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A Hierarchical Economic Model Predictive
Controller That Exploits Look-Ahead Information

of Roads to Boost Engine Performance
Zihao Liu , Arash M. Dizqah , Member, IEEE, Jose M. Herreros , Joschka Schaub,

and Olivier C. L. Haas , Senior Member, IEEE
Abstract— Sensors and communication capabilities of con-

nected vehicles provide look-ahead information that can be
exploited by vehicle controllers. This work demonstrates the
benefits of look-ahead information combined with hierarchical
economic model predictive control for the airpath management
of compression ignition engines. This work exploits road infor-
mation predicted with a 0.1- and 2-s horizon to simultaneously
control fast and slow engine dynamics, respectively. It controls
the variable nozzle turbocharger and dual-loop exhaust gas
recirculation, at a 0.01-s rate, to simultaneously optimize NOx,
soot, and fuel economy. Simulation studies and hardware-in-loop
implementation on an ARM Cortex-A15 processor demonstrate
improved NOx, soot, and torque tracking without compromising
fuel economy, and a worst case computation time of 8.92 ms.

Index Terms— Airpath control, economic model predictive
controller (eMPC), exhaust gas recirculation (EGR), look-ahead
control, model predictive control (MPC), variable nozzle tur-
bocharger (VNT).

NOMENCLATURE

BSFC Brake specific fuel consumption.
CAN Controller area network.
CI Compression ignition.
DOC Diesel oxidation catalyst.
DPF Diesel particulate filter.
EATS Exhaust aftertreatment system.
ECU Electronic control unit.
EGR Exhaust gas recirculation.
eMPC Economic model predictive controller.
HeMPC High-level eMPC.
HiL Hardware-in-the-loop.
HP High pressure.
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LAeMPC Look-ahead eMPC.
LeMPC Low-level eMPC.
LP Low pressure.
LUT Lookup table.
MPC Model predictive control.
NMPC Nonlinear model predictive controller.
NPD Nonpositive definite.
OCP Optimal control problem.
OFR Oxygen fuel ratio.
PI Proportional–integral.
PID Proportional–integral–derivative.
RMSE Root-mean-square error.
SCR Selective catalyst reduction.
SD Standard deviation.
VNT Variable nozzle turbocharger.
WLTC Worldwide harmonized light vehicles test

cycles.
I Identity matrix.
N {·} Diagonal matrix containing scaling factors

to normalize objective function terms.
Q{·} Diagonal matrices containing nonnegative

weightings for objective function terms.
λO Ratio between oxygen fuel ratio

and its stoichiometric value.
{·}H , {·}L Variables related to HeMPC and

LeMPC, respectively.
{·}mea, {·}est Measured and estimated variables,

respectively.
bmep Brake mean effective pressure.
l{·} Stage cost function.
Mair, Mo2 Molar mass of air and oxygen.
mcyl, mfuel Cylinder mass intake and mass fuel

injection per stroke, respectively.
n{·} Prediction horizon.
ne Engine rotary speed.
p2, ploss Intake manifold pressure and pumping loss,

respectively.
T2, Tco Intake manifold and coolant temperature,

respectively.
ts , t{h,l,v} Sampling time and valve time constant of

{HP EGR, LP EGR, VNT}, respectively.
u{h,l,v}, Commanded and actual valve position of
ũ{h,l,v} {HP EGR, LP EGR, VNT}, respectively.
uv,eff Most efficient variable nozzle

turbocharger valve position
(operating point specific).
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w Scaler weightings of objective function
terms.

xO , xnox, xsoot Cylinder oxygen concentration before
combustion, cylinder NOx, and soot
concentration after combustion,
respectively.

OFR, OFRstoich Oxygen fuel ratio and stoichiometric
oxygen fuel ratio, respectively.

I. INTRODUCTION

THE airpath system in CI engines involves complex cou-
pled and nonlinear dynamics of intake manifold pres-

sure (also known as boost pressure) and in-cylinder oxygen
concentration [1]. A typical airpath control design aims to
meet conflicting performance objectives, including driveabil-
ity (i.e., torque tracking), fuel economy, and emissions via
regulating the VNT and EGR valves. The control of VNT
and EGR decides the boost pressure and in-cylinder oxygen
concentration. The use of EGR reduces oxygen concentration,
which lowers NOx at costs of higher soot emissions, known
as the NOx–soot tradeoff [2]. The control of VNT adjusts
boost pressure, which dictates the total mass of combustion
charge. Higher boost pressure requires more energy from the
exhaust gas and results in greater fuel consumption but better
torque tracking [3]. Ensuring good tracking also conflicts with
emission objectives since the use of EGR reduces oxygen mass
available for combustion and can cause pressure loss at exhaust
manifold, leading to reduced energy input to the VNT.

The abovementioned coupled dynamics and conflicting
objectives require dedicated calibration methodologies for
airpath control [4], [5] to meet legislative and perfor-
mance requirements. Industrial applications typically follow
a model-based approach [1] to find the desired operating
points of boost pressure and in-cylinder oxygen concentra-
tion for a set of engine steady-state operating conditions.
The corresponding control utilizes model-based feedforward
control with the desired operating points fulfilled by some
reactive feedback controller [6]. Using feedforward and reac-
tive tracking control including PI/PID [7], H∞ [8] allows
direct use of inverse engine models that are nonlinear and
discontinuous with empirically determined parameters. The
resulting controllers, however, cannot systematically handle
the underlying multivariable dynamics together with operating
constraints such as OFR limit.

MPC-based [9] controllers have become prominent for
the use in CI engines [10]. The approach of MPC formu-
lates the multivariable process dynamics and constraints into
an OCP, solved by dedicated optimization algorithms [11].
Huang et al. [12] presented a rate-based and gain-scheduled
MPC that uses a single linear engine model to track set points
of boost pressure and EGR fraction. The resulting controller
demonstrates promising execution efficiency for ECUs and
has shown good tracking performance. Another tracking MPC
in [13] is experimentally validated on a 13-L engine but
requires 192 linear models. Sankar et al. [14] presented a
robust MPC with recursive feasibility guarantee using 12 linear

engine models. Nonlinear MPC allows fewer models, hence
avoiding frequent model switching, as well as convenient
consideration of nonlinear states including emissions, at costs
of higher computational costs. Liao-McPherson et al. [15]
presented an NMPC for the tracking of airpath set points
and reported an estimated worst case execution time of
1.73 ms on a 256-MHz ECU. Using a supervisory MPC
that acts as a reference governor to limit soot emissions and
enforce fuel-to-air ratio constraints, Liao-McPherson et al. [15]
demonstrated emission reduction for a slight increment in fuel
consumption compared to an industrial benchmark controller
over the WLTC. Moreover, MPC can track objectives while
constraining emissions and fuel economy [14], [16] or act
to modify tracking references by considering emission and
engine protection constraints [17].

The so-called eMPCs [9] offer advantages in terms of the
required calibration because they calculate the optimum oper-
ating point directly and do not require prior knowledge of the
set points to be tracked. Liao-McPherson et al. [18] presented
an eMPC that maximizes engine efficiency while minimizing
torque tracking error and constraining NOx emissions over a
horizon of 1.5 s. The resulting eMPC computes the optimal
set points for an inner tracking controller. Liu et al. [19]
presented an eMPC that directly controls the EGR and VNT
valves with simultaneous consideration of NOx, soot emis-
sions, fuel economy, and torque tracking. The approach of
eMPC optimizes the performance objectives considering the
engine dynamics and can discover operating points that allow
better transient performance and constraint satisfaction than
a conventional set-point tracking control scheme where set
points are decided on a steady-state basis.

The ability of MPC to consider performance objectives
over a time horizon is frequently associated with “look-ahead
control” or “control with preview,” where future (i.e., look-
ahead) information fills its prediction horizon. This motivates
the research question on how look-ahead information can
improve the performance of MPC-based airpath controller. The
look-ahead information can be future road information and
speed planning trajectory that is made accessible by vehicle
connectivity [20] and sensors, including lidars [21] and cam-
eras [22]. The corresponding “look-ahead control” has been
applied to energy-efficient cruise control [23], road intersection
utilization improvement [24], ride comfort enhancement [25],
and fuel cell management [26]. The MPC in [27] plans
gear shifting and longitudinal vehicle dynamics to maximize
fuel economy while constraining NOx emissions. However,
the benefits of look-ahead information were not reported.
Similarly, in [28] where energy–emission tradeoff is studied
under eco-following scenarios for connected automated vehi-
cles, the difference in using look-ahead information is not
analyzed. Velmurugan et al. [29] used a 60-s “look-ahead” for
aftertreatment control to calculate the optimal engine-out NOx
set points to minimize fuel and urea consumption while ensur-
ing legislative-compliant tailpipe emissions. Reduced fuel and
urea costs are achieved at the cost of increasing tailpipe
NOx emissions, with an overall 0.98% reduction in the total
objective function value.
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Applications of look-ahead control commonly utilize a long
horizon at tens of seconds or greater. The airpath control,
however, is a hard real-time problem at a milliseconds scale.
To harvest the most benefits from look-ahead information,
the horizon should ideally be as long as possible, making
real-time application of airpath MPC more challenging and not
seen in the current literature. To reduce computation burden,
Gelso and Dahl [13], [16], and Liao-McPherson [18] reduced
the number of decision variables via move-blocking that
forces control variables to remain constant for a given set of
prediction steps. Huang et al. [12] suggested that specialized
constraint treatment can be employed in the optimization rou-
tine. Norouzi et al. [30] and Moriyasu et al. [31] employed
deep learning and neural approximation-based modeling of
optimal control laws of MPC, demonstrating significantly
shorter execution time. The approximated control law, how-
ever, requires retraining of the model for each change in
control design. To accommodate the presence of different
timescales within the engine dynamics, multivariable airpath
control may be decoupled using hierarchical or cascade control
designs. Umezawa et al. [32] analyzed the time horizons of
coupled control problems and utilized hierarchical MPC to
efficiently accommodate OCPs of the long and short horizons.
Another hierarchical MPC in [33] uses its high-level com-
ponent to account for road data offline, whereas a low-level
controller operates in real time to compute the desired power-
train operating parameters. This work stems from the benefits
of eMPC in terms of reduced controller calibration effort
and the ability to exploit look-ahead information relating to
the expected vehicle speed profile based on its predicted
path. Different from the eMPC in [19], this work exploits
and demonstrates the benefits of look-ahead information to
improve the control of airpath. To additionally harvest the
look-ahead information, this work uses a hierarchical control
design, whereas a single eMPC is used in [19] to accommodate
both slow and fast dynamics. The contributions of this article
are given as follows.

1) Demonstrate that an engine airpath controller using
look-ahead information can simultaneously improve
torque tracking, engine-out NOx, and soot emissions by,
respectively, 11.1%, 5.3%, and 11.5% compared to a
similar controller without any such preview information.

2) Propose a novel, computationally efficient hierarchical
eMPC with a multirate structure to optimally control the
airpath of the engine using the look-ahead information
of engine speed and torque demand. The controller
is shown to be resilient to both delay and magnitude
uncertainties in look-ahead information.

3) Real-Time implementation of the proposed hierarchi-
cal eMPC operating on an HiL test platform, high-
lighting the opportunity for deployment on production
vehicles.

This article is organized as follows. Section II describes
the EURO 6 engine used for this study, its experimentally
validated model, and the controllers evaluated. Section III
presents the look-ahead horizon determination, the controller
design, and the formulation of the OCP. Section IV details

Fig. 1. Schematic of EURO 6 2L four-cylinder turbocharged CI engine with
dual-loop EGR and VNT. Unused sensors are not shown, including air mass
flow filter, temperature, and pressure sensors within EATS.

the experimental implementation for the controllers. Section V
describes and critically evaluates the simulation studies and
HiL implementation. Section VI concludes this article and
suggests future works.

II. SYSTEM AND BENCHMARK CONTROLLERS

Fig. 1 shows the target engine used for this work. The
model of the target engine, provided by FEV GmbH, was
experimentally validated in [34] and [35] and follows a
mean value approach of 0.01-s resolution. It uses physics-
based models of flow, combustion, and heat transfer with
empirically determined model parameters stored in LUTs. The
dual-loop EGR system includes an LP EGR with its valve
located upstream of the compressor. In contrast, the HP EGR
directly connects the exhaust manifold to the intake manifold.
An EATS is available downstream the VNT, consisting of
a DOC, DPF, and SCR. This investigation, however, con-
centrates on engine-out emissions. Two controllers are used
for performance benchmarking: 1) a EURO 6 production-line
controller including control of airpath, injection (mass and
timing), common rail pressure, and EATS (see Fig. 2) [35],
[36] and 2) an economic MPC using 0.1-s horizon without
look-ahead information [19]. This work develops an LAeMPC
that shares similar objectives to the eMPC [19] but with
a longer horizon of look-ahead information. The resulting
performance difference of the LAeMPC against the eMPC
implies the potential advantage of using look-ahead informa-
tion. Compared to the eMPCs, the production-line controller
is reactive and employs a combination of feedforward and
PI/PID [35], [36].

ECUs typically run injection control at fixed crank angle
intervals but with variable sampling rates. This work adopts
a fixed rate of 0.01 s for simplicity. All controllers exploit
sensor information available on production engines, includ-
ing an engine speed sensor, a coolant temperature sen-
sor, and an integrated pressure and temperature sensor at
the intake manifold. The LUTs in the production-line con-
troller are used in this work for the feedforward estima-
tion of cylinder oxygen concentration and brake torque.
The look-ahead information includes the engine speed and
torque.
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Fig. 2. Illustration of the three airpath controllers evaluated in this work is
enclosed in the dashed boxes. Only one of the controllers is enabled at one
time by a selector. The other engine control components are provided by the
production-line controller.

III. CONTROLLER DESIGN

The future engine speed and torque demand, used as
look-ahead information for this work, are not directly available
but depend on the vehicle configurations (i.e., mass and
powertrain parameters) and driving mode/policy. With speed
predictor algorithms such as [37], [38], and [39] to take
account of traffic and road elevation and knowledge of vehicle
parameters, the engine speed and torque of a predicted speed
profile of a given vehicle can be calculated deterministically.
This work does not delve into this conversion and assumes
that the look-ahead information of engine speed and torque
demand is readily available.

A. Choice of Look-Ahead Horizon

The choice of controller look-ahead horizon is a tradeoff
between the quantity of look-ahead information, relevant sys-
tem dynamics, and computational requirements. The velocity
profile of WLTC is used to evaluate the quantity of look-ahead
information. However, similar approaches can be adopted for
other drive cycles, combinations of drive cycles, or driving
modes, e.g., “sport” and “eco.” The torque demand is found
to be more correlated to the velocity profile than the engine
speed. The autocorrelation of torque demand [Fig. 3(a)]
shows the relevance of past and future on the current torque
demand. It is found that a time window of up to 3.5 s
can provide exploitable information demonstrated by the high
autocorrelation.

Fig. 3. (a) Autocorrelation of torque of the WLTC, which identifies that
a 3.5-s horizon provides useful information. (b) Cross correlation of boost
pressure and torque in the WLTC, which identifies the turbo-lag of 1.4 s and
up to 8.3-s time lag of strong correlation.

The dynamical behaviors of boost pressure and in-cylinder
oxygen concentration are evaluated over step changes of EGRs
and VNT. The VNT acts slowly on boost pressure with a
settling time ranging from 1 to 4 s. In contrast, the HP
EGR rapidly adjusts in-cylinder oxygen concentration under
0.1 s at any engine operating point. The settling time of
in-cylinder oxygen using LP EGR is up to 0.5 s for medium-
to-high engine loads and up to 1.5 s for low engine loads.
In addition, the LP EGR uses a valve located upstream of the
VNT compressor and immediately affects in-cylinder oxygen
concentration without time delay. The step change of VNT
has a negligible impact on in-cylinder oxygen concentration.
The use of EGRs reduces the boost pressure to a greater
extent as engine loading increases with a settling time of up to
1 s. Meanwhile, the HP EGR has a greater effect and longer
settling time in reducing boost pressure than LP EGR. These
findings suggest that the airpath dynamics of boost pressure
and in-cylinder oxygen concentration have a time gap ranging
from 0.1 to up to 4 s. Finally, the boost pressure is the slowest
relevant dynamic. Its cross correlation to torque [see Fig. 3(b)]
identifies a delay of 1.35 s corresponding to the turbo-lag. The
impact of boost pressure on torque was found to be as long
as 8 s.

Combining the velocity profile of WLTC and the corre-
sponding airpath dynamics, a horizon of 3.5 s can exploit
the engine load profile over WLTC, while a horizon between
1.4 and 8.0 s fully considers the airpath dynamics (includ-
ing turbo-lag) and the impact of boost pressure on torque.
However, to reduce the computational complexity, this study
uses a 2-s look-ahead horizon, which corresponds to a sharp
fall of torque autocorrelation in Fig. 3(a) and allows the
consideration of turbo-lag in Fig. 3(b). Meanwhile, a 2-
s horizon is in agreement with [18] and [40] who have
demonstrated performance gains for airpath control and is
within the 3-s (200 m ahead at 66.6 km/h) horizon for which
a velocity prediction error around 5.7% was achievable [38].
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B. Hierarchical EMPC Formulation

Using HP and LP EGRs, the oxygen concentration has
a much faster dynamic at tens of milliseconds than boost
pressure at seconds scale. The time difference in their respec-
tive dynamics motivates the use of hierarchical control with
different horizons to account for look-ahead information while
being computationally efficient. Fig. 2 shows the resulting
LAeMPC that uses a low- and high-level eMPC to con-
sider oxygen and boost pressure dynamics, respectively. The
HeMPC exploits look-ahead information from engine speed
and torque and uses a prediction step of 0.1 s to reach a
2-s horizon. It computes the optimal VNT positions while
assuming that any oxygen value is feasible at 0.1-s interval.
This assumption is valid since HP EGR can regulate oxygen
concentration under 0.1 s and makes the oxygen value a
manipulated variable for the OCP of HeMPC. The LeMPC
adopts a prediction horizon of 0.1 s using a prediction step of
0.01 s without access to look-ahead information. It receives the
optimal VNT position from HeMPC and computes the optimal
EGR positions. Both HeMPC and LeMPC share the objectives
to minimize pumping loss, NOx, and soot emissions, and
both operate at 0.01 s. The HeMPC considers the impact
of EGRs using the feedback values of boost pressure and
in-cylinder oxygen concentration than explicitly the valve
positions of EGRs. This simplifies the HeMPC to consider the
optimal VNT control over a long (2 s) horizon of look-ahead
information.

While the LP EGR has a longer settling time than HP
EGR in terms of in-cylinder oxygen concentration, the LeMPC
considers the same horizon of 0.1 s for both loops. This
enables to meet the computational feasibility criteria but at the
cost of higher use of HP EGR when a simultaneous fast control
of in-cylinder oxygen concentration is desirable. At steadier
and higher engine loadings, LAeMPC will gradually increase
the share of LP EGR to reduce the pressure drop at the
exhaust manifold leading to smaller pumping loss, hence better
fuel economy. The dynamical difference between HP and LP
may further benefit from look-ahead information and extended
prediction horizon, but this is not considered in this work to
achieve a reasonable online computation time.

Variables related to HeMPC and LeMPC use subscripts (·)H

and (·)L , respectively. Subscripts (·)mea and (·)est indicate mea-
sured and estimated values, respectively. Subscripts (·){h,l,v}

denote variables related to HP EGR, LP EGR, and VNT,
respectively. The diagonal matrix T = diag(th, tl , tv) contains
the time constants of each valve. The base sampling time ts is
0.01 s. u denotes [uh, ul , uv]

T. n(·) denotes prediction horizon.
y = [xnox, xsoot, ploss]

T contains the output states. Functions,
unless with subscripts, are denoted in a generalized manner
as f (·). ρ = [ne, bmep]

T denotes the engine operating point.
ρ̂ = [n̂e, ˆbmep]

T contains the future engine speed and torque
demand that are assumed to be known.

The prediction models for in-cylinder NOx and soot
concentrations, pumping loss, and cylinder air mass are
given by

xnox,k = exp( fnox(p2,k, xO,k; ρk)) (1a)

xsoot,k = exp( fsoot(p2,k, xO,k; ρk)) (1b)

ploss,k = f (p2,k, ũk; ρk) (1c)
mcyl,k = f (p2,k; ρk) (1d)

where the multiparametric polynomial functions f (·) and the
corresponding identification method are described in [19].
The correlation between emissions (NOx and soot) and fuel
quantity is captured using the brake torque and engine speed
provided in ρ, which, equivalently, considers total fuel energy
and engine brake efficiency. The valve dynamics are identical
in the plant and prediction model

ũk+1 = ts T uk+1 + (I − ts T )ũk . (2)

The dynamic states are modeled in (3). Boost pressure p2 is
identified at the sampling rates of 0.1 and 0.01 s for the high-
and low-level eMPCs, respectively. The prediction model for
HeMPC (3a) does not consider the use of EGRs. The effect
of EGRs is considered by LeMPC in (3b)

p2,H,k+1 = fH
(

p2,H,k, xO,H,k
)
+ fH

(
ũv,k; ρk

)
(3a)

p2,L ,k+1 = fL ,p2

(
p2,L ,k, xO,k

)
+ fL ,p2

(
ũk; ρk

)
(3b)

xO,k+1 = fL ,xO

(
p2,L ,k, xO,k

)
+ fL ,xO

(
ũk; ρk

)
. (3c)

λO is the fraction of OFR over its stoichiometric value
OFRstoich, where Mo2 and Mair represent the molar mass
of oxygen and air, and have constant values of 32 and
28.97 g/mol, respectively

λO,k =

(
mcyl,k xO,k

Mo2
Mair

)
mfuel OFRstoich

. (4)

The OCP of the HeMPC and its stage cost function lH,i are
as per (5) and (6), respectively

minimize
uv ,xO,H

nH∑
i=1

lH,i
(

yi , uv,i ; ρ, ρ̂
)

(5a)

s.t. (2), (1), (3a), (4) (5b)
p2,0 = p2,mea, xO,0 = xO,est (5c)

ũv,0 = ũv,mea (5d)
uv,min ≤ uv ≤ uv,max (5e)
xmin ≤ x ≤ xmax (5f)
λO ≥ λO,min

k ∈ {0, 1, . . . , nH − 1} (5g)

where

lH,i := α ×

{(
N y yi

)T QH

(
N y yi

)
+ wH,1

(
Nuv

(
uv,i − uv,eff

))2

+ wH,2
(
N1uv

1uv,i
)2

}
(6a)

α =
1

tr( Q H) +
∑2

i=1 wH,i
. (6b)

Equations (7) and (8) represent the OCP and the stage cost
function lL ,i of the LeMPC, respectively

minimize
uh ,ul

nL∑
i=1

lL ,i
(

yi , ui ; ρ
)

(7a)
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s.t. (2), (1), (3b), (3c), (4) (7b)
p2,0 = p2,mea, xO,0 = xO,est (7c)

ũh,0 = ũh,mea, ũl,0 = ũl,mea (7d)
uv = u∗

v(1) (7e)
uh,min ≤ uh ≤ uh,max, ul,min ≤ ul ≤ ul,max (7f)
xmin ≤ x ≤ xmax (7g)
λO ≥ λO,min

k ∈ {0, 1, . . . , nL − 1} (7h)

where

lL ,i := β ×

{(
N y yi

)T QL

(
N y yi

)
+ wL ,1

(
Nuh uh,i

)2
+ wL ,2

(
Nul ul,i

)2

+ wL ,3
(
N1uh 1uh,i

)2
+ wL ,4

(
N1ul 1ul,i

)2
}
(8a)

β =
1

tr( QL) +
∑4

i=1 wL ,i
. (8b)

The stage cost functions (6) and (8) penalize the variation
and the energy of valve positions. The operating point specific,
most efficient VNT valve position uv,eff is used to operate VNT
efficiently and away from choking and surging boundaries.
This, however, does not guarantee the satisfaction of choking
and surging boundaries. Instead, they are enforced with box
constraints in (5e) using LUTs that are operating point specific
and provided as-is from FEV GmbH. The control variations as
well as the energy of each valve are penalized with very small
weightings during tuning (see Section IV). The energy saving
of valve actuation is insignificant compared to the overall
engine efficiency. However, these penalizations are useful to
gradually recover valve positions to a nominal placement (i.e.,
toward 0% for EGRs and veff for VNT) at steady loadings such
as idling.

The HeMPC computes the optimal VNT valve position
trajectory and oxygen concentration. The LeMPC receives
u∗

v(1) in (7e) and assumes that it stays constant for the pre-
diction horizon. Meanwhile, the optimal trajectory of oxygen
concentration computed by HeMPC is discarded.

Both OCPs exploit the limit on λO for the tracking of torque
since the satisfaction of (5g) and (7h) allows sufficient fuel to
deliver the demanded torque. The λO limits are enforced as
soft constraints that allow minor violations. This ensures that
the OCPs are feasible during rapid increase of torque demand.

Solving (5) and (7) requires the HeMPC and LeMPC to
agree on an optimal tradeoff between boost pressure and in-
cylinder oxygen. Due to the emission tradeoff, a NOx-favored
HeMPC will work against a soot-favored LeMPC, causing
systematic degradation of performance. A similar weighting of
Qh and QL is sufficient to prevent these conflicting emission
objectives as the oxygen concentration, controlled by LeMPC,
has a dominant effect on emissions.

The normalization factors N(·) are dependent on the range
of signals and the engine. α and β normalize weightings to
form a convex combination of objectives in (6) and (8).

TABLE I
HARDWARE SPECIFICATIONS OF THE SIMULATION AND HIL PLATFORMS

TABLE II
WEIGHTINGS w(·) AND Q(·) USED IN THE HEMPC AND LEMPC

IV. ONLINE IMPLEMENTATION OF THE CONTROLLERS

The controllers’ performance and execution efficiency are
evaluated on a desktop PC and an HiL implementation using
the A80Q7 evaluation board [41] in-loop with a dSPACE
SCALEXIO system [42]. Table I presents the hardware speci-
fications. The controller runs over the WLTC, which contains
four duty stages, namely, light (L), medium (M), heavy (H),
and extra-heavy (EH). The performance criteria are NOx and
soot in mass and brake specific form, mean BSFC, and torque
demand tracking error in RMSE.

The controller improves on the base solver described in [19]
by using a gradient descent approach when backtracking
line search method fails. This reduces the computational
overhead to check for the unlikely occurrence of NPD Hes-
sian matrix, which occurs in only 4.41% and 0.03% of the
WLTC for HeMPC and LeMPC, respectively, using desktop
simulation.

The HeMPC and LeMPC are tuned for each duty stage
of the WLTC, as shown in Table II. The tuning has been
designed in reference to the eMPC [19] to focus on NOx and
soot emissions while providing good torque tracking without
degrading the fuel economy. Each satisfactory manual tuning
serves as an initial guess for a gradient descent routine to
search automatically for finer improvements in adjacent areas.
The tuning of NOx and soot mainly depends on LeMPC due
to emission being more sensitive to oxygen concentration than
to boost pressure. The tuning of pumping loss penalty depends
more on HeMPC for its control over boost pressure in the long
term. A heavier duty cycle requires greater emphasis on NOx
reduction against soot and lower weight on pumping loss. This
shift is due to the heavier duty cycle requiring more oxygen
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TABLE III
PERFORMANCE IMPROVEMENT (%) BY THE LAEMPC OVER THE LIGHT (L), MEDIUM (M), HEAVY (H), AND EXTRA-HEAVY (EH) STAGES OF WLTC

AGAINST THE PRODUCTION-LINE CONTROLLER AND THE EMPC IN [19]. ALL RESULTS EXCLUDE ENGINE IDLING

mass and hence higher oxygen cylinder concentration, leading
to greater NOx production than soot in their tradeoff relation.
Meanwhile, the weighting on pumping loss is eased in order
to meet more challenging engine loads. Weightings for control
variation and energy are kept nonzero but of very small value
initially, followed by automatic adjustments capped by some
manually set small values. Multiple initial guesses are used.
These weightings may be adjusted to meet a different test
cycle based on engine loads and require an adaptive scheme
for future works.

All controllers run at 0.01 s with a warm engine start
(coolant at 90 ◦C) and a cold SCR (20 ◦C) to minimize
engine behavior changes due to warming-up across WLTC
while retaining a typical engine start for EATS. During idling,
all controllers use zero EGR. uv,eff is set to a constant value
throughout the WLTC for simplification. All scaling factors
N(·) and λmin are also set to constant values. The states and
EGR positions are limited with fixed and compact ranges. The
minimum and maximum positions of the VNT are determined
using LUTs.

Fig. 4 shows the HiL setup to implement and evalu-
ate the proposed controller for real-time application. The
SCALEXIO system running the plant model communicates
with the A80Q7 board hosting the controller with a CAN
bus at a rate of 1000 kbits/s. Each CAN packet contains
up to 8 bytes of payload with a single byte per signal.
The controller receives 20 feedback readings as three CAN
packets and sends eight control signals carried by one CAN
packet. This generates approximately 4% busload. The feed-
back signals include a counter value sent by the host to
indicate the progress of the WLTC. The controller uses the
counter value to select weighting and read the look-ahead
information, namely, the future speed and torque demand of
the engine, from a locally stored array. The entire engine
control software runs on a dedicated Cortex-A15 core of the
A80Q7 board.

Fig. 4. Photograph of the HiL bench including the SCALEXIO host
computer and A80Q7 board (highlighted by dashed boxes). The A80Q7 board
is connected to the SCALEXIO via CAN bus. The signals displayed on screen
in real time (starting from top left and in clockwise order) are intake/exhaust
manifold pressure, in-cylinder oxygen concentration, exhaust manifold soot,
and NOx concentration.

V. RESULTS AND DISCUSSION

A. Simulation Study

Table III summarizes the emissions, fuel consumption,
and torque tracking results of the engine with the proposed
controller compared to an eMPC that does not take look-ahead
information into account and a production-line controller.
Table III excludes the data during engine idling due to possible
start–stop strategy. Compared to the production-line controller,
the LAeMPC improves engine performance in every aspect.
It allows higher soot reduction than the eMPC. It improves
torque tracking steadily as the duty cycle becomes heavier as
it exploits the look-ahead information to prepare ahead for
larger load variation in heavier duty cycles.

Fig. 5 shows the selected transients from the H and EH
parts of WLTC acquired from simulation and HiL. Upon
each deceleration event, the LAeMPC achieves up to 5%
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Fig. 5. H and EH duty part of the WLTC time series for a manual transmission engine, with desktop simulation (left) and HiL (right). (a) Engine speed
(r/min) (left axis) and torque (Nm) (right axis). (b) Boost pressure. (c) Difference of net indicated efficiency (%) against production-line controller (positive =

better). (d) (λO)−1 (OFR over stoichiometric value)−1. (e) Cylinder oxygen concentration before combustion. (f) Engine out NOx mass. (g) Engine out soot
mass.

higher net indicated efficiency by decreasing the boost pressure
earlier (e.g., at 1159 and 1162 s) than the other controllers.
During rapid fall-and-rise of the torque demand at 1545 s,
the LAeMPC maintains the boost pressure and allows more
air intake than the other controllers. As a result, the engine
delivers more torque when the demanded torque increases
rapidly and hence improves torque tracking. LAeMPC also
uses look-ahead information to build up the boost pressure
to be just adequate. Between 1155 and 1172 s, all controllers
have a similar build-up of boost pressure initially, and however,
the LAeMPC relaxes the boost earlier without compromising
torque tracking. The proactive relaxation of boost pressure
allows the engine to achieve higher indicated efficiency when
possible and results in better fuel economy. In terms of
emissions, the production-line controller shows an undershoot

tendency in oxygen concentration which causes soot spikes,
while the eMPC uses EGR mildly. The undershoot tendency
is due to the conservative control strategy adopted by the
controller that was optimized based on the magnitude of
engine load change. Both LAeMPC and eMPC have kept
(λO)−1 under the threshold, but LAeMPC achieves a slightly
lower in-cylinder oxygen (e.g., at 1166 s). The lower oxygen
value reduces the generation of NOx, at a negligible cost of
soot, but is infeasible to eMPC. The production-line controller
shows mild violations of (λO)−1 [Fig. 5(f)] since it cuts fuel
reactively.

A predictive controller can benefit from the sharp falls and
rises of torque by gear shifting to particularly improve the NOx
emission and torque tracking. Automatic transmission reduces
the engine load transients and may reduce the benefits. The
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Fig. 6. WLTC time series for an automatic transmission which has fewer
transients than a manual transmission. The LAeMPC demonstrates over 8%
and 9% improvement for NOx and soot against the eMPC while having similar
fuel economy. (a) Engine speed (r/min) (left axis) and torque (Nm) (right
axis). (b) Boost pressure. (c) Difference of indicated efficiency (%) against
reference controller (positive = better). (d) (λO)−1 (OFR over stoichiometric
value)−1. (e) Cylinder oxygen concentration before combustion. (f) Engine out
NOx mass. (g) Engine out soot mass.

LAeMPC is additionally verified using a WLTC dataset for
an automatic transmission with start–stop strategy (see zero
engine speed at 385 s in Fig. 6). The production-line controller
shows less undershoots of in-cylinder oxygen concentration
and smaller differences in indicated engine efficiency. Com-
pared to the other two, the LAeMPC allows lower boost
pressure at peak torques [see 265 and 290 s of Fig. 6(b)].
In addition, it shows more proactive control of in-cylinder
oxygen concentration than the eMPC. Even for automatic
transmission engine, LAeMPC still demonstrates a consis-
tent improvement of 7.2%, 0.1%, 8.3%, and 9.8% in torque
tracking, fuel economy, NOx, and soot emissions, respectively,
against the eMPC.

The ability of LAeMPC to accommodate uncertainties
in look-ahead information, introduced through random time
delays and multiplicative noise, is also evaluated using

Fig. 7. Normalized combined advantage of LAeMPC against the eMPC
from [19], using criteria including emissions, fuel economy, and torque
tracking. The simulations use manual transmission and are repeated ten times
at each error factor. The controller performance degrades logarithmically with
an increase in delays and multiplicative error associated with the look-ahead
data of engine speed and torque, respectively. Uncertainty in torque prediction
has a dominant effect on performance degradation.

a simulation study. The time delay is a random value
from 0 to 2 s following uniform probability distribution. The
multiplicative noise is of zero-mean Gaussian distribution with
SD proportional to the range of engine speed and torque
and resembles the prediction error during transients [38].
The multiplicative factor increments from 0% to 20% to
match the worst case RMSE for the predictors in [37] and
[38]. Fig. 7 presents the combined advantage of LAeMPC
against the eMPC with increasing uncertainty of predicted
engine speed and torque. The combined advantage sums the
equally weighted percentage improvements of all criteria, each
normalized by their value at zero uncertainty. Fig. 7 shows
that torque prediction uncertainty dominates the performance
degradation, and the LAeMPC retains its benefits up to a
13% multiplicative error factor, with random time delays. This
tolerance suggests that the benefits are feasible with predictors
in [37] where prediction error can be controlled confidently
under 10% mean absolute percentage error. In addition, real-
istic WLTC involves a driver or some automatic controller
to meet the required velocity profiles, forming a loop that
results in variant engine speed and loading depending on the
engine control performance. However, this work focuses on
the evaluation of the engine airpath controllers and assumed
an invariant engine speed and torque as a basis for performance
comparison. The difference in engine speed and torque due to
the human or automatic controllers may be accounted for by
the introduction of the aforementioned prediction uncertain-
ties.

Finally, while this study focuses on engine-out emissions,
the LAeMPC desktop simulation also demonstrated 4.6% and
8.7% tail-pipe NOx mass reduction over the WLTC compared
to the eMPC and production-line controller, respectively, using
the same EATS controller while consuming less AdBlue by
mass. The resulting temperature profile of SCR is similar in
light duty cycles, while eMPC and LAeMPC give slightly
higher temperatures at heavier WLTC duty cycles. The accu-
mulation of soot and regeneration of DPF is not considered in
this study for their longer horizon related to the temperature
dynamics.
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TABLE IV
EXECUTION TIME FOR ENTIRE ENGINE CONTROL SOFTWARE ON CORTEX

A-15 (1200 MHz) ON HIL IMPLEMENTATION

B. HiL Implementation

Table III (lower half) summarizes the results from HiL
implementation. The communication between ECU and
SCALEXIO employed CAN [43] due to the lack of analog
and digital inputs and outputs on the A80Q7 board. The
signal precision loss across CAN results in the minor emission
performance shift that can be overcome with a slight retuning.

The asynchronous read and write actions between the pro-
cessor and its CAN controller create an unmodeled transmis-
sion latency. The latter adversely affected the estimation of
cylinder mass intake and is responsible for a belated fuel
cut during rapid torque demand increment. This results in
more frequent violation of the (λO)−1 limit compared to
the simulation results [see the right half of Fig. 5(e)]. The
production-line controller is more sensitive to latency since it
cuts fuel reactively. This leads to fuel-rich mixtures resulting
in better torque tracking at the cost of higher in-cylinder soot.
Both eMPCs are less affected than the reactive controller since
OFR is modeled and constrained separately for good torque
tracking. This explains the high soot advantage achieved by
the LAeMPC compared to the production-line controller (see
Table III).

Table IV reports the execution time of the three con-
trollers for ten test runs. The results are consistent with
an SD of less than 3% of their respective mean values.
The LAeMPC has a shorter worst case execution time and
SD than eMPC due to a more efficient numerical solver
implementation. While the production-line controller is sig-
nificantly faster than both MPC, the LAeMPC runs faster
than the required 10 ms, at a worst computational time of
8.92 ms. Potential production use of the controller requires
more investigations, including the use of explicit MPC [44]
or training of deep reinforcement learning controller based on
the current design, as well as further algorithmic optimiza-
tions such as constraint handling and convexification of the
problem.

VI. CONCLUSION

This article has presented a control strategy that exploits
look-ahead information of 2 s for the airpath management of
a EURO-6 CI engine using manual or automated transmis-
sion with stop–start. The proposed controller simultaneously
considers engine emissions (NOx and soot), fuel economy,
and torque tracking while directly controlling the EGRs and
VNT. The approach was first demonstrated using simulation
studies and then validated on an HiL implementation. For the

engine associated with a manual transmission, the benefits of
look-ahead information are found to improve torque track-
ing, NOx, and soot emissions by 11.1%, 5.5%, and 11.7%,
respectively, with uncompromised fuel economy, compared
to another optimal controller without look-ahead information.
Compared to a production-line controller for EURO 6 engines,
the improvements in torque tracking, NOx, and soot emis-
sions are 30.9%, 9.7%, and 14.9%, respectively, and a 1.2%
improvement in fuel economy. The benefits remain consistent
when using an automatic gearbox with less aggressive engine
transients. Using a Gaussian noise and random time delay,
the benefits of look-ahead information degrade gradually and
disappear as the SD of the noise increased to approximately
13% of the nominal range of the engine speed and torque
over the WLTC. Finally, the LAeMPC is able to meet the
execution time required for real-time use with a worst case
execution time of 8.9 ms on a 1.2-GHz ARM Cortex-A15
processor. The execution time can be further improved using
explicit MPC and optimization of algorithms.

This work shows that look-ahead information, even with
random time delays and prediction uncertainty, can benefit air-
path control in reducing NOx and soot emissions, at improved
torque tracking and fuel economy. A hierarchical formulation
of eMPC that splits the control of VNT and EGRs was
found useful to harvest a long (2 s) look-ahead horizon
while being computationally feasible on a Cortex-A15 core.
Future vehicles with greater road awareness, motion planning,
and computing hardware may exploit a look-ahead airpath
controller to achieve these benefits.

Future works include an adaptive weighting schedule and
further on-vehicle validation of the controller where part of
the communications will be transferred from the CAN to the
digital/analog channels to minimize precision loss and com-
munication latency. Additional works also include choosing a
suitable algorithm for look-ahead information prediction and
further evaluating the impact of uncertainty on the prediction
models.
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