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6 Abstract 

Introduction: Whilst there is evidence on agreement, it is unknown whether commercial wearables 

can be used as surrogates for research grade devices when investigating links with markers of 

cardiometabolic risk. Therefore, the aim of this study was to investigate if data from a commercial 

wearable device could be used to assess associations between behaviour and cardiometabolic risk 

markers, compared to physical activity from a research grade monitor. 

Methods: Forty-five adults concurrently wore a wrist-worn Fitbit Charge 2 and a waist-worn ActiGraph 

wGT3X-BT during waking hours over 7 consecutive days. Log-linear regression models were fitted, 

and predictive fit via a 1-out cross-validation was performed for each device between behavioural 

(steps, light and moderate-to-vigorous physical activity) and cardiometabolic variables (body mass 

index [BMI], weight, body fat %, systolic and diastolic blood pressure, glycated haemoglobin, grip 

strength, estimated maximal oxygen uptake and waist circumference). 

Results: Overall, step count was the most consistent predictor of cardiometabolic risk factors, with 

negative associations across both Fitbit and ActiGraph devices for BMI (-0.017 vs. -0.020, p<0.01), 

weight (-0.014 vs. -0.017, p<0.05), body fat % (-0.021 vs. -0.022, p<0.01) and waist circumference (-

0.013 vs. -0.015, p<0.01). Neither device was found to provide a consistently better prediction across 

all included cardiometabolic risk markers. 

Conclusions: Step count data from a commercial grade wearable device showed similar associations 

and predictive relationships with cardiometabolic risk markers compared to a research-grade 

wearable device, providing preliminary support for their use in health research. 

Words: 239 

Keywords: Commercial wearables, step count, cardiometabolic risk markers 
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36 1. Introduction 

In behavioural measurement, a diverse range of methods exist that estimate physical behaviours 

ranging from self-reported questionnaires to wearable devices (Esliger et al., 2017). Wearables can 

further be split in two broad categories of research-grade and commercial devices, yet the cost and 

feasibility of deploying research-grade wearables often prevents them from being used within large 

studies. With nearly two in five (38%) individuals aged 35-54 in the United Kingdom reporting owning 

a smart watch or wearable fitness tracker (OFCOM, 2021), an opportunity exists for capturing organic 

data about physical behaviours over multiple weeks or months (Pontin et al., 2021). This is an exciting 

proposition given the potential for population surveillance and health status risk profiling prediction on 

a large scale (Strain et al., 2019). 

Epidemiological evidence has demonstrated that being physically active is associated with reduced 

risks of developing several diseases and all-cause mortality, and generally having a more favourable 

cardiometabolic risk factor profile (Chastin et al., 2021; Hajna et al., 2018; Huang et al., 2020; 

Janssen et al., 2020; Warburton et al., 2006). However, there are few studies investigating the 

associations between physical activity and cardiometabolic variables using data captured by 

wearables, rather than data from research grade devices or questionnaires. Using step and intensity-

based metrics from a wearable device, positive relationships have been shown with high-density 

lipoprotein (HDL), body mass index (BMI) and waist circumference (Rykov et al., 2020). Having a 

higher resting heart rate and a greater sleep efficiency has also been associated with a lower BMI and 

waist circumference (Lim et al., 2018; Teo et al., 2019). Despite the potential link between wearable 

metrics and cardiometabolic variables, the results are not compared to a ground truth measure (a 

research-grade device). 

If models derived from commercial devices have similar model parameters to those derived from 

research grade devices, wearable data has the potential in being used more commonly in larger 

studies concentrating on health and physical behaviours. The aim of this study was therefore to 

investigate if data from a commercial wearable device could be used to assess associations between 

behaviour and cardiometabolic risk markers, compared to physical activity derived from a research 

grade monitor. 
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68 1. Methods 

69 2.1 Study setting and ethics 

This study was a secondary data analyses using data that were obtained as part of the Sensing 

71 Interstitial Glucose to Nudge Active Lifestyle (SIGNAL) interventional trial (Whelan et al., 2017, 2021). 

72 Data were collected between July and October 2017 and ethical approval was provided from 

73 Loughborough University Ethics Advisory Committee (R17-P049). 

74 2.2 Participants and procedure 

Participants were 45 adults (60% female) aged 40 or older, recruited from the community in 

76 Leicestershire and classified with a moderate-to-high risk of developing type 2 diabetes using the 

77 Leicester Risk Assessment Tool (Gray et al., 2010). Participants also had a compatible Android 

78 smartphone to facilitate participation due to restrictions in glucose monitoring compatibility at the time. 

79 Written informed consent was obtained from all participants prior to taking part. Participants wore both 

a research-grade device and commercial wearable device during the baseline phase of the study. 

81 

82 2.3 Measurements 

83 2.3.1 Physical behaviours 

84 Participants were requested to wear a wrist-worn Fitbit Charge 2 (Fitbit, San Francisco, USA) and a 

waist-worn ActiGraph wGT3X-BT (ActiGraph, Pensacola, USA) during waking hours over 7 

86 consecutive days. 

87 

88 The Fitbit was deployed during an in-person appointment on the non-dominant wrist and participants 

89 were provided with study account credentials to sync their data. This enabled the research team to 

access participant data and check syncing adherence via Fitabase (Small Steps Labs LLC, San 

91 Diego, USA). Several day level movement behaviour variables from the Fitbit were obtained: step 

92 count and minutes spent within sedentary, lightly active (<3 metabolic equivalents [METs]), fairly 

93 active (3-5.9 METs) and very active intensities (≥6 METs) (Van Blarigan et al., 2017). For this study, 

94 the fairly active and very active intensities were collapsed to derive the more commonly used, and 

physiologically relevant, moderate to vigorous physical activity (MVPA) intensity category. A step 

96 threshold per day of ≥1500 steps/day was used as a valid day criteria in line with previous studies 

97 (Chu et al., 2017; Kingsnorth et al., 2021; Mikkelsen et al., 2020; Tudor-Locke et al., 2015). Day level 

98 summaries were exported for each participant. In line with other studies that have used wearable data 

99 from Fitbit devices, sedentary time was not included due to contamination by non-wear time 

(Kingsnorth et al., 2021). 

101 

102 Using an elasticated, nylon waist belt, the ActiGraph device was deployed over the right hip 

103 (midclavicular line), and devices were set to record data at 100 Hz using ActiLife (ActiGraph, 

104 Pensacola, USA). Data files were integrated into 60 second epoch .agd files and processed using 

KineSoft (Kinesoft v3.3.80, Loughborough, UK). A valid day was defined as 600 minutes of count data 
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106 per day and non-wear was defined as 60 minutes of consecutive zero values, with allowance of up to 

107 2 minutes of interruptions (Troiano et al., 2008). The intensity of physical activity was defined with the 

108 following cut points: light activity (100-2019 cpm) and MVPA (≥2020 cpm) (Troiano et al., 2008). 

109 

2.3.2 Cardiometabolic risk markers 

111 During the initial visit of the SIGNAL study, commonly measured cardiometabolic risk markers were 

112 measured by a member of the study team. Height, weight, and body composition via bioelectrical 

113 impedance (i.e., percent body fat and lean mass) were measured using a stadiometer (Seca 213, 

114 Seca, Germany) and Tanita body analyser scales (MC 780 MA, Tanita, Japan), respectively. Body 

mass index (BMI) was calculated and categorised into underweight (<18.5 kg/m2), healthy weight 

116 (18.5-24.9 kg/m2), overweight (25-29.9 kg/m2) and obese (>30 kg/m2) (National Health Service, 

117 2019b). 

118 

119 Waist circumference (WC) was measured using the average of two measurements at the midpoint 

between the lowest rib and the top of the iliac crest (World Health Organization, 2011b). Blood 

121 pressure (systolic and diastolic blood pressure herein referred to as SBP & DBP) was measured 

122 using an oscillometric device after 10 minutes of seated rest (Omron 705IT, Omron, UK), and the 

123 combined highest value from both left and right grip strength measurements (Takeii analogue 

124 dynamometer, Takei, Japan) were used. A point of care device (Afinion AS100 Analyser, Alere, USA) 

measured glycated haemoglobin (HbA1c) levels with results classified as normoglycemic (<6.0%) or 

126 at risk (6.0-6.4%) (World Health Organization, 2011a). The submaximal modified Canadian Aerobic 

127 Fitness Test (mCAFT) estimated maximal oxygen consumption (VO2max) (Weller et al., 1993). 

128 

129 2.4 Statistical analyses 

Multi-level modelling was conducted to ascertain if there were statistically significant differences 

131 between steps, light and MVPA between devices. Then, to test the basic assumption that the selected 

132 cardiometabolic risk markers were statistically significantly associated with standard outputs on both 

133 devices, respective separate log-linear regression models were fitted to each of the markers for 

134 average daily steps, minutes of light activity and minutes of MVPA for each device. Models were 

adjusted for gender, age and ethnicity (white British vs. other) and assumptions were checked visually 

136 via diagnostic plots. Additionally, to establish whether the relationships between behavioural variables 

137 and each device were statistically significantly different between devices, the partial correlation of 

138 inputs and outputs were evaluated after adjustment for gender, age and ethnicity and bootstrap tested 

139 (Thulin, 2021). 

141 A 1-out cross-validation was also performed for each model to understand how well each behavioural 

142 variable predicts each cardiometabolic marker (or predictive fit), and the resulting mean error (ME) 

143 and RMSE for the differences between observed and predicted values were calculated. The RMSE 

144 indicates how accurate the model is with smaller values corresponding to better predictive model. In 
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addition to single-input models and to understand the combined effect of all device variables together, 

multi-input models were fitted and root mean squared errors (RMSEs) compared. 

Finally, to examine which behavioural variable across both devices best explain the association with 

the specific cardiometabolic risk markers (or explanatory fit), the proportion of variation explained by 

each of the models (R-squared) was reported. Akaike's information criterion corrected for small 

samples (AICc) was also calculated (Akaike, 1992; Hurvich & Tsai, 1989) with a smaller value of AIC 

corresponding to a better model (the best model for each output is calculated by ∆𝐴𝐼𝐶𝑐 = 𝐴𝐼𝐶𝑐 − 

𝐴𝐼𝐶𝑐𝑚𝑖𝑛 and thus has a ∆AIC value of 0), and a difference of at least 3 is considered statistically 

significant (Burnham et al., 2011). All analyses were conducted within R version 4.0.5 (R Foundation 

for Statistical Computing, Vienna, Austria). 



   

  

        

         

     

    

   

  

 

    

    

    

        

        

    

        

         

        

        

    

    

    

        

        

     

    

 
   

    

     

        

        

         

         

     

        

          

         

         

    

 
 

  

156 2. Results 

157 3.1 Descriptive statistics 

158 Briefly, most participants had normoglycemic glucose profiles (93%), were overweight or living with 

159 obesity (88.9%) and met the UK national guidelines for physical activity (based on MVPA per day, 

160 Table 1). The number of valid days was high for both devices (6.6 days and 6.9 days for the 

161 ActiGraph and Fitbit, respectively) Participants conducted on average 6905 and 8593 steps per day 

162 as measured by the ActiGraph and Fitbit, respectively. 

163 

Table 1. Characteristics of the study sample 

n Mean (%) SD 

Age (years) 45 56.0 8.7 

Sex 

Female 27 60 -

Male 18 40 -

Body mass index (kg/m2) 31.6 6.9 

Underweight (<18.5) 0 0 -

Healthy weight (18.5-24.9) 5 11 -

Overweight (25-29.9) 17 38 -

Obese (>30) 23 51 -

Weight (kg) 45 89.6 19.7 

Body fat (%) 45 36.4 10.3 

HbA1c (%) 45 5.6 0.3 

Normoglycemic (<6.0%) 42 - -

At risk (6.0%–6.4%) 3 - -

Systolic blood pressure (mm Hg) 45 132.0 15.8 

Waist circumference (cm) 45 101.5 14.8 

Estimated maximal oxygen uptake 
32 36.7 6.7 

(ml/kg/min) 

Grip strength (kg) 45 69.1 22.2 

ActiGraph (waist-worn) 

Number of valid days 45 6.6 0.7 

Steps per valid day 45 6905 3776 

Light activity (mins) per valid day 45 288.2 83.4 

MVPA (mins) per valid day 45 33.1 28.4 

Fitbit (wrist-worn) 

Number of valid days 45 6.9 0.3 

Steps per valid day 45 8593 4543 

Lightly active (mins) per valid day 45 231.8 72.5 

MVPA (mins) per valid day 45 40.2 42.1 

Notes: abbreviations (MVPA: moderate to vigorous physical activity, SD: standard 
deviation, min: minimum, max: maximum). 

164 
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165 2.2 Movement behaviour and cardiometabolic comparisons 

166 Results of the multi-level modelling to assess the differences of behavioural variables between 

167 devices are displayed within Table 2. The Fitbit recorded statistically significantly greater steps and 

168 fewer light minutes per day (p < 0.001), but there were no statistical differences when evaluating 

169 minutes of MVPA. Whilst steps from both devices had a correlation of r = 0.93, agreement varied by a 

170 large amount within individuals (65%). 

171 

Table 2. Comparisons between movement variables calculated via multi-level modelling. 

Fixed effects 

Mean 
difference 
(AG-FB) 

SE p r 

Steps -1727.1 264.2 < 0.001 0.93 

Light (mins) 50.48 6.8 < 0.001 0.78 

MVPA (mins) -6.83 4.17 0.110 0.67 

Random effects 

Within individual 
variance (% of total) 

65% 

34% 

31% 

Notes: The mean difference is interpretated a the ActiGraph minus Fitbit and the within individual 
variance has been calculated as a percent of the total variance. Abbreviations: SE (standard error), 
p (probability), r (Pearson’s correlation coefficient), MVPA (moderate to vigorous physical activity). 

172 

173 Linear regression analyses confirmed that cardiometabolic risk markers were significantly associated 

174 with both devices (Table 3). Overall, step count was the most consistent predictor of cardiometabolic 

175 risk factors, with negative associations with BMI, weight, body fat and waist circumference for both the 

176 Fitbit and the ActiGraph. Despite coefficients from the ActiGraph being generally stronger, the 

177 magnitude of the logged coefficients were mostly similar between devices. Putting the coefficients into 

178 context, for every 1000 increase in step count BMI could reduce by 1.7-2.0% (keeping everything else 

179 constant). Associations for light activity and MVPA were more mixed as some cardiometabolic risk 

180 factors were related to different intensities for the Fitbit and ActiGraph monitors. Finally, analysis of 

181 partial bivariate correlations also confirmed that behavioural associations did not differ between the 

182 two devices (Supplementary Table 1). 

183 

Table 3. Estimated effects and respective standard errors (in brackets) of physical activity inputs on 
cardiometabolic risk markers, adjusting for sex, age and ethnicity. 

INPUTS 

OUTPUTS 

Steps (1000s) 

FB AG 

Light (mins) 

FB AG 

MVPA

FB 

(mins) 

AG 

BMI 
0.017 

(0.006) 

0.020 

(0.007) 

-0.001 

(0.0004) 

-0.001 

(0.0003) 

-0.001 

(0.001) 

-0.002 

(0.001) 

Weight 
-0.014 

(0.006) 

-0.017 

(0.006) 

-0.001 

(0.0003) 

-0.001 

(0.0003) 

-0.001 

(0.001) 

-0.002 

(0.001) 

Body fat 
0.021 

(0.005) 

0.022 

(0.006) 

0.001 

(0.0003) 

-0.001 

(0.0003) 

0.002 

(0.001) 

-0.002 

(0.001) 



 
      

      

 
      

      

 
      

      

 
      

      

 

      

      

 
      

      

       

     
 

  
   

   
   

 
 

  
  

       

     

   

        

     

     

  

  

     
    

   

  

        

         

 
        

        

 
        

        

 
        

        

 
        

        

         

- -

- -

-

SBP 
0.007 0.009 0.0001 0.0001 0.001 0.001 

(0.004) (0.005) (0.0003) (0.0002) (0.001) (0.001) 

DBP 
0.008 0.010 0.0002 0.0001 0.001 0.002 

(0.004) (0.004) (0.0002) (0.0002) (0.001) (0.001) 

HbA1c 
-0.002 -0.002 -0.0001 0.000 -0.0002 -0.0001 

(0.002) (0.002) (0.0001) (0.0001) (0.0003) (0.0003) 

Grip strength 
0.009 0.009 0.001 0.001 -0.001 0.001 

(0.007) (0.008) (0.0004) (0.0003) (0.001) (0.001) 

VO2max 

0.012 0.014 -0.0003 -0.0004 0.002 0.002 

(0.005) (0.006) (0.0004) (0.0003) (0.001) (0.001) 

WC 
0.013 0.015 -0.001 -0.001 -0.001 -0.002 

(0.004) (0.004) (0.0002) (0.0002) (0.001) (0.001) 

Notes: The darker cell background means the effects were statistically significantly different from 
zero at 1% significance level. The lighter cells background corresponds to statistical significance of 
5%, and the white cells are for non-statistically significant effects. Because the response variables 
were logged, the interpretation is on the log-scale. For example, other things being equal, an extra 
1000 steps a day as measured by Fitbit is associated with an average 1.7% lower BMI. 
Abbreviations: MVPA (moderate to vigorous physical activity), FB (Fitbit), AG (ActiGraph), BMI 
(body mass index), SBP (systolic blood pressure), DBP (diastolic blood pressure), VO2max 

(estimated maximal oxygen uptake), WC (waist circumference). Results rounded to 3 decimal 
places where possible. 

184 

185 Predictive fit, i.e., the extent to which cardiometabolic risk markers can be predicted by physical 

186 activity as measured by devices, is displayed within Table 4. For single input models, the best 

187 predictive root mean squared error (RMSE) ranged from 0.0639 for HbA1c (i.e., a 95% predictive 

188 interval of ± 6.6%) to 0.1853 (i.e., a 95% predictive interval of ± 20%) for grip strength. No device was 

189 found to provide a consistently better prediction across the cardiometabolic risk markers. Combining 

190 the inputs into one model generally resulted in a smaller RMSE with the exception of DBP, SBP and 

191 HBA1c. 

192 

Table 4. Comparing how well each behavioural variable predicts each cardiometabolic marker (or 
predictive fit) in terms of mean error (ME) and root mean squared error (RMSE, in brackets below) 
for the models with individual Fitbit and ActiGraph inputs and all inputs simultaneously. 

INPUTS 

OUTPUTS 

Steps (1000s) 

FB AG 

Light (mins) 

FB AG 

MVPA 

FB 

(mins) 

AG 

All 

FB 

All 

AG 

BMI 
-0.001 

(0.175) 

-0.002 

(0.178) 

0.001 

(0.173) 

0.002 

(0.182) 

0.001 

(0.186) 

-0.001 

(0.183) 

0.001 

(0.169) 

0.002 

(0.120) 

Weight 
-0.0003 

(0.162) 

0.001 

(0.161) 

0.001 

(0.165) 

0.002 

(0.170) 

0.001 

(0.171) 

-0.0001 

(0.165) 

-0.002 

(0.177) 

0.003 

(0.074) 

Body fat 
0.002 

(0.152) 

0.001 

(0.157) 

0.002 

(0.166) 

0.003 

(0.175) 

0.003 

(0.169) 

0.004 

(0.175) 

0.004 

(0.165) 

0.002 

(0.076) 

SBP 
0.001 

(0.125) 

0.001 

(0.123) 

0.002 

(0.130) 

0.001 

(0.130) 

0.001 

(0.125) 

0.001 

(0.124) 

0.002 

(0.166) 

0.006 

(0.206) 

DBP 0.001 0.002 0.002 0.001 0.001 0.002 0.007 -0.001 
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(0.117) (0.116) (0.123) (0.124) (0.121) (0.115) (0.159) (0.192) 

HbA1c 
-0.001 

(0.066) 

-0.001 

(0.067) 

0.0001 

(0.064) 

0.001 

(0.066) 

-0.0004 

(0.067) 

-0.001 

(0.067) 

0.004 

(0.146) 

0.014 

(0.168) 

Grip 
strength 

0.003 

(0.197) 

0.004 

(0.199) 

0.0001 

(0.195) 

0.0003 

(0.185) 

0.003 

(0.197) 

0.002 

(0.199) 

0.001 

(0.132) 

0.010 

(0.152) 

VO2max 

-0.002 

(0.125) 

0.001 

(0.122) 

-0.003 

(0.146) 

-0.002 

(0.143) 

-0.002 

(0.126) 

0.0001 

(0.123) 

-0.0004 

(0.130) 

0.005 

(0.115) 

0.002 0.001 0.002 0.003 0.002 0.002 0.005 0.005 
WC 

(0.112) (0.113) (0.118) (0.121) (0.122) (0.119) (0.122) (0.115) 

Notes: Mean errors (MEs) closer to zero indicate less bias and smaller root mean squared errors 
(RMSEs) indicate higher precision of prediction. The shaded cells indicate the models with the 
lowest RMSE values for each output. Note, that since the response was logged, the results are to 
be interpreted on a logarithmic scale. Thus, for example, predictions of systolic blood pressure 
based on FB steps alone will on average be off by 0.09%, and 95% of them will fall within 26.6% of 
the true value. Abbreviations: MVPA (moderate to vigorous physical activity), FB (Fitbit), AG 
(ActiGraph), BMI (body mass index), SBP (systolic blood pressure), DBP (diastolic blood pressure), 
VO2max (estimated maximal oxygen uptake), WC (waist circumference). The darker cell background 
highlights the best RMSE pairing for each cardiometabolic marker, for both individual and grouped 
input models. Results rounded to 3 decimal places where possible. 

193 

194 

195 Analyses to understand the extent to which each behavioural variable from both devices explains the 

196 specific cardiometabolic risk markers (explanatory fit) were also conducted (Supplementary Table 2). 

197 This showed that whilst the number of steps as recorded by ActiGraph was the best explanatory 

198 variable for the majority of cardiometabolic variables including BMI, weight, SBP, V02max and WC, 

199 Fitbit models were not statistically significantly worse for those cardiometabolic risk markers (AICc < 

200 3). 



   

   

    

     

       

      

     

     

   

  

      

      

       

    

        

     

         

      

    

    

   

   

    

   

  

       

    

    

    

    

     

   

    

     

 

     

   

     

       

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

201 3. Discussion 

This study confirms that when using step count data derived from wearable devices to predict 

cardiometabolic risk markers, relationships are similar irrespective of whether a research grade or a 

commercial grade device was been used. Whilst data from the waist-worn ActiGraph produced 

stronger estimates and better explanatory fit, models predicting cardiometabolic risk markers from 

step data were not statistically different between devices (BMI, weight, body fat %, SBP, DBP, VO2max 

and WC AICc differences < 3). These results indicate that the predictive ability of a commercial wrist-

worn wearable device was similar, and provides a rationale for their use in scenarios that research 

grade devices are typically used. 

Our finding that body composition variables are associated with movement behaviours derived from 

wearable devices is consistent with the existing literature (Lim et al., 2018; Rykov et al., 2020). 

However, in contrast to the current study, Rykov et al. (2020) demonstrated that only blood based 

markers (in their case HDL and Triglycerides) were significantly associated with variables derived 

from steps and not body composition. There is a lack of supporting literature within this area, likely 

due to the unpractical deployment of two devices into health screening interventions. Despite this, the 

significant associations shown in this study point to the potential beneficial application of commercial 

wearables within the health and wellbeing sector. Yet, the proprietary nature of how commercial 

wearable devices calculate physical activity metrics and the variation in accelerometric signal 

transformation into behavioural outcome variables are key concerns for using wearables within health 

research (Troiano et al., 2020). Within this study, steps were shown to be one of the better input 

variables for explanatory fit and although minutes of behaviour are often used to compare national 

guideline compliance, steps are often the most easily understood and widely used metric and could 

suffer from less proprietary processing. 

Population level surveillance of physical activity using wearable devices would provide an 

understanding to the level of compliance with national guidelines but there are significant barriers for 

wide scale adoption. Research grade devices are often costly and are not designed for longitudinal 

monitoring unlike consumer developed monitors. The aim of this study was to assess if the outputs 

from commercial devices are comparable to a research grade device, and we have shown that for 

some cardiometabolic variables coefficients were similar. Based on our models, for every 1000 

increase in steps as measured by the Fitbit could result in an average 1.7% decrease in body mass 

index or 1.4% decrease in body weight. With consumer wearable interventions on average increasing 

physical activity by 2,123 steps per day (Franssen et al., 2020), if an individual with the average BMI 

of the sample (31.82 kg/m2) did 2500 more steps per day, BMI could drop to by 1.35 kg/m2 to 30.46 

kg/m2. Therefore, linking metrics provided by commercial wearable devices into existing healthcare 

pathways such as patient medical records could provide the necessary platform for prevention-

focused activities, and offer an opportunity for important conversations about health and wellbeing 

within routine interactions with health professionals. The integration of digital health technologies 
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245

250

255

260

265

270

within healthcare systems is on the agenda of the UK government to support future disease 

241 prevention pathways (National Health Service, 2019a; Taskforce on Innovation, 2021) but significant 

242 concerns include representativeness, data ownership and longevity of devices (Troiano et al., 2020). 

243 

244 As only one of the few studies that have investigated the link between physical activity behaviours 

measured by wearable devices and cardiometabolic risk markers, there is a need for more research 

246 to investigate the opportunity that wearable devices hold for healthcare. This is highlighted by 

247 variability in the literature that suggests wearable interventions can provide between -0.4 to -4.4 kg 

248 and 0.08 to -3.43 kg/m2 changes in body weight and BMI, respectively (McDonough et al., 2021). 

249 Greater population level data are therefore required to understand if the associations presented here 

under or overestimate the relationship with body composition variables, and if larger datasets can 

251 explain associations with other important cardiometabolic risk markers. 

252 

253 Although this study is novel and to our knowledge the first to compare behavioural estimates from two 

254 devices to the same cardiometabolic risk markers, the sample size is small which limits the 

generalizability of the data. However, our work does offer proof of concept insights into the potential 

256 use of commercial wearables as a substitute for research grade devices. The exclusion of wear time 

257 from the statistical models was a limitation as it prevented us from determining if volumetric 

258 discrepancies were device or wear related. This approach was taken due to a lack of standardised 

259 methods for deciphering wear time and sedentary time within Fitbit devices. Additionally, the 

sedentary time contamination prevented the use of modelling techniques that accounts for the co-

261 dependence of behaviours (compositional data analyses) and should be explored in future datasets 

262 that has dual deployment of devices. The difference in wear sites (waist and wrist) between devices 

263 must also be acknowledged, which could explain some of the variation in models in intensity 

264 variables. Our study also focused on a device that at the time was popular and available but now is 

not on the commercial market due to the release of more recent models. However, this approach 

266 could and should be taken with a larger dataset and with the latest emerging devices. 

267 

268 4. Conclusion 

269 Regardless of whether step count data from a research grade or commercial grade device was used, 

similar associations were found for BMI, weight, body fat % and WC. Overall, these results suggest 

271 that the predictive and explanatory ability of step count data from both devices with selected 

272 cardiometabolic risk markers is similar, which may offer additional opportunities for health research 

273 from commercial wearables. Further work exploring the dual deployment of both types of devices are 

274 required to confirm these findings. 



   

   

    

  

  

     
     

  

  

  
 

  
 

  
 

       

 
      

   

 
      

   

 
      

   

 
      

   

 
      

   

 
      

   

 

      

   

 

      

   

 
      

   

    

 
     

  
 

   
 

  

  

  

  

  

  

  

275 Supplementary material 

276 Analysis of partial bivariate correlations revealed that behavioural associations did not differ between 

277 devices as Fitbit inputs were not statistically significantly different from those for AG inputs 

278 (Supplementary Table 1). 

279 

Supplementary Table 1. Partial correlations (after adjusting for demographic variables) between 
individual inputs and outputs to test the hypothesis that the differences between partial correlations 
for Fitbit and ActiGraph inputs are statistically significant. 

INPUTS 

OUTPUTS 

Steps (1000s) 

FB AG 

Light (mins) 

FB AG 

MV

FB 

PA (mins) 

AG 

BMI 
-0.40 

(0.49) 

-0.42 -0.38 

(0.38) 

-0.30 -0.19 

(0.24) 

-0.32 

Weight 
-0.36 

(0.37) 

-0.39 -0.31 

(0.65) 

-0.25 -0.18 

(0.18) 

-0.32 

Body fat 
-0.56 

(0.88) 

-0.54 -0.42 

(0.31) 

-0.32 -0.39 

(0.83) 

-0.36 

SBP 
0.26 

(0.80) 

0.28 0.07 

(0.97) 

0.05 0.26 

(0.95) 

0.27 

DBP 
0.33 

(0.75) 

0.34 0.13 

(0.69) 

0.05 0.22 

(0.09) 

0.38 

HbA1c 
-0.14 

(0.77) 

-0.10 -0.16 

(0.70) 

-0.06 -0.12 

(0.86) 

-0.07 

Grip 
strength 

0.21 

(0.75) 

0.19 0.22 

(0.17) 

0.36 0.20 

(0.45) 

0.09 

VO2max 

0.36 

(0.32) 

0.41 -0.14 

(0.56) 

-0.23 0.35 

(0.70) 

0.39 

WC 
-0.47 

(0.64) 

-0.48 -0.36 

(0.72) 

-0.33 -0.30 

(0.34) 

-0.38 

Notes: The bootstrapped p-values (in brackets) are for testing the hypothesis that the differences 
between partial correlations for Fitbit input and for ActiGraph inputs are statistically significant. 
Abbreviations: MVPA (moderate to vigorous physical activity), FB (Fitbit), AG (ActiGraph), BMI 
(body mass index), SBP (systolic blood pressure), DBP (diastolic blood pressure), VO2max 

(estimated maximal oxygen uptake), WC (waist circumference). Results rounded to 2 decimal 
places. 
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287 

288 The number of steps as recorded by ActiGraph was the best explanatory variable for BMI (R2 = 0.42), 

289 weight (R2 = 0.59), WC (R2=0.58), SBP (R2=0.25) and V02max (R2=0.66). For body fat, DBP, and 

290 HBA1c, the best explanatory variables were the number of steps as recorded by FitBit (R2=0.81), the 

291 MVPA as recorded by ActiGraph (R2=0.46), and the minutes of light activity as recorded by FitBit 

292 (R2=0.10) respectively. However, none of those were statistically significantly worse than the number 

293 of steps as recorded by ActiGraph (∆AICc=1.9, ∆AICc=1.5, and ∆AICc=0.8 respectively). The only 

294 cardiometabolic marker for which the model with the number of steps as recorded by ActiGraph as an 

295 explanatory variable was statistically significantly worse than the best model (the minutes of light 

296 activity as recorded by ActiGraph, R2=0.75) was Grip strength (∆AICc=4.8). 

297 

Supplementary Table 2. The extent to which each behavioural variable, as measured by both 
devices, explains specific cardiometabolic risk markers (explanatory fit) expressed via corrected 
Akaike Information Criterion (AICc) and R-squared (in brackets). 

INPUTS 

Steps (1000s) Light (mins) MVPA (mins) 

OUTPUTS FB AG FB AG FB AG 

BMI 
0.9 0.0 1.3 4.6 7.1 4.0 

(0.41) (0.42) (0.40) (0.35) (0.32) (0.36) 

Weight 
1.2 0.0 3.0 4.6 6.1 2.8 

(0.58) (0.59) (0.56) (0.54) (0.53) (0.56) 

Body fat 
0.0 1.9 8.2 12.4 9.4 11.1 

(0.81) (0.81) (0.78) (0.75) (0.77) (0.76) 

SBP 
0.6 0.0 3.7 3.7 0.6 0.4 

(0.24) (0.25) (0.19) (0.19) (0.24) (0.25) 

DBP 
2.0 1.5 6.4 7.1 4.8 0.0 

(0.43) (0.44) (0.38) (0.37) (0.40) (0.46) 

HbA1c 
0.3 0.8 0.0 1.1 0.5 1.0 

(0.09) (0.08) (0.10) (0.08) (0.09) (0.08) 

Grip 
strength 

4.4 4.8 4.1 0.0 4.6 6.1 

(0.73) (0.72) (0.73) (0.75) (0.73) (0.72) 

VO2max 

1.2 0.0 5.9 4.9 1.4 0.2 

(0.64) (0.66) (0.59) (0.60) (0.64) (0.66) 

WC 
0.6 0.0 5.5 7.0 7.8 5.3 

(0.57) (0.58) (0.52) (0.50) (0.50) (0.52) 

Notes: For the ease of comparison, for each output, the difference between the AICc for the model 
with each specified input and the best model for that output is shown. The best model for each 
output thus has a ∆AICc value of 0 (highlighted by the darker cell background). AICc allows for 
statistical comparison of non-nested models with the same input with the difference of at least 3 is 
required for statistical significance. Abbreviations: MVPA (moderate to vigorous physical activity), 
FB (Fitbit), AG (ActiGraph), BMI (body mass index), SBP (systolic blood pressure), DBP (diastolic 
blood pressure), VO2max (estimated maximal oxygen uptake), WC (waist circumference). R-squared 
rounded to 2 decimal places. 
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