
Data Augmentation for Mathematical Objects
Tereso del Río1, Matthew England1

1Coventry University, UK

Abstract
This paper discusses and evaluates ideas of data balancing and data augmentation in the context of
mathematical objects: an important topic for both the symbolic computation and satisfiability checking
communities, when they are making use of machine learning techniques to optimise their tools. We
consider a dataset of non-linear polynomial problems and the problem of selecting a variable ordering
for cylindrical algebraic decomposition to tackle these with. By swapping the variable names in already
labelled problems, we generate new problem instances that do not require any further labelling when
viewing the selection as a classification problem. We find this augmentation increases the accuracy of
ML models by 63% on average. We study what part of this improvement is due to the balancing of the
dataset and what is achieved thanks to further increasing the size of the dataset, concluding that both
have a very significant effect. We finish the paper by reflecting on how this idea could be applied in
other uses of machine learning in mathematics.

Keywords
Machine Learning, Data Balancing, Data Augmentation, Cylindrical Algebraic Decomposition

1. Introduction

1.1. Machine learning and cylindrical algebraic decomposition

Cylindrical Algebraic Decomposition (CAD) is an algorithm which, given a set of polynomials,
decomposes the space in which they are defined into regions in which they are sign-invariant
[1]. CAD has many potential applications, however, its theoretical and practical complexity
is doubly exponential [2], reducing the scope of its use in practice. In recent years, CAD
has been a central component of the collaboration between the Symbolic Computation and
Satisfiability Checking communities which meet in this SC2 workshop. For example, there have
been adaptions of CAD for use as an SMT theory solver [3], a repackaging of CAD theory into
new algorithms better suited for satisfiability (namely cylindrical algebraic coverings [4] and
the use of CAD in the model constructing calculus [5]), and the NuCAD algorithm which uses
some of these ideas to tackle more general quantifier elimination problems [6].

CAD requires a declared variable ordering. In the satisfiability context, the variable ordering
is unspecified (any may be chosen to gain a correct result), and in the quantifier elimination
context, there is freedom within quantifier blocks (as swapping the order of quantified variables

8th International Workshop on Satisfiability Checking and Symbolic Computation, July 28, 2023, Tromsø, Norway,
Collocated with ISSAC 2023
Envelope-Open delriot@coventry.ac.uk (T. d. Río); Matthew.England@coventry.ac.uk (M. England)
GLOBE https://sites.google.com/view/tereso (T. d. Río); https://matthewengland.coventry.domains (M. England)
Orcid 0000-0003-3769-5478 (T. d. Río); 0000-0001-5729-3420 (M. England)

© 2023 Copyright © 2023 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:delriot@coventry.ac.uk
mailto:Matthew.England@coventry.ac.uk
https://sites.google.com/view/tereso
https://matthewengland.coventry.domains
https://orcid.org/0000-0003-3769-5478
https://orcid.org/0000-0001-5729-3420
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


changes the meaning only if the quantifiers are different. These choices of variable ordering may
not affect the correctness of the end result but they can have a huge impact on the resources
required by these algorithms. In fact, Brown and Davenport found in [2] that there are a
family of problems for which in the worst ordering the complexity grows doubly exponentially
(2, 4, 16, 256, 4294967296, … ) while another ordering has a constant complexity.

Since the community realised the importance of variable ordering, various human-made
heuristics have been developed for the choice, e.g. [7], [8], [9], [10], [11]. There have also
been some experiments with dynamical variable orderings in the satisfiability context [12].
None of these heuristics is perfect; all have room for improvement in their choices. This led
to a new strain of research which applied Machine Learning (ML) models to make the choice:
first in selecting which human-made heuristic to follow [13], and later selecting the ordering
directly [14], [15], [16], [17]. While these models have demonstrated good performance, there
are barriers to their use such as the lack of meaningful training data, and the unbalanced nature
of such data that does exist.

This paper proposes to balance and augment the existing datasets by exploiting the arbitrary
nature of the variable representations within (the variable names). We note that this idea has
been independently proposed recently in the preprint [18]. The present paper makes similar
findings on the benefits of augmentation as [18] and further explores how those benefits split
between solving the problem of unbalanced data and increasing the data size.

1.2. Data augmentation

Data augmentation consists of generating new data instances from existing ones. It is a widely-
used technique in ML more generally, where the ability to increase the dataset can help tackle
over-fitting, and increase the accuracy of the resulting model. Moreover, it can be used to
mitigate the biases in the dataset and to reduce the cost of labelling [19].

Data augmentation is commonly used to generate new images in Computer Vision ML
applications. Let us take these ideas used in computer vision as an analogy for generating new
mathematical objects. For example, it is clear to any human that a picture of an arrow pointing
to the right that is rotated 90 degrees clockwise results gives a picture of an arrow pointing
downwards. This can be very useful, imagine that your dataset contains 268 images: 4 images
of arrows pointing downwards, 35 pointing left, 56 pointing upwards, and 173 pointing to the
right. This dataset is very unbalanced, and any model trained on it would likely have a bias
towards predicting that the arrow points to the right and against predicting that the arrow
points downwards. However, by simply using image rotations the dataset can be balanced to
contain 67 images for each of the classes. Furthermore, since you can obtain three extra images
from each of the images in the original dataset, we could actually obtain an augmented dataset
of 1072 images with 268 of each class.

Returning to our mathematical context, our objects are sets of polynomials (possibly used to
form polynomial constraints). For example, {𝑥21 − 𝑥2, 𝑥33 − 1}. We can determine, by computing
and comparing CADs, that the optimal variable ordering to compute a CAD for this set is
𝑥2 ≻ 𝑥1 ≻ 𝑥3. Now observe that simply by swapping the names of the variables 𝑥1 and 𝑥2 we
may obtain the new set of polynomials {𝑥22 − 𝑥1, 𝑥33 − 1}, in which we know, without any further
CAD computation, that the optimal variable ordering is 𝑥1 ≻ 𝑥2 ≻ 𝑥3.



1.3. Plan of the paper

In this paper, we will use data augmentation to balance our initially unbalanced polynomial
dataset, obtaining an improvement in the accuracy of the models. Then, we will see how much
more accuracy will be improved by generating the maximum number of instances possible
with the data augmentation tools we have. Section 2 outlines our methodology in creating a
labelled dataset to use for ML to select a CAD variable ordering and Section 3 how we have
balanced and augmented that dataset. Then in Section 4, we compare the performance of ML
models trained and tested on these various datasets. We finish in Section 5 with conclusions, a
comparison with some similar work in the preprint [18], and ideas for future work.

The dataset and code used to generate the datasets and results described in this paper can be
found on GitHub here:

https://github.coventry.ac.uk/delriot/AugmentingMathematicalDataset

2. Creating a Dataset

There are three steps towards creating a dataset suitable for ML in our context: finding a
collection of sets of meaningful polynomials, choosing a methodology to represent each of these
sets to an ML model, and then a system for labelling them (identifying the best CAD ordering).
We describe each of these steps in the following subsections.

2.1. Source of polynomial problems

The collection of sets of polynomials we use will be those problems in the QF_NRA collection
of the SMT-LIB library [20] which involve three variables. These examples are all satisfiability
problems and thus do not represent the full application range of CAD which can also address
quantifier elimination. However, there are no sizeable datasets of QE problems we are aware of.
The problems in the SMT-LIB do mostly emit from real applications making performance upon
them meaningful. Common sources are problems include the theorem prover MetiTarski [21],
attempts to prove termination of term-rewrite systems, verification conditions from Keymaera
[22], and curated sets of problems from geometry [23], economics [24] and biology [25].

2.2. Representing sets of polynomials

Representing sets of polynomials for ML is not an easy task. First, their size can vary: we have
already chosen to fix the number of variables but there could then still be an arbitrary number
of polynomials, and each of these polynomials can have a great many different terms (although
in practice each has not very many).

To represent a set of polynomials we will follow the methodology of [14] where polynomial
sets are represented by a vector of real (floating point) numbered features, with those features
generated algorithmically through simple operations generated in turn for each variable. For
example, one feature is the sum across the polynomials of the average of the degree of 𝑥1 across
the monomials. For the set of polynomials {𝑥22 − 𝑥2𝑥1, 𝑥33𝑥1 − 𝑥21 + 1}, this feature is 3/2, as the
average degree of 𝑥1 in the first polynomial is 1

2 and 1 in the second.

https://github.coventry.ac.uk/delriot/AugmentingMathematicalDataset
https://github.coventry.ac.uk/delriot/AugmentingMathematicalDataset


Ordering Name Ordering
Ordering 0 𝑥1 ≻ 𝑥2 ≻ 𝑥3
Ordering 1 𝑥1 ≻ 𝑥3 ≻ 𝑥2
Ordering 2 𝑥2 ≻ 𝑥1 ≻ 𝑥3
Ordering 3 𝑥2 ≻ 𝑥3 ≻ 𝑥1
Ordering 4 𝑥3 ≻ 𝑥1 ≻ 𝑥2
Ordering 5 𝑥3 ≻ 𝑥2 ≻ 𝑥1

Table 1
The six possible variable orderings

As well as sum and average, the framework we use can apply the operations of maximum,
sum, average, and average of non-zero terms. We also have the possibility of taking the sign at
any point. Another example feature is the sum across the polynomials of the sign of the sum
of the degree of 𝑥2 across the monomials (which simplifies to the number of polynomials that
contain the variable 𝑥2). For the previous set of polynomials, this feature is 1, because the sum
of the degree of 𝑥1 is 3 in the first polynomial and 0 in the second. Moreover, the degree of the
variable can be substituted by 𝑠𝑣𝑥𝑖 , the total degree of the monomial if the monomial includes
such a variable (it is 0 otherwise). E.g. 𝑠𝑣𝑥1 is 4 for the monomial 𝑥1𝑥2𝑥23 and 0 for the monomial
𝑥32𝑥3 because 𝑥1 does not appear in the latter. See [14] for further details.

Applying this process results in 384 features to describe a set of polynomials in three variables,
of which 195 are essentially distinct (not in a linear relationship with any other feature in our
dataset). We thus use these 195 features to represent a set of polynomials in 3 variables.

2.3. Labelling the sets of polynomials

In the case of sets of polynomials of three variables, there are six possible variable orderings. A
CAD has been computed in Maple [26] for each ordering for every problem in our dataset, and
we timed how long this took, discarding any example in which all orderings timed out (took
more than 60 seconds). The label of the set of polynomials is the number associated with the
ordering, as given in Table 1, whose CAD required the lowest computation time. Thus we form
a labelled dataset for an ML classification problem.

3. Modifying the Dataset

The dataset described in the previous section has 1019 instances: 406 labelled 0, 93 labelled 1,
135 labelled 2, 51 labelled 3, 202 labelled 4 and 132 labelled 5. There is hence a clear imbalance
in this dataset that will likely result in a bias in models trained upon it.

We split this dataset into an original testing dataset containing 20% of the instances (815) and
an original training dataset containing the rest.

3.1. Balancing the dataset

We first randomly changed the label of each instance permuting the variable names in the
underlying polynomials. This is done in both of the original datasets (training and testing),



obtaining a balanced training dataset and a balanced testing dataset of the same sizes as the
original training and testing sets.

3.2. Augmenting the dataset

However, nothing is stopping us from adding all of the six possible re-orderings for each problem
to the dataset: each would have a different label which we know without any further labelling.
By adding all the possibilities we obtain a perfectly balanced dataset with six times more data
than the original one. The sizes of all these datasets are shown in Table 2.

Dataset 0 1 2 3 4 5 Total
train unbalanced dataset 326 74 105 41 163 106 815
train balanced dataset 126 113 149 138 144 145 815
train augmented dataset 815 815 815 815 815 815 4890
test unbalanced dataset 80 19 30 10 39 26 204
test balanced dataset 31 34 32 38 34 35 204
test augmented dataset 204 204 204 204 204 204 1224

Table 2
Number of instances of each class that each dataset has.

4. Performance of Models Trained on Different Datasets

Tables 3, 4 and 5 compare how the ML models trained using the Unbalanced, Balanced and
Augmented datasets respectively perform on each of the testing datasets (columns in the
tables). The best performance on each dataset (table column) is highlighted in bold. Recall
that this problem is making classifications from 6 possible variable orderings. Thus a random
classification would on average have an accuracy of 0.17. We see that all models do better than
random, but that there are significant differences in performance.

We note that our experiments used models from the Python sklearn library [27]: K-Nearest
Neighbours (KNN), Decision Tree (DT), Support Vector Classifier (SVC), Random Forest (RF),
and Multi-Layer Perceptron (MLP). Each ML model training process followed [14] in first using
cross-validation to choose the hyper-parameters of the model.

We can observe in Table 3 that the models trained with unbalanced data perform very
well on unbalanced data. However, when tested in data that is been balanced (the Balanced
and Augmented datasets), these models perform terribly, showing that the good results on
unbalanced data occur only because both datasets are unbalanced in the same way. We note
that some models were more affected by this than others (e.g. SVC had the biggest drop in
performance and RF the least)

Comparing Tables 3 and 4 it is possible to observe that when testing on data that is balanced,
training with a balanced dataset is an asset, in fact, the results improve by 27% on average.
Performance on the balanced and augmented datasets in universally better. On the unbalanced
dataset, the models trained with balanced data do not perform quite as well as those trained
with unbalanced data, but a good deal of the performance is recovered.



Testing dataset Unbalanced Balanced Augmented
KNN-Unbalanced 0.51 0.21 0.26
DT-Unbalanced 0.53 0.31 0.31
SVC-Unbalanced 0.48 0.23 0.2
RF-Unbalanced 0.58 0.35 0.37
MLP-Unbalanced 0.51 0.32 0.32

Table 3
Accuracy of models trained on the unbalanced dataset, when tested on the different testing datasets.

Testing dataset Unbalanced Balanced Augmented
KNN-Balanced 0.41 0.36 0.38
DT-Balanced 0.43 0.45 0.45
SVC-Balanced 0.25 0.3 0.28
RF-Balanced 0.49 0.52 0.52
MLP-Balanced 0.45 0.43 0.44

Table 4
Accuracy of models trained on the balanced dataset, when tested on the different testing datasets.

Testing dataset Unbalanced Balanced Augmented
KNN-Augmented 0.54 0.55 0.53
DT-Augmented 0.54 0.55 0.54
SVC-Augmented 0.46 0.48 0.49
RF-Augmented 0.62 0.63 0.61
MLP-Augmented 0.48 0.5 0.51

Table 5
Accuracy of models trained on the augmented dataset, when tested on the different testing datasets.

Comparing Tables 4 and 5 one observes that fully augmenting the dataset is superior to just
balancing it for all models on any of our datasets.

Finally, comparing Tables 3 and 5 it is possible to observe that when testing on unbalanced
data the improvement in performance obtained by augmenting the dataset is similar in scale
to that gained by training dataset on a dataset that has the same imbalance as the testing
data: three of the five models perform better on the unbalanced dataset when trained with
augmented data and the other two come close. When comparing performance on a balanced
testing dataset is balanced, the improvement from using balanced data or augmented data for
training is significant: an increase in 63% of accuracy on average.

5. Final Thoughts

5.1. Conclusions

Our first conclusion is that, for this problem, training on an unbalanced dataset does indeed
lead to overfitting and poor performance when the models are utilised on a balanced dataset.
The performance in the Unbalanced column in Table 4) is much worse than previous reports on



such ML models, e.g. [28], and demonstrates the importance of taking note and care of these
balance issues. In general, imbalance is not always inappropriate for ML: some applications
will naturally have imbalanced data and the ML models should be aware of this. However, in
our case, we seek heuristics for choosing variable orderings for CAD applied in general and
there is little rationale to suppose general CAD applications favour one ordering over another1.
Thus our advice is to ensure ML models for such applications are trained on balanced data.

Our second conclusion is that a good deal of the ML performance can be recovered by simply
training on balanced data, re-validating the value of the data-science-led approach to this task
that those original papers posited.

Our third conclusion is that it is beneficial to go further and use maximum data augmentation:
all models benefitted from this over just balancing the data no matter which dataset they are
tested on. Using a balanced dataset instead of an unbalanced one of the same size allowed the
accuracy of the models to improve on average by 27%. But using a dataset fully augmented to
thus multiply the size by six allowed the accuracy of the models to improve on average by 63%.
In fact, the performance lost from the original unbalanced case is basically recovered this way.

Finally, we note that these ideas should generalise easily to variable ordering choice for the
other decision procedures of non-linear real arithmetic commonly found in the wider toolchains
of the SC2 community.

5.2. Comparison with the work of Hester et al. (2023)

Let us now compare the results on this paper with the ones obtained in the recent preprint [18].
Table 2 in [18] presents the accuracies of trained models on different datasets: note that both
their ‘Training Set 2’ and ‘Dataset 1’ contain instances in which the models have been trained,
meaning that ‘Testing Set 2’ is the most appropriate column for evaluation in that table. That
column shows similar results to the ones shown in this paper.

We note that the original dataset in [18] contained 6895 instances while in our paper the
initial dataset only contained 1019 instances. This is because, even though both datasets have
the same ultimate source (the SMT-LIB), our dataset had been stripped of duplicate instances
(those problem instances whose CAD tree structure is identical for every variable ordering), as
described in detail in Section 4.1 of [11]. We view this as a necessary step to meaningful use of
the QF_NRA section of the SMT-LIB where there are many very similar problems.

This comparison with [18] shows that the size alone of the dataset is not what matters (since
[18] has similar accuracy to the models presented here despite training with much more data).
Rather it is the number of qualitatively different problems within the dataset. I.e. there is little
benefit to including multiple very similar problems. It may seem that data augmentation adds
no new information, but since the ML models are not aware of these symmetries by exposing
them with augmentation we actually give them access to this information.

5.3. Future work

Given the success of this data augmentation, an obvious area for future work is to look for
additional augmentation techniques. Returning to the computer vision analogy: rotations

1except perhaps the existence of the SMT-LIB data!



are not the only augmentation tool, there are others also e.g. mirror reflections. Regarding
mathematical objects, a corresponding augmentation technique may be substituting a variable
with its negative, which would create a new instance without the need for any further labelling.
We could also consider more involved variable transformations, however, these would most
likely require additional CAD computations for data labelling, which is the most expensive part
of this whole process.

We note that these ideas of data augmentation could be generalised to other mathematical
object datasets. One should reflect on which parts of the representation of a mathematical
object are arbitrary to the problem at hand. For example, in [29] the authors consider symbolic
integration by ML, with mathematical expressions represented as natural text. The order of the
operands in commutative operations is arbitrary (e.g. 𝑥 ∧ 2 + 𝑦 ∗ 𝑧 is the same expression as
𝑧 ∗ 𝑦 + 𝑥 ∧ 2). This could be exploited to generate an exorbitant amount of new instances that
do not require any relabelling!

Acknowledgments

TdR is supported by Coventry University and a travel grant from the London Mathematical
Society (LMS). ME is supported by UKRI EPSRC Grant EP/T015748/1, Pushing Back the Doubly-
Exponential Wall of Cylindrical Algebraic Decomposition (the DEWCAD Project).

References

[1] G. E. Collins, Quantifier elimination for real closed fields by cylindrical algebraic de-
composition, in: Proceedings of the 2nd GI Conference on Automata Theory and For-
mal Languages, Springer-Verlag (reprinted in the collection [30]), 1975, pp. 134–183.
doi:10.1007/3- 540- 07407- 4_17 .

[2] C. W. Brown, J. H. Davenport, The complexity of quantifier elimination and cylindrical
algebraic decomposition, in: Proceedings of the International Symposium on Symbolic
and Algebraic Computation, ISSAC, ACM, 2007, pp. 54–60. doi:10.1145/1277548.1277557 .

[3] G. Kremer, E. Ábrahám, Fully incremental cylindrical algebraic decomposition, Journal of
Symbolic Computation 100 (2020) 11–37. doi:10.1016/j.jsc.2019.07.018 .

[4] E. Ábrahám, J. H. Davenport, M. England, G. Kremer, Deciding the consistency of non-
linear real arithmetic constraints with a conflict driven search using cylindrical algebraic
coverings, Journal of Logical and Algebraic Methods in Programming 119 (2021) 100633.
doi:10.1016/j.jlamp.2020.100633 .

[5] D. Jovanović, L. De Moura, Solving non-linear arithmetic, in: Lecture Notes in Com-
puter Science, volume 7364, Springer, Berlin, Heidelberg, 2012, pp. 339–354. doi:10.1007/
978- 3- 642- 31365- 3_27 .

[6] C. W. Brown, Open non-uniform cylindrical algebraic decompositions, in: Proceedings
of the International Symposium on Symbolic and Algebraic Computation, ISSAC, ACM,
2015, pp. 85–92. doi:10.1145/2755996.2756654 .

[7] C. W. Brown, Companion to the tutorial: Cylindrical algebraic decomposition, presented at

http://dx.doi.org/10.1007/3-540-07407-4_17
http://dx.doi.org/10.1145/1277548.1277557
http://dx.doi.org/10.1016/j.jsc.2019.07.018
http://dx.doi.org/10.1016/j.jlamp.2020.100633
http://dx.doi.org/10.1007/978-3-642-31365-3_27
http://dx.doi.org/10.1007/978-3-642-31365-3_27
http://dx.doi.org/10.1145/2755996.2756654


ISSAC 2004, URL http://www.usna.edu/Users/cs/wcbrown/research/ISSAC04/handout.pdf,
2004.

[8] A. Dolzmann, A. Seidl, T. Sturm, Efficient projection orders for CAD, in: Proceedings of
the 2004 International Symposium on Symbolic and Algebraic Computation, ISSAC, ACM,
2004, pp. 111–118. doi:10.1145/1005285.1005303 .

[9] R. Bradford, J. H. Davenport, M. England, D. Wilson, Optimising problem formulation for
cylindrical algebraic decomposition, in: Intelligent Computer Mathematics (CICM 2013),
volume 7961 of Lecture Notes in Computer Science, Springer, Berlin, Heidelberg, 2013, pp.
19–34. doi:10.1007/978- 3- 642- 39320- 4_2 .

[10] D. Wilson, M. England, R. Bradford, J. H. Davenport, Using the distribution of cells by
dimension in a cylindrical algebraic decomposition, in: 16th International Symposium on
Symbolic and Numeric Algorithms for Scientific Computing (SYNASC 2014), IEEE, 2015,
pp. 53–60. doi:10.1109/SYNASC.2014.15 .

[11] T. del Río, M. England, New heuristic to choose a cylindrical algebraic decomposition
variable ordering motivated by complexity analysis, in: F. Boulier, M. England, T. M.
Sadykov, E. V. Vorozhtsov (Eds.), Computer Algebra in Scientific Computing, volume 13366
of Lecture Notes in Computer Science, Springer International Publishing, 2022, pp. 300–317.
doi:10.1007/978- 3- 031- 14788- 3_17 .

[12] J. Nalbach, G. Kremer, E. Ábrahám, On variable orderings in MCSAT for non-linear
real arithmetic, in: J. Abbott, A. Griggio (Eds.), Proceedings of the 4th Workshop on
Satisfiability Checking and Symbolic Computation (SC2 2019), number 2460 in CEUR
Workshop Proceedings, 2019. URL: http://ceur-ws.org/Vol-2460/.

[13] Z. Huang, M. England, D. Wilson, J. H. Davenport, L. C. Paulson, J. Bridge, Applying
machine learning to the problem of choosing a heuristic to select the variable ordering for
cylindrical algebraic decomposition, in: S. M. Watt, J. H. Davenport, A. P. Sexton, P. Sojka,
J. Urban (Eds.), Lecture Notes in Computer Science, volume 8543, Springer Verlag, 2014,
pp. 92–107. doi:10.1007/978- 3- 319- 08434- 3_8 .

[14] D. Florescu, M. England, Algorithmically generating new algebraic features of polynomial
systems for machine learning, in: J. Abbott, A. Griggio (Eds.), Proceedings of the 4th
Workshop on Satisfiability Checking and Symbolic Computation (SC2 2019), number 2460
in CEUR Workshop Proceedings, 2019. URL: https://ceur-ws.org/Vol-2460/.

[15] D. Florescu, M. England, Improved cross-validation for classifiers that make algorithmic
choices to minimise runtime without compromising output correctness, in: D. Slamanig,
E. Tsigaridas, Z. Zafeirakopoulos (Eds.), Mathematical Aspects of Computer and Infor-
mation Sciences (Proc. MACIS ’19), volume 11989 of Lecture Notes in Computer Science,
Springer, 2020, pp. 341–356. doi:10.1007/978- 3- 030- 43120- 4_27 .

[16] D. Florescu, M. England, A machine learning based software pipeline to pick the variable
ordering for algorithms with polynomial inputs, in: A. Bigatti, J. Carette, J. H. Davenport,
M. Joswig, T. de Wolff (Eds.), Mathematical Software – ICMS 2020, volume 12097 of
Lecture Notes in Computer Science, Springer International Publishing, 2020, pp. 302–322.
doi:10.1007/978- 3- 030- 52200- 1_30 .

[17] C. Chen, Z. Zhu, H. Chi, Variable Ordering Selection for Cylindrical Algebraic Decomposi-
tion with Artificial Neural Networks, in: A. Bigatti, J. Carette, J. H. Davenport, M. Joswig,
T. de Wolff (Eds.), Mathematical Software – ICMS 2020, volume 12097 of Lecture Notes in

http://www.usna.edu/Users/cs/wcbrown/research/ISSAC04/handout.pdf
http://dx.doi.org/10.1145/1005285.1005303
http://dx.doi.org/10.1007/978-3-642-39320-4_2
http://dx.doi.org/10.1109/SYNASC.2014.15
http://dx.doi.org/10.1007/978-3-031-14788-3_17
http://ceur-ws.org/Vol-2460/
http://dx.doi.org/10.1007/978-3-319-08434-3_8
https://ceur-ws.org/Vol-2460/
http://dx.doi.org/10.1007/978-3-030-43120-4_27
http://dx.doi.org/10.1007/978-3-030-52200-1_30


Computer Science, Springer, 2020, pp. 281–291. doi:10.1007/978- 3- 030- 52200- 1_28 .
[18] J. Hester, B. Hitaj, G. Passmore, S. Owre, N. Shankar, E. Yeh, Revisiting variable ordering for

real quantifier elimination using machine learning, ArXiv Preprint (2023). doi:10.48550/
ARXIV.2302.14038 .

[19] C. Shorten, T. M. Khoshgoftaar, A survey on image data augmentation for deep learning,
Journal of Big Data 6 (2019) 60. doi:10.1186/s40537- 019- 0197- 0 .

[20] C. Barrett, P. Fontaine, C. Tinelli, The Satisfiability Modulo Theories Library (SMT-LIB),
2016. URL: http://smtlib.cs.uiowa.edu/.

[21] L. C. Paulson, Metitarski: Past and future, in: L. Beringer, A. Felty (Eds.), Interactive
Theorem Proving, volume 7406 of Lecture Notes in Computer Science, Springer, 2012, pp.
1–10. doi:10.1007/978- 3- 642- 32347- 8_1 .

[22] A. Platzer, J. Quesel, P. Rümmer, Real world verification, in: R. A. Schmidt (Ed.), Automated
Deduction (CADE-22), volume 5663 of Lecture Notes in Computer Science, Springer Berlin
Heidelberg, 2009, pp. 485–501. doi:10.1007/978- 3- 642- 02959- 2_35 .

[23] C. Brown, Z. K., T. Reico, , R. Vajda, M. Pilar Vélez, Is computer algebra ready for conjec-
turing and proving geometric inequalities in the classroom?, Mathematics in Computer
Science 16 (2021) 31. doi:10.1007/s11786- 022- 00532- 9 .

[24] C. B. Mulligan, J. H. Davenport, M. England, TheoryGuru: A Mathematica package to
apply quantifier elimination technology to economics, in: J. H. Davenport, M. Kauers,
G. Labahn, J. Urban (Eds.), Mathematical Software – Proc. ICMS 2018, volume 10931 of
Lecture Notes in Computer Science, Springer International Publishing, 2018, pp. 369–378.
doi:10.1007/978- 3- 319- 96418- 8_44 .

[25] R. Bradford, J. H. Davenport, M. England, H. Errami, V. Gerdt, D. Grigoriev, C. Hoyt,
M. Košta, O. Radulescu, T. Sturm, A. Weber, Identifying the parametric occurrence of
multiple steady states for some biological networks, Journal of Symbolic Computation 98
(2020) 84–119. doi:10.1016/j.jsc.2019.07.008 .

[26] C. Chen, M. Moreno Maza, Cylindrical algebraic decomposition in the RegularChains
library, in: H. Hong, C. Yap (Eds.), Mathematical Software – ICMS 2014, volume 8592 of
Lecture Notes in Computer Science, Springer Heidelberg, 2014, pp. 425–433.

[27] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pret-
tenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Per-
rot, E. Duchesnay, Scikit-learn: Machine learning in Python, Journal of Machine Learning
Research 12 (2011) 2825–2830. URL: http://www.jmlr.org/papers/v12/pedregosa11a.html.

[28] M. England, D. Florescu, Comparing machine learning models to choose the variable
ordering for cylindrical algebraic decomposition, in: C. Kaliszyk, E. Brady, A. Kohlhase,
C. Sacerdoti Coen (Eds.), Intelligent Computer Mathematics, volume 11617 of Lecture Notes
in Computer Science, Springer International Publishing, 2019, pp. 93–108. doi:10.1007/
978- 3- 030- 23250- 4_7 .

[29] G. Lample, F. Charton, Deep Learning for Symbolic Mathematics, in: S. Mohamed,
M. White, K. Cho, D. Song (Eds.), Eighth International Conference on Learning Represen-
tations (ICLR 2020), 2020. URL: https://iclr.cc/virtual_2020/poster_S1eZYeHFDS.html.

[30] B. Caviness, J. Johnson, Quantifier Elimination and Cylindrical Algebraic Decomposi-
tion, Texts & Monographs in Symbolic Computation, Springer-Verlag, 1998. doi:10.1007/
978- 3- 7091- 9459- 1 .

http://dx.doi.org/10.1007/978-3-030-52200-1_28
http://dx.doi.org/10.48550/ARXIV.2302.14038
http://dx.doi.org/10.48550/ARXIV.2302.14038
http://dx.doi.org/10.1186/s40537-019-0197-0
http://smtlib.cs.uiowa.edu/
http://dx.doi.org/10.1007/978-3-642-32347-8_1
http://dx.doi.org/10.1007/978-3-642-02959-2_35
http://dx.doi.org/10.1007/s11786-022-00532-9
http://dx.doi.org/10.1007/978-3-319-96418-8_44
http://dx.doi.org/10.1016/j.jsc.2019.07.008
http://www.jmlr.org/papers/v12/pedregosa11a.html
http://dx.doi.org/10.1007/978-3-030-23250-4_7
http://dx.doi.org/10.1007/978-3-030-23250-4_7
https://iclr.cc/virtual_2020/poster_S1eZYeHFDS.html
http://dx.doi.org/10.1007/978-3-7091-9459-1
http://dx.doi.org/10.1007/978-3-7091-9459-1

	1 Introduction
	1.1 Machine learning and cylindrical algebraic decomposition
	1.2 Data augmentation
	1.3 Plan of the paper

	2 Creating a Dataset
	2.1 Source of polynomial problems
	2.2 Representing sets of polynomials
	2.3 Labelling the sets of polynomials

	3 Modifying the Dataset
	3.1 Balancing the dataset
	3.2 Augmenting the dataset

	4 Performance of Models Trained on Different Datasets
	5 Final Thoughts
	5.1 Conclusions
	5.2 Comparison with the work of Hester et al. (2023)
	5.3 Future work


