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ABSTRACT 

Hand measurement is vital for hand-centric applications such 
as glove design, immobilization design, protective gear de-
sign, to name a few. Vision-based methods have been pre-
viously proposed but are limited in their ability to only ex-
tract hand dimensions in a static and standardized posture 
(open-palm hand). However, dynamic hand measurements 
should be considered when designing these wearable prod-
ucts since the interaction between hands and products can-
not be ignored. Unfortunately, none of the existing methods 
are designed for measuring dynamic hands. To address this 
problem, we propose a user-friendly and fast method dubbed 
Measure4DHand, which automatically extracts dynamic hand 
measurements from a sequence of depth images captured by 
a single depth camera. Firstly, the ten dimensions of the hand 
are defned. Secondly, a deep neural network is developed 
to predict landmark sequences for the ten dimensions from 
partial point cloud sequences. Finally, a method is designed 
to calculate dimension values from landmark sequences. A 
novel synthetic dataset consisting of 234K hands in various 
shapes and poses, along with their corresponding ground truth 
landmarks, is proposed for training the proposed methods. 
The experiment based on real-world data captured by a Kinect 
illustrates the evolution of the ten dimensions during hand 
movement, while the mean ranges of variation are also re-
ported, providing valuable information for the hand wearable 
product design. (The video abstract is available here.) 

Index Terms— hand measurement, point cloud process-
ing, dynamic hand, landmark, partial scan 

1. INTRODUCTION 

The advent of 4D scanning technology has propelled dynamic 
anthropometry measurements [1] to the forefront of various 
applications. Although existing methods prioritize analyzing 
dynamic body measurements to ensure the ideal ft and er-
gonomic comfort of clothing products, dynamic hand mea-
surement is under-researched [2, 3]. Dynamic hand mea-

surement values are essential in a multitude of felds, such 
as protective gear [4, 5], glove fabrication [6, 7, 8], hand-
centric entertainment [9, 10], to name a few. Furthermore, 
several studies have demonstrated that different hand postures 
can cause skin deformation, thereby affecting the ft of hand-
centric appliances. Therefore, there is a growing need to com-
prehend how the human hand measurement alters while it is 
moved. Such knowledge could provide important informa-
tion in achieving optimal ftting, comfort, and performance in 
hand-centric wearable product design. 

Traditional hand measurements are manually extracted 
by means of a measuring tape by an experienced anthro-
pometrist. However, it requires subjects to stretch their hands 
and keep still during measurement, which is not suitable for 
static hands in complex postures or dynamic hands. Fur-
thermore, the precision of the measurement highly depends 
on the anthropometrist’s expertise. With the development 
of 3D scanning technology, researchers have proposed the 
automatic extraction of hand measurements from 3D scans 
[11, 12]. However, these methods can only work for the 
static hand in an open-palm pose, which does not refect the 
dynamic interaction between the agonist and antagonist mus-
cles during movement. Moreover, they require a complete 
hand scan as input, which is not always available. Conse-
quently, hand measurement values estimated based on these 
static postures are not suffcient for developing hand-centric 
appliances. Given that the hand is in constant motion, inter-
acting with the environment, the designed hand appliances 
should not be designed as rigid shells that restrict hand move-
ment. This realization has prompted the research community 
to turn their attention to the technological evolution from 
3D to 4D scanning systems in recent years. Klepser et al 
[2, ?] revealed that the proportions of the human body vary 
depending on whether the subject is in a dynamic or static 
state, and they also investigated how the range of dynamic 
measurements affected the ft and comfort of garments worn 
by athletic individuals. However, the study overlooked the 
deformation of the hand shape during movement. The human 
hand is a highly intricate structure comprising 34 muscles 
and 27 bones, accounting for a quarter of the bones in the
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dynamic hand measurements a considerably more complex 
issue. Nasir and Kwan et al[13, 7] found that postural vari-
ation signifcantly affects hand skin deformation. However, 
they only studied three static hand postures: relaxed, grip and 
power grip. 

In this paper, we proposed a novel deep learning-based 
method dubbed Measure4DHand, which enables the extrac-
tion of dynamic hand measurements from 4D partial scans. 
Although leveraging the real-world dynamic hand sequence 
to train the proposed model is the ideal strategy, it is sig-
nifcantly expensive and time-consuming to collect such a 
dataset. Therefore, we trained our model based on synthetic 
single scans but the trained model generalizes well to se-
quences. Specifcally, in the training phase, Measure4DHand 
takes a partial hand point cloud as input and generates a set 
of designed landmarks and their corresponding measurement 
values. While in the testing phase, Measure4DHand di-
rectly consumes partial point cloud sequences and produces 
a sequence of measurement landmarks and corresponding 
measurement values. Unlike previous methods aiming to 
predict the complete shapes from partial scans [14], we strive 
to predict landmarks rather than complete hand shapes. Such 
a strategy enables the network to focus on measurement 
landmark prediction, resulting in better estimations of hand 
measurements. 

The main contributions in this paper can be summarized 
as follows: 

• We proposed, to the best of our knowledge, the frst 
deep learning-based method, dubbed Measure4DHand, 
for automatic extraction of dynamic hand measure-
ments from partial hand point cloud sequences. 

• We proposed a novel large-scale synthetic dataset con-
sisting of 234K hands with a wide variety of hand 
shapes and poses, corresponding ground truth land-
marks, and measurement values. Besides, we also 
collected 5 real hands via Kinect to validate the eff-
cacy of the proposed method. To facilitate the related 
study, we will make the real-world dataset public when 
the paper is published. 

• We tested our proposed method on real scans and illus-
trated the evolution of the ten dimensions during hand 
movement. 

2. PROPOSED METHOD 

2.1. Problem Statement 

The proposed method mainly contains three steps: landmark 
defnition, landmark extraction, and measurement value esti-
mation, as the following is introduced. Given a sequence of 
partial point clouds of a hand X = {Sn}nN 

=1, where Sn = 
n{s ∈ R3|i = 1, 2, ..., In} denotes the set of points with 

In points captured from nth frame and N is the number of 
frames and can be set to an arbitrary number in this study. 

The hand is moving when it is scanned, so the hand poses 
of N frames are a set of coherent movements and the point 
numbers of each Sn can be different. Our target is to devise 
a user-friendly method to automatically extract a sequence 
of hand measurement landmarks Y = {Ln}N and esti-n=1 
mate measurement values Z = {Mn}N from Y , wheren=1 
Ln = {ln ∈ R3|j = 1, 2, ..., J} denotes the set of hand land-j 
marks with J points corresponding to Sn and Mn represents 
the measurement values of Sn . To this end, we frst leverage 
a neural network to learn a mapping M : X 7−→ Y . Then the 
measurement values are estimated by a measurement function 
F : Y 7−→ Z . 

2.2. Proposed Datasets 

2.2.1. Proposed synthetic dataset 
2.2.1.1. Hand model generation 

Generating a large-scale dataset (e.g., 100K samples) by 
scanning and measuring physical subjects is an incredibly 
time-consuming, expensive, and tedious task. To address this 
problem, we proposed a novel synthetic dataset by means of 
the SMPL-X model [15]. SMPL-X is a unifed 3D model 
of the human body that encompasses the body, the face and 
the hand. In this paper, we only focus on the hand part, 
which consists of 778 vertices and 1538 triangles. each hand 
model is controlled by 15 × 3 pose parameters θ and 10 × 1 
shape parameters β. We input thousands of shape and pose 
parameters that are extracted with FrankMocap [16] into the 
SMPL-X model to generate 234K hand meshes with hand 
shape and pose variations, some examples are illustrated in 
the frst column at the top of Fig. 1b. Subsequently, We 
rendered partial scans from the obtained hand models via the 
open-source Blender Sensor [17], as shown in the second 
column at the top of Fig. 1b. The rendered scan of the hand 
is employed as the input to our proposed neural network. 
2.2.1.2. landmark defnition 

To get the measurement values of the hands, it is neces-
sary to defne the measurements in advance. In this study, 
we defned 10 types of measurement: thumb girth, index-IP 
girth, index-DI girth, middle-IP girth, middle-DI girth, ring-
IP girth, ring-DI girth, little-IP girth, little-DI girth and wrist 
girth (DI - the joint between Distal and Intermediate pha-
langes, IP - the joint between Intermediate and Proximal pha-
langes). The last two columns at the top of Fig. 1b shows ex-
amples of the proposed hand models and defned landmarks. 
With the exception of wrist girth, which comprises 16 land-
marks, all other measurements incorporate 10 landmarks. Ad-
ditionally, a fngertip landmark and two fngerroot landmarks 
are preserved for each fnger, totaling 121 landmarks are de-
fned. 
2.2.2. Collected real-world dataset 
The proposed method was trained based on a synthetic dataset 
via a frame-wise manner but should generalize well to the 
real-world partial point cloud sequence. To validate its perfor-
mance, we created a real-world dataset by utilizing a Kinect 
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(a) Overview of the proposed method. Measure4DHand processes a sequence 
of hand partial point clouds frame by frame and outputs measurement values. (b) The proposed synthetic and real-world datasets 

Fig. 1. (a) The architecture of the proposed method. (b) The proposed datasets 

to scan the hand of a subject, as shown at the bottom in Fig. 
1b. The hand performs a closed-loop coherent motion from 
an open palm to a palm grip to a fully open palm, which rep-
resents the maximum range of motion that can be achieved by 
the hand, as illustrated at the bottom in Fig. 1b. 

2.3. Landmark extraction 

2.4. Measurement estimation 

As described in Sec. B(1), the landmarks are selected from 
the vertices of the hand mesh, so the order of landmarks can 
be fxed. The extracted landmarks usually are not on the same 
plane, especially during the movement, which can lead to 
an increase in measurement errors. Therefore, We adopt a 
point-projection method to project all the landmarks onto the 
same plane, as shown in Fig. 2. Let L̂ ⊂ Ln denote then

q
As aforementioned, the proposed neural network consumes {l̂n 

q,k ∈ R3|q 
We frst compute the centroid 

=th dimension, where L̂landmarks of q n
q = 

the partial point cloud and deforms the hand measurement 
landmarks to ft the pose of input accordingly. In the train-
ing phase, the input is a single partial point cloud Sn and the 

1, 2, ..., Q, k = 
of L̂n

q as:µn
q 

n
q 

1, 2, ..., K}. 
and normal vector w 

output is landmarked Ln . In the testing phase, a sequence of 
partial point clouds X is utilized as input, and a sequence of 
anticipated measurement landmarks Y is output. 

The proposed neural network follows the encoder-decoder 
framework, as shown in Fig. 1a. The encoder is designed by 
stacking two simplifed PointNet [18]. The frst PointNet with 
a shared MLP consisting of two hidden layers of low dimen-
sions to convert the coordinates of Sn into point-wise feature 

KX 
ln µq

n =
1 ˆ 

q,k (1)
K 

k=1 

[W n ln n ln n 
q , −, −] = SV D((ˆ 

q,k − µq ) · ((ˆ 
q,k − µq ))

T ) 
(2) 

wq
n = Wq

n[:, −1] 
where SVD is the Singular Value Decomposition that can fnd 
the main dimensions of the data distribution. The normal vec-
tor w is the last column of basis vector W . The ftted plane 
can be represented as: matrix Fn

l , which is further extracted into a global feature Gn
l 

by point-wise max-pooling operation. Following the similar )T (3)q = bn 

as input of the second PointNet with two hidden layers of where b is the distance between the ftted plane and the origi-

n n(w µq qprocessing of the frst PointNet, the combination of G andn
l 

Fn
l 

nal point. The point l̂k can be projected on the ftted plane ashigh dimensions output a high-dimension global feature Gn
h . 

follow: To the end, Gn
l and Gn

h are concatenated, forming the com-
n nln )T(ˆ 

q,k · wq − (wq µ)bined latent vector V n . The decoder with three fully con- l̂ ′
n 

l̂n 
q,k − (4)q,k = 

(wn · wn)wn 
q q qnected layers is responsible for generating the landmarks Ln 

from the combined latent vector V n . In the end, each measurement value can be calculated as fol-
low: 

Original landmarks
Projected landmarks
Fitted plane

KX 
′n ′nn mq = ||l̂ q,k+1 − l̂ q,k||22 (5) 

k=1 

2.5. Loss Functions 

To train the proposed model, the loss function is defned as 
the mean square error: 

JX1 L(L, LGT ) = ||lj − lGT ||22, J = 121 (6)Fig. 2. Illustration of projecting landmarks to the same plane. J j 

j=1 



where L is the predicted measurement landmarks, LGT is the 
ground truth measurement landmarks directly extracted from 
the vertices of hand models. 

Fig. 3. The evolution of each hand measurement along the move-
ment (frames) of a hand. The frst row is partial point clouds cap-
tured by Kinect, while the following rows illustrate variation plots of 
measurement values. 

3. EXPERIMENTAL RESULTS 

The proposed model was trained on the synthetic dataset but 
generalizes well to the unseen real-world partial point cloud 
sequence. We measure the hand of each frame to qualitatively 
and quantitatively analyze the measurement range while it is 
moved. 

3.1. Qualitative evaluation 

Fig. 3 visualizes the evolution of each hand measurement 
along the movement (frames) of a hand. The fgure is use-
ful to illustrate the pattern and the magnitude of contraction 
and expansion of each dimension during movement. As de-
scribed in Sec. B(2), the captured motion performs a closed-
loop coherent motion from an open palm to a palm grip to 
a fully open palm, which constitutes a single cyclic motion. 
As shown in Fig. 3, it can be seen that such motion can lead 
to a clear cyclic variation in measurement values. Specif-
cally, the variation of measurement values for the open palm 
and the fully open palm is a similar trend with slight fuctu-
ation and the measurement values of the fully open palm are 
slightly greater than those of the open palm. While the hand 
postures are during grip movements, the measurement values 
show signifcant fuctuations and are much lower than those 
of the open palm. Additionally, while the fnger-IP and fnger-
DI exhibit similar variations throughout the entire motion, the 

Table 1: Mean range and standard deviations of the ten measure-
ments (Unit:mm) 

Measurements Mean ±St.Dev 

Thumb girth 71.2±3.3 
Index-IP girth 66.5±1.5 
Index-DI girth 52.8±2.5 
Middle-IP girth 67.4±2.2 
Middle-DI girth 55.2±5.4 

Ring-IP girth 66.5±2.7 
Ring-DI girth 51.5 ±4.0 
Little-IP girth 57.2±2.8 
Little-DI girth 47.0±4.8 

Wrist girth 190.3±2.6 

former display more intense fuctuations in comparison to the 
latter. 

3.2. Quantitative evaluation 

For quantifying the magnitude of the variation of each mea-
surement throughout a movement, the mean and standard de-
viation of each dimension is calculated, as shown in Table 1. 
The range represents the maximum value minus the minimum 
value, which is the total variation. Depending on the mo-
tion performed, we can see the variation of nine fnger girths 
ranges from 4.2 cm to 7.5 cm, while the range of wrist girth 
varies from 18.7 cm to 19.3 cm. We also draw an error bar 
to enhance the visualization of the range, as shown in Fig. 
1. Due to the signifcant difference in measurement values 
between the wrist and fngers, the results of the wrist and fn-
gers are presented separately. It clearly shows the variation 
range of joint DI is larger than that of joint IP. 

4. CONCLUSION 

This paper presents a novel user-friendly and fast method for 
extracting dynamic hand measurements automatically. Com-
pared with existing methods, the proposed method can work 
well for static hands in complex postures and dynamic hands. 
Specifcally, it takes partial hand point clouds as input and 
outputs dynamic hand measurement values. A novel synthetic 
dataset consisting of 234K hands with corresponding ground 
truth measurement is generated for training, and a real-world 
dataset consisting of 5 hands has been collected to evaluate 
the proposed method. Experimental results on the real-world 
data illustrate that our method is able to well record the vari-
ation of hand measurement values when the hand is moving. 
It facilitates the analysis of the range of measurement values 
due to skin deformations caused by different postures, provid-
ing valuable information for hand-centric wearable product 
design. 

In the future, we will explore the evolution of fnger length 
and palm region, which are also important information for 
hand hand-centric applications. Moreover, our method relies 
on a neural network approach that processes the depth image 
frame by frame, which may result in measurement fuctuating 
from one frame to the next. This limitation can be mitigated 
by considering the temporal sequence information. 
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