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Abstract—Task allocation, which can be divided into offline task 

allocation and online task allocation, is a significant issue in mobile 

crowd sensing (MCS). Unlike offline task allocation, in the online 

task allocation scenario, since participants arrive at the service 

dynamically, the quantity of participants in a specific time and 

space is uncertain, hence it could affect the quality and efficiency 

of task completion. However, due to the difficulty of predicting the 

quantity of real-time participants in a specific time and space 

accurately, the existing studies of online task allocation lack deep 

consideration of the quantity of participants. Therefore, this paper 

investigates a participant-quantity-aware online task allocation 

problem. First of all, in view of the difficulty of predetermining the 

participant quantity in MCS, a fuzzy time series analysis (FTSA) 

method is developed to predict the participant quantity available 

for each task in a specific time and space. Then, according to the 

predicted quantity, two reasonable attributes for each task, 

including the task’s threshold on participant’s sensing ability and 

the reward provided for participants to execute the task, can be 

calculated separately. On this basis, considering the participant’s 

willingness, the participant’s sensing ability, the sensor types of the 

participant’s device, and the participant’s time coverage jointly, 

we design an online task allocation algorithm based on an 

improved genetic algorithm (OTAGA) to allocate appropriate set 

of tasks to each participant who arrives in real-time, so as to 

maximize the platform utility and minimize the movement cost of 

the participant. Simulation results show that the proposed method 

is effective in terms of the accuracy of prediction, the platform 

utility and the movement cost of the participant. 

 

Index Terms—Mobile crowd sensing, online task allocation, 

participant quantity, fuzzy time series analysis, improved genetic 

algorithm. 

 

I. INTRODUCTION 

OBILE Crowd Sensing (MCS) is an emerging 

pervasive sensing paradigm that uses a large number of 

smart mobile terminals (smart phones, tablet computers, 

sensors, etc.) to collect sensing data with high spatiotemporal 
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correlation and strong analyzability [1]. With the characteristics 

of wide distribution, high flexibility, and low deployment cost 

of MCS systems, massive MCS platforms have been 

established, such as Medusa [2], GigaSight [3], PRISM [4], 

WAZE [5], and CrowdOS [6]. Under this trend, the MCS 

provides powerful technical support in intelligent transportation 

[7], urban public management [8], environmental monitoring 

[9], and so forth. 

A typical MCS system consists of the platform, the task 

requesters, and the participants, in which the mobile device 

carried by the participant is regarded as the basic sensing unit 

[10]. The general process in the MCS system is as follows. 

Firstly, the task requesters delegate various sensing tasks with 

detailed task information to the platform. Then, the platform 

allocates the delegated tasks to appropriate participants. After 

the tasks are sensed completely, the participants upload the 

sensing data to the platform. Finally, the platform summarizes 

and analyzes the sensing data, and feeds back the results to the 

task requesters.  

In the above process, task allocation is regarded as a core 

issue, which is crucial for the efficiency and effectiveness of 

MCS applications [11]. Considering different research 

scenarios, the existing task allocation can be divided into offline 

task allocation and online task allocation. Offline task 

allocation generally assumes that participants in the sensing 

activity are predetermined, and the platform holds their detailed 

information, such as location, preference, sensor type, etc. 

Moreover, during the offline task allocation process, it is 

assumed that neither new participants join the sensing activity 

in real-time, nor participants suddenly withdraw from the 

sensing activity. These assumptions are conducive to 

simplifying the complex task allocation process into a static 

optimization problem. However, in practical applications, since 

participants arrive at the service dynamically, it is impossible to 

obtain accurate information about the participant in advance. 

Therefore, online task allocation that is more suitable for 
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practical applications has gradually become a research hotspot 

and this paper focuses on the online task allocation for MCS. 

In an online task allocation scenario, MCS tasks generally 

have spatiotemporal requirements (e.g., if the platform wants to 

monitor the air quality of a park from 18:00 to 20:00, it needs 

to recruit participants who arrive at the park during this time 

period. Participants who arrive at other times will not be able to 

provide any help.) and sensor requirements (If a participant is 

asked to collect urban noise data, but there is no sound sensor 

on his mobile device, so he does not meet the requirements of 

the task). For a task, the participant quantity available for it in a 

specific time and space has a great influence on whether the task 

can be well completed, where the availability of participants 

depends on a variety of factors including the sensor types of 

participants’ devices. For example, insufficient available 

participants may lead to a long task completion cycle. On the 

contrary, when the participant quantity available for a task is 

sufficient, the platform can recruit participants with strong 

sensing ability to improve the quality of task completion. 

Therefore, for an online task allocation, the quality and 

efficiency of task completion depend on the participant quantity 

available for a task in a specific time and space. 

However, since the participants usually arrive at the service 

dynamically, it is difficult for the platform to predetermine the 

participant quantity available for a task in a specific time and 

space. In this case, in order to facilitate the platform in 

formulating a reasonable online task allocation scheme 

effectively, it is essential to accurately predict the participant 

quantity available for each task in a specific time and space. 

Based on the above discussion, to achieve optimal online task 

allocation, the first challenge is how to predict the participant 

quantity available for each task in a specific time and space 

accurately. The second challenge is how to formulate a 

reasonable online task allocation scheme based on the predicted 

participant quantity. 

For the first challenge, there are two main factors that affect 

the prediction of the participant quantity available for each task 

in a specific time and space. On one hand, since participants can 

join in and withdraw from the sensing activities flexibly, their 

sensing range and availability at different time are variable and 

uncertain, which causes the participant quantity available for a 

task varies and fluctuates greatly with time. On the other hand, 

there are many uncertainties (such as GPS signal interruption, 

missing trajectory data, etc.) during the process of participating 

in sensing activities, which leads to the historical data on the 

participant quantity available for a task in a specific time and 

space is incomplete and ambiguous. Due to the above two 

factors, the traditional prediction methods with high 

requirements for the integrity and accuracy of historical data are 

not suitable for solving the problem of predicting the participant 

quantity in this paper. In order to solve the first challenge, a 

fuzzy time series analysis (FTSA) method is developed to 

predict the participant quantity available for each task in a 

specific time and space. The FTSA method refers to use fuzzy 

mathematics method to study the characteristics and 

development trends contained in data sequences with fuzzy and 

incomplete information. Since the participant quantity varies 

with time, the change of the fuzzy language used to describe 

participant quantity is also dynamically dependent on time 

series. In addition, due to incomplete and ambiguous historical 

data of participant quantity, it is more realistic to use fuzzy 

language such as less, normal, and more to describe the 

participant quantity in practical applications.  

To solve the second challenge, firstly, we set two reasonable 

attributes for each task, including the task’s threshold on the 

participants’ sensing ability and a reasonable reward provided 

for participants to execute the task, and then estimate them 

based on the predicted participant quantity. Secondly, in the 

process of online task allocation, this paper considers two 

optimization objectives from the perspective of the platform 

and the participants, which are the platform utility and the 

movement cost of the participant. Maximizing the platform 

utility can ensure that the platform obtains high-quality sensing 

data, and minimizing the movement cost of the participant can 

ensure that the participant has the lowest movement cost during 

the time period he perform tasks. Finally, considering the 

participant’s willingness, the participant’s sensing ability, the 

sensor types of the participant’s device, and the participant’s 

time coverage jointly, we design an online task allocation 

algorithm based on an improved genetic algorithm to allocate 

appropriate tasks to the arrived participants to achieve the above 

two optimization objectives.  

Since the above online task allocation problem is a bi-

objective optimization problem, the designed algorithm is 

different from the traditional single-objective optimization 

genetic algorithm. Firstly, unlike most genetic algorithms using 

binary coding structures or fixed-length coding structures to 

construct chromosomes, the designed algorithm adopts a 

variable-length symbol coding structure to construct 

chromosomes, where a chromosome represents a task 

allocation scheme, and in each chromosome the participant and 

tasks are regarded as genes. The order of the genes represents 

the order in which the participants perform the tasks, and the 

participant is located at the beginning of each chromosome. 

Secondly, the designed algorithm adopts lexicographical order 

to indicate the fitness of chromosomes in the population, and 

determines the probability of chromosomes being selected for 

the next generation through a ranking-based selection method. 

Chromosomes ranked higher represent that the task allocation 

schemes can provide the platform with higher utility and make 

the movement cost of the participant less. Then, the designed 

algorithm uses interchromosomal crossover and 

intrachromosomal crossover to expand the solution space of the 

two optimization objectives respectively. Interchromosomal 

crossover swaps different tasks in two different task allocation 

schemes to seek higher platform utility, and intrachromosomal 

crossover changes the task execution order of the participant in 

a task allocation scheme to make the movement cost of the 

participant less. Finally, the algorithm uses mutation operations 

to change tasks in one task allocation scheme into other tasks 

that do not exist in that scheme to avoid falling into local 

optimality. 

The main contributions are summarized as follows:  

(1) We investigate the significant impact of participant 

quantity on the quality and efficiency of task 

completion, and analyze the difficulty of predetermining 

the participant quantity in MCS. Then, a FTSA method 

is developed to predict the participant quantity available 
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for each task in a specific time and space. 

(2) According to the predicted participant quantity, the task’s 

threshold on participants’ sensing ability and the reward 

provided for participants to execute the task can be 

calculated separately. Then, considering multiple 

attributes of tasks and participants comprehensively, we 

design an online task allocation algorithm based on an 

improved genetic algorithm to allocate appropriate tasks 

to each participant who arrives dynamically, so as to 

maximize the platform utility and minimize the 

movement cost of the participant.  

The rest of the paper is organized as follows. In Section II, 

the related work of offline task allocation and online task 

allocation are introduced. In Section III, an online task 

allocation model is introduced. Section IV designs an online 

task allocation algorithm. The performance evaluation and 

discussion are given in Section V. Section VI concludes the 

paper. 

II. RELATED WORK 

In this section, the recent state of the art on offline task 

allocation and online task allocation is presented. 

A. Offline Task Allocation in MCS 

Since there are many factors that affect the MCS system in 

practical applications, it is an effective way to abstract the task 

allocation process into a static model. Early research works on 

MCS focused on an offline task allocation model with 

predetermined information of tasks and participants.  

In [12], a duration-sensitive task allocation model, where each 

task is associated with a specific sensing duration, was designed 

to solve the offline task allocation problem with task duration. 

Similarly, the authors of [13] studied a multi-task allocation 

problem, which investigated the impact of time constraints and 

maximized the platform utility. Considering the stability of task 

allocation, Dai et al. [14] constructed a distributed many-to-

many matching model to capture the interaction between task 

requesters and workers. The authors of [15] proposed a stable 

task allocation algorithm, which achieved a stable MCS system 

through the stable marriage approach. Considering the privacy 

protection in the MCS system, Zhang et al. [16] proposed a 

novel differentially private geocoding (DPG) mechanism to 

preserve workers’ location privacy. In [17], an incentive 

mechanism was designed to prevent malicious workers from 

exploring illegal benefits by simply uploading falsified 

parameters. Considering the important influence of participants' 

willingness on sensing data quality, the authors of [18] 

proposed a willingness and trust-based collaborative team 

recruitment method (WT-CTRM) to improve the quality of 

service (QoS) among recruited users. Similarly, the authors of 

[19] proposed a QoI-aware energy-efficient participant 

selection approach to collect sufficient amount of sensory data 

with high quality-of-information (QoI) requirements. In [20], 

Wu et al., established a regression model based on user 

willingness using a fully connected deep neural network to 

quantitatively evaluate the user’s willingness to perform the 

perceptual task. 

The aforementioned researches consider many factors in the 

offline task allocation scenario, and assume that the information 

of tasks and participants is available in advance. In contrast, in 

this paper, task allocation is regarded as a dynamic process, and 

tasks need to be allocated to participants who arrive at the 

service dynamically. 

B. Online Task Allocation in MCS 

With the development of MCS, the online task allocation has 

gradually become a research hotspot, where the platform 

allocates tasks to participants who arrive at the service 

dynamically. 

In [21], aiming at the problem of quality-aware online task 

assignment, a probabilistic model to measure the quality of 

tasks and a hitchhiking model to characterize workers’ behavior 

patterns were proposed. The authors of [22] studied a dynamic 

participant selection problem with heterogeneous sensing tasks, 

which minimized the sensing cost while maintaining a specific 

level of probabilistic coverage. In [23], a semi-Markov model 

was proposed to predict the position distribution of workers and 

tasks, and a prediction-based task allocation algorithm (PBTA), 

which could gain the maximum global system utility and lowest 

traveling cost, was designed to solve a dynamic task allocation 

problem. In [24], Li et al. predicted the mobility model of 

opportunistic workers and proposed a Multi-stage multi-task 

Online Task Assignment (MOTA) algorithm to minimize the 

average make span of all tasks. The authors of [25] proposed a 

hybrid framework named HyTasker which can allocate tasks to 

opportunistic workers in the offline phase and participatory 

workers in the online phase to realize the complementary 

advantages of the two modes. The authors of [26] proposed a 

task allocation framework Re-OPSEC, which can effectively 

select opportunistic workers at real time to perform tasks in an 

energy-saving way. Wang et al. [27] studied the location-aware 

and location diversity-based dynamic crowd sensing system, 

and proposed an online control policy to ensure the fairness of 

workers. Similarly, the authors of [28] designed a polynomial-

time approximation algorithm to allocate each of the 

sequentially arriving tasks to participants as fairly as possible. 

In [29], an online multi-task allocation mechanism with a 

defined reliability metric, which was associated with a rational 

payment model, was proposed to achieve the online task 

allocation. 

In contrast to the above studies, in this paper, considering that 

the quantity of participants has an important impact on the 

quality and efficiency of task completion, we therefore analyze 

it in detail. In response to this intractable problem, the FTSA 

method is designed to predict the participant quantity available 

for each task in a specific time and space, and then an online 

task allocation algorithm based on an improved genetic 

algorithm is designed to allocate appropriate tasks to each 

participant. 

 

III. ONLINE TASK ALLOCATION MODEL 

In this paper, we consider an online task allocation scenario, 

where participants arrive at the service dynamically, and both 

participants and tasks have multiple attributes. Different from 

the assumption that all participants are predetermined in offline 
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task allocation, the platform can only obtain the information of 

the participants who arrive at the service in online task 

allocation. According to the arrived participants’ information, 

the platform allocates an appropriate set of tasks to them. 

The system model of this paper can be described as follows. 

Firstly, the task requester submits task information to the 

platform. Then, the platform adopts a FTSA method to predict 

the participant quantity available for the task in a specific time 

and space. After, according to the predicted participant quantity, 

the task’s threshold on participants’ sensing ability and the 

reward provided for participants to execute the task are 

calculated separately. Afterwards, when a participant arrives at 

the service dynamically, the platform allocates appropriate tasks 

to the participant according to the attributes of both the 

participant and tasks. Finally, when the task is completed, the 

participant needs to upload the sensing data to the platform, and 

the platform returns the aggregated and processed data to the 

task requester. 

To indicate the aforementioned system model clearly, the 

detailed parameters used are introduced as follows. In this paper, 

a day is divided into z time periods with equal length CZ = 

{C1, ..., Cd, ..., Cz}, and the sensing area is divided into l 

independent sub-areas SL = {S1, …, Se, …, Sl}. In order to 

facilitate the subsequent description, a sub-area Se within a time 

period Cd is defined as a spatiotemporal granularity 𝐺𝑑,𝑒 (i.e., a 

spatiotemporal unit [30]). Within a spatiotemporal granularity 

𝐺𝑑,𝑒 , the set of n tasks is denoted as 𝑇𝑁 = {𝑇1, … , 𝑇𝑖 , … , 𝑇𝑛} , 

and the participant quantity that task 𝑇𝑖  requires is denoted as 

𝑀𝑑,𝑒
𝑖  . As shown in Fig.1, a sensing area is divided into 12 

independent sub-areas, and the span of each time period is 2 

hours. Different tasks are represented by symbols with different 

shapes and the color of the symbol represents the degree of the 

participant quantity available for each task. The number next to 

the symbol represents the predicted participant quantity 

available for each task in its spatiotemporal granularity. In order 

to formulate a suitable online task allocation scheme, it is 

necessary to predict the participant quantity available for each 

task in its spatiotemporal granularity. 
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Fig.1.  The predicted participant quantity in time and space. 

 

A. Participant quantity Prediction 

In MCS, the available participant quantity will affect the 

quality and efficiency of task completion. However, in online 

task allocation, since participants arrive at the service 

dynamically and their information is unknown, the platform 

cannot determine the available participant quantity for tasks in 

advance. Therefore, this paper adopts the FTSA method to 

predict the participant quantity available for each task in its 

spatiotemporal granularity. For the convenience of 

understanding, the theoretical foundations are defined as 

follows: 

Definition 1. Let U be the universe of discourse, where U = 

{u1, u2, ..., un}. A fuzzy set 𝐹𝑆𝑖 on U is denoted as 

 𝐹𝑆𝑖 =
𝑓𝐹𝑆𝑖

(𝑢1)

𝑢1
+

𝑓𝐹𝑆𝑖
(𝑢2)

𝑢2
+⋯+

𝑓𝐹𝑆𝑖
(𝑢𝑛)

𝑢𝑛
, (1) 

where 𝑓𝐹𝑆𝑖    is the fuzzy membership function defined on the 

fuzzy set 𝐹𝑆𝑖. 𝑓𝐹𝑆𝑖(𝑢𝑘) represents the fuzzy membership of 𝑢𝑘 

to fuzzy set 𝐹𝑆𝑖, and 𝑓𝐹𝑆𝑖(𝑢𝑘)  [0, 1], 1  k  n. 

Definition 2. A group of fuzzy sets fi(t) (i = 1, 2, ...) is defined 

on a subset of real numbers Y(t) ⸦ R (t = ..., 0, 1, 2, ...). F(t) = 

{f1(t), f2(t), ...} is defined as a fuzzy time series on Y(t). 

Definition 3. Let 𝐹(𝑡 − 1)  =  𝐹𝑆𝑖  and 𝐹(𝑡)  =  𝐹𝑆𝑗 the 

fuzzy logical relation between F(t-1) and F(t) can be denoted 

by 𝐹𝑆𝑖→ 𝐹𝑆𝑗. 

As shown in Fig.2, the steps of the FTSA method are introduced 

as follows. i) Fuzzification. Fuzzy the training set, divide the 

universe of discourse, and determine the fuzzy set and fuzzy 

membership function. ii) Establishment of fuzzy logical 

relation set. Establish the fuzzy logical relation set of the sample 

data according to the sequence of the training data. iii) 

Establishment of fuzzy logical relation matrix. Establish the 

fuzzy logical relation matrix according to all fuzzy logical 

relations. iv) Prediction. Obtain the predicted value according 

to the fuzzy logical relation matrix and the given prediction 

rules. 

Fuzzification. The FTSA method needs to determine the 

discussion scope of the problem (i.e., the universe of discourse) 

according to the minimum and maximum values of historical 

data. For the convenience of discussion and calculation, the 

universe of discourse is usually rounded down and up to get the 

lower boundary 𝑄𝑚𝑖𝑛 and the upper boundary 𝑄𝑚𝑎𝑥. Then, the 

universe of discourse is divided into several fuzzy subintervals, 

that is, the universe of discourse is divided in a way that can be 

understood as much as possible by natural language according 

to the actual situation. In this paper, the universe of discourse is 

evenly divided into seven fuzzy subintervals {𝑢1, 𝑢2, . . . 𝑢7} . 
The semantics are “ 𝐹𝑆1 : few participants”, “𝐹𝑆2 : a few 

participants”, “𝐹𝑆3: small participant quantity”, “𝐹𝑆4: normal 

participant quantity”, “𝐹𝑆5: large participant quantity”, “𝐹𝑆6: a 

lot of participants”, “𝐹𝑆7: massive participants”.  

Inputs
Fuzzification

Establishment of fuzzy 

logical relation set

Fuzzy sets

Fuzzy membership 

functions

Establishment of fuzzy logical relation matrixPrediction
Results

Historical 

data series

 
Fig.2.  Steps of fuzzy time series model. 
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The fuzzy sets are defined by the triangular fuzzy 

membership function as 

 

{
 
 
 
 
 

 
 
 
 
 𝐹𝑆1 =
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𝑢4
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0
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0
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0
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+

0
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0
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+
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𝑢4
+

1

𝑢5
+
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𝑢6
+

0

𝑢7
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0
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+
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+

0

𝑢3
+
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1
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𝐹𝑆7 =
0
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. (2) 

The membership function of each fuzzy set 𝐹𝑆𝑖 is expressed 

as 

 𝑢𝐹𝑆𝑖(𝑡) = {

1, 𝑖𝑓 𝑖 = 1 𝑎𝑛𝑑 𝑥𝑡 ≤ 𝑚1

1, 𝑖𝑓 𝑖 = 7 𝑎𝑛𝑑 𝑥𝑡 ≥ 𝑚7

𝑚𝑎𝑥 {0,1 −
|𝑥𝑡−𝑚𝑖|

2×𝑙
} , 𝑜𝑡ℎ𝑒𝑟

, (3) 

where l represents the length of the subinterval, t represents the 

time, 𝑥𝑡  represents the observed value at time t, and mi 

represents the central value of the subinterval 𝑢𝑖. 

Establishment of fuzzy logical relation set. According to Eq. 

(3), the fuzzy membership of the observed value to each fuzzy 

set can be calculated, and then the fuzzy set to which the 

observed value belongs can be determined according to its 

maximum fuzzy membership. After calculating the fuzzy sets 

to which all observed values in the training set belong, 

according to definition 3, the fuzzy logical relation  𝐹𝑆𝑖→ 𝐹𝑆𝑗 

between two adjacent observed values can be obtained. Finally, 

a set containing all fuzzy logical relations can be established. 

Establishment of fuzzy logical relation matrix. By counting 

the occurrence times of all fuzzy logical relations, the fuzzy 

logical relation matrix can be established as 

 𝑹𝑴 =

{
 
 

 
 
𝑛11
⋮

…
 

𝑛𝑖1 …

𝑛1𝑗
⋮

… 𝑛17
 ⋮

𝑛𝑖𝑗 … 𝑛𝑖7

⋮  
𝑛71 …

⋮  ⋮
𝑛7𝑗 … 𝑛77

, (4) 

where 𝑛𝑖𝑗 represents the occurrence times of the fuzzy logical 

relation  𝐹𝑆𝑖→ 𝐹𝑆𝑗 in all fuzzy logical relations. 

Prediction. The prediction value can be obtained by 

calculating the weighted average of the elements in the fuzzy 

logical relation matrix to the central value of the fuzzy sets. The 

prediction rule is expressed as 

 𝐹𝑣𝑎𝑙(𝑡 + 1) = {
𝑚𝑐𝑡 , ∑ 𝑹𝑴(𝑐𝑡 , 𝑗) = 0

𝑛
𝑗=1

𝑹𝑴(𝑐𝑡,:)

∑ 𝑹𝑴(𝑐𝑡,𝑗)
𝑛
𝑗=1

× (𝑚1, 𝑚2, . . . , 𝑚𝑛)
𝑇 , 𝑜𝑡ℎ𝑒𝑟

, (5) 

where 𝐹𝑣𝑎𝑙(𝑡 + 1)  is the final predicted value. 𝑚𝑐𝑡  is the 

central value of the subinterval corresponding to the fuzzy set 

to which the observed value belongs. 𝑹𝑴(𝑐𝑡, ∶)  is the row 

vector in the fuzzy logical relation matrix corresponding to the 

fuzzy set to which the observed value belongs. 

(𝑚1, 𝑚2, . . . , 𝑚𝑛)
𝑇 is the transpose of (𝑚1, 𝑚2, . . . , 𝑚𝑛), where 

mi is the central value of the subinterval 𝑢𝑖. The symbol “×” 

means vector multiplication. Through Eq. (5), the predicted 

participant quantity available for each task in its spatiotemporal 

granularity can be obtained. 

An instance of the FTSA method is depicted in Table I. We 

provide the observed participant quantity available for a task in 

its spatiotemporal granularity within 12 days, and predict the 

available participant quantity on the day 12 based on the 

observed value of 11 days. In this instance, the universe of 

discourse is [5,26], which can be divided into seven 

subintervals {[5, 8], [8, 11], [11, 14], [14, 17], [17, 20], [20, 23], 

[23, 26]}. According to the fuzzy membership values in Table 

I, the fuzzification results of each day can be obtained. Thus, all 

fuzzy logical relations of 11 days can be obtained, i.e., FS3 → 

FS3, FS3 → FS3, FS3 → FS1, FS1 → FS3, FS3 → FS4, FS4 → 

FS1, FS1 → FS1, FS1 → FS3, FS3 → FS7, FS7 → FS1. Then, the 

fuzzy logical relation matrix can be established as 

 

𝑹𝑴 =

{
 
 

 
 
1
0
1
1
0
0

1

0
0
0
0
0
0

0

2
0
2
0
0
0

0

0
0
1
0
0
0

0

0
0
0
0
0
0

0

0
0
0
0
0
0

0

0
0
1
0
0
0

0

. 

   

Finally, the predicted value can be calculated as 

𝐹𝑣𝑎𝑙(𝑑𝑎𝑦 12) =1/3 * [1, 0, 2, 0, 0, 0, 0] × [6.5, 9.5, 12.5, 15.5, 

18.5, 21.5, 24.5] = 10.5, which is similar to the observed value 

TABLE I 
FUZZY SETS AND FUZZY MEMBERSHIP VALUES 

Days Observed Value FS1 FS2 FS3 FS4 FS5 FS6 FS7 Fuzzification 

day 1 12 0.0833 0.5833 0.9167 0.4167 0 0 0 FS3 

day 2 13 0 0.4167 0.9167 0.5833 0.0833 0 0 FS3 

day 3 12 0.0833 0.5833 0.9167 0.4167 0 0 0 FS3 

day 4 5 1 0.25 0 0 0 0 0 FS1 

day 5 13 0 0.4167 0.9167 0.5833 0.0833 0 0 FS3 

day 6 16 0 0 0.4167 0.9167 0.5833 0.0833 0 FS4 

day 7 7 0.9167 0.5833 0.0833 0 0 0 0 FS1 

day 8 7 0.9167 0.5833 0.0833 0 0 0 0 FS1 

day 9 12 0.0833 0.5833 0.9167 0.4167 0 0 0 FS3 

day 10 26 0 0 0 0 0 0.25 1 FS7 

day 11 7 0.9167 0.5833 0.0833 0 0 0 0 FS1 

day 12 10 0.4167 0.9167 0.5833 0.0833 0 0 0 FS2 

 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

6 

on the day 12. 

B. Model Foundation 

In the online task allocation scenario, the arrived participants 

select tasks that they are willing to execute according to the 

tasks’ information. The platform allocates a set of tasks to each 

participant based on the participant’s willingness, the 

participant’s sensing ability, the sensor types of the 

participant’s device, and the participant’s time coverage. For 

example, as shown in Fig.3, it is assumed that there are two 

tasks T1 and T2 need to be allocated within 8:00 to 10:00, and 

three participants arrive at the service within this time period. 

In addition, assuming that it takes 40 and 20 minutes to 

complete task T1 and task T2 and the three participants P1, P2, 

and P3 arrive at the service at 8:00, 8:30, and 9:30 respectively. 

For task T1, participants P1, P2, and P3 all select it, where the 

sensing ability and sensor types of participants P1 and P3 meet 

T1’s requirements, and participant P2 does not meet these two 

requirements. However, since the remaining activity time of 

participant P3 can no longer meet the time requirement for 

executing task T1, the platform only allocates task T1 to 

participant P1 in the end. For task T2, only participant P3 selects 

it, and participant P3 satisfies all requirements of task T2, so 

finally the platform allocates task T2 to participant P3. 

 

Time line

8:00 10:009:00

Platform

9:308:30

T2T1

P1 P2 P3

Participant

Task

Arrive at the service

Allocate task

Select task

 
Fig.3.  Online scenario. 

 

According to the predicted participant quantity, the platform 

can calculate the task’s threshold on participants’ sensing ability 

and the reward provided for participants to execute the task. The 

participants’ sensing ability will affect the quality of task 

completion. In order to ensure the quality of task 𝑇𝑖 , the task 

requester can set a threshold of 0 ≤ 𝜀𝑙𝑜𝑤
𝑖  ≤ 1 on the participants’ 

sensing ability, which is the minimum sensing ability the 

participant required to execute the task. When the predicted 

participant quantity available for the task is small, a relatively 

low threshold can be set to recruit more participants for the task 

to meet the platform's requirements for the quantity of 

participants. On the contrary, when the predicted participant 

quantity available for the task is large, a relatively high 

threshold can be set to recruit participants with strong sensing 

ability to improve the quality of the task completion. According 

to the predicted quantity 𝑁𝑑,𝑒
𝑖  of participants available for task 

𝑇𝑖  in spatiotemporal granularity 𝐺𝑑,𝑒, the threshold of task 𝑇𝑖  on 

the participants’ sensing ability can be calculated as 

 𝜀𝑖 =

{
 

 (𝜀𝑏
𝑖 − 𝜀𝑙𝑜𝑤

𝑖 ) ∗
𝑁𝑑,𝑒
𝑖

𝑀𝑑,𝑒
𝑖 + 𝜀𝑙𝑜𝑤

𝑖 , 𝑁𝑑,𝑒
𝑖 ≤ 𝑀𝑑,𝑒

𝑖

(1 − 𝜀𝑏
𝑖 ) ∗

𝑁𝑑,𝑒
𝑖 −𝑀𝑑,𝑒

𝑖

𝑁𝑑,𝑒
𝑖 + 𝜀𝑏

𝑖 , 𝑜𝑡ℎ𝑒𝑟

, (6) 

where 𝑀𝑑,𝑒
𝑖   represents the participant quantity the task 𝑇𝑖  

requires, which is an attribute of the task and is determined by 

the task requester. 𝜀𝑏
𝑖  represents a benchmark threshold of task 

𝑇𝑖 , which is set to ensure that the participant quantity whose 

sensing ability is not less than the threshold is equal to 𝑀𝑑,𝑒
𝑖 . 𝜀𝑏

𝑖  

satisfies the condition 0 ≤  𝜀𝑙𝑜𝑤
𝑖  ≤ 𝜀𝑏

𝑖  ≤ 1 and can be calculated 

by training historical data. 

After participants complete tasks, the platform needs to 

provide rewards for them. When the predicted participant 

quantity available for the task is small, the platform can increase 

the reward of the task to encourage more participants to perform 

the task. On the contrary, when the predicted participant 

quantity available for the task is large, the platform can reduce 

the reward of the task to save costs. Different from the task’s 

threshold on participants’ sensing ability, the change of reward 

provided for participants to execute the task in practical 

application is generally coarse-grained, so the reward of task 𝑇𝑖  
is designed as a piecewise function based on the divided fuzzy 

subintervals {u1, u2, ... u7} in Section III-A, which is calculated 

as 

 𝑟𝑖 = {
𝑟ℎ𝑖𝑔ℎ
𝑖 −

𝑠𝑢𝑏−1

3
∗ (𝑟ℎ𝑖𝑔ℎ

𝑖 − 𝑖𝑛𝑖𝑡_𝑟𝑖),   𝑠𝑢𝑏 ≤ 4

𝑟𝑙𝑜𝑤
𝑖 +

7−𝑠𝑢𝑏

3
∗ (𝑖𝑛𝑖𝑡_𝑟𝑖 − 𝑟𝑙𝑜𝑤

𝑖 ),          𝑜𝑡ℎ𝑒𝑟   
, (7) 

where sub represents that the predicted participant quantity 𝑁𝑑,𝑒
𝑖  

is distributed in the sub-th fuzzy subinterval. 𝑖𝑛𝑖𝑡_𝑟𝑖  represents 

the initial reward of task 𝑇𝑖 . 𝑟𝑙𝑜𝑤
𝑖  and 𝑟ℎ𝑖𝑔ℎ

𝑖  represent the lowest 

and highest reward of task 𝑇𝑖   respectively, which can be 

calculated by training historical data. 

In this paper, two optimization objectives from the 

perspective of the platform and the participants are considered, 

which are the platform utility and the movement cost of the 

participant. Maximizing the platform utility can ensure that the 

platform obtains high-quality sensing data, and minimizing the 

movement cost of the participant can ensure that the participant 

has the lowest movement cost during the time period he 

perform tasks. 

The platform utility. The platform utility is relevant to many 

factors, such as the participant’s willingness, the participant’s 

sensing ability, the sensor types of the participant’s device, and 

the participant’s time coverage.  

Firstly, the participant’s willingness to perform tasks is an 

important factor affecting the quality of sensing data. The 

participant’s willingness to the task reflects his/her preference 

for the task. The participant Pj’s willingness to task 𝑇𝑖  is 

denoted as ℎ𝑖,𝑗 , where 0 ≤ℎ𝑖,𝑗≤ 1. In addition, the participant 

Pj’s threshold on the expected reward of task 𝑇𝑖  is denoted as 

𝑔𝑖,𝑗. A participant will not select a task whose reward is lower 

than its expectation, i.e., when 𝑟𝑖< 𝑔𝑖,𝑗, ℎ𝑖,𝑗= 0. 

Secondly, the participant’s sensing ability to execute tasks is 

different. The participant Pj’s sensing ability to execute task 𝑇𝑖  

is denoted as  𝜀𝑖,𝑗 , where 0≤ 𝜀𝑖,𝑗  ≤ 1. Only if participant Pj’s 

sensing ability meets task Ti’s threshold on the participants’ 

sensing ability, i.e., 𝜀𝑖,𝑗 ≥ 𝜀𝑖, the task can be allocated to the 

participant. 

Thirdly, a sensing task may require one or more types of 
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sensors to collect the needed information, and the devices of 

different participants are equipped with different sensors. 

Therefore, when the platform allocates tasks to a participant, it 

needs to consider whether the sensors in the participant’s device 

meet the sensor requirements of the task. If the sensors in the 

participant Pj’s device meet the sensor requirements of task 𝑇𝑖 , 

𝑤𝑖,𝑗 = 1; otherwise, 𝑤𝑖,𝑗 = 0.  

Finally, since the participant arrives at the service 

dynamically, the platform also needs to consider the 

participant’s time coverage. The remaining activity time of 

participant 𝑃𝑗  is denoted as 𝑇𝑖𝑚𝑒𝑗 , the movement time that 

participant 𝑃𝑗 takes to move to the location of task 𝑇𝑖  is denoted 

as 𝑇𝑖𝑚𝑒𝑖,𝑗
𝑚 , and the sensing time participant 𝑃𝑗 takes to execute 

task 𝑇𝑖   is denoted as 𝑇𝑖𝑚𝑒𝑖,𝑗
𝑠  . For the convenience of the 

following description, a set of c tasks that participant 𝑃𝑗  is 

willing to execute and meets the tasks’ sensor requirements is 

called Pj’s candidate set, which is denoted as 𝑇𝐶
𝑗. A set of k tasks 

allocated to participant 𝑃𝑗 is called Pj’s allocation set, which is 

denoted as 𝑇𝐴
𝑗. Whether participant 𝑃𝑗 meets the time coverage 

requirement of allocation set 𝑇𝐴
𝑗  is denoted as δj(𝑇𝐴

𝑗 ), where 

δj( 𝑇𝐴
𝑗 ) = 1 means participant 𝑃𝑗  meets the time coverage 

requirement of 𝑇𝐴
𝑗; otherwise, δj(𝑇𝐴

𝑗) = 0. The condition of δj(𝑇𝐴
𝑗) 

= 1 can be formulated as 

 𝑇𝑖𝑚𝑒𝑗 ≥ ∑ (𝑇𝑖𝑚𝑒𝑖,𝑗
𝑚 + 𝑇𝑖𝑚𝑒𝑖,𝑗

𝑠 )𝑘
𝑖=1 . (8) 

According to the aforementioned factors, the utility that 

participant 𝑃𝑗 brings to the platform can be formulated as 

𝑈𝑡𝑖𝑙𝑖𝑡𝑦𝑗 = ∑ ℎ𝑖,𝑗 ∗ 𝜀𝑖,𝑗 ∗ 𝑤𝑖,𝑗 ∗ 𝛿𝑗(𝑇𝐴
𝑗
)𝑘

𝑖=1 . (9) 

Movement cost. To calculate the movement cost of the 

participant, we consider the following factors that affect the 

movement cost of the participant. Firstly, the unit movement 

cost of participants refers to the cost of participants walking a 

unit distance in the process of executing tasks. In this paper, the 

movement cost per unit distance of participant 𝑝𝑗 is denoted as 

𝑢𝑐𝑗 . Moreover, when a participant walks a unit distance, its 

intelligent device will consume corresponding resources, such 

as electricity, cell phone data, etc. Therefore, in this paper, we 

define the unit consumption cost of participant 𝑝𝑗’s intelligent 

device as 𝑑𝑐𝑗 . Finally, the total movement distance of the 

participant in the process of performing tasks is a crucial factor 

affecting the movement cost of the participant. The distance 

between two locations is calculated as 

 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑝,𝑞 = |𝑥𝑝 − 𝑥𝑞| + |𝑦𝑝 − 𝑦𝑞|, (10) 

where 𝑥𝑝 and 𝑥𝑞  represent the abscissa of the two locations, 𝑦𝑝 

and 𝑦𝑞 represent the ordinate of the two locations. 

The total distance that participant 𝑃𝑗  moves to execute all 

tasks in its allocation set 𝑇𝐴
𝑗 with k tasks can be calculated as 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑗 = 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑃𝑗,𝑇1 + ∑ 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑇𝑖,𝑇𝑖+1
𝑘−1
𝑖=1 . (11) 

 The total movement cost of participant 𝑃𝑗 can be calculated 

as 

                     𝐶𝑜𝑠𝑡𝑗 = 𝑢𝑐𝑗 ∗ 𝑑𝑐𝑗 ∗ 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑗 .                  (12) 

In this paper, we study the participant-quantity-aware online 

task allocation problem with the objectives of maximizing the 

platform utility and minimizing the movement cost of the 

participant. The problem can be formulated as 

 maximize 𝑈𝑡𝑖𝑙𝑖𝑡𝑦𝑗, (13) 

 minimize 𝐶𝑜𝑠𝑡𝑗. (14) 

Subject to: 

 0 ≤ ℎ𝑖,𝑗 ≤ 1, (15) 

 𝑔𝑖,𝑗 ≤ 𝑟𝑖, (16) 

 𝜀𝑖,𝑗 ≥ 𝜀𝑖, (17) 

 𝑤𝑖,𝑗 ∈ {0,1}, (18) 

 𝛿𝑗(𝑇𝐴
𝑗
) ∈ {0,1}. (19) 

IV. ONLINE TASK ALLOCATION ALGORITHM 

The above bi-objective optimization problem has a huge 

solution space, which may not be solved by some algorithms in 

polynomial time. Genetic algorithm is used to search for the 

optimal solution by simulating natural evolution phenomena, 

which has been proved to be an effective combinatorial 

optimization algorithm [31]. Therefore, in this section, we 

design an online task allocation algorithm based on an 

improved genetic algorithm to solve the bi-objective 

optimization problem. In the designed algorithm, the participant 

and tasks are regarded as the genes in the chromosome. 

Through the algorithm, a chromosome that can maximize the 

platform utility and minimize the movement cost of the 

participant can be obtained, which can also determine the task 

execution route of the participant. The designed algorithm 

includes population initialization, chromosome representation, 

fitness function, selection operation, crossover operation, and 

mutation operation, which are described in detail as follows.  

Population initialization. In this paper, a task allocation 

scheme includes a task set allocated to the participant and the 

task execution route of the participant. The purpose of 

population initialization is to generate multiple feasible 

solutions in the solution space, that is, to generate multiple 

feasible task allocation schemes in MCS. In order to make the 

generated feasible solutions uniformly distributed in the 

solution space, we initialize the population randomly. For 

participant 𝑃𝑗, the designed algorithm randomly selects several 

tasks from its candidate set 𝑇𝐶
𝑗
 and randomly determines its task 

execution route, and repeats this process until an initial 

population with N chromosomes is formed.  

Chromosome representation. In this paper, a chromosome 

represents a task allocation scheme in MCS. Genetic algorithms 

mainly use binary coding structures and fixed-length coding 

structures in most systems, but these coding structures are not 

suitable for solving the online task allocation problem in this 

paper. The reason is that, on the one hand, the binary coding 

structure cannot represent different task execution routes. On 

the other hand, since the tasks allocated to the participant is a 

variable subset of the participant’s candidate set, the fixed-

length coding structure is not suitable. Therefore, we designed 

the chromosome representation as shown in Fig.4. Specifically, 

there are N chromosomes, and each chromosome contains at 

most c + 1 genes, where c is the number of tasks in the candidate 

set of the participant. The first gene of each chromosome 
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represents the participant, and others represent different tasks. 

For example, in Fig.4, chromosome 1 represents that the 

allocation set of participant 𝑃𝑗  is {T2, T1, T3}, and its task 

execution route is T2 → T1 → T3.  

Chromosome 1

Chromosome 2

Chromosome N

...

...

T2 T1

T3

Pj

Pj T2 T1 T3

Pj T1 T3 T4 T2

Pj T2 T4 T1 T2
 

Fig.4.  Chromosome representation. 
 

Fitness function. In the designed algorithm, the fitness 

function is the main indicator describing the performance of the 

task allocation scheme. In the optimization problem, the 

mapping relationship between the optimization goal and 

chromosomal fitness can be established, and the optimization 

goal can be achieved through the survival of the fittest in the 

evolutionary process. In this paper, the main optimization goal 

is to maximize the platform utility, based on which, another 

optimization goal is to minimize the movement cost of the 

participant. Therefore, the platform utility should be the main 

factor affecting fitness. The algorithm prioritize maximizing the 

platform utility, and it then further optimize the movement cost 

of the participant. Based on the above analysis, the fitness is 

designed in the form of lexicographic order [32]. The concept 

of lexicographical order is defined as follows. 

Definition 4. For two totally ordered sets A and B, (a, b) and 

(𝑎′, 𝑏′)  belong to the Cartesian Product A×B, then the 

lexicographic order is defined as 

 (𝑎, 𝑏) ≤ (𝑎′, 𝑏′), 𝑖𝑓 𝑎 < 𝑎′ 𝑜𝑟 (𝑎 = 𝑎′ 𝑎𝑛𝑑 𝑏 ≤ 𝑏′).(20) 

Since the fitness is directly proportional to the platform 

utility and inversely proportional to movement cost, the fitness 

function can be expressed as 

 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = (𝑈𝑡𝑖𝑙𝑖𝑡𝑦𝑗 ,
1

𝐶𝑜𝑠𝑡𝑗
). (21) 

Selection operation. The selection operation is to select 

chromosomes for the generation of new chromosomes. In this 

paper, since the fitness is designed in lexicographic order, a 

ranking-based selection method is designed to perform the 

selection operation as follows. i) Sort chromosomes in 

ascending order according to their fitness. ii) Calculate the 

probability of each chromosome being selected according to its 

ranking. iii) Select chromosomes based on the probability. The 

probability of the i-th chromosome being selected can be 

calculated as 

 𝑃𝑖 = 𝑃𝑚𝑖𝑛 + (𝑃𝑚𝑎𝑥 − 𝑃𝑚𝑖𝑛) ∗
𝑖−1

𝑁−1
, (22) 

where 𝑃𝑚𝑎𝑥 and 𝑃𝑚𝑖𝑛 represent the probability of the best and 

worst chromosomes being selected, respectively. 

Crossover operation. A batch of chromosomes can be obtained 

by a selection operation, and then a crossover operation is 

performed to obtain more chromosomes. To achieve the two 

optimization goals, a two-step crossover operation is designed. 

The first step is the interchromosomal crossover operation, 

which can obtain a larger solution space for the platform utility 

maximization by adjusting the allocation set. The 

interchromosomal crossover includes single-point crossover 

and multi-point crossover operations, where the single-point 

crossover refers to the exchange of a different gene between two 

chromosomes, and multipoint crossover refers to the exchange 

of multiple different genes between two chromosomes. The 

second step is the intrachromosomal crossover operation, where 

a larger solution space for movement cost minimization can be 

obtained by adjusting the task execution route of the participant. 

The intrachromosomal crossover is achieved by flipping some 

genes in the chromosome. As shown in Fig.5, Fig.5(a), and Fig. 

5(b) represent the interchromosomal crossover. Fig. 5(a) shows 

that the T2 gene in chromosome 1 and the T4 gene in 

chromosome 2 have achieved a single-point crossover. Fig.5(b) 

shows that the T2 and T5 genes in chromosome 1 have achieved 

multi-point crossover with the T4 and T6 genes in chromosome 

2, respectively. Fig.5(c) represents the intrachromosomal 

crossover. Fig. 5(c) shows that the sequence of T4, T1, T3 genes 

in chromosome 1 has changed to T3, T1, T4 after the 

intrachromosomal crossover. 

Chromosome 1 Pj T4 T1 T3 T6

Step2 Intrachromosomal Crossover

Chromosome 1' Pj T3 T1 T4 T6

Turnover

(c)

Chromosome 1

Chromosome 2 Pj T1 T4 T3 T6

Pj T2 T1 T3 T5

Step1 Interchromosomal Crossover

Single-point crossover

Chromosome 1

Chromosome 2 Pj T1 T4 T3 T6

Pj T2 T1 T3 T5

Multi-point crossover

(a)

(b)

Chromosome 1'

Chromosome 2' Pj T1 T2 T3 T6

Pj T4 T1 T3 T5

Chromosome 1'

Chromosome 2' Pj T1 T2 T3 T5

Pj T4 T1 T3 T6

exchange

exchange

 
Fig.5. Crossover operation 

 

Chromosome 2 Pj T1 T3 T4 T2

Chromosome 1 Pj T2 T1 T3

Chromosome 1' Pj T2 T1 T4 T3

Chromosome 2' Pj T3 T4 T2

Mutation operation

Mutation operation

 
Fig.6.  Mutation operation. 
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Mutation operation. The mutation operation generates a new 

chromosome by changing the genes in the chromosome, which 

can increase the diversity of the population and avoid falling 

into a local optimum effectively. In this paper, the mutation 

operation is achieved by adding or removing task genes from 

the chromosome. For example, as shown in Fig.6, a new gene 

T4 is added to chromosome 1, and a gene T1 is removed from 

chromosome 2. It is worth noting that since a task is allocated 

to the participant at most once, it is necessary to avoid adding a 

task that already exists in the chromosome. In addition, for a 

chromosome that contains all tasks in the candidate set, adding 

a task is not allowed. Similarly, for a chromosome that contains 

only one task, removing the task is also not allowed. 

Based on the above concepts, the steps of the online task 

allocation algorithm can be described as follows. i) Generate an 

initial population with N chromosomes, where each 

chromosome represents a task allocation scheme. ii) According 

to the designed fitness function, calculate the fitness of all 

chromosomes in the population. iii) Generate a new generation 

population through selection, crossover, and mutation 

operations. iv) Repeat the steps ii) and iii) until the maximum 

number Ʈ of iterations is reached, and output the chromosome 

with the largest fitness as the optimal solution. The 

demonstration of these steps is described in detail in Algorithm 

1. 

 

Algorithm 1 Online Task Allocation Algorithm Based on 

An Improved Genetic Algorithm 

Input: The participant 𝑃𝑗 and its candidate set 𝑇𝐶
𝑗
. 

Output: A best chromosome, i.e., a best task allocation 

scheme for participant 𝑃𝑗. 

1: Generate an initial population 𝑃𝑂𝑃0 with N 

chromosomes. 

2: Set iteration counter t = 0. 

3: Repeat 

4:    𝑃𝑂𝑃𝑡
′ ← select chromosomes by using the selection 

operations on 𝑃𝑂𝑃𝑡. 
5:    𝑃𝑂𝑃𝑡

′′ ← generate new chromosomes by using 

interchromosomal crossover and intrachromosomal 

crossover operations on 𝑃𝑂𝑃𝑡
′. 

6:    𝑃𝑂𝑃𝑡
′′′ ← generate new chromosomes by using 

mutation operations on 𝑃𝑂𝑃𝑡
′′. 

7:    𝑃𝑂𝑃𝑡+1 ← 𝑃𝑂𝑃𝑡
′′′. 

8:    t ← t + 1. 

9: Until t = the maximum number of iterations Ʈ. 

In Algorithm 1, given the participant 𝑃𝑗 and its candidate set 

𝑇𝐶
𝑗

 with c tasks, the computation complexity of population 

initialization is O(Nc). Since the algorithm iterates Ʈ times, the 

computation complexity of selection operation is O(NƮ), the 

computation complexity of crossover operation is 

O((N/2+N)Ʈ), and the computation complexity of mutation 

operation is O(NƮ). Since N and Ʈ are constants, the maximum 

computation complexity of the designed algorithm is O(Nc) + 

O(NƮ) + O((N/2+N)Ʈ) + O(NƮ) = O(c).  

V. PERFORMANCE EVALUATION 

In this section, simulations are conducted by using real data 

sets to predict the quantity of available participants in FTSA. In 

the below simulations, we use the root mean square error and 

the mean absolute error to analyze the accuracy of the 

prediction. In the experiments of online task allocation, the 

platform utility and the movement cost of participant are 

collected and compared by rounds of simulations. 

The simulations mainly have the following two purposes: (1) 

to verify the effect of the FTSA method in terms of the accuracy 

of prediction and (2) to prove the effect of OTAGA in terms of 

maximizing the platform utility and minimizing the movement 

cost of participant. 

A. Experimental Setting 

1)  Data set and Model Settings: In this paper, the data set 

Geolife[33] is used, which was gathered in the Geolife project 

(Microsoft Research Asia) by 182 participants in a period of 

over three years (from April 2007 to August 2012). This data 

set contains 17,621 trajectories with a total distance of about 1.2 

million kilometers and a total duration of 48,203+ hours. The 

GPS trajectories in this dataset are represented by time-stamped 

points, each of which contains the latitude and longitude. In our 

simulations, we select participants in the area with the northern 

latitude from 39.975 to 40.025 and eastern longitude from 

116.31 to 116.35, and evenly divide the area into 10 subareas. 

In order to facilitate the calculation of the movement cost of the 

participant, we represent the location of the participant and the 

tasks in the form of coordinates. 

 The simulation parameters are summarized in Table II. 
Table Ⅱ 

SIMULATION PARAMETERS 

Symbol Description Value 

𝒉𝒊,𝒋 The willingness of participant 

𝑃𝑗  to execute task 𝑇𝑖  
0~1 

𝜺𝒊,𝒋 The sensing ability of 

participant 𝑃𝑗  to execute task 

𝑇𝑖 

0~1 

𝒈𝒊,𝒋 The expected reward of 

participant 𝑃𝑗  to execute task 

𝑇𝑖 

5~15 

𝒘𝒊,𝒋 The sensor requirement of 

task 𝑇𝑖 for participant 𝑃𝑗 
{0,1} 

𝑻𝒊𝒎𝒆𝒋 The remaining time of 

participant 𝑃𝑗 to execute task 

0~120 min 

𝒖𝒄𝒋j The movement cost per unit 

distance of participant 𝑃𝑗 
1 

𝒅𝒄𝒋 The unit consumption cost of 

participant 𝑝𝑗 ’s intelligent 

device 

1 

 2)  Benchmark Algorithms: In order to verify the accuracy of 

FTSA in predicting the quantity of available participants, we 

compare it with TSP-SVM, which is a time series prediction 

method based on SVM. 

⚫ Time Series Prediction Method Based on SVM (TSP-

SVM): This algorithm uses the support vector machine 

method in machine learning to predict future data 

through historical data. 

Moreover, in order to emphasize the advantages of the 

designed model and algorithm in terms of maximizing the 
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platform utility and minimizing the movement cost of 

participant, we utilize the following baseline task allocation 

algorithms for comparative studies: 

⚫ Random Allocation Algorithm (RA): This algorithm 

randomly allocates tasks to the participants who are in 

a specific time and space. 

⚫ Utility-Greedy Allocation Algorithm (UGA): In this 

algorithm, the platform will allocate tasks which can 

lead the highest utility for the participants in the special 

spatiotemporal area until the remaining activity time of 

the participants is exhausted. 

⚫ Cost-Greedy Allocation Algorithm (CGA): In this 

algorithm, the platform will allocate task which can lead 

the lowest movement cost for the participant. When the 

remaining activity time of the participants is exhausted, 

the whole process of the task allocation is over.    

B. Performance Evaluation and Discussion 

The comparison results between the proposed method and 

the aforementioned benchmark algorithms on the accuracy of 

prediction, the platform utility, and the movement cost of the 

participant are shown in this section. In order to avoid the 

influence of randomness on the effectiveness of experimental 

results, simulation data is obtained by computing the average 

values from 100 runs for each test under the same simulation 

environment.   

1) The accuracy of prediction.  

The accuracy of the prediction is an important criterion for 

evaluating the prediction algorithm. In this paper, we use the 

root mean square error and mean absolute error between the 

value of the predicted and the true quantity to evaluate the 

accuracy of the prediction.  

In our simulations, the quantity of available participants for 

a task on a day is predicted by analyzing historical data of the 

task on 12-days before the day. 

The root mean square error is one metric in our simulations 

to measure the prediction accuracy, because it reflects the 

deviation from the predicted value to the true value in 

algorithms. When the root mean square error is smaller, the 

deviation between the predicted value and the true value is 

smaller. In Table Ⅲ, the root mean square errors between the 

predicted value and the true value when the total number of 

tasks is 10, 20, 30, 40, and 50 are shown, which tells us that, the 

prediction accuracy of FTSA is better than that of TSP-SVM.  
Table Ⅲ 

The root mean square error between the predicted value and the true value 

when use different methods for different number of tasks 

 10 20 30 40 50 

FTSA 2.14 3.32 3.45 3.57 3.59 

TSP-SVM 8.9 7.79 6.83 7.55 7.34 

 

The mean absolute error is the other important indicator to 

judge the prediction accuracy in our simulations, because it 

represents the average value of the absolute error between the 

predicted value and the observed value. Like the root mean 

square error, the smaller the absolute average error, the higher 

the accuracy of the prediction algorithm. Table Ⅵ shows the 

mean absolute errors between the predicted value and the true 

value when the total number of tasks is 10, 20, 30, 40, and 50, 

and also verifies that the prediction accuracy of FTSA is better 

than that of TSP-SVM.  

Table Ⅵ 
The mean absolute error between the predicted value and the true value when 

use different methods for different number of tasks 

 10 20 30 40 50 

FTSA 1.6 3 2.57 2.65 2.7 

TSP-SVM 6.6 6.2 4.77 5.77 5.48 

 

2) The platform utility. 

In this part, we compare the platform utility of OTAGA 

proposed in this paper with that of the other three benchmark 

algorithms and analyze the factors influencing the platform 

utility in OTAGA, including the number of tasks, number of 

iterations and the remaining activity time of the participants. 

 Fig.7 shows the influence of the number of tasks on the 

platform utility in OTAGA and the other three benchmark 

algorithms. In more detail, in all of the four algorithms, when 

the number of tasks increases, the platform utility tends to 

increase. This is because, when the number of tasks increases, 

there will be more tasks that can make the platform utility 

higher. Therefore, these algorithms will allocate tasks with a 

higher utility to the participant to maximize the platform utility. 

In addition, Fig.7 tells us that UGA can achieve higher 

platform utility than CGA and RA. The reason is that UGA 

always selects tasks with higher utility. However, UGA does 

not take other attributes of the task (the time required to execute 

the task, etc.) into consideration, so it will fall into a local 

optimum. In OTAGA, there are operations such as crossover 

and mutation to avoid the obtained task allocation set from 

falling into the local optimal situation. Therefore, OTAGA is 

superior to the other three benchmark algorithms in maximizing 

the platform utility. 

Fig.8 shows the influence of the number of iterations on the 

platform utility in OTAGA with different numbers of tasks.  

From Fig.8, we can observe that, regardless of the number of 

tasks, the platform utility will increase as the number of 

iterations increases, and finally it will converge to an optimal 

value. This is because, as the number of iterations increases, a 

better task allocation scheme can be found, and after a certain 

number of iterations, the task allocation scheme with the 

maximum platform utility is obtained.  

Fig.7 Comparison of the platform utility between OTAGA and other 
benchmark algorithms when the number of tasks changes (Number of iterations 

= 100, The remaining activity time = 120min). 
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Fig.8 Utility of platform when the number of tasks changes (Algorithm: 

OTAGA, The remaining activity time = 120 min). 

 

 Fig.9 shows the influence of the participants' remaining 

activity time on the platform utility when the number of tasks is 

fixed at 20 in OTAGA and the other three benchmark 

algorithms. In other words, regardless of the allocation 

algorithm, the platform utility will increase as the remaining 

activity time of the participants increases. And regardless of the 

remaining activity time of the participants, OTAGA can get a 

higher platform utility. This is because when a participant's 

remaining activity time to perform tasks increases, it can 

perform more tasks, which is beneficial to increase the platform 

utility.  

 Fig.10 shows the influence of the number of iterations on the 

platform utility when the remaining activity time is different 

and the number of tasks is fixed at 20 in OTAGA. It can be 

analyzed from Fig.10 that, no matter how much the remaining 

activity time the participants, as the number of iterations 

increases, the platform utility also increases and eventually 

converges. It is because, as the number of iterations increases; 

a better task allocation scheme can be found and the platform 

utility increases. 

 
Fig.9 Comparison of utility of platform between OTAGA and other benchmark 

algorithms when the remaining time of participant changes (Number of tasks = 

20).  
 

 
Fig.10 Utility of platform when the number of iterations changes (Algorithm: 

OTAGA, Number of tasks = 20). 

 

 

 
Fig.11 The movement cost of the participant when the number of iterations 
changes (Algorithm: OTAGA). 

Fig.12 Comparison of the movement cost of the participant between OTAGA 
and other benchmark algorithms when the remaining activity time of participant 

changes (Number of tasks = 20). 

 

3) The movement cost of the participant. 

In this part, we compare the movement cost of the participant 

of OTAGA proposed in this paper with that of the other three 
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benchmark algorithms and analyze the factors influencing the 

movement cost of the participant in OTAGA, including the 

number of iterations and the remaining activity time of the 

participants. 

Fig.11 shows the influence of the number of iterations on the 

movement cost of the participant when the number of tasks is 

different. As shown in Fig.11, it can be observed that as the 

number of iterations increases, the movement cost of the 

participant will first increase, and then when the iterations 

continue, the movement cost of the participant begins to 

gradually decrease and tends to be stable. The reason for the 

increase in the movement cost of the participant in the initial 

iteration is that the task allocation set obtained at the beginning 

cannot maximize the platform utility. Therefore, after the 

interchromosomal crossover and mutation operations, the tasks 

and the number of tasks in the task allocation set will change, 

which causes the increase in the movement cost of the 

participant. The reason for the subsequent gradual decline is 

that when the optimal task allocation set is determined, the 

platform utility stabilizes after a certain number of iterations. 

The main operation of the algorithm is the intrachromosomal 

crossover operation. This operation changes the order of 

execution of the tasks, so that while maximizing the utility, the 

movement cost of the participant is minimized. 

Fig.12 shows the influence of the remaining activity time on 

the movement cost of the participant in different algorithms 

when the number of tasks is fixed at 20. In Fig.12, it can be 

observed that as the remaining activity time of participant 

increases, the movement cost of the participant also increases. 

The reason for this phenomenon is that the more remaining 

activity time, the more tasks participants can perform, so the 

movement cost will increase accordingly. In addition, it can be 

obviously seen in the figure that the participant has the smallest 

movement cost in the CGA, but at the same time, the platform 

utility obtained by this algorithm is also the smallest. On the 

contrary, the OTAGA can maximize the platform utility while 

minimizing the movement cost of the participant, which is more 

in line with actual needs.  

4) OTAGA performance analysis 

 Generally, genetic algorithm stops iteration by setting the 

maximum number of iterations or presetting the objective 

function value. In this paper, we set the maximum number of 

iterations as the condition for stopping the algorithm. Through 

a lot of experiments, we find that when the maximum number 

of iterations is set to 100, the OTAGA can make the objective 

function reach the approximate optimal solution. The 

improvement of OTAGA is mainly in chromosome 

representation and operator, so that it can solve the online task 

allocation problem proposed in this paper, but its performance 

in terms of time consumption is not greatly improved. Fig.13 

shows the average time consumption of OTAGA under 

different number of iterations when the number of tasks is set 

to 50. 

Fig.13 Time consuming when the number of iterations changes (Algorithm: 

OTAGA, Number of tasks = 50) 
 

In summary, in terms of the accuracy of prediction the 

quantity of available participants, the FTSA method proposed 

in this paper has higher prediction accuracy than TSP-SVM. In 

terms of task allocation, although the OTAGA’s performance 

in terms of time consumption is not greatly improved, it has an 

excellent performance in maximizing the platform utility when 

compared with other benchmark algorithms. And while 

maximizing the platform utility, it can also minimize the 

movement cost of the participant. 

VI. CONCLUSION 

The existing studies of online task allocation lack deep 

consideration regarding the impact of the participant quantity 

on the quality and efficiency of task completion. In this paper, 

we investigate a participant-quantity-aware online task 

allocation problem. In view of the difficulty of predetermining 

the participant quantity in MCS, a FTSA method is developed 

to predict the participant quantity available for each task in a 

specific time and space. According to the predicted participant 

quantity, two reasonable attributes for each task, including the 

task’s threshold on participants’ sensing ability and the reward 

provided for participants to execute the task, can be calculated 

separately. On this basis, we design an online task allocation 

algorithm based on an improved genetic algorithm to allocate 

an appropriate set of tasks to each participant who arrives in 

real-time, so as to maximize the platform utility and minimize 

the movement cost of the participant. Finally, the effectiveness 

of the FTSA method is validated by comparing it with time 

series prediction method based on SVM. The effectiveness of 

the online task allocation algorithm based on an improved 

genetic algorithm is validated by comparing with three baseline 

task allocation algorithms. Simulation results demonstrate that 

the prediction algorithm proposed in this paper has a high 

accuracy rate. The task allocation algorithm also performs well 

in increasing the platform utility and reducing the movement 

cost of the participant. 
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