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 

Abstract— Objective: The decline in vascular elasticity with 

aging can be manifested in the shape of pulse waves.  The study 

investigated the pulse wave features that are sensitive to age and 

the patterns of these features change with increasing age were 

examined. Methods: Five features were proposed and extracted 

from the photoplethysmography (PPG)-based pulse wave or its 

first derivative wave. The correlation between these PPG features 

and ages was studied in 100 healthy subjects with a wide range of 

ages (20-71 years). Piecewise regression coefficients were 

calculated to examine the rates of change of the PPG features with 

age at different age stages. Results: The proposed PPG features 

obtained from the finger showed a strong and significant 

correlation with age (with r = 0.76 – 0.77, p < 0.01), indicating 

higher sensitivity to age changes compared to the PPG features 

reported in previous studies (with r = 0.66 – 0.75). The correlation 

remained significant even after correcting for other clinical 

variables. The rate of change of the PPG feature values was found 

to be significantly faster in subjects aged ≥40 years compared to 

those aged < 40 years in the healthy population. This rate of change 

was similar to the age-related progression of arterial stiffness 

evaluated by pulse wave velocity (PWV), which is considered a 

gold standard for evaluating vascular stiffness. Conclusions: The 

proposed PPG features showed a high correlation with 

chronological age in healthy subjects and exhibited a similar age-

related change trend as PWV. Significance: With the convenience 

of PPG measures, the proposed age-related features have the 

potential to be used as biomarkers for vascular aging and 

estimating the risk of cardiovascular disease.  

 
Key Wards— Age-related features, cardiovascular disease risk, 

photoplethysmography (PPG), vascular aging 

 

I. INTRODUCTION 

ARDIOVASCULAR diseases (CVD) are a leading 

causes of death worldwide, and aging is a major, 

irreversible risk factor for CVD. Arterial stiffness, which 

increases with age, plays an important role in promoting 

structural and functional changes in the cardiovascular system. 

Pulse wave velocity (PWV), the gold standard for evaluating 
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arterial stiffness, has been reported to be correlated with age in 

healthy subjects and has better predictive value for CVD than 

traditional risk markers [1]. The ability to identify age-related 

markers on cardiovascular system may be of importance in 

using these features as biomarkers for estimating vascular aging 

and for predicting and assessing CVD risk. It is of great value 

in the prevention of CVD.  

Pulse wave monitoring is a simple, portable, cost-effective, 

and non-invasive technology that has broad applications in the 

field of wearable technology and telemedicine for real-time 

monitoring. Thus, it is highly suitable for use as a large-scale 

early screening tool. The pulse wave recorded in the peripheral 

artery measures changes in blood volume or blood pressure 

within the vascular tissue bed. The degradation of vascular 

elasticity with aging can be reflected in the shape of pulse wave 

[1], thus it is expected to find age-related features from pulse 

wave, which could be used as biomarkers for estimating 

vascular aging and for early screening and warning of CVD 

risk. 

There have been some literatures investigating the effects of 

aging on the shape of pulse waveform. It has been reported that 

as age increases, the pulse peak shifted subtly to the right of the 

pulse cycle, and the dicrotic notch gradually weakens, resulting 

in a tendency for increased triangularization of the peripheral 

toe pulse wave shape [1]. It has also been reported that aging-

related disturbance in arterial stiffness and wave reflection  will 

lead to an increase in the augmentation pressure of central aortic 

blood pressure waves in the elderly [2]. Based on the changing 

characteristics of the pulse wave shape with age, previous 

studies have identified several key age-related markers from the 

pulse wave [3-12]. These markers include: 1) pulse risetime 

(RT), which is computed as the time between the onset foot of 

a pulse and its peak [4]; 2) augmentation index (AI), which is 

calculated as the ratio of augmentation pressure to the pulse 

pressure, expressed as a percentage [5,6]; 3) aging index, which 

can be calculated as the amplitude of (b-c-d)/a of the second 

derivative wave of photoplethysmography (SDPPG) [7-9], 
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amplitude ratio of c/a and time span between a and c of the 

SDPPG [10]; 4) large artery stiffness index (LASI), which is 

inversely related to the time interval between maximum peak 

and dicrotic peak [11,12]; 5) stiffness index (SI), which is 

calculated as the ratio of subject height (cm) to the time interval 

between maximum peak and dicrotic peak (ms) [11,12], among 

others. Another study showed a high correlation between the 

estimated age using photoplethysmography (PPG)-based pulse 

wave and the real chronological age [13]. Additionally, several 

studies have explored the use of pulse wave analysis for the 

direct evaluation of arterial stiffness [14-16]. For example, it 

has been reported that the time delay between pulse waves 

captured at different sites correlated well with the reference 

carotid to femoral PWV (cfPWV) measured using the 

commonly known applanation tonometry method [15]. Another 

study reported a method to estimate the gold-standard cf-PWV 

using the subject's height and pulse transit time, which was 

calculated by processing the finger PPG signal [16]. 

Although several vascular stiffness and aging indices 

extracted from pulse wave have been reported, several issues 

remain to be clarified. Firstly, it is not yet clear which pulse 

wave features are the most informative, and whether there are 

more sensitive pulse wave features that vary with age? 

Additionally, it is uncertain whether confounding factors such 

as blood pressure and heart rate could affect the relationship 

between these pulse wave features and age? Furthermore, 

inconsistent normalization schemes of pulse wave in amplitude 

or width may affect the value of pulse wave markers and their 

sensitivity to age change. It is unclear how normalizing the 

amplitude and width of pulse waves could improve the 

sensitivity of pulse wave features to age changes. Thirdly, it is 

unclear whether the changing rate of the pulse wave feature 

values with age is linear at different stages of age and whether 

the progression pace of arterial stiffness at different at different 

stages of age? Fourthly, the effect measuring pulse wave at 

different vascular sites on the correlation between pulse wave 

features and age is unclear. 

Accordingly, this study aims to explore pulse wave features 

that are highly sensitive to age, recorded at different vascular 

sites, and investigate the pattern variations of these pulse wave 

features with age in different age stages. Among which, the 

effect of different normalization schemes of PPG wave 

amplitude or width on the sensitivity of pulse wave features to 

age changes were studied. 

The main contributions of this study included: (1) Five newly 

proposed pulse wave analysis-based features were found to be 

more sensitive to age changes than the previously reported PPG 

features. (2) The strong correlation between these features and 

age remained significant even after correcting for other clinical 

variables, including systolic blood pressure (SBP), diastolic 

blood pressure (DBP), height, heart rate (HR), arm length, and 

body max index (BMI). (3) The age-related changes in most of 

the proposed PPG features values were slower before 40 years 

old and faster after 40 years old. This pattern was similar to the 

age-related progression of arterial stiffness evaluated by pulse 

wave velocity, which is the gold standard for assessing vascular 

stiffness, indicating that the PPG features proposed in this study 

have the potential to be used as biomarkers for vascular aging 

assessment. (4) A systematic investigation of the influence of 

normalizing the PPG waveform and its derivatives was 

conducted. The amplitudes and pulse widths were either 

normalized or left unnormalized, and the best performance was 

achieved when only the amplitudes were normalized, while the 

widths of the PPG and its derivatives were not normalized. 5) 

All correlation values between the proposed PPG features and 

age were higher for fingers than for ears, indicating that the 

distal pulse wave is more suitable for arterial stiffness analysis 

than the proximal pulse wave. 6)  All correlation values 

between the proposed PPG features and age were lower for 

females than for males. This difference may be due to the fact 

that arterial stiffness increases almost linearly with age in men 

from early adulthood onward, while women experience a 

curvilinear aging trend, with a flatter curve in younger age and 

a steep increase in arterial stiffness after menopause [16].  

II. METHODS 

To identify age-related PPG features, the association 

between age and PPG features was investigated in a group of 

healthy subjects with a wide range of ages using Pearson’s 

correlation analysis and univariate regression analysis. Among 

which, to investigate the effect of measuring PPG at different 

vascular sites on the correlation between age and PPG features, 

PPG was recorded at both the proximal ear and distal finger. 

And different normalization schemes of PPG wave in amplitude 

or width were adopted to investigate their effects on the 

correlation between age and PPG features. In addition, 

piecewise linear regression was used to analyze the different 

dependence of PPG features on age at different stages of age. 

Afterwards, multiple regression analysis including other 

clinical variables as covariates was conducted for correcting 

confounding factors (such as blood pressure, , heart rate, height, 

arm length, and BMI) that may influence the association 

between age and PPG features. A schematic diagram is shown 

in Fig.1. More details were described as follows:  

A. Data Acquisition and Preprocessing 

1) Subjects: To exclude the influence of vascular diseases on 

 
 

Fig.1. The flowchart for analyzing age-related PPG features. 
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arterial stiffness and pulse waveform characteristics, 100 

healthy normotensive subjects without cardiovascular disease 

were recruited. To investigate the dependence on age of the 

PPG features at a wide range of ages, the subjects were between 

21 to 70 years old (aged 44 ± 14 years), including young, 

middle-aged and old people, evenly distributed in five age 

groups: 20 ~ 29 years, 30 ~ 39 years, 40 ~ 49 years, 50 ~ 59 

years and over 60 years, with 20 people in each age group. The 

subjects were recruited from staff, students and their relatives 

in Newcastle Hospitals and Newcastle University. The study 

received ethical permission from the Faculty Research Ethics 

Panel at Anglia Ruskin University (FMSFREP/17/18 205), and 

all subjects provided written informed consent.  

2) Protocol: Before data collection, the subject lay down in 

supine position and rest for 5 minutes. Then, critical clinical 

measures including systolic blood pressure (SBP), diastolic 

blood pressure (DBP), height, arm length, and body max index 

(BMI) were measured. After that, the PPG sensor was lightly 

attached to the tip of the right index finger and earlobe to ensure 

a snug fit without constricting the blood vessels. This was done 

by an experienced operator to ensure consistency across all 

measurements. Ear PPG and finger PPG waves were recorded 

continuously and simultaneously for 2 minutes, with a sampling 

rate of 2500 Hz. Each PPG sensor was developed with an 

identical pair of surface-mount emitting diode (SME 2470-001, 

Honeywell) and photodiode (SMD 2420-001, Honeywell). The 

output of the emitting diode was near-infrared light with a 

wavelength of 880nm.The PPG sensors worked in reflective 

mode. The current of the LEDs was adjusted according to the 

amplitude of the detected PPG, but remained constant during 

one complete measurement. More details of the setup can be 

found one of our previous studies [18]. 

3) Filtering: Since the frequency response of the Butterworth 

filter is maximally flat (i.e. has no ripples) in the passband and 

rolls off towards zero in the stopband, the PPG signals were first 

pre-processed with a 4th-order Butterworth band-pass filter 

with a passband of [0.05, 10] Hz to remove the high-frequency 

noise, followed by a wavelet transformation to eliminate the 

low-frequency baseline drift. The time delay of the Butterworth 

filtering was compensated using “filtfilt” function in Matlab, 

which reverses the filtered sequence and runs it back through 

the filter after filtering the data in the forward direction, thus 

has the characteristics of zero phase distortion. The wavelet 

transformation was performed using Daubechies 8 wavelet 

(db8) with eleven-level decomposition, and the approximation 

coefficients at the eleventh level, which contain low frequency 

drift, were replaced by zero. Then, clean PPG signal was 

reconstructed from the new coefficients. Thereafter, the first 

derivative wave of PPG (FDPPG) was calculated. Since the first 

derivative of a signal is the rate of change of the y-axis 

(amplitud) with respect to the x-axis (time), or in other words, 

the slope of the signal at each point. Since the PPG signal is 

sampled at a constant rate, the first derivative can be 

approximated by calculating the difference between two 

adjacent samples, as the time interval between them is constant. 

The calculated FDPPG was then processed with a 4th-order 

Butterworth band-pass filter with a passband of [0.05, 10] Hz 

and time delay compensation. The second derivative wave of 

PPG (SDPPG) was obtained as the derivative of the FDPPG and 

was also processed with a 4th-order Butterworth band-pass 

filter with a passband of [0.05, 10] Hz and time delay 

compensation. All data used for analysis were anonymized. 

4) Normalization: Despite the amplitude of PPG waves may 

contain information, it can be strongly affected by confounding 

factors (e.g., orientation of LEDs/detectors of the sensors, 

movement artifact), which may increase measure variability, 

thus the amplitude of PPG wave is usually normalized. 

However, there is no standardization as yet to the normalization 

of PPG wave in width, and to the normalization of the PPG 

derivative waves (i.e., FDPPG and SDPPG) in both amplitude 

and width. Therefore, in this study, amplitude of the PPG wave 

in each cycle was normalized, the other amplitude and width 

normalization schemes of the PPG and its derivatives (i.e., 

FDPPG and SDPPG) were set as follows to clarify the optimal 

normalized scheme that is  helpful in finding age-sensitive PPG 

features. Four schemes were evaluated: S1, width of the PPG 

and its derivatives, and amplitude of the derivatives were 

normalized; S2, width of the PPG and its derivatives, and 

amplitude of the derivatives were not normalized; S3, width of 

the PPG and its derivatives was not normalized, while 

amplitude of the derivatives was normalized; and S4, width of 

the PPG and its derivatives was normalized, and amplitude of 

the derivatives was not normalized, as shown in Fig.2. In which, 

the amplitude was normalized between 0 and 1, and the width 

was normalized to 1 for each cardiac cycle. The purpose of this 

analysis was to identify the normalization scheme that best 

distinguishes age-related changes in the PPG signal.  

B. Average PPG Contours in Each Group 

To study the PPG profiles varying with age, the group 

average PPG waves were computed for the subjects in 20’s, 

30’s, 40’s, 50’s, and >60 age groups, respectively. The group 

average PPG contours were obtained by ensemble averaging of 

the pulse waves of multiple cardiac cycles in each age group. 

 

 
Fig.2. Different settings for normalizing the amplitude and width of PPG and its derivatives.  FDPPG indicates the first derivative wave of PPG; SDPPG, the 

second derivative wave of PPG. 
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C. Fiducial Point Detections and Feature Extractions 

1) Fiducial Points Detection: The fiducial points in the 

original PPG wave, the FDPPG, and the SDPPG were detected 

[9,19], as illustrated in Fig.3. They included: 1) Onset, peak of 

the forward wave of PPG (FP), maximum peak, dicrotic notch, 

dicrotic peak, and offset points of the original PPG wave; 2) 

Onset, a wave peak, b wave valley, offset points of the FDPPG; 

and 3) Onset, a wave peak, b wave valley, c wave peak, d wave 

valley, e wave peak, and offset points of the SDPPG. In more 

details, onset and offset the original PPG wave, FDPPG and 

SDPPG; Maximum peak of the original PPG wave; a wave 

peak of the FDPPG and SDPPG; and e wave peak of the SDPPG 

were firstly detected according to the points that have local 

maxima values or minimum values. Then, the dicrotic notch 

and dicrotic peak of the PPG wave were identified as the first 

inflection valley point before the e wave peak and the first 

inflection peak point after the e wave peak of the SDPPG, 

respectively, as shown in the example of subject 1 in Fig.3. 

However, if there were no inflection points (usually occur in the 

elderly), the e wave peak of the SDPPG was determined as 

dicrotic notch/dicrotic peak, as shown in the example of subject 

2-3 in Fig.3. After that, b wave valley of the SDPPG was 

detected as the point that has a local minimum value after the a 

wave peak of the SDPPG. Afterwards, the c wave peak was 

identified as the first inflection peak point after the b wave 

valley of the SDPPG, while d wave valley was considered as 

the first inflection valley point before the e wave peak of the 

SDPPG. Then, b wave valley of the FDPPG was obtained as the 

first positive zero crossing (i.e., in the direction from negative 

to positive) of the SDPPG after a wave, as shown in the 

example of subject 1-2 in Fig.3. However, if a zero crossing was 

not present (usually occur in the elderly) before the c wave peak 

of the SDPPG, b wave valley of the FDPPG was then 

determined as the c wave peak of the SDPPG, as shown in the 

example of subject 3 in Fig.3. At last, the peak of the forward 

wave of the PPG wave was detected based on a Gaussian fitting 

method reported in one of our previous studies [6].  

2) Features Definition: Five newly proposed and five 

previously reported features were extracted from the original 

PPG wave, FDPPG, and SDPPG. The details of the features 

definition are illustrated in Fig.4. These features included 

TWRRF1/4 (n.u.): time width ratio of rising branch to falling 

branch at 1/4 pulse height of the PPG waveform; TWRRF1/2 

(n.u.): time width ratio of rising branch to falling branch at 1/2 

pulse height of the PPG waveform; FDPPG: b (n.u.): intensity 

of b wave valley of the FDPPG; FDPPG:b-a (n.u.): the 

intensity difference of a wave peak and b wave valley of the 

FDPPG; FDPPG: b/a (%): the intensity ratio of b wave valley 

to a wave peak of the FDPPG as a percentage. For each feature, 

the feature value was computed for each cardiac cycle of each 

subject according to the feature definition. Then, the feature 

value for a subject was determined as the median of the feature 

values across all cardiac cycles of the subject. The reason for 

using the median value was to reduce the impact of noise. 

Additionally, heart rate (HR) was calculated as 60 seconds 

divided by the pulse width.  

D. Statistical Analysis 

The demographic characteristics of the subjects were 

analyzed. Values of the variables across the subjects were 

expressed as mean ± standard deviation. 

1) Pearson’s Correlation Analysis: After features extraction, 

Pearson’s correlation coefficients were calculated between age 

and PPG features. To investigate the effect of different 

measured vascular sites on the correlation between age and PPG 

 
Fig.3. A schematic illustration of the fiducial points of PPG waveforms and their derivatives with various shapes in three representative subjects. PPG indicates 
photoplethysmography; FDPPG, the first derivative wave of PPG; SDPPG, the second derivative wave of PPG; FP, peak of the forward wave of PPG; MP, 

maximum peak; DN, dicrotic notch; DP, dicrotic peak. 
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features, the correlation analysis was conducted when the PPG 

was recorded at the finger and ear, respectively. In addition, to 

determine whether the correlation between age and PPG feature 

holds steady, the correlation analysis was conducted with the 

gender of subjects pooled initially and then separated, 

respectively. A p value of < 0.05 was considered statistically 

significant. 

2) Univariate Linear Regression Analysis and Piecewise 

Linear Regression Analysis: Next, univariate linear regression 

analysis was performed on PPG features with age to investigate 

the changes of the PPG features with age. In addition, piecewise 

linear regression was performed to analyze the different 

dependence of PPG features on age at different stages of age. 

3) Multiple Regression Analysis: Afterwards, as clinical 

measures such as SBP, DBP, height, HR, arm length, and BMI 

may also influence the values of PPG features, multiple 

regression analysis including these clinical variables as 

covariates (including SBP, DBP, height, HR, arm length, and 

BMI) was conducted for correcting confounding factors that 

influence the association between age and PPG features. 

All the data was analyzed using MATLAB.  

III. RESULTS 

The demographic characteristics of the subjects were shown 

in Table I.  

A. Group Average PPG Contours Change with Age 

Fig.5 shows the shape characteristics of the group average 

PPG/FDPPG/SDPPG waves changing with age. As shown, the 

shape of the group average PPG, FDPPG and SDPPG waves 

changed regularly with age regardless of the normalization 

schemes. Specifically, with increasing age, the PPG maximum 

peak shifted slightly to the right side of the cycle, and the 

dicrotic notch gradually weakened, consistent with previous 

studies [1]. The peak of the finger PPG waveform became 

blunt, while the peak of the ear PPG waveform became sharp. 

The b wave valley of the FDPPG moved up. The b wave of the 

SDPPG moved up, while a, c, d, and e wave of the SDPPG 

moved down. The fiducial points of dicrotic notch were more 

prominent when width was not normalized, as shown in Fig.5.B 

and 5.C. 

B. Correlations between PPG features and Age 

Fig.6 presented the correlation coefficients between PPG 

features at fingers and ears with age in the male subgroup, 

female subgroup, and the pooled-gender group, respectively. 

As shown, the correlations between age and the proposed PPG 

features were stable in different subject groups (male subgroup, 

female subgroup, and the pooled-gender group), proving that 

the correlations exist objectively and stably. In general, the 

correlation values for the proposed features were much higher 

and more stable than those for the previously reported features. 

Moreover, the correlations between age and the PPG features 

of fingers were generally greater than that of the ears. In 

addition, all correlation values are lower for females than for 

males.  

Besides, the normalization scheme would not influence the 

correlation of age to the features of TWRRF1/4, TWRRF1/2, and 

AI. The correlation of age to the features of FDPPG:b, 

 
Fig.4. A schematic representation of the proposed and previously reported PPG features. LASI indicates large artery stiffness index; AI: augmentation index; SI: 

stiffness index; I: intensity; T: time; TR1/4, TR1/2: time width of the rising branch at 1/4 and 1/2 pulse height of the PPG waveform, respectively; TF1/4, TF1/2: time 

width of the falling branch at 1/4 and 1/2 pulse height of the PPG waveform, respectively. 
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TABLE I 

DEMOGRAPHIC CHARACTERISTICS OF THE SUBJECTS 

Characteristics Values 

Pooled-
gender group 

Male subgroup 
(n=44, 44%) 

Female subgroup 
(n=56, 56%) 

Age (years) 44 ± 14 48 ± 15 41 ± 13 

Height (cm) 169 ± 9  175 ± 7 163 ± 7 

BMI (kg/m2) 25 ± 4 25 ± 4 25 ± 4 

SBP (mmHg) 120 ± 11 123 ± 10 118 ± 11 

DBP (mmHg) 72 ± 8 73 ± 8  71 ± 8 

HR (beats/s) 65 ± 10 61 ± 8 68 ± 11 

Values were expressed as mean ± standard deviation. 

 



FDPPG:b-a, and FDPPG:b/a were relatively higher in the case 

of amplitude normalized. In addition, the correlation of LASI 

and SI were relatively higher in the case of width unnormalized. 

The correlation of age to the features of Pulse risetime were 

relatively higher in the case of width unnormalized. In 

summary, the normalization scheme will influence some the 

correlation between age and PPG features, but not too much. 

The most PPG features showed high correlation with age under 

normalization scheme S3, which normalized the amplitude of 

PPG and its derivatives while leaving the width unnormalized. 

Thus, the correlation values between age and PPG features 

were compared under normalization scheme S3 when PPG was 

captured at finger. The correlation values for the proposed 

finger PPG features in all subjects (i.e., the pooled-gender 

group) were r = 0.76 – 0.77, which were higher than those of 

the previously reported features (r = 0.66 – 0.75).  

C. Univariate Linear Regression Analysis and Piecewise 

Linear Regression Analysis 

Fig.7 shows the results of univariate regression analysis 

reflecting the changes in PPG features with age. Normalization 

scheme S3 which normalized the amplitude of PPG and its 

derivatives while leaving the width unnormalized was adopted. 

As shown, the values of PPG features in the peripheral finger 

changed slowly with age before 40 years old, but rapidly after 

40 years old (40 ~ 71 years old). This suggested that the aging 

rate of blood vessels was slow before 40 years old and 

accelerated after 40 years old. Thus, piecewise linear regression 

analysis was further conducted for age of <40 and age of ≥40 

years, respectively. The absolute β regression coefficients in the 

age ≥40 years (β≥ 40) were much higher than those in the age 

<40 years (β<40), indicating that the feature change per year was 

higher in the elderly group with age ≥40 years than in the 

younger group with age <40. This further supported the finding 

that the aging rate of blood vessels was slow before 40 years 

old and accelerated after 40 years old. This phenomenon was 

also observed in the features of FDPPG:b, FDPPG:b-a, 

FDPPG:b/a, and Aging index in the proximal ear, but not in 

other ear features.  

D. Multiple Linear Regression Analysis 

Table II presents the results of multiple regression analysis 

that examined the combined effects of clinical measures (i.e., 

SBP, DBP, height, HR, arm length, and BMI) with age on PPG 

features. The analysis revealed that critical clinical measures of 

SBP and DBP also had significant effects on most PPG features 

(p < 0.05), while height, HR, arm length, and BMI had 

significant effects on some PPG features {e.g., Stiffness index, 

TWRRF1/4, p < 0.05}. However, the absolute β regression 

coefficient of age was much higher than that of other clinical 

measures, indicating that age still had a strong effect on PPG 

features even after the adjusting for the clinical measures of 

SBP, DBP, height, HR, arm length, and BMI. 

IV. DISCUSSION 

This study aimed to explore age-sensitive features from pulse 

waves recorded at different vascular sites and investigate their 

pattern variations with age. The main findings included:  

1) Five PPG features (i.e., TWRRF1/4, TWRRF1/2, FDPPG b, 

FDPPG:b-a, FDPPG:b/a) displayed progressive age-related 

variation and strong correlations with age in healthy 

individuals. These features were found to be more sensitive to 

age changes than previously reported PPG features.  In addition, 

the correlation between age and PPG features was stable across 

different subject groups (male, female, and the pooled-gender 

groups), indicating the objective and stable existence of these 

 
Fig.6. Correlation coefficients between PPG features and age, based on various normalization schemes and gender groups. WN indicates width normalized; AN, 

amplitude normalized; LASI, large artery stiffness index; AI, augmentation index, SI, stiffness index; PPG indicates photoplethysmography; FDPPG, the first 

derivative wave of PPG; SDPPG, the second derivative wave of PPG. *Statistically significant at the level < 0.05; † statistically significant at the level < 0.01. 
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correlations. Besides, multiple linear regression analysis 

revealed that the strong correlation between age and PPG 

features remained significant even after adjusting for other 

clinical variables, such as SBP, DBP, height, HR, arm length, 

and BMI.  

2) The shape characteristics of the group average PPG waves 

and its derivatives changed regularly with age in healthy 

individuals.  Specifically, with increasing age, the PPG 

maximum peak slightly shifted to the right side of the cycle and 

the dicrotic notch gradually weakens. The peak of the finger 

PPG waveform became blunt, while the peak of the ear PPG 

waveform became sharp. The normalization scheme had some 

influence on the shape characteristics of the group average PPG 

waves and its derivatives, as well as on the correlation between 

age and some PPG features, but not to a significant extent. 

Under normalization scheme S3, which normalized the 

amplitude of PPG and its derivatives while leaving the width 

unnormalized, most PPG features showed the highest 

correlation with age. 

3) The correlations between age and the PPG features of the 

fingers were generally greater than those of the ears. 

4) The rate of change in most feature values was much faster 

 
Fig.7. Scatterplots depicting the relationship between PPG features and age, as analyzed using univariate linear regression and piecewise linear regression. The 

features were extracted from PPG signals acquired at (1) the finger and (2) the ear. 
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in subjects aged ≥40 years than that in subjects aged < 40 years 

in the healthy population, particularly for the finger features, 

indicating the rate of blood vessel aging accelerates after the 

age of 40 in healthy individuals. 

5) The correlation values between the PPG features and age 

were lower for females than for males.  

A. Physiological Interpretation 

An observed pulse wave is a combination of two waves: the 

forward wave, which travels from the heart towards small 

vessels and is generated by the cardiac output, and the reflected 

wave, which moves backward from the peripheral vessel 

towards the heart and is generated by the peripheral vascular 

resistance [2,20], as shown in Fig.8. The time of return of the 

reflected wave can vary due to changes in vascular elasticity 

caused by aging and recording position, which in turn results in 

variations in the PPG contours with age and measure site.  

 
 

Fig.8. Simplified model demonstrating the effect of reflected wave return time 
on pulse wave shape. AP represents augmentation pressure, the amplitude 

difference between the observed and forward waves.  

AP

AP

APFinger - young Finger - old

Ear - young Ear - old



Fig.8 displays a simplified model showing the influence of 

the time of return of the reflected wave on the shape of the pulse 

wave. Specifically, in young people, the delayed return of 

reflected waves at the distal finger leads to less overlap between 

the forward and backward waves, resulting in a sharp pulse 

peak and dicrotic peak. In contrast, in elderly individuals, 

decreased vascular elasticity and a shorter return time of 

reflected waves cause more overlap between the forward and 

reflected waves, resulting in a blunt pulse peak, subtle shift to 

the right of the pulse cycle, gradual weakening of the dicrotic 

peak, and an increase in augmentation pressure, which is the 

amplitude difference between the observed wave and the 

forward wave. 

Compared to the finger, the proximal ear is closer to the 

heart. In young people, the return time of the reflected wave is 

further shortened, and the overlap between the forward wave 

and the reflected wave is also greater, resulting in a blunt pulse 

peak under the influence of the reflected wave, and a further 

increase in the augmentation pressure. However, in the ear of 

the elderly, due to the further shortening of the return time of 

the reflected wave, the peak of the forward wave becomes very 

close to that of the reflected wave, which makes the pulse peak 

sharp again, and the augmentation pressure increases further. 

This can explain the observations in this study that the peak 

of the finger PPG waveform became blunt with increasing age, 

while the peak of the ear PPG waveform became sharp. The 

augmentation index increased with age, and the values of the 

augmentation index in the ear were higher than those in the 

finger, with higher values in the elderly than in young people. 

The pulse peak shifts to the right of the pulse cycle with 

aging, which means that the time width ratio of the rising branch 

to the falling branch at a particular height of the PPG waveform 

TABLE II 
DEMOGRAPHIC CHARACTERISTICS OF THE SUBJECTS 

Finger Ear 

Dependent 

variable 
Independent variable 

β regression 

coefficient 
r 

Dependent 

variable 
Independent variable 

β regression 

coefficient 
r 

Age 

f1: TWR1/4 

6.1×10-3 0.77† Age 

f1: TWR1/4 

1.7×10-3 0.38† 

SBP 1.0×10-5 0.44† SBP 1.1×10-3 0.27† 

DBP 2.4×10-3 0.41† DBP 1.5×10-4 0.21* 

Age 

f2: TWR1/2 

9.2×10-3 0.77† Height -2.3×10-3 -0.32† 

SBP 3.0×10-4 0.45† HR 1.5×10-3 0.32† 

DBP 
HR 

2.1×10-3 

3.7×10-3 

0.38† 

0.2* 

Armlength -7.6×10-4 -0.23* 

BMI 8.6×10-4 0.2* 

Age 

f3: FDPPG: b 

9.2×10-3 0.76† Age 

f2: TWR1/2 

1.3×10-3 0.27† 

SBP -9.0×10-4 0.40† SBP 1.9×10-3 0.24* 

DBP 4.2×10-3 0.41† Height -3.4×10-3 -0.32† 

Age 

f4: FDPPG: b-a 

9.2×10-3 0.76† HR 1.8×10-3 0.30† 

SBP -9.0×10-4 0.40† Armlength -5.5×10-4 -0.23* 

DBP 4.2×10-3 0.41† BMI 3.2×10-3 0.25* 

Age 

f5: FDPPG: b/a 

9.2×10-1 0.76† Age 

f3: FDPPG: b 

9.3×10-3 0.61† 

SBP -9.0×10-2 0.40† SBP -3.2×10-3 0.26† 

DBP 4.2×10-1 0.41† DBP 5.8×10-3 0.34† 

Age 

f6: Aging index 

1.2 0.75† Age 

f4: FDPPG: b-a 

9.3×10-3 0.61† 

SBP -1.2×10-2 0.40† SBP -3.2×10-3 0.26† 

DBP 0.3 0.35† DBP 5.8×10-3 0.34† 

Age 

f7: Pulse risetime 

2.8 0.73† Age 

f5: FDPPG: b/a 

9.3×10-1 0.61† 

SBP -7.8×10-1 0.32† SBP -3.2×10-1 0.26† 

DBP 1.4 0.37† DBP 5.8×10-1 0.34† 

Age 
f8: Large artery 

stiffness index 

5.0×10-5 0.72† Age 

f6: Aging index 

1.1 0.64† 

SBP -2.0×10-5 0.31† SBP -2.4×10-1 0.29† 

DBP 4.0×10-5 0.43† DBP 3.9×10-1 0.30† 

Age 
f9: Augmentation 

index 

5.5×10-1 0.66† Age 
f7: Pulse risetime 

8.3×10-1 0.33† 

SBP 1.7×10-2 0.39† HR -2.3 -0.63† 

DBP 2.2×10-1 0.36† Age f8: Large artery 

stiffness index 

2.0×10-5 0.20* 

Age 

f10: Stiffness index 

8.3×10-3 0.72† HR -4.0×10-5 -0.36† 

SBP -2.4×10-3 0.36† Age f9: Augmentation 

index 

8.6×10-1 0.52† 

DBP 6.4×10-3 0.45† DBP 5.0×10-2 0.20* 

  

  Age 

f10: Stiffness index 

2.8×10-3 0.21* 

Height 2.1×10-3 0.36† 

HR -7.8×10-3 -0.43† 

Armlength 1.1×10-2 0.32† 

The correlation coefficients (r) were computed between clinical variables (i.e., age, SBP, DBP, height, HR, arm length, and BMI) and PPG features. Only the 

clinical measures that showed significant correlations with the PPG feature (p < 0.05) were included in the multiple regression model and presented in the table. 

SBP indicates systolic blood pressure; DBP, diastolic blood pressure; BMI, body max index; HR, heart rate. *Statistically significant at the level <0.05; † 

statistically significant at the level < 0.01. 



increases. Additionally, the augmentation pressure also 

increases with aging, leading to a further increase in the time 

width ratio of the rising branch to the falling branch at a 

particular height of the PPG waveform. This could explain the 

strong correlation between age and the time width ratio of the 

rising branch to the falling branch at 1/4 or 1/2 pulse height of 

the PPG waveform, indicated as TWRRF1/4, TWRRF1/2. 

FDPPG:b represents the maximum slope of the descending 

branch of PPG wave. As the pulse peak shifts to the right of the 

pulse cycle with aging, the descending branch of the PPG wave 

falls faster, resulting in a larger maximum slope of the 

descending branch. This can explain why the b wave valley of 

the FDPPG moves up with the increase of age, leading to an 

increase in FDPPG:b, FDPPG:b-a, and FDPPG:b/a with age,  

(Fig.5, Fig.7). And can explain the significant strong correlation 

between age and FDPPG:b, FDPPG:b/a, and FDPPG:b-a. 

The correlations between age and the PPG features of fingers 

were generally greater than that of the ears. The results were 

consistent with previous studies which showed that the PPG 

feature of pulse risetime at fingers and toes were more 

correlated with age than that at ears [4]. This phenomenon may 

be because the PPG waves recorded at distal blood vessels are 

more likely to be affected by the reflected waves caused by 

peripheral arterial stiffness, which increases with aging, than 

PPG waves recorded at proximal sites. Thus, PPG waves 

recorded at distal sites (e.g., fingers, toes) are more sensitive to 

vascular aging than that recorded at proximal sites (e.g., ears).  

The correlation values between the PPG features in this study 

and age were lower for females than for males. This may be 

because that the arterial stiffness in men increases almost 

linearly with age from early adulthood onward, while the 

women experience a curvilinear aging trend, with a flatter curve 

in young and a steep increase in arterial stiffness after 

menopause [17, 21, 23, 24]. Previous studies have reported that 

the correlation between arterial stiffness (quantified as pulse 

wave velocity) and age during life from early adulthood onward 

were higher in men than in women [17, 21, 23, 24]. This was 

similar to the gender difference of the correlation values 

between the PPG features and age in this study, again indirectly 

demonstrating the potential of the proposed PPG features to be 

used as biomarkers for vascular aging and CVD risk 

assessment. 

B. Age-related progression of arterial stiffness 

Fig.7 demonstrates that most PPG features do not change 

uniformly and linearly with age. The piecewise linear 

regression analysis showed that PPG features, particularly those 

from the fingers, changed slowly with age before 40 years old, 

but then increased rapidly after 40 years old. This pattern is 

similar to the age-related progression of arterial stiffness, which 

is assessed by the pulse wave velocity (PWV), considered the 

gold standard for evaluating vascular stiffness [21, 22]. This 

suggests that the aging rate of blood vessels is slow before 40 

years old and accelerates after 40 years old. In a study by Y. Lu 

et al, brachial-ankle pulse wave velocity (baPWV) was shown 

to increase with age in 80,415 healthy subjects. The slope of the 

increase in baPWV as a function of age is slower before the age 

of about 40 and faster after the age of about 40 [21]. In another 

study by M. AlGhatrif, aortic pulse wave velocity was reported 

to increase rapidly after 40 and slowly before 40 in 111 healthy 

subjects [22]. The trend of PPG features with age was consistent 

with the age-related progression of arterial stiffness assessed by 

the gold standard PWV, indicating that the PPG features 

proposed in this study have the potential to be used as 

biomarkers for vascular aging assessment and help predict and 

evaluate cardiovascular disease risk. However, it should be 

noted that the PPG signal waveform depends on the hardware 

setup and physiological conditions [25]. Therefore, a unified 

standard for the hardware, detection environment, and 

physiological state of the subject is necessary before promoting 

this technique. 

C. Normalization 

Currently, there is no standardization for the normalization 

of PPG waves and their derivatives, which can greatly affect the 

value of PPG features and their relationship with age. In this 

study, the group average PPG contours of different age groups 

and the correlation between age and PPG features were 

analyzed using different normalization schemes of PPG waves. 

The results indicated that the normalization scheme influences 

the shape characteristics of the group average PPG waves and 

their derivatives, as well as the correlation between age and 

some PPG features, although not significantly. The fiducial 

points of the dicrotic notch of the PPG wave were more 

prominent when the width was not normalized. Most PPG 

features showed a high correlation with age under 

normalization scheme S3, which normalized the amplitude of 

PPG and its derivatives while leaving the width unnormalized. 

D. Limitations 

One limitation of the study was that it did not include the 

subjects with very low age (< 20) and with very high age (> 70). 

Numbers of subjects with age >60 was too limited, which affect 

analyzing the vascular aging pace after 60. 

In addition, although identifying PPG feature determinants 

may be a first step towards developing risk markers for 

cardiovascular disease, and the trend of PPG features with age 

was shown to be consistent with the age-related progression of 

arterial stiffness assessed by the gold standard pulse wave 

velocity, indicating that the proposed PPG features have the 

potential to be used as biomarkers for vascular aging 

assessment, further studies are needed to directly define disease 

markers. This could include demonstrating the association of 

these age-related PPG features with pulse wave velocity. 

V. CONCLUSION 

In summary, this study identified several PPG features that 

are highly sensitive to age in healthy individuals. Five PPG 

features (i.e., TWRRF1/4, TWRRF1/2, FDPPG:b, FDPPG:b-a, 

FDPPG:b/a) displayed progressive variation with age in the 

healthy population and showed a strong and significant 

correlation with age. These features were found to be more 

sensitive to age changes than previously reported PPG features, 

and the strong correlation remained significant even after 



adjusting for other clinical variables such as SBP, DBP, height, 

HR, arm length, and BMI. In addition, the changing rates of 

these PPG features with age were slower before the age of about 

40 and faster after the age of about 40, which was similar to the 

age-related progression of arterial stiffness evaluated by pulse 

wave velocity, the gold standard for evaluating vascular 

stiffness. This indicates that the proposed PPG features in this 

study have the potential to be used as biomarkers for vascular 

aging assessment. Furthermore, the correlation values between 

PPG features and age were higher for men than for women, 

which was similar to the gender difference of the correlation 

values between arterial stiffness and age, further supporting the 

potential of these PPG features for vascular aging assessment. 

Due to the convenience of measurement, pulse wave has been 

widely used in wearable devices and telemedicine, thus having 

the potential to be a large-scale and easy-to-use early screening 

tool. Therefore, the sensitive age-related pulse wave markers 

identified in this study have the potential to be used for vascular 

aging estimation, early prediction, and assessment of CVD risk. 
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Fig.5. Group average PPG contours change with age under different settings of normalizing the PPG and its derivatives in amplitude and width. PPG were recorded at (1) finger and (2) ear. (A) S1: width of the PPG 
and its derivatives, and amplitude of the derivatives were normalized; (B) S2: width of the PPG and its derivatives, and amplitude of the derivatives were not normalized; (C) S3: width of the PPG and its derivatives 

was not normalized, and amplitude of the derivatives was normalized; and (D) S4: width of the PPG and its derivatives was normalized, and amplitude of the derivatives was not normalized. FDPPG indicates the 

first derivative wave of PPG; SDPPG, the second derivative wave of PPG. 
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