically. However, it only focuses on the data reconstruction phase without considering how to

selecting the most salient TS-A. Therefore, in this work, we aim to reduce the cost to the maximum extent for

the data reconstruction by employing deep active learning techniques. We propose a novel health data science

paradigm called Compressive Population Health [12] Traditionally-Sensed-Areas Selection (CPH-TS) , which has

been made publicly available 1. In addition to achieve the major goal of cost reduction, we also make sure that the

proiled information by our new approach is reliable by using Bayesian inference with a probabilistic guarantee of

reliability. The expected transformative outcome is to beneit the public health authorities (e.g., NHS 2 and PHE 3)

in reducing the economic burden on the population health surveillance tasks. As Figure 1 shows, our basic vision

is that, for each target disease (e.g., obesity, hypertension, and diabetes), CPH-TS only selects its "best" subset

of regions (called Traditionally-Sensed-Areas, TS-A for short) where public health administrators still proile

the prevalence rate through traditional method (either hospital-visit-based data integration or survey-based

approach). Then, CPH-TS uses prevalence rate measured from TS-A to perform inference on the un-selected

regions (called "Inferred Areas", IF-A for short). The prevalence rate inference is facilitated by exploiting the

inherent data correlations extracted from historical data in multiple open-access public health datasets and

evidence from epidemiology research.

To address the aforementioned challenges, we proposed a novel approach, namely Compressive Population

Health Traditionally-Sensed-Areas Selection (CPH-TS).

In order to achieve the PPP task above-mentioned, we need to address research questions as follows:

Challenge A: How many and which regions should be chosen as TS-A for each disease?

In each year, we need to minimize the number of the allocated TS-A while ensuring the data reliability. In order

to ind this minimum TS-A collection, we need to identify the salient regions whose prevalence is informative to

deduce the prevalence of other regions to the maximum extent. However, how to identify the salient regions in

1https://github.com/long4coventry/CPH-TS/
2https://www.nhs.uk/
3https://www.gov.uk/government/organisations/public-health-england
4This igure has been referred from our previous conference paper [12]
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Fig. 2. The workflow of CPH-TS

an incremental manner is not trivial, since without foreseeing the true prevalence of a region, it is diicult to tell

how much that value can enhance the data reliability.

Challenge B: How to estimate the data reliability online throughout a prevalence proiling task

without knowing the true prevalence of the unproiled regions?

Since the true prevalence of the unproiled regions is unknown, we cannot calculate the data reliability directly

by comparing the deduced values with the actual ones. Hence, it is important to estimate such proiling data

reliability online in each proiling cycle. Furthermore, as the estimated data reliability intrinsically has certain

deviation from the actual prevalence rate, it is impractical to require all the proiling cycles to meet a predeined

error bound. Therefore, we need to deine the data reliability requirement for the entire PPP task instead of

merely having an error bound for each proiling cycle.

Given the challenges and caveats described above, the contributions of the paper are listed as follows:

1) We proposed a cost-efective population health proiling approach through multi-task active learning, which

can jointly consider both the uncertainty and diversity when selecting the optimal regions to conduct proiling

tasks for multiple diseases.

2) To control the proiling cost and ensure quality, we present a novel proiling data quality metric to evaluate

the reliability of an T-SA task in each cycle, as well as a novel Bootstrapping Bayesian-Inference(BBI) method to

learn the stopping criterion.

3) The existing Generative Adversarial Imputation Nets (GAIN) only exploits intra-disease correlation (spatial

correlation), therefore we proposed a multi-task learning framework for data imputation, which extracts and

ACM Trans. Comput. Healthcare
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exploits both intra-disease correlation (spatial correlation) and inter-disease correlation (multimorbidity) for data

imputation. Notice that the direct adoption of GAIN can only explore intra-disease correlaiton, whereas CPH-TS

can exploit both intra-disease and inter-disease correlations.

4) We undertake rigorous experimental assessments on real-world NCDs datasets from London in order to

demonstrate CPH-TS’s eicacy. In general, CPH-TS assigned 11.1%-27.3% less tasks than baselines, with proiling

tasks assigned to only 34.7% of sub-regions and a proiling error of less than 5% for 95% of cycles.

2 RELATED WORK

2.1 TS-A Selection in PPP

Most of the TS-A selection in PPP was designed around the metric of spatial coverage. For example, Clements et

al., [9] used a stratiied cluster random sampling to optimize the survey task distribution of schistosome infection.

Similarly, Gitonga et al., [14] designed a non-probability sampling to guarantee a sensible spatial spread of survey

tasks regarding Plasmodium infection. Linli more recently proposed L2MM [22], a sampling technique based

on deep learning for handling low-quality GPS data. Alternatively, survey tasks are often selected to maximize

the spatial coverage over a given area regarding its shape and existing statistics. For example, Groenigen [37]

proposed an iterative process to tackle the task allocation of soil sampling, which attempt to minimise the distance

among all the data points so as to obtain a training dataset with an uniform distribution of sites with any given

shape. Unlike the existing work, where coverage ratio is regarded as the reliability metric, which cannot be

directly applied to active learning tasks since it only takes account of the diversity in its acquisition function. In

this work, we use the overall proiling error to evaluate the data reliability, based on which we want to minimize

the number of the selected tasks so that the PPP organizers can save budget. Notice that [40] also proposed an

overall proiling error scheme to facilitate active learning in the domain of compressive crowd sensing, which is

somewhat similar to our idea. However, in addition to the domain diference, their acquisition function is purely

based on a traditional active learning method, e.g., query-by-committee [4], whereas ours is based on BatchBALD,

which is a state-of-the-art deep learning algorithm.

2.2 Population Health Data Inference

There have been a large number of studies strive to infer the missing data. For example, [2, 33, 38] proposed

various data imputation methods to recover the missing data for NCDs surveillance. However, they are largely

relied on the traditional matrix recovery models. More recently, the advances in deep learning models have

shown state-of-the-art performance in inferring the enormous amount of electronic records [28, 30]. Ma et al.,[29]

proposed several data recovery methods that exploits the spatio-temporal correlation to achieve reliable data

inference. Some studies take advantage of the geographical patterns of social network [16] or sensor data [25]

to infer the patterns of disease outbreak. In [41], the authors investigate the mobility patterns of city residents

to infer the prevalence rate of multiple chronic NCDs, which is somewhat similar to our idea. However, they

only focused on spatial correlation of the disease, while our model also harness the power of inter-disease

correlation. CPH [12] is a recent research that takes into account both inter- and intra-disease correlations, which

is comparable to our approach. However, their work is entirely focused on high-quality data reconstruction,

whereas ours is primarily concerned with the trade-of between reliability and cost through the application of

deep active learning.

2.3 Deep Active Learning

The batch-based sampling strategy is the foundation of Deep Active Learning(DeepAL) [31], since the traditional

one-by-one sampling strategy can only make a marginal change on the training space in each iteration, which is

inefective when it comes to large dataset. In addition, batch sampling can largely reduce the proiling time as

ACM Trans. Comput. Healthcare
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the survey tasks were done in a parallel, which in turn save the general cost. The naive approach of DeepAL

is to select a batch of samples by using the original one-by-one sampling strategy. For example, [13, 21, 34]

combined batch acquisition with Bayesian active learning for disagreement (BALD) [20], which simply selects top

k samples with the highest disagreement score. While efective, DeepAL along this line often leads to a training

dataset comprise informative but very similar samples. The information extracted from these similar samples is

essentially the same, which wasted the valuable surveying resources. In addition, this sampling method assumes

that samples are independent to each other, and thus ignores the correlation among samples. To address the

above limitation, BatchBALD [23] is proposed, which incorporates the correlation among samples by estimating

the mutual information of the batch between the sample embeddings and model parameters.

In addition, traditional active learning methods consider query strategy (i.e., TS-A selection in this paper) and

training of the predicative model as two separate problem. While efective, models along this line often lead to

sub-optimal result. This is because query strategies are based on ixed feature representation, but in most deep

learning scenarios, feature representation is dynamically updated in the training process of the predicative models,

which leads to two following drawbacks. Firstly, as these two problems correspond to a respective loss function,

the dependency information between these two problems is completely ignored which often leads to divergence

issue. Secondly, waiting for the output from the predicative model would incur some extra computional time. To

address the problem above, researchers have proposed the end-to-end DeepAL models that use a single uniied

loss function for the entire active learning process. For example, LLAL [43] uses a comprehensive loss based on

both target loss of active learning and the loss-prediction loss of deep learning model. MCDAL [8] combines

both stages with an integrated classiier. However, end-to-end deep active learning models start with a small

amount of labeled samples while the training process of deep learning models often relies on a large amount of

labeled data. Therefore, we argue that a more principled DeepAL design also needs to exploit a large amount

of samples to resolve this problem. The cost efective active learning (CEAL) [39] expands the original training

dataset with unlabelled samples that have a high prediction score. However, the studies along this line assumes

the availability of a large amount of unlabeled samples, which is not always feasible in the real world. Hence,

Generative Adversarial Neural Network (GAN) [15] is proposed for data augmentation. A typical example is

GAAL [46], which uses the synthesized samples with more information to enrich the original training samples.

This is arguably the seminal work that uses GAN for active learning. But it is still based on a two-step approach.

To the best of our knowledge, CPH-TS is allegedly the irst end-to-end DeepAL model that exploits the GAN-based

deep learning framework.

3 PROBLEM STATEMENT

To formally deine the PPP task, we deine the concepts about the proiling and selection matrices (c.f., Figure 2).

Deinition 1. Full Disease Matrix. For a region-centric PPP task of� regions and � proiling cycles, its full

disease matrix is given as ��×� , where each entry � [�, �] is the true proiling data of region � in cycle � .

Deinition 2. Region-Selection Matrix. In a region-selection matrix ��×� , each entry � [�, �] denotes whether or

not the corresponding entry in the full disease matrix � [�, �] is selected for proiling: if region i is selected for

proiling in cycle � , then � [�, �] = 1, otherwise � [�, �] = 0.

Deinition 3. Collected Disease Matrix. A collected disease matrix ��×� records the actual collected proiling

data:

� = � ⊗ � (1)

where the ⊗ operator conducts the Hadamard product [19]] of two matrices.

Deinition 4. Disease Matrix Imputation Algorithm. A disease matrix imputation algorithm R will impute a full

disease matrix ��×� from the collected disease matrix ��×� :

ACM Trans. Comput. Healthcare
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�(��×�) = �̂�×� ≈ ��×� (2)

where r is the number of region and n is the number of cycles. Now, we deine the overall proiling error that can

directly evaluate the data reliability.

Deinition 5. Overall proiling Error. It measures the diference between the imputed full disease matrix �̂ and

the true disease matrix � . We calculate the overall proiling error of each proiling cycle separately. For proiling

cycle k, the overall proiling error is deined as:

E� = error(�̂ [:, �], � [:, �]) (3)

where � [:, �] denotes the true proiling values of all the � TS-A in cycle � , and �̂ [:, �] represents the imputed

values by using the matrix completion algorithm �.

Deinition 6. Reliability metric � (�, �). For a PPP task of � proiling cycles, it satisies the reliability requirement

of � (�, �), if

|{� | E� ≤ �, 1 ≤ � ≤ �}| ≥ � · � (4)

where � is a the probability that determines the least percentage of cycles whose error should be smaller than � .

Naturally, we want a PPP task to make the overall proiling error lower than � in all (� = 1) the cycles. However,

this scenario is impossible in the real world since knowing the accurate proiling error E� beforehand is infeasible.

Hence, we can only select a reasonable � value in terms of statistics (for example, 90% or 95%) to ensure that the

overall proiling error falls within the error bound � for most of the cycles.

Now, the PPP task can be formally summarized as the following problem. Given a PPP task with � regions and

� cycles, and a disease matrix imputation algorithm �, we aim to obtain the minimum subset of proiling TS-A

during the whole PPP task process (i.e., minimize the non-zero cells in the TS-A matrix T), while keeping the

overall proiling errors of � · � cycles below the predeined error bound � (�, �). The matrix completion algorithm

R aims to impute a full disease matrix �̂�×� from the collected disease matrix ��×� .

min

�︁

�=1

�︁

�=1

� [�, �]

s.t., |{� | E� ≤ �, 1 ≤ � ≤ �}| ≥ � · �

where E� = error(�̂ [:, �], � [:, �])

�̂ = R(�),� = � ⊗ �

(5)

When � is given, we can identify the optimal T by enumerating all the cells (regardless of the computational

cost). However, in real world, � is mostly unknown, which makes it a thorny problem for the following two

reasons: (1) E� cannot be directly calculated, and (2) the TS-A selection is a monotonic process (i.e., we cannot

get � [�, �] until we set � [�, �] = 1, where this operation cannot be retracted to save the costs). To take account

of these factors, we propose CPH-TS, which uses an iterative pipeline to select TS-A for proiling in each cycle,

which will be explained in details in the next section.

4 THE OVERVIEW OF CPH-TS

In this section, we introduce the architecture of CPH-TS. To begin with, CPH-TS assumes that there are abundant

participants in each region all the time, which makes it possible to collect prevalence rate from any target TS-A

regions. In real-world scenarios, this may not be the case and we will discuss how to relax this assumption in the

future work.

ACM Trans. Comput. Healthcare
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Fig. 2 shows the pipeline of CPH-TS. In each cycle, CPH-TS selects the next salient TS-A for proiling and waits

for the health experts to collect the prevalence data(e.g., clinic records or health surveys) in that TS-A, until the

estimated data reliability satisies the predeined � (�, �) requirement. Then, the task allocation formally ends and

the missing data are illed with IF-A in one proiling cycle. Suppose the target TS-A contains ive regions and the

ifth proiling cycle is in the current stage; to start with, no proiling data is collected in cycle ive. The pipeline of

CPH-TS is summarized as follows:

(1) CPH-TS pinpoints the most salient region (Figure 2-2, region 3,� [3, 5] = 1) and select a TS-A task for region

3 to complete. The health expert conduct the PPP task and returns the data to the CPH-TS (Figure 3-2,

� [3, 5] = � [3, 5] = 0.19).

(2) After CPH-TS acquires the proiling data of region 3, it evaluates whether the data reliability meets the

predeined � (�, �) requirement. Let the result be no, then CPH-TS continues searching the next salient

region (region 5, � [4, 5] = 1) to allocate another TS-A task (Figure 2-3, � [4, 5] = � [4, 5] = 0.33).

(3) After completing the TS-A tasks from region 3 and 4 in cycle 5, CPH-TS evaluates whether the data reliability

meets the predeined� (�, �) again. If the updated result is yes, CCS-TA stops further task allocations for cycle

5 and imputes all the missing data of the undetermined regions (Figure 2-4, �̂ [1, 5], �̂ [2, 5], ����̂ [5, 5]are

imputed).

5 DETAILED DESIGN OF CPH-TS

In this section, we will explain the modules that used in CPH-TS: Imputing missing data, and acquisition function

that selects the most salient regions for proiling, and stopping criteria for TS-A selection. The detailed relationship

of these modules are illustrated in Fig. 3

5.1 Imputing Missing Data

Our imputingmethod Compressive PopulationHealth (CPH), which is based onGenerative Adversarial Imputation

Nets (GAIN) [44]. Unlike the traditional deep learning based data imputation models, CPH is based on Generative

Adversarial Neural-network (GAN) [15], which automatically generates a large amount of synthetic data points

for data augmentation in order to enhance the training eicacy. Furthermore, compared with the traditional GAN

methods that only use the intra-disease correlation, CPH exploits both intra-disease and inter-disease correlations

to impute missing data with a higher accuracy.

Firstly, we input all the collected disease matrices � , and the missing values are replaced with zero, which are

fed into CNN [1] for feature engineering to produce the feature matrix, � ′. Then we calculate the corresponding

mask matrix � with respect to the selected target disease. Lastly, we feed mask matrix (in addition to the feature

matrix) into the GAN [15] model for training, after which the imputed matrix �̂ can be obtained. Each of these

elements is given as follows:

5.1.1 CNN-based Representation. The CNN representation aims to extract the intra-disease and interdisease

data correlations from multiple diseases. First, the missing-value cells of each disease matrix are initialized with

diferent noise variables, Z, which is the standard input in a Adversarial Network and can be obtained by drawing

from a normal distribution. Then, we consider the overall disease matrices as an image with respective channel to

each disease, where the row and column of the image correspond to time and space, and the number of channels

denotes the number of disease types. Lastly, we feed the image into the CNN-based representation �̂ to obtain a

feature matrix � ′.

� ′
= �̂ (�,� ) (6)

ACM Trans. Comput. Healthcare
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Fig. 3. The detailed relationship of the modules in CPH-TS

Notice that wards boundaries dataset provide spatial information of the wards. NCD datasets provide the

prevalence rate of each ward between 2008 and 2017. Therefore, these two datasets are mapped in terms of the

ward id. Regions are derived from the wards number in London and the cycles are deined by year from 2008

to the current year. In addition, regions are ranked in terms of ward id (where spatially adjacent wards are put

together), cycles are ranked by years.

5.1.2 Generator. In the generator network� , feature matrix � ′ is the input layer and �̂ is the output layer, which

is a complete matrix. The mask matrix � should change according to the target disease. For example, if diabetes

is selected as the target disease, then the mask matrix will tell which cells of the diabetes disease matrix are

observed. Let � : � ′ × {0, 1}�×� → �̂ be a function, then the matrix �̄ and �̂ can be given as:

�̄ = � (� ′, �)

�̂ = � ⊙ � + (1 −� ) ⊙ � ′
(7)

where ⊙ denotes pair-wise multiplication. � is the collected disease matrix. �̄ is the matrix of imputed values,

where the value of each cell will be changed in the training process of G, even if the cell is observed. �̂ represents

the completed data matrix, in which the observed values are taken from the collected disease matrix C and the

ACM Trans. Comput. Healthcare
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missing values are taken from the respective values in the �̄ . This is a standard GAN setup, where the �̂ is the

desired output from the training.

5.1.3 Discriminator. In the standard GAN setup, the discriminator is a adversary network to train � . The output

of the generator will be classiied as either real or fake. However, in our model, the output is a matrix consisted

of both observed and imputed values. So, the discriminator will not aim to identify whether the generator output

is real or fake, but try to diferentiate whether each cell in the matrix is observed or imputed. This is essentially

predicting the mask matrix� . The discriminator, therefore, can be given as a function of � : �̂ → {0, 1}�×� , where

each cell from the output of � denotes the probability that the corresponding cell of �̂ is observed. Therefore, the

high probability here indicates that it is likely to be an observed cell.

5.2 Acquisition Function

Acquisition function aims to model the uncertainty from the deep learning prediction. We adopt Batch Bayesian

Active Learning by Disagreement (BatchBALD) [23], which is arguably the best acquisition function for the

applications of deep active learning until early 2022. It employs the mutual information to estimate the uncertainty

between the deep learning predictions and the model parameters. Simply put, it is based on the intuition that

obtaining the true label of each cell with a high mutual information can also reveal the hidden model parameters.

Let’s irst introduce the deinition of BALD [20], which is the basic unit of BatchBALD:

I (�;� | �, �train ) = H (� | �, �train ) − Ep(� |�train ) [H (� | �,�, �train )] (8)

where unlabelled dataset, ����� and ������ are the unlabelled dataset and the labelled training dataset respectively.

� is a single cell of ����� , � is the true label of � . � (�, ������) is a Bayesian model over the ������ with parameters

� . There are two terms in equation 8, where we want to see the mutual information as high as possible. Therefore,

we need to maximize the left term and minimize the right one. The left term denotes the entropy with respect to

the model prediction, which will be high when the prediction is uncertain. The right term corresponds to the

entropy of the prediction over the posterior distribution of the model parameters. It will be low if the sampling of

the model parameters are consistent with the posterior distribution. Hence, for both terms, the best scenarios

happen when the data can be explained in many ways, implying that there is a high disagreement among the

posterior draws.

Then BatchBALD [23] is built on top of BALD [20], where cells are jointly scored by calculating the mutual

information between a set of cells and the model parameters.

�BatchBALD ({�1, . . . , ��} , p (� | �train )) = I (�1, . . . , �� ;� | �1, . . . , ��, �train ) (9)

where one can obtain the optimal batch by employing a batch-based greedy algorithm [23] that boils down the

problem to selecting the top b highest-scoring cells.

5.3 Stopping strategy

In CPH-TS, for each proiling cycle, we need to ind the optimal timing to stop TS-A task selection. But the problem

is as follows: if we stop prematurely, the data might not be enough to meet the predeined � (�, �) reliability

for the CPH task; On the other hand, if too late, then there will be redundant data, which would incur some

additional cost. A good stopping criteria should strike the optimal balance between the data reliability and data

redundancy. To achieve this, we propose a Bootstrapping Bayesian-Inference (BBI) method to learn the stopping

criterion for each proiling cycle. First, BBI uses leave-one-out bootstrapping re-sampling method [10] to get

a set of re-deducted proiling data with the respective ground-truth obtained from the TS-A data. Then, the
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re-deduced data is compared to the ground-truth, where Bayesian inference is employed to evaluate if the current

data reliability can meet the predeiend � (�, �) reliability requirement or not (c.f., Section 5.4).

In machine learning, leave-one-out bootstrap is a popular re-sampling method to evaluate the model’s perfor-

mance. Given a training dataset of� observations, the core idea of bootstrapping re-sampling [10] is for each

time, we remove one data point and use the remaining� − 1 data point as training data to re-deduce it. We repeat

this process for� times, and get the performance of� predictions along with the respective true observations,

which is then used to measure the prediction error.

In each cycle, BBI will remove one data point from the collected dataset and then run the imputation algorithm

R to re-deduce it. Once the algorithm inish enumerating the entire collected dataset, we obtain two embeddings

x and y, where x denotes the ground-truth for the current cycle, while y is the respective re-deduced data by

using leave-one-out bootstrap. Let there be�′ collected data from�′ regions for each cycle, then both x and y

are consisted of�′ elements:

x = ⟨�1, �2, · · · , ��′⟩ , y = ⟨�1, �2, · · · , ��′⟩ (10)

where �� denote the value of the ith collected region in cycle k, and �� is the re-deduced value by removing ��
from the collected dataset. Given x and y, we will illustrate how to evaluate whether the task could satisfy the

predeined � (�, �) reliability or not.

5.4 Evaluating the Current Reliability

Formally speaking, if we want to ensure that a task meets the � (�, �) reliability, we need to make sure that at

least � of all data points are in the error bound � .

Hence, we convert the problem of evaluating whether the TS-A task meets the � (�, �) reliability to calculate

� (E� < �), where E� is the overall proiling error at cycle k, which can be estimated by using Bayesian inference

[3].

If we deine E� to be an unknown parameter and �(E� ) is the corresponding prior distribution. Then, after

applying acquisition function, we can update the distribution of E� in terms of observation � , which leads to the

posterior distribution �(E� |� ), we update the probability distribution as follows (Bayesian Rule [45])

� (E� | � ) =
� (� | E� ) � (E� )∫ ∞

−∞
� (� | E� ) � (E� ) �E�

(11)

where � (� |E� ) is the probability of observing � conditioned on E� . We can now simplify the problem of estimating

� (E� < �) as calculating the posterior distribution � (E� | � ).

� (E� ≤ �) ≈

∫ �

−∞

� (E� | � ) �E� (12)

If � (E� < �) > � , then CPH-TS ends the task selection process of the cycle k and the next cycle will be started

at due time. Otherwise, CPH-TS keeps selecting a batch of new regions to collect proiling data. We use mean

absolute error (MAE) as the observation variable � , which can be estimated with maximum likelihood estimation.

We then calculate the posterior of �(E� | � ) and determine whether more TS-A should be selected.

� = ���

=

∑
� |�� − �� |

�′

(13)

Until now, we need to evaluate the reliability after assigning a new TS-A task, wait for the health expert’s

results, and then retrain the entire model. This is a time-consuming process, as will be shown in Section 6.7. Can
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we save the time cost at certain stage of this process? The answer is Yes. Theoretically, a low-rank matrix� can

only be imputed perfectly by using convex optimization [5] when the minimum number of observed entries� in

the� satisfy the condition of Eq. 14:

� ≥ ��1.2� log� (14)

where � is the maximum dimension of� . In our case � is mostly the number of regions rather than the number

of cycles, since the former is normally greater than the latter. � is a positive constant and � is the rank of � ,

which can be approximated as the number of the cycles. Since the matrices for the PPP tasks are not low-rank,

the required number of samples should be much larger than�. As will be shown in Sec. 6.7, CPH-TS cannot

achieve an satisfactory result until the completion of the data collection from the irst 10% TS-A regions.

On the other hand, empirically speaking, uncertainty-based active learning approaches initially perform worse

than random sampling in a wide range of applications [23, 27, 36, 42], but after a certain number of training

acquisition steps (normally between 8% and 20% of training dataset) they begin to improve and supersede the

uniform sampling. The above analysis leads us to apply a random sampling approach for all the active learning

approaches when assigning the irst 10% of the training dataset. Therefore, the imputation algorithm, acquisition

function, model retraining, and the stopping strategy can all be omitted to signiicantly reduce the computational

cost and waiting time at the beginning, since it is impossible for the active learning models to attain satisfactory

performance and meet the error bound during this stage.

6 EXPERIMENTAL RESULTS

In this section, we use two real-world datasets, National Health Service (NHS), to evaluate CPH-TS. We use

two publicly available datasets: Ward Boundaries of London 5 and NCDs Prevalence 6. The former is provided

by the UK’s mapping bureau with what might be the most accurate geographical statistics given to the public.

The collection contains information about 630 London wards, including their unique names, forms, and codes.

Between 01/04/2008 and 31/03/2017, the latter was downloaded from the National Health Service, and it comprises

three types of NCDs: obesity, diabetes, and hypertension. Each kind is represented by a percentage of all people

on the practise roster.

6.1 Experimental Setup

We employ historical training data spanning the years 2008 to 2013 and test data spanning the years 2014 to 2017.

For instance, if we change the year to 2014, we can evaluate active learning’s performance in 2014 utilizing data

from 2008 to 2013. If we use 2016 as the current year, we may evaluate 2016 performance using data ranging

from 2008 to 2015. In addition to MAE, we also use RMSE 7 [6] to evaluate the experimental results.

To compare CPH-TS with other active learning methods, we use the following baselines:

• FIX-k: An alternative approach that extends the active learning to the TS-A allocation task by ixing the

total task number k in each proiling cycle, while still using BALD [23] and DEAL [17] to actively select

regions as TS-A; we call this customized algorithm BALD-FIX-k and DEAL-FIX-k respectively. Compared

to FIX-k approaches, CPH-TS exhibits the power brought by BBI that dynamically determines the best time

to stop the TS-A selection task, which in turn can adaptively change the number of task allocation in each

cycle.

5https://data.ordnancesurvey.co.uk/
6https://digital.nhs.uk/data-and-information/publications/statistical/quality-and-outcomes-framework-achievement-prevalence-and-

exceptions-data
7https://en.wikipedia.org/wiki/Root-mean-square_deviation
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Fig. 4. The temporal-spatial correlations from the input disease matrix (let) and the CNN feature map (right) for obesity.

• RANDOM-TS: An intuitive approach that randomly select the next region for proiling, but still exploits

BBI as the stopping criterion. Compared to RANDOM-TA, CPH-TS has the beneit of applying BALD to

select the salient regions for proiling.

6.2 CNN Representation Analysis

In section 5.1, we enter the global disease matrices as an image, where time and space correspond to the image’s

row and column. Given that CNN [1] can extract local information from images, it is worthwhile to investigate

how the values of disease matrices are inluenced by their neighbouring values (time and space). This section

demonstrates the usefulness of modelling disease matrices as image data and extracting features using CNN.

In Fig. 4, we highlight the temporal-spatial patterns of the irst 100 regions (ranked in terms of ward id)

between 2008 and 2016. Left is the disease matrix and right is the last CNN layer for obesity. The last CNN layer

is the so-called feature map. From the igure on the left, it is evident that there are temporal spatial patterns. For

instance, neighbouring regions are more likely to share a comparable prevalence rate for the irst ifteen regions

and the ifth year (c.f., the red box in the left igure). It is also noteworthy that the CNN output is capable of

capturing a variety of characteristics that are diicult for humans to discern from the CNN input. For instance,

the irst red box is only marginally correlated in the disease matrix, however the sixth, seventh, and eighth years

are highly correlated in the feature map following the CNN transformation process.

6.3 Performance Analysis: Imputing Missing Values

First, we need to evaluate the efectiveness of CPH for imputing missing values, which is then compared to the

other state-of-the-art matrix completion algorithms, including NMF [11], ST-KNN [7], Deep Multimodal Encoding

(DME) [26], Auto-Encoder [35], and GAIN [44]. Note that for GAIN and CPH, the optimization parameters are

identical to that in [12], which has been explained in the code of this paper 8, where the training epoch is 10,

learning rate is 0.01, the batch size is 483, which denotes the number of samples in the mini-batch. For NMF,

8https://github.com/WoodScene/Compressive-Population-Health
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the embedding dimension is 5, the default learning rate is 0.01, and the convergence rate is set as 1� − 3, which

controls the stopping training point. The Auto-encoder is based on a MLP structure with four fully connected

hidden layers with ���� as activation function, The initial learning rate is 1� − 3, and the number of training

iteration is 1�5. For ST-KNN, the optimal k value is 6. For DME, we employ the auto-encoder to predict the

missing values of each disease.

Methods 2016 2017

m= 90% m= 70% m=90% m=70%

RMSE MAE RMSE MAE RMSE MAE RMSE MAE

NMF 0.1518 0.1180 0.1346 0.1064 0.1661 0.1331 0.1513 0.1208

Auto-Encoder 0.0857 0.0616 0.0817 0.0597 0.0772 0.0575 0.0681 0.0520

ST-KNN 0.0794 0.0557 0.0752 0.0546 0.0739 0.0520 0.0632 0.0472

DME 0.0691 0.0525 0.0619 0.0444 0.0694 0.0634 0.0624 0.0459

GAIN 0.0948 0.0597 0.0616 0.0509 0.0617 0.0491 0.0507 0.0415

CPH 0.0577* 0.0422* 0.0455* 0.0355* 0.0529* 0.0410* 0.0405* 0.0312*

Table 1. Inference reliability of obesity (* denotes p < 0.05 in the respective t test)

Table 5 shows the overall proiling error of diferent imputation algorithms on the NHS datasets with varying

settings. Notice that we only analyse the results of obesity in this section due to the space limitation. The other

two types of diseases actually show even better results, since obesity has the weakest correlation with the other

two diseases, therefore its performance is the worst. In this experiment, we consider each proiling cycle k as the

latest cycle (we use 2016 and 2017 as the test dataset), imputing the full disease matrix with the collected proiling

matrix, and then estimate the overall proiling error in terms of RMSE and MAE [6].� parameter indicates the

percentage of missing data in the training dataset. Consistent with the [12], our evaluation results demonstrate

that CPH outperforms other approaches with respect to both metrics with a performance gain ranging from 9.1%

to 14.8%, indicating that it is extremely efective at imputing missing health data. It is clear that the traditional

NMF method cannot impute the missing values well since it underits the training dataset. To further evaluate

the eicacy of CPH, a two-sample t test is conducted between CPH and GAIN, the best baseline method. Each

model is executed 20 times with noise variables � taken from a normal distribution. The results reveal that the

improvement in CPH performance is statistically signiicant at the 95% conidence level (p<0.05). Compared to the

deep learning models i.e., Auto-Encoder and GAIN, CPH exploits both inter-disease and intra-disease correlations

to infer the unknown values whereas other baselines only utilize the inter-disease correlations. In addition, both

auto-encoder and GAIN are essentially unsupervised learning techniques, where diferent data representations

are learned during model training process that can cause divergence to the original data distribution. But in the

CPH model, we ensure that the generator output respect the true data distributions by introducing a hinting

mechanism. As a result, CPH is used to impute the missing values for the rest of the paper.

6.4 Performance Analysis: Acquisition function

Acquisition function will directly determine the most salient TS-A regions. As a result, it is critical to analyse

and ind out which acquisition function is the best appropriate for this particular scenario. We compare the

performance of several state-of-the-art acquisition functions, namely, BALD sampling [36], Entropy-based

sampling [18], and BatchBALD [23] (batch_size = 5). The random sample is also added, which shules all the

regions and select them one by one at random, to examine what the outcomes would be if no acquisition function

is utilised.
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Fig. 5. The performance of varying active learning methods for obesity (let), diabetes (middle) and hypertension(right)

Figure 5 shows the performance comparison of varying active learning methods. Obesity has the best perfor-

mance boost when active learning is applied. This is because it has the largest imputation error at the beginning,

implying that there is signiicant room for improvement. Also, as expected, adding additional TS-A regions

can generally improve the performance for all the methods across three diseases. Entropy methods shows a

similar performance to that of random sampling, perhaps this approach is not very efective for this dataset with

many repeated values. BatchBALD shows comparable performance than BALD, even though it selects a batch of

regions in each iteration. This is probably because unlike BALD, which solely takes uncertainty into account,

BatchBALD integrates correlation between samples by calculating the batch’s mutual information between the

sample embeddings and model parameters. In general, however, BALD-based methods exhibits superior results

compared to the other two, as they take account both the prediction uncertainty and the posterior of the model

parameter by exploiting Bayesian inference. In practise, rather than acquiring individual data points with each

acquisition step, batches of data points are obtained to minimise the model-retrained time and expert-time. Model

retraining is a computational constraint for larger models where the expert’s time is usually expensive: consider

the efort required to commission a medical expert to investigate a single region, pause there for the model to

be retrained, and then commission a new medical expert to investigate the next TS-A region, as well as the

additional time required. With its competitive performance and reduced computation time, BatchBALD is the

natural choice for CPH-TS.

6.5 Performance Analysis: Stopping Strategy

To evaluate the efectiveness of the proposed stopping strategy, we need to have several disparage settings of

� (�, �) to see what percentage of proiling cycles would keep the overall proiling error less than the predeined

error bound � . For � , we set it with a large value, namely 0.90 and 0.95, i.e., which ensures that most (90% or 95%)

proiling cycles’ error will be less than � , which is a principled and realistic setting for most of the PPP scenarios.

For � , we set it between 5% and 10%.

obesity diabetes hypertension

� 5% 10% 5% 10% 5% 10%

� = 0.9 0.904 0.91 0.912 0.917 0.901 0.912

� = 0.95 0.937 0.973 0.958 0.963 0.927 0.955

Table 2. The percentage of cycles whose error are smaller than the error bound

For any given error bound, Table 2 shows that the actual percentage of the cycles whose errors are smaller

than the error bound � , is quite close to the � set in the predeined � (�, �) requirement. For instance, for � = 0.90,
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Fig. 6. Number of assigned tasks of obesity (let), diabetes (middle), and hypertension (right) respectively.( � = 5% , batch

size = 5, varying p).

all the actual percentage are larger than 90%; for � = 0.95, while some actual values are slightly less than 95%,

they are all quite close to 95% (in our settings, the worst actual percentage is 0.927, which is only about 0.023

smaller than 0.95). Based on these results, we conirm that by using BBI as the stopping strategy, CPH-TS can

well meet the predeined � (�, �) requirement of reliability.

6.6 Performance Analysis: Cost

The cost of the project is largely determined by the number of assigned tasks of PPP. Fig. 6 illustrates the

minimum number of assigned tasks for varying methods when the stopping criteria is satisied. For hypertension

and � = 0.9, CPH-TS only needs to assign 5 TS-A tasks, whereas BALD-FIX-K and DEAL-FIX-K requires to assign

8 and 9 TS-A tasks respectively; for hypertension and � = 0.95, CPH-TS assign forty tasks while RAND-TS,

DEAL-FIX-K and BALD-FIX-K need to assign 48, 55, and 45 tasks respectively. 5 tasks seems to be a small number,

but relatively speaking it allows us to reduce the cost by 16.7%, 27.3% and 11.1% respectively. We can see a

similar pattern on the results of diabetes. Obesity, however, seems to have a disparage pattern compared with the

other two. Speciically, CPH-TS assigns 38% (56.9%) regions to ensure the minimum overall reliability criteria

in 90%(95%) of the cycles, which is somewhat an abnormal performance. After a careful examination of the

dataset, we ind that the Pearson correlation between obesity and diabetes is 0.58, and correlation between obesity

and hypertension is 0.51, which is a relative low value compared with the correlation between diabetes and

hypertension. This inding is reported in Fig. 7, which implies that CPH-TS works well only if there exist strong

correlation among diseases. However, if this assumption cannot hold then CPH-TS will require more resources.

In summary, despite CPH-TS’s limited eicacy against obesity, it can nevertheless accomplish impressive results

in general. It assigns tasks to an average of 21.67% (37.7%) of regions, while ensuring that the overall proiling

error is less than 0.05 in 90% (95%) of cycles. Even in the worst-case scenario of obesity, CPH-TS can still save

43.1% of the cost of expert-led research, which we argue will be a signiicant workload.

6.7 Performance Analysis: Computational Time

obesity diabetes hypertension

� 5% 10% 5% 10% 5% 10%

p=0.9 6.2h 4.5h 1.9h 0.9h 2.4h 1.5h

p=0.95 8.5h 5.7h 2.5h 2.3h 3.3h 2.8h

Table 3. Computational cost under varying setings
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Fig. 7. The correlation among varying NCDs

For real-world application, we also need to know the computation time of CPH-TS to check if it can meet the

practical PPP scenario. The experiments are conducted on a workstation (Intel core i9-10900k, 2 × 3080 GPU,

128GB RAM, Windows 10) with Python 3.7. Table 3 reports the computation time for diferent diseases of CPH-TS.

The most computation intensive part is the imputation algorithm, CPH, which is a deep learning architecture

and thus needs 8.5 hours in the worse case (when the disease is obesity with � = 0.95, � = 5%). Note that we

skipped the reliability check for the irst� collected TS-A. The reason is already explained in Section 5.3, Eq. 14.

Similar to [32], we set� = 1 and � = � , where � is the number of the cycle. This operation enables for the CPH-TS

to skip the reliability check of the irst 60 TS-A tasks in each cycle. In addition, it is possible to apply CPH to a

parallelized setting to further reduce the computation time.

In a nutshell, CPH-TS spends on average 18 minutes to complete one iteration of data imputation and another

10 seconds to assign new tasks, i.e., evaluating the overall data reliability and, if it cannot meet the predeined

requirement, then inds the next proiling region. Therefore, if we assume that no time is needed for health expert

to collect the proiling data, CPH-TS can assign tasks to 28 regions (when ����ℎ���� = 5) for one disease in one

day in the worse scenario; when the health experts need some time to complete the data collection, we can obtain

the new task assignments from CPH-TS overnight and dispatch the new TS-A tasks the next day. We believe it

can tackle most real-world proiling problems with high eiciency.

7 CONCLUSION AND LIMITATIONS

We aim to reduce the number of required proiling regions and consequently the number of tasks assigned to

participants in PPP activities in this research. Towards that end, we propose the CPH-TS framework, which

combines state-of-the-art compressive population health, data augmentation, and active learning mechanisms to
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actively select a minimum number of proiling regions in each cycle while imputing missing values for remaining

regions and ensuring that the overall data reliability satisfy a predeined error bound.

While the experiments on a real-world NHS dataset demonstrate that CPH-TS is capable of learning intra-

disease and inter-disease data correlations from previous data and then using them to select minimum number of

salient regions for completing the current year’s prevalence rate, we have not yet explored how to make CPH-TS

sustainable year after year. As time passes, historical data will comprise both collected and inferred data entries,

so there is a possibility that the inaccuracy in the imputed data entries will be propagated and compounded upon

the current year’s adoption of CPH-TS. As a result, developing a sustainable CPH-TS is an exciting and demanding

direction for the future. One possibility is to quantify the accuracy of imputed entries, which will be used as

weights in the model of prevalence inference. Before CPH is implemented in a new year, the weights will be

dynamically modiied as even more ground-truth data becomes available, which in turn would further improve

the performance of CPH-TS.

Moreover, we intend to improve this work by reassessing some of the study’s assumptions. For instance, in

practise, the assumption of abundant Participants may not necessarily hold true for all PPP applications. It is

possible that the organiser will be unable to locate an expert to perform a task in the designated salient region

for some cycles. In that circumstance, the work allocation problem cannot be boiled down to an region selection

problem, and therefore we must handle the issue by taking both the participants’ availability and the expert’s

quality into account.

Lastly, CPH-TS essentially selects TS-A regions for each disease separately, which is ineicient for proiling. In

the future work, we may consider multi-task deep active learning.
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9 APPENDIX

Due to the space limitation, we only reported the performance of CPH for obesity in Table 1. The CPH performance

comparison on diabetes and hypertension are reported in Table 4 and 5, respectively. The results from these two

tables are similar to that of Table 1, namely, the performance gain of CPH over GAIN is statistically signiicant at

95% conidence interval.

Methods 2016 2017

m= 90% m= 70% m=90% m=70%

RMSE MAE RMSE MAE RMSE MAE RMSE MAE

NMF 0.1715 0.1363 0.1519 0.1199 0.2683 0.2234 0.2109 0.1758

Auto-Encoder 0.1228 0.1061 0.1189 0.1022 0.1139 0.0979 0.1101 0.940

ST-KNN 0.1170 0.0997 0.1096 0.0903 0.0878 0.0764 0.0597 0.0508

DME 0.1003 0.0862 0.0790 0.0678 0.0971 0.0834 0.0777 0.0660

GAIN 0.1446 0.1201 0.1054 0.0852 0.01658 0.1449 0.1043 0.0838

CPH 0.0597* 0.0239* 0.0278* 0.0187* 0.0310* 0.0221* 0.0297* 0.0212*

Table 4. Inference reliability of diabetes (* denotes p < 0.05 in the respective t test)

Methods 2016 2017

m= 90% m= 70% m=90% m=70%

RMSE MAE RMSE MAE RMSE MAE RMSE MAE

NMF 0.0919 0.0719 0.0887 0.0713 0.0987 0.0784 0.0795 0.0626

Auto-Encoder 0.0530 0.0392 0.0524 0.0383 0.0498 0.0379 0.0468 0.0365

ST-KNN 0.0461 0.0344 0.0469 0.0345 0.0363 0.0287 0.0324 0.0255

DME 0.0397 0.0298 0.0352 0.0246 0.0402 0.0310 0.0360 0.0261

GAIN 0.0371 0.0283 0.0241 0.0167 0.0286 0.0205 0.0199 0.0141

CPH 0.0327* 0.0261* 0.0198* 0.0159* 0.0230* 0.0162* 0.0148* 0.0112*

Table 5. Inference reliability of hypertension (* denotes p < 0.05 in the respective t test)
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