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Introduction:Apilot studyassessinganovel approach to identify patientswithSystemic
Sclerosis (SSc) using deep learning analysis of multi-site photoplethysmography (PPG)
waveforms (“DL-PPG”).

Methods: PPG recordings having baseline, unilateral arm pressure cuff occlusion and
reactive hyperaemia flush phases from 6 body sites were studied in 51 Controls and
20 SSc patients. RGB scalogram images were obtained from the PPG, using the
continuous wavelet transform (CWT). 2 different pre-trained convolutional neural
networks (CNNs, namely, GoogLeNet and EfficientNetB0) were trained to classify
the SSc and Control groups, evaluating their performance using 10-fold stratified cross
validation (CV). Their classification performance (i.e., accuracy, sensitivity, and
specificity, with 95% confidence intervals) was also compared to traditional machine
learning (ML), i.e., Linear Discriminant Analysis (LDA) and K-Nearest Neighbour (KNN).

Results: On a participant basis DL-PPG accuracy, sensitivity and specificity for
GoogLeNet were 83.1 (72.3–90.9), 75.0 (50.9–91.3) and 86.3 (73.7–94.3)%
respectively, and for EfficientNetB0 were 87.3 (77.2–94.0), 80.0 (56.3–94.3) and
90.1 (78.6–96.7)%. The corresponding results for ML classification using LDA were
66.2 (53.9–77.0), 65.0 (40.8–84.6) and 66.7 (52.1–79.2)% respectively, and for KNN
were 76.1 (64.5–85.4), 40.0 (19.1–63.9), and 90.2 (78.6–96.7)% respectively.

Discussion: This study shows the potential of DL-PPG classification using CNNs to
detect SSc. EfficientNetB0 gave an overall improved performance compared to
GoogLeNet, with both CNNs performing better than the traditional ML methods
tested. Our automatic AI approach, using transfer learning, could offer significant
benefits for SSc diagnostics in a variety of clinical settings where low-cost portable
and easy-to-use diagnostics can be beneficial.

KEYWORDS

deep learning, machine learning, photoplethysmography, pulse, Raynaud’s, scleroderma,
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1 Introduction

1.1 Background

Systemic Sclerosis (SSc, aka Scleroderma) is a complex, rare, connective tissue disease
(CTD) involving the collagen, major organs, the blood vessels and the immune system
(van den Hoogen et al., 2013; Di Battista et al., 2021), in which extensive fibrosis and vascular
alterations take place. It has significant morbidity and mortality (van den Hoogen et al., 2013),
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and in the UK an estimated prevalence of 307 per million (95%
CI: 290–323), with the highest occurrence in the 70–84 years age
group (Royle et al., 2018). SSc (the two most common variants
are limited cutaneous variant (lcSSc), and diffuse cutaneous
(dcSSc)) is often associated with Raynaud’s phenomenon
(RP), a condition in which recurrent, reversible vasospasm of
the digital small arteries, arterioles, pre-capillary and post-
capillary venules occurs on exposure to cold or emotional
stress (Hughes and Herrick, 2016; Silva et al., 2016). RP is
common and in the UK is reported to affect up to 10 million
people (SRUK, 2023). About 1 in 16 women and 1 in 50 men with
Raynaud’s develop SSc, usually between the ages of 25 and 55
(NHSinform, 2023; Haque, 2020; Belch, 2017). It is usually sub-
categorised into: a) Primary RP (PRP) when no underlying cause
condition is known (idiopathic); b) Secondary RP when RP is
linked to an underlying disease such as SSc or dermatomyositis
or to the intake of certain drugs. Secondary RP is typically seen
in approximately 90%–96% of patents with SSc and often
precedes the development of SSc by an average time of
10.4 years (Spencer-Green, 1998; Pauling et al., 2019).
Clinical specialists differentiate secondary RP from PRP by
checking for symptoms associated with secondary RP such as
the age at onset (secondary RP is usually after 30 years of age),
detecting abnormal immunology e.g., certain autoantibodies,
observing nailfold capillaries, ulceration of digits, checking
for fibrosis in the lungs or other organs, and skin thickening
which is the hallmark of SSc. However, diagnosing SSc is not
always easy as its symptoms resemble other conditions such as
PRP and early symptoms of diseases such as systemic lupus
erythematous (where 10% and 45% of patients show Raynaud’s
phenomenon). Early detection and management of the disease is
a must, to improve the morbidity and mortality in patients
(Walker et al., 2007). This in turn requires a multi-disciplinary
and collaborative effort involving clinical specialists and testing.
It can take more than one visit to an expert Rheumatology
specialist to diagnose the disease, especially in the early stages.
Identification of internal organ involvement and its severity is
also important.

1.2 Current methods of SSc diagnosis

These involve extensive and costly testing for autoantibodies and
markers of organ involvement. Sometimes, it is difficult to
distinguish between SSc and non-SSc cases as patients have
overlap conditions. Nailfold capillaroscopy (NFC) is another key
technique used to help diagnose SSc. NFC is a non-invasive, optical
imaging technique (Allen and Howell, 2014; Eriksson et al., 2014)
that is used by an expert operator to visually inspect the
microcirculation in the nailfold capillaries of the distal papillae
and hence assess pathological/morphological changes associated
with SSc such as capillary “dilatation”, distribution and density
(for “drop-out”), bushing (for “angiogenesis”) and
microhaemorrhage (extravasation). Tests such as NFC, however,
are usually currently performed in specialist hospitals and are not at
all readily available to all patients.

There is huge scope to look for alternative, low-cost technologies
to assess SSc. Photoplethysmography (PPG) is one such technique,

which is non-invasive and optically assesses the circulation. The
working principle of a PPG-based system uses a suitable light
source such as infrared or near-infrared light to study the heart-
synchronous changes in blood volume in the microvascular bed
of tissues such as skin (Allen, 2007; Elgendi, 2012; Kyriacou and
Allen, 2021). Additional key advantages of PPG are its
portability and its versatility to be used in a range of settings
such as measurement labs as well as ambulatory assessments
(wearable sensors, Charlton et al., 2023). PPG is currently widely
used in different clinical applications (Johnson et al., 2020)
including for pulse oxygen saturation measurement (SpO2)
(Ma et al., 2018), cardiovascular health (heart rate, blood
pressure, blood vessel and arterial stiffness) monitoring
(Castaneda et al., 2018), and for studying hypertension (Liang
et al., 2018).

1.3 Recent works

The potential of PPG for detecting patients with SSc has already
been explored using conventional optical pulse wave analysis
techniques but the literature here appears to be limited to date.
The largest SSc PPG study reported to date is by Rosato et al. (2010)
with 105 SSc (compared to 96 PRP and 85 healthy controls) using a
Termoflow type PPG instrument. The authors found that the mean
amplitude of the PPG sphygmic wave was significantly lower in the
PRP group than in the SSc group (mean ± standard deviation = 11 ±
10, given in arbitrary units (a.u.) vs. 24 ± 24 a.u. for SSc). The mean
amplitude was also significantly lower in SSc than in HC (56 ±
19 a.u. for HC). A further study by Rosato et al. (2011) using bilateral
PPG measurements found a homogeneous pattern (meaning
uniformity of morphology and amplitude of sphygmic PPG wave
across all 10 fingers) for 95% of the HCs and 93% of the PRPs but
was only 28% for the SSc group. McKay et al. (2014) investigated
multi-site PPG in 19 SSc, 19 PRP and 23HC by studying measures of
arterial, endothelial and peripheral autonomic dysfunction under a
dynamic 3 phase testing protocol. The authors found that measures
attributed to endothelial function were significantly impaired in SSc
(p < 0.02), but with no difference between the HCs and PRPs. The
authors reported that the Receiver Operating Characteristic (ROC)
based classification accuracy was 81% (sensitivity 90%, specificity
74%) for separating SSc from HCs, and 82% (sensitivity 84%,
specificity 79%) for separating SSc from PRPs. Mamontov et al.
(2020) employed imaging PPG (iPPG) and studied 19 SSc and
21 HC participants (with age- and sex-matched balanced classes)
and from the pulse arrival time (PAT) showed a significant increase
in its variability in SSc patients as compared to HCs (52 ± 47 ms vs.
24 ± 13 ms, p = 0.01). These earlier works show the potential of PPG
as a tool to help investigate SSc but such approaches from the
literature have relied on extracting a range of pulse features based on
domain knowledge, and then performing specific feature selection to
try and improve classification performance. To the authors’ best
knowledge, there are no papers on contact type PPG measurements
using analysis based on deep learning (DL) for the assessment of SSc
patients. The aim of this pilot study was to utilise DL in a novel way
by applying it to automatically identify the presence (or absence) of
SSc from multi-site PPG measurements collected under a dynamic
3-phase test protocol.
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2 Materials and methods

2.1 Study participants

Consecutive patients were approached by specific autoimmune
connective tissue disease rheumatologists or the connective tissue
disease nurse specialist from the Rheumatology outpatient
population attending Freeman Hospital, Newcastle upon Tyne.
The SSc participants were each diagnosed by an expert
consultant Rheumatologist at Freeman Hospital, using the 1980
American College of Rheumatology (ACR) preliminary criteria for
the classification of systemic sclerosis (Subcommittee for
Scleroderma Criteria, 1980). PRP patients were diagnosed by the
same clinical team, as having vasospastic symptoms for >2 years,
with routine practice assessments and no other underlying medical
or mechanical cause. SSc and PRP participants were recruited from
the Rheumatology outpatient clinic at Freeman Hospital, Newcastle
upon Tyne. Healthy Control (HC) participants were recruited from
volunteers - largely from the University of the Third Age (U3A,
Wearside Branch), and from staff and students of Newcastle
Hospitals and Newcastle University. The HC participants had no
known underlying health condition (e.g., diabetes mellitus and
hypertension). For each patient a range of clinical and
demographic data were collected for the study, including
participants’ pertinent medical history, and the tests done in the
hospital to assess and diagnose SSc patients. All participants were
permitted to continue their regular medication, including
vasodilator treatment, at the time of their recruitment and
informed consent was taken. Ethics approval for the original
study data collection was granted by the National Research
Ethics Service (NRES) Committee Northeast (County Durham
and Tees Valley 1 REC, 07/H0905/72 2008). Ethics permission
for re-analysis of the anonymised PPG waveform data for Sadaf
Iqbal’s PhD studentship project was obtained from Newcastle
University (Reference 7273/2018, with an extension to the study
17138/2021).

2.2 Multi-site PPG measurements and pre-
processing

The PPG data set measurements were originally collected by Dr
Neil McKay, Rheumatologist, between 2009 and 2011 at Freeman
Hospital’s microvascular research facility, with 3-phase
measurement protocol developed and physiological measurement
training supported by expert PPG operator JA. Participants were
firstly asked to lay comfortably in a symmetrical supine position for
a period of at least 15 min whilst acclimatising in a warm
normothermic temperature-controlled (23°C ± 1°C) clinical
measurement room. Multi-site PPG waveforms were then
collected simultaneously for 20 min from 6 symmetrical, body
sites namely: right and left earlobes, index finger pads and great
toe pads respectively, using optically and electronically matched
amplifiers (bandwidth 0.5–20 Hz) and captured to computer at a
sampling frequency (Fs) of 2000 Hz. The 3 phases of measurement
were: subject resting supine (10 min, Baseline phase); an arm
pressure cuff inflated at 300 mmHg to stop the arterial blood
flow into the left arm (for 5 min, Occlusion phase); then at

15 min the cuff pressure was quickly but carefully released, and
the degree of reactive hyperaemia monitored for a further 5 min
(Flush phase). Figure 1 shows examples of 3-phase PPG beat-to-beat
amplitude data for the left finger measurement site of a Control
participant and a SSc participant.

For this study involving advanced analysis of the data, a visual
analysis of the PPG data was carried out by operator SI to check for
the presence of unexpected artifacts (such as that caused by
unreliable PPG probe skin contact or when a study did not
follow protocol) or a distorted flush response was evident. Some
of the 92 participants originally entered into the study had to be
excluded: original PPG data collected using too high a manual gain
setting causing a high flush which saturated i.e., electronically
clipping and making unusable a PPG trace for the left study arm
(N = 3); participants not following the 20-min protocol (N = 7). In
total, PPG and ECG data from a total of 20 SSc, 22 PRP and 29 HC
participants were included and analysed using the techniques
described in the next section. Figure 2 shows a participant
flowchart summary for the included and excluded subjects in our
pilot study.

Healthy controls and patient controls (i.e., PRP) participants
were combined in a single control group as they both belong to
clinical class of non-life-threatening conditions as opposed to SSc
group which needs clinical attention and early identification and
management. Also, noting here that although pulse amplitudes can
be different between the groups and from the same subject if tested
on different days, the literature suggests that PPG pulse measures are
similar across the two groups. The study by Rosato et al. (2011) had
shown that PPG shows a homogeneous pattern, i.e., a uniformity in
morphology as well as amplitude of PPG sphygmic waves across the
fingers, in 95% of the healthy control subjects and 93% of the PRP
patients as opposed to this being present in only 28% of the SSc
patients. McKay et al. (2014) also had found no differences between
healthy controls and PRP for the case of dynamic physiological
testing i.e., the derived PPG median flush response slope and flush
response value.

In this study a PPG signal was pre-processed with only a
normalisation stage, with each of the 6 PPG signals divided by
their respective PPG amplifier channel gain setting. There was no
additional signal filtering performed by the computer.

2.3 Deep learning classification

This data analysis was carried out on a 64-bit Windows 10 and
14 Core PC fitted with a single NVIDIA GeForce RTX 2080 Ti GPU
card which used MATLAB software. Here, the PPG time series was
converted into scalogram images for the study subjects using
continuous wavelet transform (CWT). Scalograms give a time-
frequency (T-F) image representing the percentage of signal
energy contained in different frequency bands (Gandhi et al.,
2014), with the x-axis representing time and y-axis representing
frequency and a signal varying in colour intensity over the T-F plane.

Each PPG channel’s gain normalised time series was divided
into consecutive 30 s non-overlapping windows and for each 1D
time window, a 2D scalogram image along with its label was then
generated using continuous wavelet transform (CWT)methods. The
Morse mother wavelet was used in CWT as this type of analytic
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wavelet is very useful to analyse signals with time-varying amplitude
and frequency (PPG here) (Wachowiak et al., 2018) and Voices per
Octave was selected as 12 to keep the computational complexity
low (Wachowiak et al., 2018). The 30 s period for plotting
scalograms was selected based on initial exploratory scalogram
plotting to select meaningful T-F resolution and hence extract
meaningful features from the scalogram images. Noting that with

the uncertainty principle, the greater length of time window
means that frequency resolution is higher but time resolution
is lower, and vice versa. Hence, for the data under consideration a
30 s epoch provided a reasonable trade-off between the time and
frequency resolutions. Figure 3 shows a 30 s sample scalogram
with frequencies ranging from 0–20 Hz (noting each PPG was
already bandpass filtered in this range using analogue electronics

FIGURE 1
Example 3-phase PPG Amp data recordings for a Control (black line) and for a SSc participant (Blue line) showing beat-to-beat amplitude changes
for the left finger site, with 0–600 s = Baseline phase, 600–900 s = Occlusion phase, and 600–1200 s = Flush phase.

FIGURE 2
Participant flowchart showing included and reasons for the excluded subjects.
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during physiological data acquisition). The scalogram was
calculated using Eqs 1, 2 below:

S � coef .*coef| |where coef are the CWTcoef f icients over a timewindow

(1)
Scalogram � 100 × S( )/ ∑ S( ) (2)

In the first stage, the results were calculated using the number of
images that were classified into SSc versus Control (‘image-based
performance’). Two pretrained convolutional neural networks
(CNN) from MATLAB were used (GoogLeNet (Szegedy et al.,
2015) and EfficientNetB0 (Tan et al., 2019)) to learn the PPG
T-F features and then perform the classification. These networks
have already been previously trained on millions of high-resolution
images from the ImageNet database (Krizhevsky et al., 2017).
GoogLeNet (structure comprising 144 layers) was the winner of
2014 ImageNet competition and had least number of parameters
(~6.9 million) as compared to other pretrained models available in
MATLAB at the time of study. EfficientNetB0 (290 layers) which
was introduced in 2019 (parameters ~5.3 million) represents a
newer generation of CNNs, based on ResNet design, and had
been designed to work better and faster than the hitherto
available CNNs (Tan and Le, 2019), giving 2 key types of CNN
to implement and explore respective performances. Figure 4 shows
the basic building blocks for these two types of CNN network.
Figures 5, 6 respectively show the network architectures of
GoogLeNet (Szegedy et al., 2015) and EfficientNetB0 (Tan et al.,
2019; Tan and Le, 2019).

For the PPG dataset, 16,188 labelled scalogram images were
generated for the 71 participants covering all 6 PPG sites,
i.e., channels of the multi-site PPG system. The scalogram images

were rescaled to 224 × 224 × 3 size to match input dimensions of
GoogLeNet and EfficientNetB0 using a standard MATLAB function
“imresize” which applies a simple scale transformation to the original
image using bicubic interpolation which is a standard algorithm used
in image resizing (Hashemi et al., 2015). Data were divided into
10 mini batches (batch size 1620 images) to reduce computational
time. The learning rate was 0.005. Optimisation utilised the stochastic
gradient descent method (Tian et al., 2023) as this is computationally
faster and can converge quicker than other optimisation algorithms.
The loss function usedwas cross-entropy loss. Ten-fold stratified cross
validation was carried out on 71 participants wherein 9/10 of the
participants’ images were used in training and 1mutually exclusive (1/
10 of the participants’ images) were used for its testing, this process
was repeated 10 times. The image wise combined confusion matrix
obtained after 10-fold CV was used to calculate measures of
classification performance. The two networks train on the input
training data and adapt their weights, to learn the features of the
data. The approximate training time in any fold of training was about
240–300 min. The approximate testing time for any test fold was
between 20–30 min.

The SSc versus Control classification was performed based on
number of images and this is called as image-based classification
throughout. A post-processing step was also applied which
calculated the number of images classified in each category per
each individual test participant, to provide SSc versus Control
classification based on number of participants. In this case, the
majority class of images in each test participant was considered as
the class of the output label. This was compared against the ground
truth label (i.e., SSc diagnosis) which was clinically determined
beforehand. The steps and methodology of the DL analysis are
summarised in the block diagram in Figure 7.

FIGURE 3
An example 30 s scalogram from aControl subject. Themagnitude of the scalogram is shown in the colour bar to the right of the image. The brighter
colours represent higher signal energy at a particular frequency.
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FIGURE 4
BasicbuildingblocksofGoogLeNet andEfficientNetB0are shown indiagrams (A,B), respectively. The small nodes represent a layer each specifiedby its name.

FIGURE 5
The architecture of GoogLeNet. Conv, convolution; Norm, normalization; MaxPool, maximum pooling. The inception modules repeat but filter
depth is different in different modules (Szegedy et al., 2015).
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2.4 Comparator ML method using wavelet
time-frequency classification

This is a comparator ML method using the discrete wavelet
transform (DWT) to compare with the performance of the T-F
based DL classification. DWT method has advantages over other
T-F methods such as CWT such in being computationally faster and
the ability to analyse the input signal into desired constituent
frequency bands. The same participant-wise partitions of the
training/test data sets were used as for the DL classification work
to allow a fair inter-comparison between methods.

Ten-level DWT decomposition (Mohamed and Deriche, 2014) was
carried out per channel PPG using Daubechies 4 (db4) mother wavelet
thereby producing 10 levels of detailed coefficients (d1, d2, . . .. . .. , d10)
and approximate coefficients (shortened as ap in this work) for each
channel. The mother wavelet db4 was chosen as it matches the shape of
the PPG pulse more than any other wavelet, and hence is the best choice
to calculate the wavelet transform of the signal. Since the PPGs had
already been bandpass filtered (i.e., 0.5–20 Hz) at data acquisition then
only the detailed coefficients containing these relevant frequencies
namely, d6 (frequency range 15.63–31.25 Hz), d7 (7.81–15.63 Hz),
d8 (3.91–7.81 Hz), d9 (1.95–3.91 Hz), d10 (0.98–1.95 Hz) and ap
(0.49–0.98 Hz) were selected for further analysis. To make the
computational complexity less and thus the algorithm faster,
4 features were extracted from each of the 6 frequency bands for

each channel, thereby giving 6*6*4 = 144 features per participant.
PPG features extracted were Energy, Entropy, Mean absolute value
and Skewness, as defined in Eqs 3–5.

Energy: Energy of the PPG DWT coefficients is calculated as the
sum of the squares of all the sampled amplitudes for a single channel
and is defined by Eq. 3:

Energy � ∑N

i�0x
2
i (3)

Where xi, the ith data instance and N are the total number of
sample values.

Entropy: Entropy describes the irregularity, complexity, or
unpredictability characteristics of a signal. In this work entropy
was used as a feature to quantify the irregularity of the PPG time
series and hence Shannon entropy was calculated as given by Eq. 4:

Entropy � ∑N

i�1 xi p log2 1/xi( ){ } (4)

Mean absolute value: The absolute value of the average of each
channel within the data matrix.

Skewness: Skewness can be used as a measure to describe the
asymmetry around the mean of the data sample. If the value of skewness
is less than zero, the data hasmore spread around the left-hand side of the
mean, if greater than zero, it is more towards the right-hand side of the
mean and if equals to zero, the data can be considered as symmetrically
distributed. For a dataset, skewness can be described by Eq. 5:

FIGURE 6
Architecture of EfficientNetB0. Eachblock representedbydifferent colours ismadeupof different layers. The basic block of EfficientNetB0 is an inverted
mobile bottleneck (MBConv) and its structure is shown in diagram (A) and the structure of squeeze and excitation (SE) block is shown in diagram (B)
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Skewness � E xi − μ( )3

σ3
(5)

Where µ is the mean of x, σ is the standard deviation of x, and E(t)
represents the expected value of the quantity t.

The extracted features were then fed into the linear discriminant
analysis (LDA) and into the K-Nearest Neighbour (KNN, set at K =
9) analysis to classify SSc versus Control.

2.5 Statistical analysis

Demographic data were expressed using mean (±standard
deviation, SD) values. Since the subjects are grouped into 2 distinct
SSc and Control classes with each group having independent and
different participants, hence unpaired Student’s t-test was used to

study themean values of SSc and Control groups. A p-value <0.05 was
the level of statistical significance. A crosshair plot illustrating a meta-
analysis overview of classifier performance (test sensitivity versus False
Positive Rate i.e., 1-specificity) was produced using the mada
command from R (RStudio version 1.4.1106).

3 Results

Table 1 overviews the demographic details for the study
participants. Clearly, there were more females than males in the
study (18 out of 20 in the SSc group and 45 of 51 in the Control
group), but with no significant difference between the groups (p =
0.83). Noting, this is representative as SSc is more prevalent in
females than males (van den Hoogen et al., 2013). There was a
significant but modest difference for age (p = 0.007) with SSc [62

FIGURE 7
Block diagram of the steps and methodology for the DL analysis.
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(18) years] older than Controls [50 (11) years] overall. There was a
marginally higher BMI for the SSc patient group [26.4 (4.1) kg/m2]
compared to Controls [23.9 (3.9) kg/m2 (p = 0.020). There was no
significant difference found for SBP (p = 0.712) and borderline
significance for the DBP (p = 0.050) between the groups.

The key diagnostic test related results (in %) and the respective
95% CI ranges for image based and participant based SSc versus
Control classification analyses are summarised in Tables 2–5. For
image-based classification the diagnostic test accuracy for
GoogLeNet was 83.2 (95% CI range 82.6–83.8) %, sensitivity 73.7
(72.4–74.9) and specificity 86.9 (86.3–87.6). Performance was
improved for EfficientNetB0 with 88.4 (87.8–88.8) %, 80.4
(79.2–81.5) and 91.5 (90.9–91.9), respectively. For participant-
based classification the diagnostic test accuracy for GoogLeNet
was 83.1 (72.3–90.9) %, sensitivity 75.0 (50.9–91.3) and
specificity 86.3 (73.7–94.3), and once again the performance was
improved for EfficientNetB0 with 87.3 (77.2–94.0) %, 80.0
(56.3–94.3), and 90.1 (78.6–96.7), respectively.

DL was also compared against traditional ML T-F wavelet
classification using the KNN and LDA classifiers. The results of
the T-F ML analysis in terms of diagnostic test accuracy, sensitivity
and specificity are shown in Table 6. Using the LDA classifier the
diagnostic test accuracy obtained for subject based classification was
66.2 (53.9–77.0) %, sensitivity 65.0 (40.8–84.6) % and specificity 66.7
(52.1–79.2) %. Using the KNN classifier the diagnostic test accuracy

obtained for subject based classification was 76.1 (64.5–85.4) %,
sensitivity 40.0 (19.1–63.9) and specificity 90.2 (78.6–96.7) %. The
95% CI range for accuracy, sensitivity and specificity for participant-
based classification in DL was 72.3%–94.0%, 50.9%–94.3% and
73.7%–96.7% respectively, whereas the corresponding
performance range for the ML experiment was 53.9%–85.4%,
19.1%–84.6%, and 52.1%–96.7% respectively.

4 Discussion

This pilot study has shown that AI analysis, i.e., using 2 different
types of deep learning classifier, can differentiate between the PPG
recordings from Controls and SSc on a participant-basis and give
approximate test accuracies of 83% (for GoogLeNet, released circa
2014) and 87% (for EfficientNetB0, released circa 2019). Figure 8
shows crosshair plot showing the comparison of performance of the
four classifiers used. The overall test performance of
EfficientNetB0 is marginally better overall than GoogLeNet but
both CNNs were clearly better than the conventional ML
classification approaches (i.e., LDA and KNN, accuracies were
only 66% and 76%, respectively).

Previous published research studies on SSc diagnostics using
PPG data, particularly Rosato et al. (2010), Rosato et al. (2011),
McKay et al. (2014) and Mamontov et al. (2020), had each relied on
statistical and manual analysis approaches to differentiate between

TABLE 1 Demographic details of the study participants.

Key demographics, with mean (SD values)

Mean ± SD Sex Age
(years)

BMI
(kg/m2)

SBP
(mmHg)

DBP
(mmHg)

Immunology: Specific SSc
autoantibodies

HC 23F, 6M 47 (18) 24.1 (3.8) 135 (21) 84 (6) All presumed negative

PRP 22F, 0M 54 (16) 23.7 (4.0) 138 (16) 84 (7) All negative

All Controls (HC + PRP) 45F, 6M 50 (18) 23.9 (3.9) 136 (19) 84 (7) All negative

SSc 18F, 2M 62 (11) 26.4 (4.1) 134 (24) 80 (9) 10 positive

p-value between SSc and
Control

Proportion of males between the
classes, p = 0.83

0.007 0.020 0.712 0.050

SD, standard deviation; BMI, bodymass index, D/SBP, diastolic/systolic blood pressure, M =male, F = female. Note: the bold numbers in p values represent statistically significant levels between

Controls and SSc.

TABLE 2 Combined confusion matrix obtained in this analysis for number of
image-based classification for GoogLeNet and EfficientNetB0 CNNs.

Number of images classified

GoogLeNet SSc Controls True class

SSc 3359 (TP) 1201 (FN)

Controls 1517 (FP) 10,111 (TN)

Predicted class

EfficientNetB0 SSc 3666 894 True class

Controls 989 10,639

Predicted class

TP, true positive; TN, true negative; FP, false positive; FN, false negative.

TABLE 3 Combined confusion matrix of participant-based classification for
GoogLeNet and EfficientNetB0 CNNs.

Numbers of participants classified

GoogLeNet Number of participants SSc Controls True class

SSc 15 5

Controls 7 44

Predicted class

EfficientNetB0 SSc 16 4 True class

Controls 5 46

Predicted class
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subject groups. Manual analysis limits the ability of these techniques
to be implemented in practical clinical test settings and for larger
datasets. To the best of the authors’ knowledge (literature search
made to January 2023), there are no studies on contact-based PPG
measurements for the study of SSc using DL analytics. In our work
we also aimed to fill in the gaps found in the earlier SSc PPG
literature. SSc is also a growing area of interest using deep learning
and skin histology type imaging, for example, the recent pilot study
by Akay et al., 2021.

Advantages with our measurement and analysis approach:
This DL-PPG proof-of-concept study presents a straightforward and
effective method using deep learning as compared to conventional
ML and statistical analysis approaches of differentiating between
subject groups. The transfer learning ability of CNNs previously
trained on thousands to millions of non-medical images allows
quicker retraining on the disease specific dataset, thereby saving
time and computational cost. DL eliminates the need to collect an
ECG signal to give a cardiac timing reference as in conventional
analysis of the PPG features on a beat-by-beat basis. CNNs can learn
hundreds of features automatically from the data, thereby
eliminating the need to extract key PPG features by domain experts.

Two different CNN architectures, namely, GoogLeNet and
EfficientNetB0, have been employed in this research as they both
have been trained on the same ImageNet database (Krizhevsky et al.,

2017) and have same input dimension of 224 × 224 × 3. However,
the 2 structures are different with GoogLeNet having 144 layers and
approximately 6.9 million parameters (Tan and Le, 2019) and
EfficientNetB0 having 290 layers but a smaller number
(i.e., ~5.3 million) parameters. The initial layers of a CNN learn
low level features from the input images such as edges whilst the
deeper level layers learn advanced features of input images such as
constituent parts (LeCun et al., 2015). The CNN acts as a classifier
too and the last layer namely, the output layer contains as many
output nodes as the number of classes of data fed into the network.
In this work, the 71 participants were first partitioned into 10-folds
using stratified CV, wherein 9 folds of subjects are used for training
the network and the remaining 1-fold of subjects were used for its
testing. The participant-based division we employed ensured that
the data from same subject does not fall into training and testing
simultaneously which could have led to testing the same type of
images as in training and hence falsely exaggerated the performance.

In this work, first T-F image-based classification of SSc from
Controls was carried out. This was done because the PPG recordings
were converted into a series of images and the classifiers trained
using these. Then using post-processing, the classification was
performed using the participants classified into SSc and Control
classes, which is clinically and practically the desired case. Figure 6
shows that more recent CNN EfficientNetB0 has higher sensitivity

TABLE 4 Performance of image-based classification and participant-based classification for GoogLeNet in terms of diagnostic test accuracy, sensitivity and
specificity (95% CI range estimates shown).

GoogLeNet CNN model diagnostic test performance (%) along with their 95% CI ranges

Image-based Participant-based

Accuracy (%) 83.2 (82.6–83.8) 83.1 (72.3–90.9)

Sensitivity (%) 73.7 (72.4–74.9) 75.0 (50.9–91.3)

Specificity (%) 86.9 (86.3–87.6) 86.3 (73.7–94.3)

TABLE 5 Performance of image-based classification and participant-based classification for EfficientNetB0 in terms of diagnostic test accuracy, sensitivity and
specificity (95% CI range estimates shown).

EfficientNetB0 CNN model diagnostic test performance (%) along with their 95% CI ranges

Image-based Participant-based

Accuracy (%) 88.4 (87.8–88.8) 87.3 (77.2–94.0)

Sensitivity (%) 80.4 (79.2–81.5) 80.0 (56.3–94.3)

Specificity (%) 91.5 (90.9–91.9) 90.1 (78.6–96.7)

TABLE 6 Performance of LDA and KNN comparator machine learning classifiers on a participant-basis in terms of diagnostic test accuracy, sensitivity and specificity
(95% CI range estimates shown).

Machine learning (ML) model diagnostic test performance (%) along with their 95% CI ranges for participant-based classification

LDA KNN

Accuracy (%) 66.2 (53.9–77.0) 76.1 (64.5–85.4)

Sensitivity (%) 65.0 (40.8–84.6) 40.0 (19.1–63.9)

Specificity (%) 66.7 (52.1–79.2) 90.2 (78.6–96.7)
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and specificity and hence produced a better classification
performance as compared to GoogLeNet. This could be due to
EfficientNetB0 having more layers than other CNN GoogLeNet and
hence learning more features from the input data, whilst computing
faster (Tan et al., 2019). Future studies could investigate the effects of
changing the network parameters to study effects on classification
performance. It also shows that both DL architectures, namely,
GoogLeNet and EfficientNetBo, can give higher performance in
terms of sensitivity and specificity as compared to ML classifiers
namely, LDA and KNN. This is because both types of CNN extract
several hundreds of features from inputs thereby learning the
inherent details of the data, as compared to tens of features
chosen manually for the traditional ML classification techniques.

Another point to mention is the good sensitivities (in percent for
participant based) of DL architectures namely, GoogLeNet having
75.0 (95% CI 50.9–91.3) % and EfficientNetB0 having 80.0
(56.3–94.3) %. These could be considered better than for the
specific antibody blood tests performance summarised in Table 7
since only 10 of the 20 (50%) SSc participants were positive for either
the ACA or Scl-70 autoantibodies. It is noted that there is now easier
access to extended scleroderma autoantibody panels but at the time
of the original PPG data collection only 2 antibody tests were
available (ACA and Scl70). High accuracy is of course very
important to help make this PPG-based SSc classification
technique clinically relevant. Clinically because of the morbidity
and mortality involved in SSc, it is particularly important to identify
all such patients and therefore the sensitivity of the test should be

high. Specificity should also be high as falsely labelling a person who
has not got the disease could lead to unnecessary further testing
(inefficient use of time and resources) as well as likely significant
anxiety for the patient. The ultimate gold standard of diagnosing SSc
remains the expertise of the clinicians but this work shows the
potential of DL-based classification using PPG to help screen SSc
patients in the future. In future this study could be carried out on a
bigger dataset comprising a greater number of SSc and control
participants to further validate our initial findings. The pilot work
also helps in the design of advanced analysis sub-systems of PPG
technology for SSc diagnostics.

Limitations and Future Work: In this pilot study there were
20 SSc and 51 Control participants analysed and thus had a degree of
imbalance between the classes. The groups were not fully-age-
matched either although the age difference here could be
considered modest in terms of vascular ageing. Future wider
studies, involving more patients should explore the impact of
matching across age, BMI and blood pressure. Our study was
sufficient though to show the capability of the DL-PPG approach
as well as highlight its opportunities and challenges. Stratified cross
validation had been used to ensure equal division of minority class
cross the different training folds. In this work the patient control
PRP participants have been grouped with HC to form the combined
Control class because of the clinical relevance of finding life
threatening disease cases against the non-life-threatening control
cases. The sensitivity or accuracy of classification had also not been
maximised. Future studies will address these limitations to study the

FIGURE 8
Crosshair plot giving a comparison of classifier performance using test sensitivity versus false positive rate (i.e., 1-specificity) for SSc versus Control
on a participant basis. In this representation a sensitivity of 1 = 100% and similarly for the false positive rate.
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effect on classification performance by including a balanced study
population and with greater SSc participant numbers. Noting
though that SSc is a rare disease and it is not straightforward to
recruit patients and collect very large data sets except perhaps across
multiple clinical centres specialising in the condition. (Mitchell,
2006; Fagerland, 2012; Goodfellow et al., 2016; Allen et al., 2020;
Huthart et al., 2020; Dong et al., 2021; Kyriacou and Allen, 2021;
Phillips, 2022; Iqbal, 2023).

5 Summary

We have demonstrated in this first proof-of-concept study that
GoogLeNet and EfficientNetB0 DL-PPG analytics can detect SSc with
an accuracy of 83.1 (95% CIs 72.3–90.9) % and 87.3 (77.2–94.0) % for
participant-based classification, respectively. The results from our
novel DL-PPG classification technique appear better than for
conventional ML methods. The DL-PPG sensitivity (75.0% and
80.0% for GoogLeNet and EfficientNetB0, respectively) is clearly
better than for the standard immunological biomarkers for SSc
available at the time our original PPG data collection for the
research. DL-PPG has shown promise and should be developed
further to become an accessible test for the benefit of patients with
Systemic Sclerosis as well as for those with Raynaud’s.
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TABLE 7 Clinical summary for the 20 SSc participants included in the study.

1 Disease subtype, number (% out of total participants) 11 diffuse cutaneous SSc (55%) 9 limited cutaneous SSc (45%)

2 Disease phase, n (%) Early: 5 (25%)

Intermediate/late: 13 (65%), 2 missing data

3 SSc specific autoantibodies, n (%) Scl70 positive 4 (20%)

ACA positive 6 (30%)

4 MRSS for the 17 sites (maximum possible score 51)

Median (IQR) 4 (11)

Range (1–33)

5 Finger digital ulcers, n (%) 6 (30%)

6 Ulcers (foot), n (%) 3 (15%)

7 Capillaroscopy abnormal, n (%) 9 (45%)

8 Thermography abnormal, n (%) 7 (35%)

9 Patients with CRP >5 mg/L, n (%) 4 (20%)

10 SHAQ, mean (range) 9 (2–22)

ACA, anticentromere antibody; MRSS, modified rodnan skin score; IQR, interquartile range, CRP = C-Reactive Protein, SHAQ, Scleroderma Health Assessment Questionnaire.

Frontiers in Physiology frontiersin.org12

Iqbal et al. 10.3389/fphys.2023.1242807

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2023.1242807


resourced a high-performance computer and software for the
work.

Acknowledgments

For the data collection originally used in an earlier study focusing on
conventional PPG analysis we acknowledge Dr Neil McKay
(Rheumatologist) and the wider clinical rheumatology team including
Sister KarenWalker (Connective Tissue Disease nurse specialist), the SSc
and Raynaud’s participants from the Rheumatology department at
Newcastle’s Freeman Hospital, as well as the healthy control
participants recruited from volunteers from the University of the
Third Age (U3A, Wearside Branch) and staff and students from
Newcastle Hospitals and Newcastle University.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

Akay, M., Du, Y., Sershen, C. L., Wu, M., Chen, T. Y., Assassi, S., et al. (2021). Deep
learning classification of systemic sclerosis skin using the MobileNetV2 model. IEEE
Open J. Eng. Med. Biol. 2, 104–110. doi:10.1109/OJEMB.2021.3066097

Allen, J., and Howell, K. (2014). Microvascular imaging: techniques and opportunities
for clinical physiological measurements. Physiol. Meas. 35 (7), R91–R141. doi:10.1088/
0967-3334/35/7/R91

Allen, J., O’Sullivan, J., Stansby, G., and Murray, A. (2020). Age-related changes in
pulse risetime measured by multi-site photoplethysmography. Physiol. Meas. 41 (7),
074001. doi:10.1088/1361-6579/ab9b67

Allen, J. (2007). Photoplethysmography and its application in clinical physiological
measurement. Physiol. Meas. 28 (3), 1–39. doi:10.1088/0967-3334/28/3/R01

Allen, J., Zheng, D., Kyriacou, P. A., and Elgendi, M. (2021). Photoplethysmography
(PPG): state-of-the-art methods and applications. Physiol. Meas. 42 (10), 100301.
doi:10.1088/1361-6579/ac2d82

Belch, J., Carlizza, A., Carpentier, P. H., Constans, J., Khan, F., Wautrecht, J. C., et al.
(2017). ESVM guidelines-the diagnosis and management of Raynaud’s phenomenon.
Vasa 46 (6), 413–423. doi:10.1024/0301-1526/a000661

Castaneda, D., Esparza, A., Ghamari, M., Soltanpur, C., and Nazeran, H. (2018). A
review on wearable photoplethysmography sensors and their potential future
applications in health care. Int. J. Biosens. Bioelectron. 4 (4), 195–202. doi:10.15406/
ijbsbe.2018.04.00125

Charlton, P. H., Allen, J., Bailon, R., Baker, S., Behar, J. A., Chen, F., et al. (2023). The
2023 wearable photoplethysmography roadmap. Physiol. Meas [In press]. doi:10.1088/
1361-6579/acead2

Di Battista, M., Barsotti, S., Orlandi, M., Lepri, G., Codullo, V., Della Rossa, A., et al.
(2021). One year in review 2021: systemic sclerosis. Clin. Exp. Rheumatol. 39 (131),
S3–S12. doi:10.55563/clinexprheumatol/izadb8

Dong, S., Wang, P., and Abbas, K. (2021). A survey on deep learning and its
applications. Comput. Sci. Rev. 40, 100379. doi:10.1016/j.cosrev.2021.100379

Elgendi, M. (2012). On the analysis of fingertip photoplethysmogram signals. Curr.
Cardiol. Rev. 8 (1), 14–25. doi:10.2174/157340312801215782

Eriksson, S., Nilsson, J., and Sturesson, C. (2014). Non-invasive imaging of
microcirculation: A technology review. Med. Devices Evid. Res. 7, 445–452. doi:10.
2147/MDER.S51426

Fagerland, M. W. (2012). t-tests, non-parametric tests, and large studies—a paradox
of statistical practice? BMC Med. Res. Methodol. 12 (1), 78. doi:10.1186/1471-2288-
12-78

Gandhi, P. G., and Rao, G. H. (2014). The spectral analysis of photoplethysmography
to evaluate an independent cardiovascular risk factor. Int. J. General Med. 7, 539–547.
doi:10.2147/IJGM.S70892

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep learning. MIT press.
Cambridge, CA, USA,

Haque, A., and Hughes, M. (2020). Raynaud’s phenomenon. Clin. Med. 20 (6),
580–587. doi:10.7861/clinmed.2020-0754

Hashemi, S. M. R., Mohammadalipour, S., and Broumandnia, A. (2015). Evaluation
and classification new algorithms in Image Resizing. Int. J. Mechatronics, Electr.
Comput. Technol. 5 (18), 2649–2654.

Hughes, M., and Herrick, A. L. (2016). Raynaud’s phenomenon. Best Pract. Res. Clin.
Rheumatology 30 (1), 112–132. doi:10.1016/j.berh.2016.04.001

Huthart, S., Elgendi, M., Zheng, D., Stansby, G., and Allen, J. (2020). Advancing PPG
signal quality and know-how through knowledge translation—From experts to student
and researcher. Front. Digital Health 2, 619692. doi:10.3389/fdgth.2020.619692

Iqbal, S. (2023). Multi-site photoplethysmography waveform analysis using machine
learning for the detection of systemic sclerosis. United Kingdom: Newcastle University.

Johnson, M. S. S., and Eklund, J. M. (2020). “A review of photoplethysmography-
based physiological measurement and estimation, Part 2: multi-input methods,” in 2020
42nd annual international conference of the IEEE engineering in medicine & biology
society (EMBC) (IEEE), 863–866. Montreal, Canada,

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2017). Imagenet classification with
deep convolutional neural networks. Commun. ACM 60 (6), 84–90. doi:10.1145/
3065386

Kyriacou, P. A., and Allen, J. (Editors) (2021). Photoplethysmography: Technology,
signal analysis and applications (Academic Press). Cambridge, MA, USA

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature 521 (7553),
436–444. doi:10.1038/nature14539

Liang, Y., Chen, Z., Ward, R., and Elgendi, M. (2018). Photoplethysmography and
deep learning: enhancing hypertension risk stratification. Biosensors 8 (4), 101. doi:10.
3390/bios8040101

Ma, G., Zhu, W., Zhong, J., Tong, T., Zhang, J., and Wang, L. (2018). “Wearable ear
blood oxygen saturation and pulse measurement system based on PPG,”2018 IEEE
SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computing,
Scalable Computing & Communications, Cloud & Big Data Computing (IEEE),
111–116. Guangzhou, China.

Mamontov, O. V., Krasnikova, T. V., Volynsky, M. A., Anokhina, N. A., Shlyakhto, E.
V., and Kamshilin, A. A. (2020). Novel instrumental markers of proximal scleroderma
provided by imaging photoplethysmography. Physiol. Meas. 41 (4), 044004. doi:10.
1088/1361-6579/ab807c

McKay, N. D., Griffiths, B., Di Maria, C., Hedley, S., Murray, A., and Allen, J. (2014).
Novel photoplethysmography cardiovascular assessments in patients with Raynaud’s
phenomenon and systemic sclerosis: A pilot study. Rheumatology 53 (10), 1855–1863.
doi:10.1093/rheumatology/keu196

Mitchell, T. M. (2006). The discipline of machine learning, 9. Pittsburgh, PA, USA:
Carnegie Mellon University, School of Computer Science, Machine Learning
Department.

Mohamed, M., and Deriche, M. (2014). An approach for ECG feature extraction using
daubechies 4 (DB4) wavelet. Int. J. Comput. Appl. 96 (12), 36–41. doi:10.5120/16850-
6712

NHSinform (2023). NHSinform. https://www.nhsinform.scot/illnesses-and-
conditions/heart-and-blood-vessels/conditions/raynauds-phenomenon#complications-
of-raynaud-s-phenomenon.

Pauling, J. D., Saketkoo, L. A., Matucci-Cerinic, M., Ingegnoli, F., and Khanna, D.
(2019). The patient experience of Raynaud’s phenomenon in systemic sclerosis.
Rheumatology 58 (1), 18–26. doi:10.1093/rheumatology/key026

Phillips, R. (2022). Evaluating early diagnostic criteria for SSc. Nat. Rev. Rheumatol.
18 (2), 62. doi:10.1038/s41584-021-00745-5

Rosato, E., Molinaro, I., Rossi, C., Pisarri, S., and Salsano, F. (2011). The combination
of laser Doppler perfusion imaging and photoplethysmography is useful in the
characterization of scleroderma and primary Raynaud’s phenomenon. Scand. J.
Rheumatology 40 (4), 292–298. doi:10.3109/03009742.2010.530293

Frontiers in Physiology frontiersin.org13

Iqbal et al. 10.3389/fphys.2023.1242807

https://doi.org/10.1109/OJEMB.2021.3066097
https://doi.org/10.1088/0967-3334/35/7/R91
https://doi.org/10.1088/0967-3334/35/7/R91
https://doi.org/10.1088/1361-6579/ab9b67
https://doi.org/10.1088/0967-3334/28/3/R01
https://doi.org/10.1088/1361-6579/ac2d82
https://doi.org/10.1024/0301-1526/a000661
https://doi.org/10.15406/ijbsbe.2018.04.00125
https://doi.org/10.15406/ijbsbe.2018.04.00125
https://doi.org/10.1088/1361-6579/acead2
https://doi.org/10.1088/1361-6579/acead2
https://doi.org/10.55563/clinexprheumatol/izadb8
https://doi.org/10.1016/j.cosrev.2021.100379
https://doi.org/10.2174/157340312801215782
https://doi.org/10.2147/MDER.S51426
https://doi.org/10.2147/MDER.S51426
https://doi.org/10.1186/1471-2288-12-78
https://doi.org/10.1186/1471-2288-12-78
https://doi.org/10.2147/IJGM.S70892
https://doi.org/10.7861/clinmed.2020-0754
https://doi.org/10.1016/j.berh.2016.04.001
https://doi.org/10.3389/fdgth.2020.619692
https://doi.org/10.1145/3065386
https://doi.org/10.1145/3065386
https://doi.org/10.1038/nature14539
https://doi.org/10.3390/bios8040101
https://doi.org/10.3390/bios8040101
https://doi.org/10.1088/1361-6579/ab807c
https://doi.org/10.1088/1361-6579/ab807c
https://doi.org/10.1093/rheumatology/keu196
https://doi.org/10.5120/16850-6712
https://doi.org/10.5120/16850-6712
https://www.nhsinform.scot/illnesses-and-conditions/heart-and-blood-vessels/conditions/raynauds-phenomenon#complications-of-raynaud-s-phenomenon
https://www.nhsinform.scot/illnesses-and-conditions/heart-and-blood-vessels/conditions/raynauds-phenomenon#complications-of-raynaud-s-phenomenon
https://www.nhsinform.scot/illnesses-and-conditions/heart-and-blood-vessels/conditions/raynauds-phenomenon#complications-of-raynaud-s-phenomenon
https://doi.org/10.1093/rheumatology/key026
https://doi.org/10.1038/s41584-021-00745-5
https://doi.org/10.3109/03009742.2010.530293
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2023.1242807


Rosato, E., Rossi, C., Borghese, F., Molinaro, I., Pisarri, S., and Salsano, F. (2010). The
different photoplethysmographic patterns can help to distinguish patients with primary
and sclerodermic Raynaud phenomenon. Am. J. Med. Sci. 340 (6), 457–461. doi:10.
1097/MAJ.0b013e3181eecfad

Royle, J. G., Lanyon, P. C., Grainge, M. J., Abhishek, A., and Pearce, F. A. (2018). The
incidence, prevalence, and survival of systemic sclerosis in the UK Clinical Practice
Research Datalink. Clin. Rheumatol. 37, 2103–2111. doi:10.1007/s10067-018-4182-3

Silva, I., Teixeira, G., Bertão, M., Almeida, R., Mansilha, A., and Vasconcelos, C.
(2016). Raynaud phenomenon. Rev. Vasc. Med. 4, 9–16. doi:10.1016/j.rvm.2016.03.001

Spencer-Green, G. (1998). Outcomes in primary Raynaud phenomenon: A meta-
analysis of the frequency, rates, and predictors of transition to secondary diseases.
Archives Intern. Med. 158 (6), 595–600. doi:10.1001/archinte.158.6.595

SRUK, (2023). Sruk. https://www.sruk.co.uk/raynauds/.

Subcommittee for Scleroderma Criteria of the American Rheumatism Association
Diagnostic and Therapeutic Criteria Committee, (1980). Preliminary criteria for the
classification of systemic sclerosis (scleroderma). Subcommittee for scleroderma criteria
of the American Rheumatism Association Diagnostic and Therapeutic Criteria
Committee. Arthritis Rheum. 23, 581–590. doi:10.1002/art.1780230510

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., et al. (2015). “Going
deeper with convolutions,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 1–9. Boston, MA, United States.

Tan, M., Chen, B., Pang, R., Vasudevan, V., Sandler, M., Howard, A., et al. (2019).
“Mnasnet: platform-aware neural architecture search for mobile,” in Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, 2820–2828. Long
Beach, CA, USA.

Tan, M., and Le, Q. (2019). “Efficientnet: rethinking model scaling for convolutional
neural networks,” in International conference on machine learning, 6105–6114. Long
Beach, CA, USA,.

Tian, Y., Zhang, Y., and Zhang, H. (2023). Recent advances in stochastic gradient
descent in deep learning. Mathematics 11 (3), 682. doi:10.3390/math11030682

van den Hoogen, F., Khanna, D., Fransen, J., Johnson, S. R., Baron, M., Tyndall, A.,
et al. (2013). 2013 classification criteria for systemic sclerosis: an American College of
rheumatology/European league against rheumatism collaborative initiative. Arthritis
Rheum. 65 (11), 2737–2747. doi:10.1002/art.38098

Wachowiak, M. P., Wachowiak-Smolíková, R., Johnson, M. J., Hay, D. C., Power,
K. E., and Williams-Bell, F. M. (2018). Quantitative feature analysis of continuous
analytic wavelet transforms of electrocardiography and electromyography.
Philosophical Trans. R. Soc. A Math. Phys. Eng. Sci. 376 (2126), 20170250.
doi:10.1098/rsta.2017.0250

Walker, U. A., Tyndall, A., Czirjak, L., Denton, C., Farge-Bancel, D., Kowal-Bielecka,
O., et al. (2007). Clinical risk assessment of organ manifestations in systemic sclerosis: A
report from the EULAR scleroderma trials and research group database. Ann. Rheum.
Dis. 66 (6), 754–763. doi:10.1136/ard.2006.062901

Frontiers in Physiology frontiersin.org14

Iqbal et al. 10.3389/fphys.2023.1242807

https://doi.org/10.1097/MAJ.0b013e3181eecfad
https://doi.org/10.1097/MAJ.0b013e3181eecfad
https://doi.org/10.1007/s10067-018-4182-3
https://doi.org/10.1016/j.rvm.2016.03.001
https://doi.org/10.1001/archinte.158.6.595
https://www.sruk.co.uk/raynauds/
https://doi.org/10.1002/art.1780230510
https://doi.org/10.3390/math11030682
https://doi.org/10.1002/art.38098
https://doi.org/10.1098/rsta.2017.0250
https://doi.org/10.1136/ard.2006.062901
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2023.1242807

	Open Access  (1)
	fphys-14-1242807 (1)
	Deep learning classification of systemic sclerosis from multi-site photoplethysmography signals
	1 Introduction
	1.1 Background
	1.2 Current methods of SSc diagnosis
	1.3 Recent works

	2 Materials and methods
	2.1 Study participants
	2.2 Multi-site PPG measurements and pre-processing
	2.3 Deep learning classification
	2.4 Comparator ML method using wavelet time-frequency classification
	2.5 Statistical analysis

	3 Results
	4 Discussion
	5 Summary
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	References



