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Abstract: When implementing SVMs, two major problems are encountered: (a) the number of local
minima of dual-SVM increases exponentially with the number of samples and (b) the computer stor-
age memory required for a regular quadratic programming solver increases exponentially as the prob-
lem size expands. The Kernel-Adatron family of algorithms, gaining attention recently, has allowed
us to handle very large classification and regression problems. However, these methods treat different
types of samples (i.e., noise, border, and core) in the same manner, which makes these algorithms
search in unpromising areas and increases the number of iterations as well. This paper introduces
a hybrid method to overcome such shortcomings, called the Optimal Recurrent Neural Network
and Density-Based Support Vector Machine (Opt-RNN-DBSVM). This method consists of four steps:
(a) the characterization of different samples, (b) the elimination of samples with a low probability of
being a support vector, (c) the construction of an appropriate recurrent neural network to solve the
dual-DBSVM based on an original energy function, and (d) finding the solution to the system of differ-
ential equations that govern the dynamics of the RNN, using the Euler–Cauchy method involving an
optimal time step. Density-based preprocessing reduces the number of local minima in the dual-SVM.
The RNN’s recurring architecture avoids the need to explore recently visited areas. With the optimal
time step, the search moves from the current vectors to the best neighboring support vectors. It is
demonstrated that RNN-SVM converges to feasible support vectors and Opt-RNN-DBSVM has very
low time complexity compared to the RNN-SVM with a constant time step and the Kernel-Adatron
algorithm–SVM. Several classification performance measures are used to compare Opt-RNN-DBSVM
with different classification methods and the results obtained show the good performance of the
proposed method.

Keywords: Recurrent Neural Network (RNN); Density-Based Algorithm; Support Vector Machine
(SVM); Kernel-Adatron algorithm (KA); Euler–Cauchy algorithm

MSC: 90C20; 90C29; 90C90; 93E20

1. Introduction

Many classification methods have been proposed in the literature and in a vast array
of applications, among them a popular approach called support vector machine based
on quadratic programming (QP) [1–3]. The difficulty in the implementation of SVMs on
massive datasets lies in the fact that the quantity of storage memory required for a regular
QP solver increases by an exponential magnitude as the problem size expands.
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This paper introduces a new type of SVM that implements a preprocessing filter and a
recurrent neural network, called the Optimal Recurrent Neural Network and Density-Based
Support Vector Machine (Opt-RNN-DBSVM).

SVM approaches are based on the existence of a linear separator, which can be ob-
tained by transforming the data in a higher-dimensional space through appropriate kernel
functions. Among all possible hyperplanes, the SVM searches for the one with the most
confident separation margin for good generalization. This issue takes the form of a nonlin-
ear constrained optimization problem that is usually handled using optimization methods.
Thanks to the Kuhen–Tuker conditions [4], all these methods transform the primal math-
ematical model into the dual version and use optimization methods to find the support
vectors on which the optimal margin is built. Unfortunately, the complexity in time and
memory grows exponentially with the size of the datasets; in addition, the number of local
minima grows too, which influences the location of the separation margin and the quality
of the predictions.

A primary area of research in learning from empirical data through support vector
machines (SVMs) and addressing classification and regression issues is the development
of incremental learning schemes when the size of the training dataset is massive [5]. Out
of many possible candidates, avoiding the usage of regular quadratic programming (QP)
solvers, the two learning methods gaining attention recently are iterative single-data
algorithms (ISDA) and sequential minimal optimization (SMO) [6–9]. ISDAs operate from
a single sample at hand (pattern-based learning) towards the best fit solution. The Kernel-
Adatron (KA) is the primary ISDA for SVMs, using kernel functions to map data to the
high-dimensional character space of SVMs [10] and conducting Adatron [11] processing in
the character space. Platt’s SMO algorithm is an outlier among the so-called decomposition
approaches introduced in [12,13], operating on a two-sample workset of samples at a time.
Because the decision for the two-point workset may be determined analytically, the SMO
does not require the involvement of standard QP solvers. Due to it being analytically
driven, the SMO has been especially popular and is the most commonly utilized, analyzed,
and further developed approach. Meanwhile, KA, while yielding somewhat comparable
performance (accuracy and computational time) in resolving classification issues, has not
gained as much traction. The reason for this is twofold. First, until recently [14], KA
appeared to be restricted to classification tasks; second, it lacks the qualities of a robust
theoretical framework. KA employs a gradient ascent procedure, and this fact also may
have caused some researchers to be suspicious of the challenges posed by gradient ascent
techniques in the presence of a perhaps ill-conditioned core array. In [15], lacking bias
parameter b, the authors derive and demonstrate the equality of two apparently dissimilar
ISDAs, namely a KA approach and an unbiased variant of the SMO training scheme [9],
when constructing SVMs possessing positive definite kernels. The equivalence is applicable
to both classification and regression tasks and gives additional insights into these apparently
dissimilar methods of learning. Despite the richness of the toolbox set up to solve the quadratic
programs from SVMs, and with the large amount of data generated by social networks, medical
and agricultural fields, etc., the amount of computer memory required for a QP solver from
the dual-SVM grows hyper-exponentially, and additional methods implementing different
techniques and strategies are more than necessary.

Classical algorithms, namely ISDAs and SMO, do not distinguish between different
types of samples (noise, border, and core), which causes searches in unpromising areas.
In this work, we introduce a hybrid method to overcome these shortcomings, namely the
Optimal Recurrent Neural Network Density-Based Support Vector Machine (Opt-RNN-
DBSVM). This method proceeds in four steps: (a) the characterization of different samples
based on the density of the datasets (noise, core, and border), (b) the elimination of samples
with a low probability of being a support vector, namely core samples that are very far
from the borders of different components of different classes, (c) the construction of an
appropriate recurrent neural network based on an original energy function, ensuring
a balance between the dual-SVM components (constraints and objective function) and



Mathematics 2023, 11, 3555 3 of 28

ensuring the feasibility of the network equilibrium points [16,17], and (d) the solution of
the system of differential equations, managing the dynamics of the RNN, using the Euler–
Cauchy method involving an optimal time step. Density-based preprocessing reduces the
number of local minima in the dual-SVM. The RNN’s recurrent architecture avoids the
need to examine previously visited areas; this behavior is similar to a taboo search, which
prohibits certain moves for a few iterations [18]. In addition, the optimal time step of the
Euler–Cauchy algorithm speeds up the search for an optimal decision margin. On one hand,
two main interesting fundamental results are demonstrated: the convergence of the RNN-
SVM to feasible solutions, and the fact that Opt-RNN-DBSVM has very low time complexity
compared to Const-RNN-SVM, SMO-SVM, ISDA-SVM, and L1QP-SVM. On the other
hand, several experimental studies are conducted based on well-known datasets. Based
on several performance measures (accuracy, F1-score, precision, recall), Opt-RNN-DBSVM
outperforms recurrent neural network–SVM with a constant time step, the Kernel-Adatron
algorithm–SVM family, and well-known non-kernel models. In fact, Opt-RNN-DBSVM
improves the accuracy, the F1-score, the precision, and the recall. Moreover, the proposed
method requires a very small number of support vectors.

The rest of this paper is organized as follows. Section 2 presents the flowchart of the
proposed method. Section 3 gives the outline of our recent SVM version called Density-
Based Support Vector Machine. Section 4 presents, in detail, the construction of the recurrent
neural network associated with the dual-SVM and the Euler–Cauchy algorithm that imple-
ments an optimal time step. Section 5 gives some experimental results. Section 6 presents
some conclusions and future extensions of Opt-RNN-DBSVM.

2. The Architecture of the Proposed Method

The Kernel-Adatron (KA) algorithms, namely ISDAs and SMO, treat different types of
samples (noise, border, and core) in the same manner (all samples are considered for several
iterations and supposed to be a support candidate with uniform probability), which causes
searches in unpromising areas and increases the number of iterations. In this work, we
introduce an efficient method to overcome these shortcomings, namely Optimal Recurrent
Neural Network Density-Based Support Vector Machine (Opt-RNN-DBSVM). This method
proceeds in four steps (see Figure 1).

(1) The characterization of different samples based on the density of the datasets (noise,
core, and border); to this end, two parameters are introduced: the size of the neighbor-
hood of the current sample and the threshold that permits such categorization.

(2) The elimination of samples with a low probability of being a support vector, namely
core samples that are very far from the borders of different components of different
classes and the noise samples that contain false information about the phenomenon
under study. In our previews work [19], we demonstrated that such suppression does
not influence the performance of the classifiers.

(3) The construction of an appropriate recurrent neural network based on an origi-
nal energy function, allowing a balance between the dual-SVM components (con-
straints and objective function) and ensuring the feasibility of the network equilibrium
points [16,17].

(4) Solving the system of differential equations, managing the dynamics of the RNN,
using the Euler–Cauchy method involving an optimal time step. In this regard, the
equation of the future state of each neuron, of the proposed RNN, is introduced
into the energy function, which leads to a one-dimension quadratic optimization
problem whose solution represents the optimal step of the Euler–Cauchy process that
ensures the maximum decrease in the energy function [20]. The components of the
produced equilibrium point represent the membership degrees of different samples to
the support vector dataset.
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Figure 1. Opt_RNN_DBSVM diagram [21–24].

3. Density-Based Support Vector Machine

In the following, let us denote by BD the set of N samples x1, . . ., xN labeled, respec-
tively, by y1, . . ., yN , distributed via K class C1, . . ., CK. In our case, K=2 and yi ∈ {−1,+1}.

3.1. Classical Support Vector Machine

The hyperplane that the SVM searches must satisfy the equation w.xi + b = 0, where
w is the weight that defines this SVM separator that satisfies the constraint family given
by ∀i = 1, . . ., N yi(xi.w + b) ≥ 1. To ensure the maximum margin, we need to maximize

2
‖w‖ . As the patterns are not linearly separable, the kernel function K is introduced (which
satisfies the Mercer conditions [25]) to transform the data into an appropriate space.

By introducing the Lagrange relaxation and using the Kuhn–Tuker conditions, we
obtain a quadratic optimization problem with a single linear constraint that must be solved
to determine the support vectors [26].

To address the problem of saturated constraints, some researchers have added the
notion of a soft margin [27]. They employ N supplementary slack variables ξi ≥ 0 at every
constraint yi(xi.w + b) ≥ 1. The sum of the relaxed variables is weighted and included in
the cost function: 

Min
1
2
‖w‖2 + C

N

∑
i=1

ξi

Subject to :
yi(φ(xi).w + b) ≥ 1− ξi

ξi ≥ 0, ∀i = 1, . . ., N

Here, φ represents the transformation function derived from the function kernel K.
The following dual problem is obtained:
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Max
N

∑
i=1

αi −
1
2

N

∑
i=1

N

∑
j=1

αiαjyiyjK(xi, xj)

Subject to :
N

∑
i=1

αiyi = 0

0 ≤ αi ≤ C, ∀i = 1, . . ., N

Several methods can be used to solve this optimization problem: gradient methods,
linearization methods, the Frank–Wolf method, the generation column method, the Newton
method applied to the Kuhn system, sub-gradient methods, the Dantzig algorithm, the Uzawa
algorithm [4], recurrent neural networks [28], hill climbing, simulated annealing, search by calf,
A*, genetic algorithms [29], ant colony, and the particle swarm optimization method [30], etc.

Several versions of SVMs are proposed in the literature, e.g., the least squares support
vector machine classifiers (LS-SVM) introduced in [21], generalized support vector machine
(G-SVM) [22], fuzzy support vector machine [31,32], one-class support vector machine
(OC-SVM) [26,33], total support vector machine (T-SVM) [34], weighted support vector
machine (W-SVM) [35], granular support vector machine (G-SVM) [36], smooth support
vector machine (S-SVM) [37], proximity support vector machine classifiers (P-SVM) [23],
multisurface proximal support vector machine classification via generalized eigenvalues
(GEP-SVM) [24], and twin support vector machine (T-SVM) [38], etc.

3.2. Density-Based Support Vector Machine (DBSVM)

In this section, a short description of the DBVSM method is given. Let us introduce a
real number r > 0 and the integer mp > 0, called min-points, and three types of samples
are defined: noise points, border points, and interior points (or core points). It is possible
to show that the interior points do not change their nature even when they are projected
into another space by the kernel functions. Furthermore, such points cannot be selected as
support vectors [19].

Definition 1. Let S ⊆ Rn. A point a ∈ Rn is said to be an interior point (or core point) of S if there

exists an r > 0 such that B(a, r) ⊆ S. The set of all interior points of S is denoted by int(S) or
o
S.

Definition 2. For a given dataset BD, a non-negative real r, and an integer mp, there exist three
types of samples.

1. A sample x is called a Ci-noise point (NPi) if |Ci ∩ B(x, r)| < mp.

2. A sample x is called a Ci-core point (CPi) if |Ci ∩ B(x, r)| ≥ mp and x ∈
o︷ ︸︸ ︷

envol(Ci)
3. A sample x is called a Ci-border point (BPi) if |Ci ∩ B(x, r)| < mp and there exists a Ci-core

point y such as x ∈ B(y, r).

Let K be a kernel function allowing us to move from the space Rn to the space RN

using the transformation φ (here, n < N).

Lemma 1 ([19]). If a is a Ci-core point for a given ε and min-points (mp), then φ(a) is also a
Ci-core point with an appropriate ε′ and the same min-points (mp).

Theorem 1 ([19]). A core point is either a noise point or a border point.

Proposition 1 ([19]). Let ε > 0 be a real number. The core point set corePoints (minPoints) is a
decreasing function for the inclusion operator.
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Let {α1, . . ., αn} = BM ∪ CM ∪ NM be the set of the Lagrange multipliers, where BM,
CM, and NM are the Lagrange multipliers of the border samples, core samples, and noise
samples, respectively.

As the elements of NM and CM cannot be selected to be support vectors, the reduced
dual problem is given by

(RD)



Max ∑
αi∈BM

αi −
1
2 ∑

αi∈BM
∑

αj∈BM
αiαjyiyjK(xixj)

Subject to :

∑αi∈BM αiyi = 0
0 ≤ αi ≤ C ∀αi ∈ BM ∀i = 1, . . ., N

In this work, as the RD problem is quadratic with linear constraints, in order to solve
this, we use a continuous Hopfield network by proposing an original energy function in
the following section [39].

4. Recurrent Neural Network to Find Optimal Support Vectors

The continuous Hopfield network consists of interconnected neurons with a smooth
sigmoid activation function (usually a hyperbolic tangent). The differential equation that
governs the dynamics of the CHN is

du
dt

= −u
τ
+ W.α + I (1)

where u, α, W, and I are, respectively, the vectors of neuron states, the outputs, the weight
matrix, and the biases. For a CHN of N neurons, the state ui and output αi of the neuron i
are given by the equation αi = tanh(ui) = f (ui).

For an initial vector state u0 ∈ RN , a vector ue ∈ RN is called an equilibrium point of
the system 1, if and only if ∃te ∈ R+, such as ∀t ≥ te u(t) = ue. It should be noted that if
the energy function (or Layapunov function) exists, the equilibrium point exists as well.
Hopfield proved that the symmetry of the matrix of the weight is a sufficient condition for
the existence of the Lyapunov function [40].

4.1. Continuous Hopfield Network Based on Original Energy Function

To solve the obtained dual problem via a recurrent neural network [39,41,42], we
propose the following energy function:

E(α1, . . ., α′N) = β0 ∑
αi∈D

αi −
β0

2 ∑
αi∈BM

∑
αj∈BM

αiαjyiyjK(xixj) + β1 ∑
αi∈BD

αiyi +
β2

2
( ∑

αi∈BD
αiyi)

2

To determine the vector of the neurons’ biases, we calculate the partial derivatives
of E:

∂E
∂αi

(α1, . . ., α′N) = β0 − β0 ∑
αj∈BM

αjyiyjK(xixj) + β1yi + β2yi ∑
αj∈BD

αjyj

The components of the bias vector are given by

Ii =
∂E
∂αi

(0) = −β0 − β1yi ∀i = 1, . . .N′

To determine the connection weights W between each neuron pair, the second partial
derivative of E is calculated: ∂2E

∂αj∂αi
(α1, . . ., αN′) = −β0yiyjK(xi, xj) + β2yiyj.

The components of the weight W matrix are given by Wi,j =
∂2E

∂αj∂αi
(0) = β0yiyjK(xi, xj)

− β2yiyj.
To calculate the equilibrium point of the proposed recurrent neural network, we use

the Euler–Cauchy iterative method:
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(1) Initialization: α0
1, . . ., α0

N′ and the step ρ0 are randomly chosen;
(2) Given αt

1, . . ., αt
N′ and the step ρt, the step ρt+1 is chosen such that Et+1 is the maximum

and u1, . . ., uN′ are calculated using ∀i = 1, . . ., N′, ut+1
i = ut

i + ρt+1(∑j=1,...,N′ Wi,jα
t
j

+ Ii)
Then, γ1, . . ., γN′ are calculated using the activation function f : γi = f (ut+1

i ).
Then, the αt+1

1 , . . ., αt+1
N′ are given by αt+1 = P(γ), where P is the projection operator

on the set {α ∈ RN′/ ∑N′
i=1 αiyi = 0}.

(3) Return to (1) until ‖αt+1 − αt‖ ≤ ε, where 0 < ε.

Figure 2 shows the connection weights W between each pair of neurons.

Theorem 2. If i = j, Pi,j = 1− y2
i

N′ , else Pi,j = −
yiyj
N′ , where S = ∑

i=1,...,N′
y2

i .

Proof of Theorem 2. We have P = I − At.(A.At)−1.A and A = [y1, . . ., yN′ ].
Then, (A.At)−1 = ([y1, . . ., yN′ ].[y1, . . ., yN′ ]

t)−1 = 1
N′ because N′ = ∑

i=1,...,N′
y2

i .

Thus At.(A.At)−1.A = 1
N′ .[y1, . . ., yN′ ]

t.[y1, . . ., yN′ ].

Finally, for i = j, Pi,j = 1− y2
i

N′ , and for i 6= j, Pi,j = −
yi .yj
N′ .

Concerning the constraint family satisfaction 0 ≤ αi ≤ C, ∀i = 1, . . ., N, the activation
function is used:

f (x) = C.tanh(
x
τ
) = C.

ex − e−x

ex + e−x ,

where τ is supposed to be a very large positive real number, which ensures that ∀x,−C ≤
f (x) ≤ C.

Figure 2. Architecture of the connection weights Wi,j between each neuron pair.

Let us consider a kernel function K such that K(x, x) = C 6= 0.

Theorem 3. A continuous Hopfield network has an equilibrium point if Wi,i = 0 and Wi,j = Wj,i.

Theorem 4. If C =
β2

β0
, then CHN-SVM has an equilibrium point.

Proof of Theorem 4. We have Wi,j = (β0Ki,j − β2)yiyj and ∀i and j Wi,j = Wj,i because K
is symmetric.

On the other hand,
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Wi,i = β0yiK(xi, xi)− β2y2
i = β0 ×

β2

β0
− β2 = 0

Then, CHN-SVM has an equilibrium point.

4.2. Continuous Hopfield Network with Optimal Time Step

In this section, we chose, mathematically, the optimal time size in each iteration of the
Euler–Cauchy method to solve the dynamical equation of the recurrent neural network
proposed in this paper. At the end of the kth iteration, we know αk and let sk be the next
step size, which permits us to calculate αk+1 using the formula

αk+1 = αk + sk∇E(αk)

and sk must be chosen such as E(αk+1) ≤ E(αk) at the maximum.
As the activation function of the proposed neural network is the tanh, then dαi

dt =
2
τ αi(1− αi)∇E(α).

The matrix form of the energy function is

E(α) = β0Utα− β0

2
(α)tTα + β1ytα +

β2

2
(ytα)2

where U = (1, . . ., 1)t ∈ IRN′ , α = (1, . . ., 1)t ∈ IRN′ , and Ti,j = yiyjK(xi, xj) for all i and j.
At the kth iteration, the state αk is known, and αk+1 is calculated by

αk+1 = αk + sk
dαk

dt

where sk is the actual time step that must be optimal. To this end, αk+1 is substituted by
αk + sk

dαk

dt in E(αk+1):

e(sk) = E(αk+1) = 0.5Aks2
k + Bksk + Ck

where Ak = β2yt dαk

dt − β0(
dαk

dt )
tT dαk

dt ,

Bk = β0Ut dαk

dt − β0(α
k)tT dαk

dt + β1yt dαk

dt + β2(ytαk)(yt dαk

dt ),
Ck = β0Utαk − 0.5β0(α

k)tTαk + β1ytαk + 0.5β2(ytαk)2.
Thus, the best time step is the minimum of e(sk). Figure 3a–c gives different cases.

(a) (b) (c)

Figure 3. Graphical representation of the variation in the sums and integral terms with respect to sk.
(a) RNN-DBSVM 1, (b) RNN-DBSVM 2, (c) RNN-DBSVM 3.

4.3. Opt-RNN-DBSVM Algorithm

In this section, the procedures described in Sections 3.2, 4.1 and 4.2 are summarized
into Algorithm 1.
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The inputs of Algorithm 1 are the radius r (the size of the neighborhood of the current
sample), the minimum of samples mp into B(Current_sample, r) (which determines the
type of this sample), the three Lagrangian parameters β0, β1, and β2 (which allow a
compromise between the dual components), the bound C of the SVM [19], and the number
of iterations (which represents artificial convergence).

Algorithm 1 processes in three macro-steps: data preprocessing, RNN-SVM construc-
tion, and RNN-SVM equilibrium point estimation. The input of the first phase is the initial
dataset with labeled samples. Based on r and mp, the algorithm determines the types of
different samples based on the value of the current sample neighborhood’s discrete size.
The output of this phase is a reduced sub-dataset (the initial dataset minus the core sam-
ples). The inputs of the second phase are the reduced dataset, the Lagrangian parameters
β0, β1, β2, and the SVM bound C. Based on the energy function built in Section 4.1 and on
the first and second derivatives, the architecture of CHN-SVM is constructed; the bias and
connection weights, which represent the output of this phase, are calculated. These later
represent the input of the third phase and the Euler–Cauchy algorithm is used to calculate
the degree of membership of different samples in the set of support vectors; to ensure an
optimal decrease in the energy function, at each iteration, an optimal step is determined by
solving a quadratic one-dimension optimization problem; see Section 4.2. At convergence,
the proposed algorithm produces the support vectors based on which Opt-RNN-DBSVM
can predict the class of unseen samples.

Algorithm 1 Opt-RNN-DBSVM

Require: mp, r, β0, β1, β2, C, ITER
Ensure: Optimal support vectors

% Density based preprocessing:
CP← ; BP← ; NP← ;
for all s in DS do

if |B(s, r) ∩ DS| > mp then
CP← CP ∪ {s}

else if mp > |B(s, r) ∩ DS| > mp
2 then

BP← BP ∪ {s}
else

NP← NP ∪ {s}
end if

end for
RDS← DS \ {NP ∪ CP}
% RNN-Building:
I ← β0 + β1Y
W ← β0K− β2Y′2

% Optimal Euler–Cauchy to RNN stability:
step0 = rand(0, 1)
α′0 ← rand(0, 1, |RDS|)
for k = 1, . . . , ITER do

Dk ← dαk

dt
Ak ← β2ytDk − β0(Dk)

tTDk
Bk ← β0UtDk − β0(α

k)tTDk + β1ytDk + β2(ytαk)(ytDk)
Ck ← β0Utαk − 0.5β0(α

k)tTDk + β1ytαk + 0.5β2(ytαk)2

s∗k ← argmins∈[0,1]e(s)
αk+1 ← αk + s∗k Dk

end for

Proposition 2. If N, r, and ITER represent, respectively, the size of a labeled dataset BD, the
number of remaining samples (output of the preprocessing phase), and the number of iterations,
then the complexity of Algorithm 1 is O(r2 ∗ ITER).
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Proof. First, in the preprocessing phase, we calculate, for each sample (xi, xj), the distance
d(xi, xj) and execute N comparisons to determine the type of each sample; thus, the
complexity of this phase is O(N2).

Second, during ITER iterations, the activation of each neuron is updated using the
activation of all the other neurons to solve the reduced dual-SVM; thus, the third phase has
complexity of O(r2 × ITER).

Finally, the complexity of Algorithm 1 is O(N2) +O(r2 × ITER). Let us denote Const-
RNN-SVM as the SVM version that implements a recurrent neural network based on a
constant time step. Following the same reasoning, the complexity of Const-RNN-SVM is
O(N2 × ITER).

Notes: As the Kernel-Adatron algorithm (KA) is the kernel version of SMO and ISDA,
and KA implements two embedded N-loops in each iteration, then the complexity of SMO
and ISDA is of [10]. In addition, it is considered that L1QP-SVM implements the numerical
linear algebra Gauss–Seidel method [43], which implements two embedded N-loops in
each iteration, and thus the complexity of SMO and ISDA is of O(N2 × ITER).

For a very large and high-density labeled dataset, we have r << N; thus,
ITERour << ITERCHN−SVM and ITERour << ITERL1QP−SVM ITERour << ITERSMO−SVM and

ITERour << ITERISDA−SVM.
Thus, complexity(our) ≺ complexity(CHN − SVM) and complexity(our) ≺

complexity(L1QP − SVM) complexity(our) ≺ complexity(SMO − SVM), and
complexity(our) ≺ complexity(ISDA− SVM).

Firstly, preprocessing the database reduces the number of local minima in the dual-
SVM. Secondly, this reduction enables real-time decision making in big data problems.
Finally, the optimal time step of the Euler–Cauchy algorithm speeds up the search for an
optimal decision margin.

5. Experimentation

In this section, Opt-RNN-DBSVM is compared to several classifiers, Const-RNN-SVM
(RNN-SVM using a constant Euler–Cauchy time step), SMO-SVM, ISDA-SVM, L1QP-SVM,
and some non-kernel classifiers (Naive Bayes (NB), MLP, KNN, AdaBoostM1 (ABM1),
Nearest Center Classifier (NCC), Decision Tree (DT), SGD Classifier (SGDC)). The classifiers
were tested on several datasets: IRIS, ABALONE, WINE, ECOLI, BALANCE, LIVER,
SPECT, SEED, and PIMA (collected from the University of California at Irvine (UCI)
repository [44]). The performance measures used in this study are the accuracy, F1-score,
precision, and recall.

5.1. Opt-RNN-DBSVM vs. Const-CHN-SVM

In this subsection, Opt-RNN-DBSVM is compared to Const-RNN-SVM by considering
different values of the Euler–Cauchy time step s ∈ {0.1, 0.2, . . . , 0.9}. Tables 1 and 2 show
the different values of accuracy, F1-score, precision, and recall on the considered datasets.
These results show the superiority of Opt-RNN-DBSVM over Const-CHN-SVM (step ∈
STEP = {0.1, 0.2, . . . , 0.9}). In fact, this superiority is quantified as follows:

3.43% = max
(s,d)∈STEP×DATA

(accuracy(Opt− RNN − DBSVM(s))− accuracy(const− RNN − SVM))

2.31% = max
(s,d)∈STEP×DATA

(F1Score(Opt− RNN − DBSVM(s))− F1Score(const− RNN − SVM))

7.52% = max
(s,d)∈STEP×DATA

(precision(Opt− RNN − DBSVM(s))− precision(const− RNN − SVM))

6.5% = max
(s,d)∈STEP×DATA

(recall(Opt− RNN − DBSVM(s))− recall(const− RNN − SVM))

where DATA is the set of different considered data. These results are not unexpected,
because Opt-RNN-SVM ensures an optimal decrease in the CHN energy function at each
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step. This superiority is normal, since a single time step of the Euler–Cauchy algorithm
does not explore all the regions of the solution space of the dual problem associated with
the SVM, and it also causes premature convergence to a poor local solution. On the other
hand, the variable optimal time step of this algorithm allowed a higher-order decay in the
energy function of the RNN associated with the dual-SVM.

Table 1. Performance Performance of Const-CHN-SVM on different datasets for different values of
time step in [0.1, 0.6].

SVM-CHN s = 0.1 SVM-CHN s = 0.2

Accuracy F1-Score Precision Recall Accuracy F1-Score Precision Recall

IRIS 95.98 96.66 90.52 92.00 96.66 95.98 91.62 92.00

ABALONE 80.98 40.38 82.00 27.65 80.66 40.38 81.98 27.65

WINE 79.49 78.26 73.52 74.97 79.49 78.26 73.52 74.97

ECOLI 88.05 96.77 97.83 97.33 88.05 97.77 97.83 97.99

BALANCE 79.70 70.7 55.60 62.70 79.70 70.7 55.60 62.70

LIVER 80.40 77.67 77.90 70.08 80.40 77.67 77.90 70.08

SPECT 92.12 90.86 91.33 90.00 97.36 99.60 97.77 1.00

SEED 85.71 83.43 92.70 75.04 85.71 83.43 92.70 75.04

PIMA 79.22 61.90 84.7 49.6 79.22 61.90 83.97 49.6

SVM-CHN s = 0.3 SVM-CHN s = 0.4

Accuracy F1-Score Precision Recall Accuracy F1-Score Precision Recall

IRIS 94.53 95.86 89.66 98.23 95.96 93.88 89.33 95.32

ABALONE 77.99 51.68 83.85 30.88 81.98 41.66 83.56 33.33

WINE 80.23 77.66 74.89 74.97 81.33 77.65 73.11 74.43

ECOLI 88.86 95.65 96.88 97.33 86.77 97.66 97.83 97.95

BALANCE 79.75 70.89 55.96 62.32 79.66 70.45 56.1 66.23

LIVER 80.51 78.33 77.9 70.56 80.40 77.67 77.90 70.08

SPECT 97.63 98.99 97.81 98.56 96.40 98.71 96.83 97.79

SEED 85.71 83.43 92.70 75.88 85.71 83.43 92.70 75.61

PIMA 79.22 61.93 84.82 49.86 79.22 61.90 84.98 49.89

SVM-CHN s = 0.5 SVM-CHN s = 0.6

Accuracy F1-Score Precision Recall Accuracy F1-Score Precision Recall

IRIS 94.53 95.86 89.66 98.23 95.96 93.88 89.33 95.32

ABALONE 78.06 51.83 83.96 40.45 82.1 42.15 83.88 38.26

WINE 80.84 78.26 74.91 75.20 81.39 77.86 73.66 74.47

ECOLI 88.97 95.7 96.91 97.43 86.77 97.66 97.83 97.95

BALANCE 79.89 71.00 56.11 62.72 79.71 70.64 56.33 66.44

LIVER 80.66 78.33 77.9 70.56 80.40 77.67 77.90 70.08

SPECT 91.36 92.60 91.77 84.33 91.36 92.60 91.77 84.33

SEED 84.67 82.96 92.23 74.18 84.11 83.08 92.63 75.48

PIMA 79.12 61.75 84.62 49.86 79.12 61.33 84.68 48.55
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Table 2. Performance of Const-CHN-SVM on different datasets for different values of time step in
[0.7, 0.9].

SVM-CHN s = 0.7 SVM-CHN s = 0.8

Accuracy F1-Score Precision Recall Accuracy F1-Score Precision Recall

IRIS 94.53 95.86 89.66 98.23 95.96 93.88 89.33 95.32

ABALONE 77.99 51.68 83.85 30.88 81.98 41.66 83.56 33.33

WINE 80.23 77.66 74.89 74.97 81.33 77.65 73.11 74.43

ECOLI 88.86 95.65 96.88 97.33 86.77 97.66 97.83 97.95

BALANCE 79.75 70.89 55.96 62.32 79.66 70.45 56.1 66.23

LIVER 80.51 78.33 77.9 70.56 80.40 77.67 77.90 70.08

SPECT 94.36 84.60 83.77 85.99 94.36 84.60 83.77 85.99

SEED 85.71 83.43 92.70 75.88 85.71 83.43 92.70 75.61

PIMA 79.22 61.93 84.82 49.86 79.22 61.90 84.98 49.89

SVM-CHN s = 0.9 CHN-DBSVM Optimal Value of s

Accuracy F1-Score Precision Recall Accuracy F1-Score Precision Recall

IRIS 95.96 93.88 89.33 95.32 97.96 96.19 95.85 98.5

ABALONE 81.98 41.66 83.56 33.33 98.38 96.07 96.18 93.19

WINE 81.33 77.65 73.11 74.43 96.47 95.96 96.08 96.02

ECOLI 86.77 88.46 90.77 91.19 91.82 97.66 97.83 97.95

BALANCE 79.66 70.45 56.1 66.23 91.31 90.33 89.54 90.89

LIVER 80.40 77.67 77.90 70.08 88.10 85.95 86.00 85.50

SPECT 94.36 84.60 83.77 85.99 95.55 86.20 85.28 86.31

SEED 85.71 83.43 86.18 75.61 88.90 84.31 92.70 84.40

PIMA 79.22 61.90 75.90 49.89 79.87 68.04 84.98 62.05

Figures 4 and A1–A3 give the series of optimal steps generated by Opt-RNN-DBSVM
during iterations for different datasets. It is noted that all the optimal steps are taken from
the interval [0.3; 0.4], which explains why a single constant time step of the Euler–Cauchy
algorithm can never produce satisfactory support vectors compared to Opt-RNN-DBSVM.
However, this simulation provides an optimal domain for those using a CHN based on a
constant time step instead of taking a random time step from [0; 1].
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Figure 4. IRIS dataset optimal time steps.
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5.2. Opt-RNN-DBSVM vs. Classical Optimizer–SVM

In this section, we give the performance of different Classical Optimizer–SVM mod-
els (L1QP-SVM, ISDA-SVM, and SMO-SVM) applied to several datasets and compare the
number of support vectors obtained by the different Classical Optimizer–SVM models and
Opt-RNN-SVM. Table 3 gives the values of accuracy, F1-score, precision, and recall for Classical
Optimizer–SVM on different datasets. The results show the superiority of Opt-RNN-DBSVM.
Indeed, when considering each of the performance measures, the proposed method achieves
remarkable improvements of 30% for accuracy and F1-score, 50% for precision, and 40%
for recall.

Table 3. Performance of Classical Optimizer–SVM on different datasets.

L1QP-SVM ISDA-SVM

Accuracy F1-Score Precision Recall Accuracy F1-Score Precision Recall

IRIS 71.59 62.02 70.80 55.17 82.00 83.64 76.67 92.00

ABALONE 74.15 70.80 71.48 59.30 83.70 68.22 70.00 80.66

WINE 72.90 65.79 75.53 60.11 66.08 65.80 66.00 70.02

ECOLI 66.15 55.89 61.33 41.30 51.60 48.30 33.33 51.39

BALANCE 65.20 53.01 60.51 41.22 50.44 58.36 68.32 60.20

LIVER 64.66 52.06 60.77 40.44 50.00 48.00 62.31 51.22

SPECT 70.66 62.02 67.48 50.11 77.60 71.20 75.33 70.11

SEED 70.51 58.98 67.30 45.30 80.66 81.25 79.80 79.30

PIMA 65.18 53.23 60.88 39.48 49.32 44.33 48.90 50.27

SMO-SVM CHN-DBSVM Optimal Value of s

Accuracy F1-Score Precision Recall Accuracy F1-Score Precision Recall

IRIS 71.59 62.02 70.80 55.17 97.96 96.19 95.85 98.5

ABALONE 74.15 70.80 71.48 59.30 98.38 96.07 96.18 93.19

WINE 72.90 65.79 75.53 60.11 96.47 95.96 96.08 96.02

ECOLI 66.15 55.89 61.33 41.30 91.82 88.46 90.77 91.19

BALANCE 65.20 53.01 60.51 41.22 91.31 90.33 89.54 90.89

LIVER 64.66 52.06 60.77 40.44 88.10 85.95 86.00 85.50

SPECT 70.66 62.02 67.48 50.11 95.55 86.20 85.28 86.31

SEED 70.51 58.98 67.30 45.30 88.90 84.31 86.18 84.40

PIMA 65.18 53.23 60.88 39.48 79.87 68.04 75.90 62.05

Figures 5–8 illustrate, respectively, the support vectors obtained using L1QP-SVM,
L1QP-SVM, SMO-SVM, and Opt-RNN-SVM applied to the IRIS data. We note that (a) ISDA
considers more than 96% as support vectors, which is an exaggeration; (b) L1QP and SMO
use a reasonable number of samples as support vectors, but most of them are duplicated;
and (c) thanks to the preprocessing, Opt-RNN can reduce the number of support vectors by
more than 32%, compared to SMO and L1QP, which allows it to overcome the over-learning
phenomenon encountered with SMO and L1QP. In this sense, this reasonable number of
support vectors used by Opt-RNN-DBSVM will speed up the online predictions of systems
that implement these support vectors, especially with regard to to sentiment analysis,
which manipulates very long texts.
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Figure 5. Support vectors obtained by ISDA algorithm.
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Figure 6. Support vectors obtained by L1QP algorithm.
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Figure 7. Support vectors obtained by SMO algorithm.
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Figure 8. Support vectors obtained by Opt_RNN_SVM algorithm.

To analyze these results further and to evaluate the performance of multiple kernel
classifiers, regardless of the data type, we perform the Friedman test to verify the statistical
significance of the proposed method compared to other methods with respect to the derived
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mean rankings [11]. The null hypothesis is given by Hker
0 , i.e., “The kernel classifiers Opt-

RNN-DB, SMO, ISDA, and L1QP perform similarly in mean rankings without a significant
difference”. The considered degree of freedom of the Friedman test is 3 (number of kernel
classifiers −1). The significance level is 0.05 and the considered confidence interval is 95%.
Three performance measures are considered (accuracy, F1-score, precision).

Considering the accuracy measure, the average rank of the four kernel methods is
given in brackets: Opt-RNN-DB(4), SMO(2.06), and L1QP(2.06), and ISDA(1.89). Opt-RNN-
DB has the highest ranking, followed by SMO and L1QP. Considering the F1-score, the
average rank of the four kernel methods is given in brackets: Opt-RNN-DB(4), ISDA(2.11),
SMO(1.94), and L1QP(1.94). Opt-RNN-DB has the highest ranking, followed by ISDA.
Considering the precision measure, the average rank of the four kernel methods is given in
brackets: Opt-RNN-DB(4), ISDA(2.11), SMO(1.94), and L1QP(1.94). Opt-RNN-DB has the
highest ranking, followed by ISDA.

Table 4 gives the results of the Friedman test on the kernel SVM classifiers (SOM, L1QP,
ISDA) considering different performance measures. The null hypothesis Hker

0 is rejected for
all these kernel classifiers at a significance level of α = 0.05, indicating that the proposed
hybrid classifier outperforms all other kernel classifiers. In this regard, the performance of
ISDA-SVM is the closest to that of the Opt-RNN-DBSVM classifier.

Table 4. Results of Friedman test on the kernel SVM classifiers.

Opt-RNN-DB vs. p-Value (Accuracy) p-Value (F1-Score) p-Value (Precision)

SOM 0.008 0.004 0.004

L1QP 0.008 0.004 0.004

ISDA 0.003 0.011 0.011

5.3. Opt-RNN-DBSVM vs. Non-Kernel Classifiers

In this section, we compare Opt-RNN-DBSVM to several non-kernel classifiers, namely
Naive Bayes [45], MLP [46], KNN [47], AdaBoostM1 [48], Decision Tree [49], SGD Classi-
fier [50], Nearest Centroid Classifier [50], and Classical SVM [51].

Tables A1–A5 give the values of the measures accuracy, F1-score, precision, and recall
for the considered datasets. Considering each of these performance measures, Opt-RNN-
DBSVM permits remarkable improvements and clearly outperforms the other methods.
The large number of classifiers and datasets makes it difficult to demonstrate this superiority
without employing statistical methods.

To analyze these results further and to evaluate the performance of non-kernel clas-
sifiers (Naive Bayes (NB), MLP, KNN, AdaBoostM1 (ABM1), Nearest Centroid Classifier
(NCC), Decision Tree (DT), SGD Classifier (SGDC)) compared to Opt-RNN DBSVM, re-
gardless of the data type, we perform the Friedman test to verify the statistical significance
of the proposed method compared to other methods with respect to the derived mean
rankings. Three performance measures are considered (accuracy, F1-score, precision).

The null hypothesis is given by Hnker
0 , i.e., “The classifiers NB, MLP, KNN, ABM1, NCC,

DT, SGDC, Opt-RNN-DBSVM perform similarly in mean rankings without a significant
difference”.

The considered degree of freedom of the Friedman test is 7 (number of non-kernel
classifiers −1). The significance level is 0.05 and the considered confidence interval is 95%.

Considering the accuracy measure, the average rank of the four kernel methods is
given in brackets: Opt-RNN-DBSVM(7.80), ABM1(5.2), KNN(5.2), NB(4.4), NCC(3.95),
SGDC(3.55), DT(3.5), and MLP(2.4). Opt-RNN-DB has the highest ranking, followed by
ABM1(5.2) and KNN(5.2). Considering the F1-score, the average rank of the four kernel
methods is given in brackets: Opt-RNN-DBSVM(7.1), ABM1(5.2), KNN(5.05), NB(4.8),
SGDC(4.6), NCC(4.05), DT(3.1), and MLP(2.1). Opt-RNN-DB has the highest ranking,
followed by ABM1 and KNN. Considering the precision measure, the average rank of the
four kernel methods is given in brackets: Opt-RNN-DBSVM(7.1), NCC(5.3), ABM1(5.15),
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KNN(4.9), NB(4.25), SGDC(3.95), DT(3.25), and MLP(2.1). Opt-RNN-DB has the highest
ranking, followed by NCC and ABM1. Table 5 gives the results of the Friedman test
on the non-kernel classifiers (NB, MLP, KNN, ABM1, NCC, DT, and SGDC) considering
three performance measures (accuracy, F1-score, and precision). The null hypothesis Hnker

0
is rejected for all these classifiers at a significance level of α = 0.05, indicating that the
proposed hybrid classifier outperforms all other non-kernel classifiers. In this regard, the
performance of ABM1 is the closest to that of the Opt-RNN-DBSVM classifier.

Table 5. Results of Friedman test on non-kernel classifiers.

Opt-RNN-DB vs. p-Value (Accuracy) p-Value (F1-Score) p-Value (Precision)

Naive Bayes 0.054 0.022 0.026

MLP 0.00 0.00 0.00

KNN 0.018 0.061 0.045

AdaBoostM1 0.018 0.083 0.075

Nearest Centroid
Classifier 0.012 0.15 0.1

Decision Tree 0.002 0.007 0.012

SGD Classifier 0.003 0.022 0.004

Additional comparison studies were performed on the PIMA and Germany Diabetes
datasets and the ROC curves were used to calculate the AUC for the best performance
obtained from each non-kernel classifier. Figures A4 and A6 show the comparison of the
ROC curves of the classifiers DT, KNN, MLP, NB, etc., and the Opt-RNN-DBSVM method,
evaluated on the PIMA dataset. We point out that Opt-RNN-DBSVM quickly converges
to the best results and obtains more true positives and a smaller number of false positives
compared to several other classification methods.

More comparisons are given in Appendix B; Figures A5 and A7 show the comparison
of the ROC curves of the classical SVM and Opt-RNN-DBSVM methods, evaluated on the
Germany Diabetes dataset. More specifically, considering the performance measures “false
positive rate” and “true positive rate”, predictions based on support vectors produced
by Opt-RNN-DBSVM dominate predictions based on support vectors produced by other
non-kernel classifiers.

6. Conclusions

The main challenges of SVM implementation are the number of local minima and the
amount of computer memory required to solve the dual-SVM, which increase exponentially
with respect to the size of the dataset. The Kernel-Adatron family of algorithms, ISDA
and SMO, has handled very large classification and regression problems. However, these
methods treat noise, boundary, and kernel samples in the same way, resulting in a blind
search in unpromising areas. In this paper, we have introduced a hybrid approach to
deal with these drawbacks, namely Optimal Recurrent Neural Network and Density-
Based Support Vector Machine (Opt-RNN-DBSVM), which performs in six phases: the
characterization of different samples, the elimination of samples having a weak probability
of being support vectors, building an appropriate recurrent neural network based on an
original energy function, and solving the differential equation system governing the RNN
dynamics, using the Euler–Cauchy method implementing an optimal time step. Data
preprocessing reduces the number of local minima in the dual-SVM; this reduction enables
real-time decision making in big data problems. The RNN’s recurring architecture avoids
the need to explore recently visited areas; this is an implicit tabu search. With the optimal
time step, the search moves from the current vectors to the best neighboring support
vectors. On one hand, two main, interesting fundamental results were demonstrated: the
convergence of RNN-SVM to feasible solutions and the fact that Opt-RNN-DBSVM has
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very low time complexity compared to Const-RNN-SVM, SMO-SVM, ISDA-SVM, and
L1QP-SVM. On the other hand, several experimental studies were conducted based on well-
known datasets (IRIS, ABALONE, WINE, ECOLI, BALANCE, LIVER, SPECT, SEED, PIMA).
Based on popular performance measures (accuracy, F1-score, precision, recall), Opt-RNN-
DBSVM outperformed Const-RNN-SVM, KA-SVM, and some non-kernel models (cited in
Table A1). In fact, Opt-RNN-DBSVM improved the accuracy by up to 3.43%, F1-score by up
to 2.31%, precision by up to 7.52%, and recall by up to 6.5%. In addition, compared to SMO-
SVM, ISDA-SVM, and L1QP-SVM, Opt-RNN-DBSVM provides a reduction in the number
of support vectors by up to 32%, which permits us to save memory for large applications
that implement several machine learning models. The main problem encountered in the
implementation of Opt-RNN-DBSVM is the determination of the Lagrange parameters
involved in the SVM energy function. In this sense, a genetic strategy will be introduced to
determine these parameters considering each dataset. In future work, extensions of this
method may include combining Opt-RNN-DBSVM with big data technologies to accelerate
classification tasks on big data and introducing hybrid versions based on Opt-RNN, deep
learning, and fuzzy-SVM.
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Appendix A. Optimal Steps
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Figure A1. (a) ABALONE dataset, (b) PIMA dataset, (c) WINE dataset.
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Figure A2. (a) SEED dataset, (b) Germany Diabetes dataset, (c) BALANCE dataset.
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Figure A3. (a) SPECT dataset, (b) ECOLI dataset, (c) LIVER dataset.

Appendix B. RUC Curves

Figure A4. RUC curve for the different classification methods applied to PIMA Diabetes dataset.



Mathematics 2023, 11, 3555 22 of 28

Figure A5. Opt-RNN-DBSVM vs. SVM RUC curve applied to PIMA Diabetes dataset.

Figure A6. RUC curve for the different classification methods applied to Germany Diabetes dataset.

Figure A7. Opt-RNN-DBSVM vs. SVM RUC curve applied to Germany Diabetes dataset.
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Appendix C. Opt-RNN-DBSVM and Non-Kernel Classifiers

Table A1. Comparison between Opt-RNN-DBSVM and different classification methods on the IRIS
and ABALONE datasets.

IRIS

Method Accuracy F1-Score Precision Recall

Naive Bayes 90.00 87.99 77.66 1.00

MLP 26.66 0.00 0.00 0.00

KNN 96.66 95.98 91.62 1.00

AdaBoostM1 86.66 83.66 71.77 1.00

Decision Tree 69.25 76.12 70.01 69.55

SGD Classifier 76.66 46.80 1.00 30.10

Random Forest Classifier 90.00 87.99 77.66 1.00

Nearest Centroid Classifier 96.66 95.98 91.62 1.00

Classical SVM 96.66 95.98 91.62 1.00

Opt-RNN-DBSVM 97.96 92.19 95.85 96.05

ABALONE

Method Accuracy F1-Score Precision Recall

Naive Bayes 68.89 51.19 41.37 67.33

MLP 62.91 47.63 36.32 47.63

KNN 81.93 53.74 70.23 43.02

AdaBoostM1 82.29 55.99 70.56 55.06

Decision Tree 76.79 51.33 52.06 49.63

SGD Classifier 80.86 64.74 58.08 70.57

Nearest Centroid Classifier 76.07 64.79 62.60 61.15

Random Forest Classifier 82.28 57.56 71.11 48.34

Classical SVM 80.98 40.38 82.00 27.65

Opt-RNN-DBSVM 98.38 96.07 96.18 93.19

Table A2. Comparison between Opt-RNN-DBSVM and different classification methods on the WINE
and ECOLI datasets.

WINE

Method Accuracy F1-Score Precision Recall

Naive Bayes 78.48 75.96 74.17 74.89

MLP 67.73 72.67 51.52 43.64

KNN 81.84 79.85 78.35 79.00

AdaBoostM1 88.20 70.60 81.64 76.21

Decision Tree 83.02 81.42 79.36 80.22

SGD Classifier 68.40 83.95 52.28 44.81

Nearest Centroid Classifier 73.44 70.75 72.33 71.23

Classical SVM 79.49 78.26 73.52 74.97

Opt-RNN-DBSVM 96.47 95.96 96.08 96.02
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Table A2. Cont.

ECOLI

Method Accuracy F1-Score Precision Recall

Naive Bayes 82.08 97.11 1.00 95.66

MLP 55.22 71.45 55.00 1.00

KNN 89.55 99.87 1.00 97.02

AdaBoostM1 70.14 87.21 77.73 1.00

Decision Tree 70.14 83.71 82.03 84.19

SGD Classifier 86.56 96.33 1.00 92.01

Random Forest Classifier 85.07 96.11 97.00 95.66

Nearest Centroid Classifier 82.08 97.28 1.00 95.39

Classical SVM 88.05 97.77 97.83 97.99

Opt-RNN-DBSVM 91.82 88.46 90.77 91.19

Table A3. Comparison between Opt-RNN-DBSVM and different classification methods on the
BALANCE and LIVER datasets.

BALANCE

Method Accuracy F1-Score Precision Recall

Naive Bayes 79.3 67.2 62.50 69.40

MLP 76.6 61.10 57.40 68.30

KNN 80.90 68.40 64.50 66.60

AdaBoostM1 81.10 69.20 70.60 66.50

Decision Tree 79.90 64.80 72.80 68.70

SGD Classifier 69.03 65.62 66.15 65.83

Nearest Centroid Classifier 66.54 65 66.66 64.89

Classical SVM 79.70 70.7 55.60 62.70

Opt-RNN-DBSVM 91.31 90.33 89.54 90.89

LIVER

Method Accuracy F1-Score Precision Recall

Naive Bayes 71.66 71.90 71.45 70.80

MLP 61.50 63.15 72.70 68.88

KNN 50.50 71.20 69.81 53.90

AdaBoostM1 88.50 89.37 89.99 79.39

Decision Tree 39.26 45.39 48.38 48.76

SGD Classifier 49.80 60.00 49.49 50.22

Nearest Centroid Classifier 66.50 63.30 60.20 61.87

Classical SVM 80.40 77.67 77.90 70.08

Opt-RNN-DBSVM 88.10 85.95 86.00 85.50
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Table A4. Comparison between Opt-RNN-DBSVM and different classification methods on the SPECT
and SEED datasets.

SPECT

Method Accuracy F1-Score Precision Recall

Naive Bayes 63.15 77.40 96.33 65.94

MLP 97.36 99.60 97.77 1.00

KNN 92.10 96.80 97.80 95.90

AdaBoostM1 94.73 97.99 97.55 97.50

Decision Tree 86.84 93.89 97.55 89.48

SGD Classifier 97.36 99.60 97.77 1.00

Random Forest Classifier 97.36 99.60 97.77 1.00

Nearest Centroid Classifier 57.89 72.20 1.00 72.28

Classical SVM 97.36 99.60 97.77 1.00

Opt-RNN-DBSVM 97.36 99.60 97.77 1.00

SEED

Method Accuracy F1-Score Precision Recall

Naive Bayes 85.71 79.76 92.55 69.20

MLP 30.95 0.00 0.00 0.00

KNN 85.71 79.24 73.39 85.40

AdaBoostM1 95.23 93.40 87.44 1.00

Decision Tree 92.85 90.88 1.00 81.00

Random Forest Classifier 92.85 90.88 1.00 81.00

SGD Classifier 85.71 86.76 79.55 94.20

Nearest Centroid Classifier 85.71 79.28 92.70 75.77

Classical SVM 85.71 83.43 92.70 75.04

Opt-RNN-DBSVM 96.88 97.09 96.76 1.00

Table A5. Comparison between Opt-RNN-DBSVM and different classification methods on the PIMA
and Germany Diabetes datasets.

PIMA

Method Accuracy F1-Score Precision Recall

Naive Bayes 79.3 70.40 74.2 66.50

MLP 66.23 13.33 57.1 8.40

KNN 74.90 66.60 68.4 64.50

AdaBoostM1 72.72 60.37 60.8 60.80

Decision Tree 70.77 52.63 60.2 47.60

SGD Classifier 37.66 52.47 36.98 1.00

Nearest Centroid Classifier 63.63 48.14 47.01 49.55

Classical SVM 79.22 61.90 84.7 49.6

Opt-RNN-DBSVM 79.87 68.04 75.90 62.05
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Table A5. Cont.

Germany Diabetes Dataset

Method Accuracy F1-Score Precision Recall

Naive Bayes 81.66 87.19 79.37 77.33

MLP 63.28 54.24 50.39 56.40

KNN 68.08 67.88 76.30 66.00

AdaBoostM1 91.95 90.66 92.56 90.06

Decision Tree 55.66 53.74 59.93 50.02

SGD Classifier 79.96 79.74 70.08 78.57

Nearest Centroid Classifier 86.71 82.63 89.32 85.63

Classical SVM 78.5 59.81 74.10 50.99

Opt-RNN-DBSVM 99.5 99.7 1.00 98.00
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