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Abstract

With advances in high-throughput technologies, there has been enormous increase in
data related to profiling the activity of molecules in disease. While such data provide
more comprehensive analysis of cellular actions, their large volume and complexity
pose difficulty in accurate disease phenotype classification. Therefore, novel modelling
methods that can not only improve accuracy but also offer interpretable means of
analysis, are important. In this respect, biological pathways (i.e. gene sets that reflect
related functional cascades) can be used to incorporate a-priori knowledge of biological
interactions, so as to decrease the data dimensionality from gene-level to pathway-
level and increase biological interpretability of related methodologies. Methods to infer
pathway activity values across high-throughput data have shown good potential towards
better understanding of the regulation pattern of gene expression values. This thesis
focuses on the application and development of mathematical programming models for
pathway activity inference in disease classification and gene signature identification in
gene profiling data.

First, an optimisation model, known as DIGS, for pathway activity inference toward
precise disease phenotype prediction is implemented on Microarray datasets of ischemic
stroke and RNA-Seq datasets of colorectal cancer. DIGS is a mixed integer linear
programming (MILP) mathematical optimisation model aiming at separating the
different cancer subtypes to the largest extent. In supervised manner, DIGS defines
pathway activity as the linear combination of the member gene expression values
multiplying the inferred gene weights. Inside the DIGS model, gene weights are
optimised to maximise the discriminative power of the inferred pathway activity and
the optimisation objective is set to minimise the number of incorrect sample allocation.
Comparative analysis shows that DIGS model outperforms other up-to-date methods
in three pathway activity evaluation metrics, classification accuracy, robustness against
noisy data and survival outcome prediction accuracy of patients.

Next, the model is improved to form a more efficient MILP model (DIGS2). This
model avoids a large number of binary decision variables in the original model and is
thus easier to be solved to global optimality. The assessment of DIGS2 model on two
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RNA-Seq datasets shows improvements on solution qualities and better performance
on the evaluation metrics compared with other pathway activity inference methods.

These models exhibit outstanding contribution on identifying disease relevant pathways
and genes, which are also verified on relevant findings in the literature. Finally, the
effectiveness of the proposed MILP models is explored in the noisier and sparser
scRNA-Seq data. In addition to the classification effect, following the up-to-date
research interests for this type of data, the clustering ability of pathway activity value
is emphasised in this work to see whether the pathway activity values can clustering
the cells of same label through dimension reduction methods. A comparison made with
methods from literature shows that the proposed method achieves competitive results
for separating the cells.

Overall, this thesis demonstrates that the flexible nature of mathematical programming
lends itself well to developing solution procedures for pathway activity inference. The
evaluation metrics show the proposed methods to outperform other methods from
literature, as well as to provide explainable means of modelling. Also, the proposed
methods show the potential to reveal meaningful biological interpretations for complex
diseases such as cancer.



Publications

Chen, Y., Theofilatos, K., Papageorgiou, L. G., & Tsoka, S. (2020, May). Identification
of Important Biological Pathways for Ischemic Stroke Prediction through a Mathematical
Programming Optimisation Model-DIGS. In Proceedings of the 2020 12th International
Conference on Bioinformatics and Biomedical Technology (pp. 25-31). Best paper
award.

Chen, Y., Liu, S., Papageorgiou, L., Theofilatos, K., & Tsoka, S. (Submitted).
Optimisation models for Pathway Activity Inference in Cancer.

Chen, Y., Laddach, R.,Karagiannis. S, Papageorgiou, L. G., & Tsoka, S. (In prepa-
ration). Optimisation-based Pathway Activity Inference Method for Single-cell RNA
Sequence Data.



Table of contents

Publications v

List of figures xii

List of tables xv

1 Introduction 1

1.1 Pathway activity inference, a solution for Systems Biology . . . . . . . . 1

1.2 Mathematical programming optimisation approach . . . . . . . . . . . . 4

1.3 Research Aims . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Background and Related work 8

2.1 Methodologies for profiling data, applications and limitations . . . . . . 8

2.1.1 Microarray . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.2 RNA Sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.3 Single-cell RNA Sequencing (scRNA-Seq) . . . . . . . . . . . . . 10

2.2 Analysis of profiling data incorporating biological pathways . . . . . . . 11



Table of contents vii

2.2.1 Motivation for pathway approaches . . . . . . . . . . . . . . . . . 11

2.2.2 Pathway analysis approaches . . . . . . . . . . . . . . . . . . . . 14

2.3 Pathway activity inference framework . . . . . . . . . . . . . . . . . . . 16

2.3.1 Motivation and definition for pathway activity inference . . . . . 16

2.3.2 Data collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.3 Pathway activity profile calculation . . . . . . . . . . . . . . . . . 21

2.3.4 Pathway activity evaluation . . . . . . . . . . . . . . . . . . . . . 23

2.4 Pathway activity inference methods in literature . . . . . . . . . . . . . 28

2.4.1 Baseline pathway activity inference methods . . . . . . . . . . . 28

2.4.2 Extensions of GSEA . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4.3 Advanced arithmetic pathway activity inference methods . . . . 31

2.4.4 An advanced Projection-based pathway activity inference method 33

2.4.5 Optimisation-based pathway activity inference method . . . . . . 33

2.4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3 Pathway Activity Inference for Acute Ischemic Stroke Microarray
Data 41

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2 Application of DIGS on Stroke Microarray datasets . . . . . . . . . . . . 43

3.2.1 Gene expression datasets and KEGG pathway acquisition . . . . 43

3.2.2 Dataset integration . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2.3 Pathway activity inference using the DIGS model . . . . . . . . . 45



Table of contents viii

3.2.4 Implementation and validation scheme . . . . . . . . . . . . . . . 47

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3.1 Evaluation of Prediction performance . . . . . . . . . . . . . . . 49

3.3.2 AIS Relevant Pathway Identification . . . . . . . . . . . . . . . . 51

3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4 Pathway Activity Inference Applied in Cancer RNA Sequencing Data 57

4.1 Introduction and related work . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2 Application of DIGS on RNA-Seq datasets . . . . . . . . . . . . . . . . . 60

4.2.1 Data Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2.2 Validation Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2.3 Sample Phenotype Prediction . . . . . . . . . . . . . . . . . . . . 63

4.2.4 Survival data Analysis . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2.5 Robustness against noise in profile data . . . . . . . . . . . . . . 64

4.2.6 Pathway activity inference methods from literature . . . . . . . . 64

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.3.1 Two-class and multi-class classification comparison . . . . . . . . 66

4.3.2 Survival analysis comparison . . . . . . . . . . . . . . . . . . . . 68

4.3.3 Robustness comparison . . . . . . . . . . . . . . . . . . . . . . . 68

4.3.4 Overall performance of DIGS model . . . . . . . . . . . . . . . . 70

4.3.5 Pathway ranking . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74



Table of contents ix

4.4.1 DIGS reveals significant disease-relevant pathways . . . . . . . . 74

4.4.2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5 An improved optimisation-based model 79

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.2 A Novel Method for Pathway Activity Inference for Disease Classification 81

5.2.1 Other comparative pathway activity inference methods . . . . . . 86

5.2.2 Dataset preparation . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.2.3 Pathway activity evaluation . . . . . . . . . . . . . . . . . . . . . 88

5.3 Comparative study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.3.1 Efficiency improvement in the DIGS2 model . . . . . . . . . . . . 90

5.3.2 Evaluations on classification, survival analysis and robustness . . 91

5.4 Biological interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.4.1 Individual pathway evaluation . . . . . . . . . . . . . . . . . . . 96

5.4.2 Biological pathway markers and gene marker identification . . . 97

5.5 Discussion and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 101

6 Exploration of the Pathway Activity Inference Model on Single-cell
RNA-Seq Data 105

6.1 Introduction and Background . . . . . . . . . . . . . . . . . . . . . . . . 106

6.2 Application of DIGS2 on scRNA-Seq data . . . . . . . . . . . . . . . . . 108

6.2.1 Single-Cell RNA-Seq dataset acquisition . . . . . . . . . . . . . . 108

6.2.2 Biological pathway acquisition . . . . . . . . . . . . . . . . . . . 110



Table of contents x

6.2.3 Pathway activity inference methods . . . . . . . . . . . . . . . . 113

6.2.4 Pathway activity inference implementation . . . . . . . . . . . . 113

6.2.5 Pathway activity evaluation criteria . . . . . . . . . . . . . . . . 115

6.2.6 Single-cell RNA-Seq dataset integration . . . . . . . . . . . . . . 116

6.3 Comparison Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.3.1 Clustering of cell types in PBMC 3k . . . . . . . . . . . . . . . . 118

6.3.2 Clustering of tissues in Azizi B cell population . . . . . . . . . . 120

6.3.3 Clustering of breast cancer subtypes in Azizi TUMOR cell popu-
lation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.3.4 Cell label prediction accuracy . . . . . . . . . . . . . . . . . . . . 122

6.4 Biological interpretations . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.4.1 Significant pathways and genes for identifying cell types in PBMC125

6.4.2 Significant pathways and genes for identifying breast cancer sub-
types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.5 Integration of PBMC 3k and PBMC 10k . . . . . . . . . . . . . . . . . . 130

6.6 Conclusion and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 131

7 Conclusions and future work 133

7.1 Overview of thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

7.2 Research aims revisited . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

7.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

7.4 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

References 142



Table of contents xi

Appendix A DIGS released COAD relevant pathways 163

A.1 Ranking for KEGG Pathways for COAD . . . . . . . . . . . . . . . . . . 163

A.2 Significant COAD related pathways from literature . . . . . . . . . . . . 165

A.3 Pathway maps colored by gene weights . . . . . . . . . . . . . . . . . . . 166

Appendix B DIGS2 released COAD and BRCA relevant pathways 169



List of figures

1.1 General workflow of multi-omics studies. . . . . . . . . . . . . . . . . . . 3

2.1 The pattern of expression of the 70 marker genes . . . . . . . . . . . . . 13

2.2 An example of biological pathway diagram (simplified Hedgehog Sig-
nalling Pathway) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Illustration of the strategy for pathway activity inference. . . . . . . . . 17

2.4 Pathway expression matrix construction. . . . . . . . . . . . . . . . . . . 22

2.5 Pathway activity inference. . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1 Schematic flow chart of DIGS pathway activity inference method. . . . 46

3.2 Overview of the DIGS validation scheme using microarray gene expression
profile for phenotype classification. . . . . . . . . . . . . . . . . . . . . . 46

3.3 Classification accuracy comparison of four pathway activity inference
methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.4 Hierarchical clustering for gene expression profiles and significant pathway
activity in the stroke dataset. . . . . . . . . . . . . . . . . . . . . . . . . 53

3.5 Boxplots: pathway activity Distributions of different phenotypes for the
top pathways.Y-axis represents pathway activity values. . . . . . . . . . 55

4.1 WorkFlow of Pathway Activity Inference and Analysis. . . . . . . . . . . 62



List of figures xiii

4.2 Robustness evaluation pipeline. . . . . . . . . . . . . . . . . . . . . . . . 65

4.3 Kaplan-Meier survival curves. . . . . . . . . . . . . . . . . . . . . . . . . 69

4.4 The c-index distribution comparison between four pathway activity
inference methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.5 Robustness comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.6 Radar chart for comparison between three pathway activity inference
methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.7 Dimension reduction by tNSE. . . . . . . . . . . . . . . . . . . . . . . . 72

4.8 Sample allocation using DIGS outputs. . . . . . . . . . . . . . . . . . . . 73

4.9 Clustering Map of the averaged pathway activities (Top 30 pathways). . 75

4.10 Gene Weights for top 10 pathways. . . . . . . . . . . . . . . . . . . . . . 77

4.11 KEGG pathway map with colors for significant genes identified. . . . . . 78

5.1 Individual Pathway Evaluation and NaïveDIGS classification. . . . . . 85

5.2 Calculation efficiency Comparison . . . . . . . . . . . . . . . . . . . . . 91

5.3 Comparison between pathway activity inference methods. . . . . . . . . 92

5.4 Radar Charts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.5 Protein-protein interaction network for pancreatic secretion and chemical
carcinogenesis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.6 Top 30 pathway from SHAP algorithm for BRCA. . . . . . . . . . . . . 102

5.7 tSNE dimension reduction scatters plot and Hieratical clustering map of
significant pathways in BRCA. . . . . . . . . . . . . . . . . . . . . . . . 103

6.1 Pathway activity implementation for scRNA-Seq data. . . . . . . . . . . 109

6.2 Overview of the Azizi dataset and PBMC 3k dataset. . . . . . . . . . . 112



List of figures xiv

6.3 Principle for integrating the scRNA-Seq datasets. . . . . . . . . . . . . . 117

6.4 UMAP projections for pathway activity values for PBMC 3k. . . . . . . 119

6.5 UMAP projections for pathway activity values for Azizi B cell population.121

6.6 UMAP projections for pathway activity values for Azizi TUMOR cells. . 123

6.7 Visualisation of the pathway activity values of the top three pathways
in Hallmark. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.8 Visualisation of the pathway activity values of the top three pathways
in BioCarta. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.9 Projection of the integrated PBMC datasets. . . . . . . . . . . . . . . . 131

7.1 Comparison between DIGS and DIGS3 using toy data. . . . . . . . . . . 141

A.1 KEGG pathway maps with colors for important genes. . . . . . . . . . 167

A.2 KEGG pathway maps with colors for important genes. . . . . . . . . . 168

B.1 Pathway activity dimension reduction and Hierarchical clustering map
for COAD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

B.2 Pathway activity dimension reduction plots for BRCA. . . . . . . . . . 173

B.3 Top 30 pathways from SHAP for COAD . . . . . . . . . . . . . . . . . . 174

B.4 Top 10 pathways from SHAP for each subtype of COAD. . . . . . . . . 175

B.5 Top 10 pathways from SHAP for each subtype of BRCA. . . . . . . . . 176



List of tables

2.1 List of datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 List of pathway collections . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 List of Pathway activity inference methods . . . . . . . . . . . . . . . . 39

3.1 Microarray datasets of acute ischemic stroke . . . . . . . . . . . . . . . . 44

3.2 Averaged prediction accuracy on testing sets . . . . . . . . . . . . . . . . 49

3.3 Average prediction accuracy on testing sets . . . . . . . . . . . . . . . . 52

4.1 Averaged prediction accuracy on testing sets . . . . . . . . . . . . . . . . 61

4.2 Comparisons of multi-class prediction performance among methods. . . 67

4.3 Comparisons of 2-class prediction performance among methods. . . . . . 67

5.1 TCGA Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.2 Characteristics of breast cancer subtypes . . . . . . . . . . . . . . . . . . 88

5.3 Multi-class classification results . . . . . . . . . . . . . . . . . . . . . . . 93

5.4 Prediction Accuracy between NaïveDIGS and ML classifiers. . . . . . . . 97

5.5 Significant pathways and genes for BRCA . . . . . . . . . . . . . . . . . 98



List of tables xvi

6.1 Summary of the scRNA-Seq datasets . . . . . . . . . . . . . . . . . . . . 111

6.2 RF prediction accuracy on the four experiments using Hallmark collection122

6.3 RF prediction accuracy on the two experiments using Biocarta collection123

6.4 Significant pathways and genes for identifying cell types in PBMC . . . 128

6.5 Significant pathways and genes for breast cancer . . . . . . . . . . . . . 129

A.1 Top 50 KEGG Pathways of COAD (DIGS) . . . . . . . . . . . . . . . . 163

B.1 Top 50 KEGG Pathways of BRCA (DIGS2) . . . . . . . . . . . . . . . . 169



Chapter 1

Introduction

1.1 Pathway activity inference, a solution for Systems
Biology

Systems biology is an integrated discipline that links the molecular analysis of compo-
nents at a single biological scale or different scales (e.g. cells, tissues and organ systems)
to physiological functions and organism phenotypes through quantitative reasoning,
computational modelling and high-throughput experimental techniques (transcriptome
profiling via microarray or sequencing) [1]. In brief, Systems Biology employs com-
putational and mathematical analyses to decode complex underlying mechanisms in
biological systems. In recent decades, the rapid development of high-throughput tech-
nologies led to acquisition of large omics datasets of the basic entities forming these
complex systems. Moreover, these advancements through these technologies facilitated
the development of Systems Biology and precision medicine for complex diseases.

In detail, omic data (including genomics, transcriptomics, proteomics and metagenomics
profiling) reflect the molecules expression levels in whole-tissue or across single cells. For
example, the bulk RNA Sequencing technologies enable the transcriptome quantification
of tissues. Genomic variants may occur, including single nucleotide variations, small
insertions, deletions and structural variations. These variations may influence the
susceptibility and pathogenesis in diseases [2, 3]. Therefore, the importance of analyzing
omics data lies in capturing the effects of these variants.

A generalised workflow for analysis of omic datasets [4] is indicated in Figure 1.1. First,
the omic data is generated by bulk or single cell profiling via sequencing technologies.
Then, integrative analysis of omic data as well as non-omics data can be conducted to
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identify novel biomarkers, pathways, to cluster samples or cells into groups of similar
properties, to predict sample states (e.g. health or disease), to unravel the phenotype
associations or to reveal underlying mechanisms [4].

The objectives of analysing the omic datasets are not identical but related to each other.
Biomarker discovery aims to the identification of significant genes that may express
differently between patient groups or between health and disease. Also, identification of
genes that express differently between different complex disease phenotypes (e.g. across
molecular subtypes in cancer) is important. The identification of gene biomarkers can be
extended to the identification of pathway biomarkers, as genes that belong to the same
pathway work together for a cellular process and pathway products involve molecules
that directly affect the biological processes inside the cell. Therefore, recent methods
for identification of pathway biomarkers are popular. Another popular objective for
analysing the omic data is sample outcome prediction. One of the key purposes of omic
data analysing is to improve precision medicine and personalised treatment. Therefore,
accurate disease outcome and phenotype prediction occupies an important place when
designing the computational methods for analysing the omic data.

In integrative analyses, key aspects refer to the complexity of the data. Firstly, omic data
has the "large-p small-n" nature (p stands for the number of predictors,n for the number
of samples in a dataset) [5]. The large number of features for each sample necessitates
finding important features through appropriate feature selection and dimensionality
reduction methods with statistical analysis. Secondly, the technical noise of the omics
data render the selected features facing the challenge of uncertainty. Therefore, the
challenge presented here is to design a computational method that can withstand
noise and enable valuable insights from the large volume of omics datasets. Various
machine learning algorithms have been applied for identifying biomarkers and disease
classification [6]. Moreover, research directions that combine pathways with the analysis
of gene expression data have demonstrated usefulness in improving robustness of the
analysis, as well as being biologically interpretable. Compared to genetic biomarkers,
pathway biomarkers are less unstable across patient populations [7]. For further related
background please refer to Chapter 2.

Therefore, methods that can reduce the gene-level data to pathway-level data are
popular. The resulting pathway-level data are termed as pathway activity. Pathway
activity is defined as a value that can represent the collective activity (e.g. gene
expression level) of all pathway member genes. The function of pathway activity is
to aggregate the expression levels of constituent entities in a particular pathway for a
sample. Using pathway activity values to replace gene-level values is an effective way
to reduce the high dimensionality while introducing more biological interpretability.
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Fig. 1.1 General workflow of multi-omics studies. First, the multi-omics data can be
generated at the bulk or single-cell level using sequencing-and/or MS-based technologies.
Then, integrative analysis of the multi-omics data (e.g. genomics, epigenomics, tran-
scriptomics, proteomics and metagenomics) and non-omics (i.e. the clinical information
of patients) data can be conducted to identify novel biomarkers, networks, pathways,
or cluster samples/cells, or predict health/disease states, or unravel the phenotype
associations and underlying mechanisms. Finally, one crucial application of multi-omics
studies is to realise precision medicine with systems biology approaches. Figure taken
from [4]

.
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Basic statistical methods (e.g. mean, median) and advanced computational methods
(e.g. regression model, correlation score and principle components) have been designed
for pathway activity inference. The improvements offered by the pathway activity
inference methods are (i) the reduced dimension in pathway activity values so as to
better describe the dataset and (ii) suitability to achieve the objectives listed in the
omics dataset workflow (Figure 1.1). Specifically, the inferred pathway activity values
are expected to have better ability to discriminate among samples or cells of different
groups, and improve identification of significant pathways, sample or cell clustering and
outcome prediction.

1.2 Mathematical programming optimisation approach

Mathematical programming, or mathematical optimisation, is applied throughout this
thesis to conduct the pathway activity inference task. Mathematical programming is an
optimisation approach that models a problem as mathematical equations and finds the
best answer matching to the maximised or minimised the objective function value [8].

A general representation for mathematical programming model is:

min f(x)

s.t. g(x) ≤ 0

h(x) = 0

x ∈ X

where x ∈ X are the decision variables, f(x) is the objective function, g(x) and h(x)
are inequality and equality constraints. s.t. refers to as "subject to".The objective
function is the quantity I wish to maximise or minimise. Constraint uses mathematical
way to restrict the possible values that the variables can take. To build a model for a
specific problem, I need to identify the decision variables and formulate the objective
function and constraints.

Typical mathematical programming models include linear programming models (LP),
non-linear programming models (NLP), mixed integer linear programming models
(MILP) and mixed integer non-linear programming models (MINLP).

• LP model consists of linear objective function and constraints, where all decision
variables are continuous;
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• NLP model is non-linearity in objective function and/or constraints, where all
decision variables are continuous;

• MILP model consists of linear objective function and constraints, while some of
the decision variables are restricted to take discrete values, i.e. 0, 1;

• MINLP model is non-linearity in objective function and/or constraints, while
some of the decision variables are restricted to take discrete values, i.e. 0, 1.

A feasible solution for a mathematical optimisation problem is a set of values for the
decision variables that satisfies all of the constraints. The set of all feasible solutions
defines the feasible region of the problem. Most optimization algorithms operate by
first trying to locate any feasible solution, and then attempting to find another (better)
feasible solution that improves the value of the objective function. This process of
trying to find improving feasible solutions repeats until either no further improvement
is possible or some other stopping criteria is met. Then the optimal solution is one
where there is no other feasible solution with a better objective function value [8].

Overall, mathematical programming is a modelling framework with the ability to
meet the objectives of pathway activity inference problem. This thesis focuses on
the application and development of mathematical programming optimisation pathway
activity inference models. The mathematical programming objective function can
directly optimise the categorisation of samples, and the flexibility of the model lends
itself well to the development of versatile constraint formulas.

Different gene profiling technologies for transcriptional activity and various cancer
datasets are used. Each stage of method development is discussed and illustrates the
evolution and adaptation of the implementation pipeline and the optimisation models.
The evaluation procedures undertaken show the methods to be comparable to other
approaches in the literature and are able to yield meaningful biological insights for these
complex diseases. The optimisation models described in this thesis have the potential
to provide new insights into the disease-related significant biological pathways and help
to enrich pathology knowledge of target disease via systems biology approaches.

1.3 Research Aims

The overall aim of this thesis is to develop mathematical programming methods to
address pathway activity inference for different gene profiling technologies. The inferred
pathway activity values are expected to obtain higher ability to separate samples
of different classes compared with using individual genes, with a view to aiding the
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extraction of biologically meaningful results for complex diseases. This aim can be
further decomposed into five core research goals:

• To build on existing pathway activity inference method to evaluate its ability on
analysing bulk gene expression profiling data.

• To build and implement a new pathway activity inference method that has higher
solution quality and higher prediction accuracy.

• To extend the application of pathway activity inference method from bulk data
to single cell data.

• To evaluate the methodology to show comparability with existing methods from
literature.

• To demonstrate the potential of such methods to find meaningful results in
biological applications.

1.4 Thesis Outline

The thesis unfolds as follows. Chapter 2 provides background information on the topic
of transcriptome profiling technologies, pathway activity inference and its significance in
biological analyses. Related work is discussed followed by a review of existing pathway
activity inference methods. In particular, a mixed integer linear programming (MILP)
model is reported. This model represents the starting point for the methodologies
derived in this thesis.

Chapter 3 works as a transitional chapter, which applies the MILP model given in
Chapter 2 on microarray datasets of Acute Ischemic Stroke. In this chapter, the MILP
model is incorporated with an integrated dataset that is a combination of three gene
expression profiles. A robust validation pipeline for implementing the pathway activity
inference methods is built in this chapter and will be used throughout the thesis. The
pathway activity inferred by the MILP model aims to separate the samples belonging
to binary labels, stroke and healthy.

In Chapter 4, the MILP method is applied on a more advanced gene expression profiling
technology, RNA Sequencing (RNA-Seq). The pathway activity inference is conducted
on a colorectal cancer RNA-Seq dataset for both binary classification problem (tumor
and normal) and multi-class classification problem (four cancer molecular subtypes). In
addition to the evaluation on sample separation, two more metrics are included in the
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pathway activity evaluation process, which are testing the robustness of the pathway
inference methods on noisy datasets and using pathway activity values for survival
analysis. Comparative studies are carried out in these two chapters to evaluate the
method’s performance across the baseline methods.

Chapter 5 proposes a new MILP model, which is modified based on the model given
in chapter 2, to reduce the computation complexity and achieve better performance.
The former model is found to suffer on obtaining global optimal solutions because of
the large amount of binary decision variables. Therefore, in the design of the new
model, the number of binary variables is reduced to allow better solution quality and
better performance on the pathway activity evaluation metrics. This chapter uses
two RNA-Seq datasets, colorectal cancer and breast cancer. The validation pipeline
and evaluation metrics are similar to the ones reported in Chapter 4. Besides, this
chapter explores the outputs of the MILP model in in-depth analysis across individual
pathways.

Chapter 6 discusses the application of the new proposed model on single cell RNA
sequencing data (scRNA-Seq). Challenges posed by scRNA-Seq technology are the
sparsity of the datasets and the heterogeneity among individual cell, which cause
uncertainty to the quality of the inferred pathway activity values. Therefore, this
chapter first tests the performance of using pathway activity values to separating cell
types. After the method is proven to be promising, the pathway activity values are
used to separate the tumor subtypes of breast cancer. In this chapter, the evaluation of
the pathway activity values focuses on cell clustering and low-dimensional visualisation.
Also, this chapter discusses the application of pathway activity for integrating different
scRNA-Seq datasets.

Finally, chapter 7 concludes the thesis by first giving a brief overview of each chapter.
Next, research aims outlined above are revisited in order to indicate where they are
addressed in the thesis and to ascertain to what degree they are fulfilled. Major contri-
butions of the thesis are then given, followed by discussions regarding the limitations
of the work and the potential avenues of future research.



Chapter 2

Background and Related work

The previous chapter outlined the rationale behind the work that will be presented
in this thesis and set out several key goals. The central aim of this thesis is to
develop mathematical programming methods to tackle the pathway activity inference
problem with a view to aiding gene signature identification and extracting biologically
meaningful results from high-throughput profiling data. In order to carry out this
task, a thorough understanding is required of the problem, the potential applications
of existing methodologies as well as the possible limitations.

In this chapter, a review is given of the essential background and related work that
underpins this thesis. This includes introducing three kinds of technologies for profiling
data with their properties, and describing the biological pathways that can be used to
incorporate the a-priori knowledge of biological interactions with the profiling datasets
for functional analysis. From this biological background, the pathway activity inference
framework is then taken forward and discussed in detail followed by the introduction to
some baseline and up-to-date pathway activity inference methods. Finally, an overview
of an optimisation model that uses a weighted sum of gene expression values as newly
constructed pathway activity features is given. Overall, the information provided in
this chapter sets the scene for the research described in the remainder of this thesis.

2.1 Methodologies for profiling data, applications and
limitations

Gene expression is the process by which the information encoded in a gene is used in
the synthesis of a functional gene product, e.g. proteins. The end products of gene
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expression would ultimately affect the sample phenotype as the final effect. Genome-
wide profiling of gene expression is the study of transcriptions at a genomic scale at
a single time [9]. The major application of transcriptome profiling is to determine
what genes or transcripts are enriched in a particular disease, disease phenotype, tissue
type or cell type. The emerging and rapidly developing genome profiling technologies
in recent decades make the transcriptome analysis an integral part of many genomic
studies of disease and biological processes [10].

Transcriptome profiling data are typically obtained from microarray or sequencing
technologies. Although all of these techniques are designed to measure the number
of transcripts in a sample, there are many differences between them in terms of
profiling principles and data pre-processing methods. Therefore, it is better not to
generalise when analysing the data generated by the different techniques. It is important
to establish the methodological characteristics. Therefore, essential concepts of the
different gene expression profiling technologies are described below.

2.1.1 Microarray

Typically microarrays simultaneously monitor the expression levels of thousands of
genes in an organism [11]. The microarray chip is a special glass or silicon chip with
thousands, or tens of thousands of nucleic acid probes attached. The gene expression
levels of a tissue are measured by the signal intensity of fluorescent molecules (genomic
DNA or mRNA) that are bound to complementary probes on the surface of the chip
[12].

As one of the earliest technologies that allow the acquisition of vast amount of complex
digital data, the application of microarrays has shown its potential as a medical
diagnostic tool [13, 14]. Given a set of training samples with relevant labels (e.g.
“healthy” and “disease”), the label or condition of a new patient can be predicted.
Feature (gene) selection consequently become an intuitive approach to conduct the
task. This process aims to identify molecular gene markers, i.e. a subset of genes
that can be associated to a specific disease condition [15]. These identified gene
sets, which are called Differentially Expressed Genes (DEGenes), are considered to
contribute in distinguishing the samples across two conditions. Various methods have
been developed to detect DEGenes from gene expression data [13, 14] using traditional
means such as statistical t-test, regression models or mixture models [15]. Although
various methods exist, the key idea for detecting DEGenes is to identify the expression
level differences between two conditions. DEGene detection is used frequently in the
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analysis of high-throughput data and will be mentioned frequently in the following
sections.

Microarray technology is limited due to the following reasons. First, the measured
expression level values are related to the concentration of molecules in the solution,
rather than the true number of molecules in the sample. Second, because of the shared
sequence between genes, it is difficult for a single probe on the chip to detect only the
gene that it is designed for. Finally, the microarray chip can only detect the sequences
that the array is designed to detect, as it is a hybridisation-based approach. If there
are nucleic acids in the solution but there are no complementary sequences on the chip,
those genes would not be detected [16, 17].

2.1.2 RNA Sequencing

In contrast to microarrays, sequence-based RNA sequencing (RNA-Seq) provides a
relatively unbiased perspective to simultaneously map and quantify nucleic acids in
solution. RNA is first converted to a library of cDNA (complementary DNA) fragments
with sequencing adaptors attached to one or both ends of the cDNA molecules. Then
the molecules are sequenced in a high-throughput manner to obtain the short sequences.
After sequencing, the resulting reads are either aligned to a reference genome or reference
transcripts to obtain the expression level of each gene [17, 18].

In principle, RNA-Seq can determine the absolute quantity of the molecules in bulk tis-
sues with appropriate read count normalization methods. The prevailing normalization
methods for RNA-Seq data is TPM (transcript per million) [19], which deduces the
specific expression level of a gene from the total number of reads falling into the exons of
the gene, normalised by the length of the exons. The particular advantage of RNA-Seq
is that it can capture the dynamic transcriptome across different tissues or conditions,
which enables RNA-Seq to track the gene expression variations during cell development
or among different tissue conditions. In this perspective, RNA-Seq provides robust
support for investigating the molecular differences in biomedical samples across multiple
phenotype labels in complex diseases.

2.1.3 Single-cell RNA Sequencing (scRNA-Seq)

The RNA-Seq technology relies on the macroscopic level measurements from cell
populations. However, the observed macroscopic “average” cannot be directly used as
an accurate evaluation of the “average” of the cells, as it results from the interactions
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between individual cells [20]. Thus, based on RNA-Seq technology, scRNA-Seq achieves
a comprehensive way of measuring the transcriptomes of individual cells.

The development of microfluidics technology improves the efficiency and reliability of
isolating single cells from tissue. For example, the commercial 10X Genomics platform
[21] incorporates the concept of separating single cells by controlling the droplet volume
and flow rate. Also, the application of unique molecular identifiers (UMI) [22] is a
crucial step in delivering scRNA-Seq. With the UMI bonded to the mRNAs released
upon cell analysis, the followed sequencing step, which is taken on a pool of cells, is
able to track transcript counts at a single-cell level.

In summary, the rapidly evolving technologies of gene expression profiling makes it
possible to improve understanding of mechanisms at genomic level. Furthermore, the
availability of such datasets poses a need for advanced computational methods to model
the large volume datasets and provide comprehensive mathematical and biological
interpretations. In the profiling data, the amount of features (i.e. genes) for each sample
could reach tens of thousands, depending on the size of genome species and the profiling
technology. Therefore, designing a practical solution for dimensionality reduction is
essential for obtaining useful information from the large number of features. In this
field, DEGenes [13, 14] has become a mature method for identifying the important
genes that can differentiate sample labels at gene-level and has become a primary
approach for analysing the gene expression profiling data. However, based on the
fact that genes work together to perform various cellular functions though biological
pathways, incorporating pathway information in the analysis of genome expression data,
rather than focusing on individual genes, is popular. Therefore, a brief introduction is
given next to exhibit key background to typical pathway analysis.

2.2 Analysis of profiling data incorporating biological
pathways

2.2.1 Motivation for pathway approaches

Various machine learning-based methods were designed to deal with large high-throughput
molecular datasets. These computationally advanced methods aim to identify a group
of disease-related genes from the tens of thousands of genes in profiling data. The
identified gene groups are expected to be used as gene biomarkers and benefit disease
diagnosis or prognosis. Disease diagnosis was normally achieved by using clinical
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indicators. However, the gene biomarkers show no significant advances compared to
traditional clinical indicators [23–25].

A concrete example of using machine learning methods to analyse high-throughput
data and obtain a prognostic gene list, namely 70-gene classification profile [26]. The
70-gene list is derived from the microarray data of breast cancer patients. They used
machine learning approaches to search for the 70 genes correlating with follow-up
clinical outcomes. Little biological knowledge is involved in this process. The expression
pattern of the 70-gene among the sample cohort is shown in Figure 2.1.

The gene signatures is selected by calculating the correlation score of the expression
levels and the outcome indicators. Then genes are ranked according to their correlation
score and the top 70 genes are selected as the marker genes. A series of classifiers
was constructed to verify the prediction accuracy of the selected genes. However, this
70-gene list shared small overlap with the other identified lists of genes [27, 28], and
suffered from inherent instability when repeating the selection procedure [29].

This phenomenon can be explained in two aspects. First, from a mathematical perspec-
tive, due to the large-p, small-n nature of the high-throughput data, gene ranking can
shift by hundred with a small change in the dataset. Second, from biological perspective,
when changing the training patient set, a completely new 70-gene signature may be
generated because of the heterogeneous nature of disease. Although this problem can
be overcome by increasing the number of training samples, thousands of additional
samples are needed to produce a 50% overlap rate of significant genes [7]. Therefore,
the drawbacks of these purely statistical and machine learning approaches motivated
the emergence of incorporating biological knowledge into the analysis pipeline to gain
more robust results.

A biological pathway is a series of interactions among molecules in a cell that leads to
the production of a certain product, a signalling event or a change in a cell (Figure 2.2)
[30]. The functions of pathways include triggering the assembly of new molecules(i.e.
proteins), turning on or turning off genes, or spurring a cell to move. Most complex
diseases are caused by a series of genetic mutations rather than a single gene mutation.
These mutated genes disrupt the pathways they are associated with, thereby driving
the occurrence of disease.

Taken further, the identification of disease related pathways simplifies the complex
task of focusing on multiple gene-level mutations. The identification of a few altered
pathways can consequently facilitate the analysis of the progression, diagnosis, and
treatment of the disease. For example, a well-known key tumor suppressor gene, tp53, is
linked to cellular immortalization, which is a crucial step in the tumor transformation of
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Fig. 2.1 The pattern of expression of the 70 marker genes (columns) in a series of 295
consecutive patients (rows) with breast carcinomas. Figure taken from [26].
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Fig. 2.2 An example of biological pathway diagram (simplified Hedgehog Signalling
Pathway). Each box represents a member gene of this pathway, arrows linking genes
can activate or inhibit.

a cell [31]. However, the loss of tp53 is a necessary but not sufficient component for this
process. There are additional gene mutations that are required for the immortalization
process. Several studies identified a few pathways, such as the cell cycle pRB/p53
pathway [32], the cytoskeletal genes [33] and the MAP kinase pathway [34], which are
enriched in key immortalization regulation genes. The identification of the tp53 relevant
pathways deepens the understanding of biological processes of tumor transformation.
In the following paragraphs, pathway analysis approaches that focus on deriving the
relevant pathways from gene expression data are introduced.

2.2.2 Pathway analysis approaches

As explained in the last section, the identification of disease-related pathways is more
efficient than the identification of disease-related genes, pathway analysis has become
a widely used approach for analysing the disease gene expression data. Similar to
the identification of differentially expressed genes (DEGenes), Pathway Analysis (also
known as functional enrichment analysis) means the detection of relevant pathways
altered in disease samples compared to control samples [35]. The earliest pathway
analysis approaches were extended from DEGenes analysis. In detail, pathway analysis
finds the pathways that the DEGenes are enriched in.

West et al. [36] used microarray data to predict the clinical status of breast cancer,
where they used validation of classifications with out-of-sample cross-validation methods
to select relevant genes. The expression levels of this group of selected genes are most
highly correlated with the classification of samples in tumor versus control classes. Based
on this group of genes, regression models were used to assign the relative probability
of the pathway deregulation in the sample cohort. The methodology reported in this
work not only yields genes that are involved in the clinical phenotype (ER-regulated
pathway genes), but also genes for which the connections are not immediately clear,
such as such as HNF3α and androgen receptor. Thus, this work provided the potential
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for identifying pathways underlying an observed breast cancer phenotype. An extension
of this work [37] further showed that genes that reflected the activation status of five
oncogenic pathways can be identified using the same analysis pipeline. This type of
research made the projection of genes onto pathways. Similar works that used DEGenes
to identify the disease relevant pathways are [38, 39].

Despite the popularity and simplicity of the DEGene-based pathway analysis ap-
proaches,its power is limited by the pre-selected genes, which ignores other genes in
pathways. A classic approach that does not rely on pre-selected gene lists is Gene Set
Enrichment Analysis (GSEA) [40]. The working pipeline of GSEA can be simplified as
follows: (i) Rank all genes in the dataset by their expression difference between two
phenotypes. (ii) For each pre-defined gene set, e.g. GO terms or pathways, calculate
the enrichment score (ES). The ES is a running summary statistic reflecting the spread
of the member genes of a pathways among all genes. (iii) Estimate the significance of
ES by calculating the nominal p value using an empirical phenotype-based permutation
test. In summary, GSEA allows users to choose a pathway and determine its relative
statistical significance to the sample phenotypes. The pathway score is measured to
assess the combined contributions of the pathway member genes in the ranked list.

Since the appearance of GSEA, many approaches have been proposed for the analysis
of entire gene sets [41–43]. A few reviews [44, 45] reported that these approaches can
be divided into two groups, competitive tests and self-contained tests. The difference
between these two groups is the definitions of the null hypothesis. The null hypothesis
for Competitive tests is the pathway member genes are as often differentially expressed
as the complement genes. The null hypothesis for Self-contained tests is no gene in the
pathway is differentially expressed. To be more specific, Competitive test (e.g. GSEA)
compares the differential expression of the member genes to the complement genes in
the genome. Self-contained test compares the member genes to a fixed standard that
does not depend on the of genes outside the gene set.

A representative self-contained tests approach is global test [46], which includes linear
regression and a simple random effects model. The model gives a covariance matrix of
the random effects that is then used to construct the pathway score test to test whether
the null hypothesis, which is the regression coefficients of pathway genes are of zero
variance, is true.

A review [46] compared the performance of these two types of pathway analysis
approaches by using them to identify pathways involved in apoptosis process. The
comparison between three self-contained approaches, global test [47], ANOVA global
test [48] and SAM-GS [49], showed similar performance; only SAM-GS was slightly
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superior. In contrast, three competitive approaches, GSEA, SAFE [50] and Fisher’s
exact test [51], showed low power for identifying differential expression in phenotypes.
To summarise, the five pathways involved in apoptosis were identified by the three
self-contained approaches. For the three competitive approaches, SAFE and GSEA
missed three of them, and Fisher’s exact test did not identify any of them.

In summary, the analysis of pathways that are differentially expressed between pheno-
types, has become a routine approach for the analysis of gene expression data. This
analysis is intuitively appealing for several reasons. First, by projecting genes into
pathways, the analysis complexity is reduced. Second, as it is pathways, not genes, that
lead to a certain change in a cell, identifying differentially expressed pathways is more
appealing than identifying genes from the biological point of view. Third, the genes in
the list of differentially expressed genes are often highly correlated, and consequently
cause a large number of false positives. Considering pathways leverages the correlation
problem to some extent. More importantly, it is believed that, in many diseases, the
changes of the expression values of individual genes are not significant enough to be
detected. Therefore, the complex task of focusing on individual genes can be improved
by looking into relevant pathways.

2.3 Pathway activity inference framework

2.3.1 Motivation and definition for pathway activity inference

Although pathway analysis approaches have been sufficiently explored and widely
used in the analysing process of gene profiling data, they are limited in two aspects.
First, most pathway analysis approaches are only applicable to binary experimental
conditions, e.g. disease versus control. Second, the diverse range of rapidly expanding
data produced by modern molecular biology has fueled a need for accurate classification
and prediction toward individual samples [6], where the need cannot be satisfied by
classic pathway analysis approaches. Most pathway analysis approaches provide only
a list of pathways with their p-values to show the extent of the pathway significance.
They point out the important pathways towards specific questions, but it is hard to
indicate the exact degree to which the pathway is deregulated. In brief, results given
by pathway analysis approaches are coarse, and there is no quantitative analysis at
pathway-level.

Therefore, pathway activity inference is proposed to fulfil these needs, where gene
expression data are first aggregated at pathway level to yield a compact representation
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Fig. 2.3 Illustration of the strategy for pathway activity inference. The pathway activity
inference method takes gene expression data as input and produces pathway activity
matrix, which can be interpreted as a mapping of genes to the pathway dimension.
Figure taken from [52].
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of the original data. The columns in the gene expression profile are replaced with
pathways. Figure 2.3 shows the schematic of pathway activity inference.

By aggregating gene-level data into pathway-level data, the shortcomings of pathway
analysis approaches can be overcome and a boarder range of analysing aims can be
pursued. First, significant pathways can be identified by applying statistical methods
on the pathway-level data. Secondly, the pathway space data can be used for sample
classification and prediction using machine learning classifiers. More importantly, the
“large-p small-n” problem of the profiling data can be solved this way. After the
aggregation, the extremely large dimensionality of genes is reduced to a few hundred of
pathways, which allows the number of features to become comparable to the number
of samples. At the same time, the dimension-reduced data is better for biological
interpretations, as the cellular functions are reflected better by the pathways rather than
single genes. Last, this transformation is expected to yield a more robust representation
of the data that can reduce the intrinsic technology and biological variance across
samples [53]. Because the expression values of the member genes in a pathway could
vary considerably across samples of the same phenotype, the summarised pathway
activity values can become consistent across samples.

The pathway activity inference represents a well-established framework, which follows
three steps, data collection, pathway activity profile calculation and pathway activity
evaluation. The following sections introduce the general procedure for these three steps
in detail.

2.3.2 Data collection

2.3.2.1 Profiling dataset collection

Pathway activity inference procedure starts by collecting the gene expression profiling
datasets. The profiling datasets can be obtained from publicly available databases.
The most famous database is Gene Expression Omnibus (GEO) [54], a public high-
throughput functional genomics data repository that accepts both array-based and
sequence-based data. Another landmark cancer genomics database is The Cancer
Genome Atlas (TCGA), which characterised molecularly over 20,000 primary cancer,
matched normal samples spanning 33 cancer types and generated over 2.5 petabytes of
genomic, epigenomic, transcriptomic, and proteomic data[55].
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Table 2.1 List of datasets

Name Database Data Type Disease Tissue Chapter
GSE22255 GEO Microarray Stroke PBMCs 3
GSE16561 GEO Microarray Stroke Whole Blood 3
GSE58294 GEO Microarray Stroke Whole Blood 3

COAD TCGA RNA-Seq Colorectal Cancer Tumor 4 and 5
BRCA TCGA RNA-Seq Breast Cancer Tumor 5

PBMC 3k 10X Genomics scRNA-Seq - PBMCs 6
PBMC 10k 10X Genomics scRNA-Seq - PBMCs 6
GSE114725 GEO scRNA-Seq Breast Cancer PBMCs 6

Table 2.1 summaries all the profiling datasets used in this thesis. The three data
types, Microarray, RNA-Seq and scRNA-Seq and three kinds of diseases, breast cancer,
colorectal cancer and stroke are analysed in different Chapters of this thesis.

The main concern with dataset usage is the availability of sample annotations. For
example, if the research question deals with analysing the differences between breast
cancer subtypes (dataset BRCA in Table 2.1), the samples labels can be Luminal A,
Luminal B, HER2, etc.

2.3.2.2 Prepossessing imbalanced data

A dataset is imbalanced if the classification categories are not approximately equally
represented [56]. Particular sampling technique is needed for training a classification
model with imbalanced data. Unbalanced data is not uncommon for profiling datasets.
For example, the dataset COAD in Table 2.1 contains 41 normal tissue samples and
480 tumor tissue samples. This issue can be solved either by oversampling the minority
class and/or under-sampling the majority class. Under-sampling the majority class is
not suitable for the COAD dataset, therefore, in this thesis, I deal with such imbalanced
data with an oversampling algorithm called Synthetic Minority Oversampling Technique
(SMOTE) [57].

SMOTE over-samples the minority class by taking each minority class sample and
introducing synthetic samples along the line segments joining any/all of the k nearest
minority class neighbors. Depending upon the amount of over-sampling required, The
number of k are randomly chosen. Synthetic samples are generated in the following
way: Take the difference between the samples under consideration and its nearest
neighbor. Multiply this difference by a random number between 0 and 1, and add it to
the samples under consideration. This approach effectively forces the decision region of
the minority class to become more general. [56]

SMOTE has been applied throughout this thesis to deal with the imbalanced sample
classes, especially for binary classification problems.
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Table 2.2 List of pathway collections

Name Database No. Pathway No. Gene Avg. Size Chapter
KEGG MsigDB C2 186 5267 50-150 3
KEGG KEGG 279 6761 50-150 4 and 5

Biocarta MsigDB C2 292 4383 30 6
Hallmark MsigDB C2 50 1509 200 6

2.3.2.3 Biological pathway collections

Biological pathways form another part of input data for pathway activity inference.
Academic and commercial institutions have been generating and maintaining pathway
databases [58], for example KEGG [59], Reactome [60], WikiPathways [61], NCIPath-
ways [62], MSigDB [63] and Pathway Commons [64]. These databases are open-sourced
and well-established. The pathway databases can be categorised into two types, the
primary pathway databases and the integrative databases. The pathways that are
discovered and assembled in the experimental biology labs are collected in the primary
databases; the integrative databases assemble pathways resources from multiple primary
databases, and provide a more comprehensive view of the pathway landscapes.

The major primary pathway database is KEGG and the major integrative database
is MSigDB, according to the number of citations in studies investigating pathways
associated with variable gene expression patterns in different sets of conditions (27,317
publications using KEGG and 2,892 publications using MSigDB by 2019) [65]. The
number of pathways in KEGG is 316 in 2022, and the number keeps increasing as
new pathways are found. MSigDB contains over 1000 gene sets and contains the older
versions of KEGG and Reactome gene sets. The number of KEGG pathways in the C2
collection of MSigDB is 186, which is the most widely used KEGG pathway gene sets.
To gain a better representation of these wide range of pathways, increase the utility and
decrease the redundancy across the pathways, MSigDB developed a pathway collection
called Hallmark [66]. The Hallmark collection contains 50 gene sets, each consisting
of a “refined” gene set, derived from multiple “founder” sets, which conveys a specific
biological state or process and displays coherent expression.

In Chapter 3, Chapter 4, Chapter 5 and Chapter 6 the latest version of KEGG
pathways, MSigDB Hallmark collection, and Biocarta collection are used for analysis.
Table 2.2 lists the details of these pathway collections. "No. Pathway" and "No. Gene"
represent the number of pathways and number of unique genes in the pathway collection
respectively. The "Avg. Size" means the approximate average number of genes for the
pathways in the collection.



2.3 Pathway activity inference framework 21

2.3.3 Pathway activity profile calculation

2.3.3.1 Pathway expression matrix construction

After the gene expression profiles and the pathway gene sets are pre-processed and ready
for use, the first step is to construct the pathway-specific expression matrix PWMs,m,
where the rows are samples s, the columns are the member genes m of pathway p, and
the values are the gene expression values. In other words, the gene expression profile
EXPs,g is split into hundreds of pathway expression matrices PWMs,m. This step is
illustrated in Figure 2.4.

The dimensionality of PWMs,m is usually between tens of genes and hundreds of genes.
The constructed PWMs,m is the actual input data for the pathway activity inference
methods.

2.3.3.2 Pathway activity inference

Pathway activity inference refers to calculating the pathway activity values PAs from
the PWMs,m (Figure 2.5). The PAs represents the overall performance of the member
genes on the sample s. This is the core step for the entire process, where pathway
activity inference methods are proposed for the PAs calculation.

A straightforward method called MEAN [53] is introduced to describe this process more
concretely. The MEAN method takes the mean value of the expression levels of all
member genes in a pathway as the pathway activity value for sample s, as shown in
Equation (2-1). This method has been widely applied in literature [67–70]. A variant
of the MEAN method uses the median of the member gene expression values as the
pathway activity values (referred to as MEDIAN) [70]. Both methods represent intuitive
ways to summarise the pathway activity values.

PAs = PWMs,m (2 − 1)

The inferred pathway activity values aim to yield better means to distinguishing sample
phenotypes (sample labels) when compared to using gene expression values. High-
quality pathway activity can cluster samples, predict phenotypes and reveal biological
insights. Therefore, more sophisticated and specialised methods of pathway activity
inference are more reasonable than using statistical methods (i.e. the mean or median
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Fig. 2.4 Pathway expression matrix construction.

Fig. 2.5 Pathway activity inference.
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of expression values). In the Section 2.4, a review of the representative pathway activity
inference methods will be delivered.

2.3.3.3 Pathway activity profile

The final step in the pathway activity inference procedure is to assemble the PAs

vectors to form the pathway activity profile PAs,p. Until here, the pathway activity
inference procedure is completed. Through the pathway activity inference methods,
the gene expression profile EXPs,g is converted to pathway activity profile PAs,p. The
dimensionality of the gene expression profile dataset is significantly reduced. Figure 2.3
summarises this process from a dimension reduction perspective. By mapping samples
from the gene space to the pathway space (the clustering plots on the right side), the
expression data can be interpreted more efficiently since the number of dimensions
is reduced from over 20,000 genes to about 300 pathways [52]. Also, as pathways
are well-curated knowledge, biological interpretability is introduced via the pathway
activity profile.

2.3.4 Pathway activity evaluation

A variety of pathway activity inference methods, including arithmetic, enrichment,
statistical, machine learning approaches and mathematical programming are used to
calculate PAs. It is, therefore, necessary to use uniform criteria to evaluate the quality
of the pathway activity values inferred by these methods. This section introduces the
widely used pathway activity evaluation criteria.

2.3.4.1 Machine learning classifiers for sample classification

The priority evaluation criteria of pathway activity inference method is sample classi-
fication. To be more specific, it means using the pathway activity profile (PAsp) to
train a machine learning classifier and calculate the classification accuracy.

The term machine learning refers to the automated detection of meaningful patterns in
data. In the past couple of decades it has become a common tool in almost any task that
requires information extraction from large datasets [71]. Machine learning algorithms
are designed for performing multiple tasks, including classification, regression, clustering,
etc. Section 2.2.1 has given an example of applying machine learning algorithms on the
biological field. For the pathway activity inference methods, machine learning classifiers
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are adopted to evaluate the sample prediction accuracy, as this is an efficient way to
measure how the pathway activity can separate the samples of different labels.

The widely used machine learning classifiers include Decision Tree [72], Logistic Re-
gression [73], Random Forest (RF) [74], and K-Nearest Neighbor (KNN) [75]. I mainly
use KNN and RF in the following chapters. KNN is a type of instance-based learning,
who does not attempt to construct a general internal model but stores instances of
the training data. Classification is computed from a majority vote of the k nearest
neighbors of the query point. RF is a meta estimator that fits a number of decision
tree classifiers on various sub-samples of the dataset and uses averaging to improve the
predictive accuracy and control overfitting.

The classifier performance is usually evaluated in terms of two measures: accuracy and
F1-score, which are defined as follows:

Accuracy = TP + TN

TP + TN + FN + FP
(2 − 2)

F1 − score = 2 ∗ (precision ∗ recall)
precision + recall

(2 − 3a)

Precision = TP

TP + FP
(2 − 3b)

Recall = TP

TP + FN
(2 − 3c)

TP, TN, FP and FN denote true positive, true negative, false positive and false negative,
respectively. Positive or negative indicates the predicted classifier outcome; true or
false indicates whether the prediction is correct. For example, for a sample labelled as
"1", the prediction of this sample is "1", then it is a true positive; if its prediction is "0",
then it is a false negative. In binary classification, the default positive label is "1".

Accuracy is a percentage quantity showing the number of times that the classifier is
correct in its classification, and it conveys the right intuition when the positive and
negative populations are roughly equal in size. Precision is the percentage of times that
the classifier is correct in its classification of positive samples. Recall is the percentage
of known positive samples that the classifier would classify as being positive. The F1
score is the harmonic mean of the precision and recall [76].
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In the multiclass case, TP, FP and FN calculate the true positive, false positive and
false negative of the target class versus the rest classes [77]. For example, when there are
three classes, "0", "1" and "2", the FP value for "0" is the number of samples predicted
to be "0" but with a true class of "1" or "2". Further, the calculation of precision and
recall are defined as weighted averaged value of each class:

Precision =
∑

PiWi (2 − 4a)

Recall =
∑

RiWi (2 − 4b)

where i is the index of classes, Wi is the weight of class i (percentage of the number of
samples in i), Pi and Ri are the precision and recall of class i, respectively.

2.3.4.2 Validation pipeline

A reliable validation pipeline is a vital component to gaining precise classification
accuracies. The validation process consists of internal and external validation. The
internal validation is assessed by K-fold cross-validation [78]. First, the gene expression
profile is divided into k subsets of approximately equal size sets. Usually, k is in the
range of 5 to 10. Also, the k-fold split should be stratified (i.e. dividing members of
the population into homogeneous subgroups before sampling) to keep the sample label
proportions in each training fold the same as in the original dataset.

Then the pathway activity profiles are calculated for the k − 1 folds and the remaining
fold separately. k − 1 folds are used as the training samples, and the remaining fold is
used as the testing set of samples. Consequently, k training pathway activity profiles
and k testing pathway activity profiles are generated. Finally, the machine learning
classifier is trained on the training pathway activity profiles and tested on the testing
profiles.

The application of K-fold cross-validation avoids the over-fitting problem caused by full
training [79]. The classifier is trained and tested several times on different samples to
ensure the reliability and robustness of the results. The final classification accuracies
(and other measurements) are averaged from the k times classification.

Although internal cross-validation is a convenient solution to assess the method per-
formance within a single dataset, it may lead to optimistically higher performance
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estimates. Thus, it is increasingly being noted that it is also meaningful to externally
validate the performance of the pathway activity inference method from an independent
test dataset [80, 81]. In the external validation process, the machine learning classifier
is trained on one dataset and tested on the other. The two datasets are independent
but have identical sample labels. The data split strategy for both datasets is the same.

However, external validation is not mandatory. Although external validation can gain
a more realistic estimation of the generalization of the pathway activity inference
method, the technical differences (e.g., batch effect) between the datasets and the
biological differences between phenotypic classes can significantly impact the classifiers’
effectiveness by making classification results lose fairness and underestimated the
performance of the pathway activity inference methods. Therefore, external validation
is often used in binary classification problems. [82].

2.3.4.3 Survival Prediction

In addition to the main purpose of pathway activity inference, another important
application is using the pathway activity values to perform survival analysis. Survival
analysis is an important analysis aspect in the research of complex disease, especially
cancer study. Literature proves that the activity score of specific pathways relate well
with the tumor degree and patient survival rate [83, 84]. Also, the basic pathway
analysis approaches also put forward prognostic models based on gene expression values
[26, 85, 86]. Therefore, as an advanced way of summarising the pathway activity values
for individual patient, pathway activity inference methods are expected to provide
higher survival prediction accuracy compared with gene-level methods.

Survival analysis is the analysis of time-to-event data. Such data describe the length
of time from a time origin to an endpoint of interest. For example, individuals might
be followed from birth to the onset of some disease, or the survival time after the
diagnosis of some disease might be studied. In summary, survival analysis methods are
usually used to analyse data collected prospectively in time [87]. Therefore, the clinical
information needed for survival analysis includes two parts, (i) survival status (e.g. 0 for
alive or 1 for the dead), (ii) survival time (in months or years). The most widely used
survival model is The Cox proportional hazards model [88], which builds a regression
model between the survival time and clinical features (e.g. race, age, gender, etc.) to
examine whether survival times are related to the features. With the appearance of
gene expression profiling technologies, the Cox model has been applied to gene features
for predicting survival time [85, 89–91].Besides the Cox model, many binary classifiers
are also used for survival analysis. These classifiers distinguish samples into "low-risk"
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and "high-risk" categories. Such classifiers include support vector machine (SVM),
random forest classification (RF) algorithms, and logistic regression.

A prevalent approach is the Random Survival Forest [92], which combines the advantages
of the above two approaches, accepts many features and returns a risk score. Random
Survival Forests is an ensemble tree-based method and is an extension of the random
forest method. Survival trees are built by recursively partitioning the feature space
using binary splits to form groups of samples who are similar according to the survival
outcome. The final predictor ensemble is formed by aggregating the results of many
survival trees [93]. The Random Survival Forest has become the most common survival
prediction model for survival analysis with pathway activity values as inputs.

The concordance index (c-index) is used to evaluate the predictions made by the survival
model. It is defined as the proportion of concordant pairs divided by the total number
of possible pairs. C-index=0.5 indicates poor predictive accuracy, and c-index=1.0
indicates good predictive accuracy [85].

2.3.4.4 Robustness metric

No matter which high-throughput technology is used for profiling, background noise
is unavoidable in gene expression profile data [94]. However, the pathway activity
inference methods should be able to counteract noise in data. Therefore, the third
pathway activity measurement evaluates the robustness against the noisy data. This
process follows two steps, (i) adding noise to the expression data to perturb the dataset
and (ii) evaluating the classification accuracies on the pathway activity inferred from
the perturbed gene expression data.

There are many approaches to add noise to gene expression data. For example,
multiplying the log-transformed expression data with different levels of perturbation
factor [52] or randomly selecting genes and replacing the data with values sampled from
a normal distribution with the same mean and variance as the original gene [95]. The
most simple and efficient approach consists of randomly permuting the order of the
samples in the expression matrix for the selected genes. During noise-adding processes,
the proportion of the perturbation is controlled to simulate different noise levels in the
data.

The robustness of the pathway activity inference method is then determined by the
accuracy of the classification of sample types in terms of the pathway activity values
inferred from the perturbed gene expression data. The pathway activity inferred from
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noisy data is expected to keep the sample separation capacity as the original data.
Thus, as the percentage of perturbation increases, the more stable the classification
accuracy indicates that the method is more tolerant to noise.

In conclusion, the evaluation of pathway activity is tightly related to the purposes of
the pathway activity. First, methods that have higher sample classification accuracy are
better. Then, robustness against noisy data is also important to ensure the method’s
feasibility. Lastly, the application of pathway activity for survival analysis is widely
discussed and has shown promising performance in literature.

2.4 Pathway activity inference methods in literature

The previous section shows the value and efficiency of pathway activity inference as a
dimension-reduction tool for analysing high-throughput profiling data. Moreover, they
demonstrate the need for developing methodologies that can achieve accurate sample
prediction accuracies and important pathway identification. Such methods have been
studied since 2005 [53] and have been in continuous evolution. This section introduces
the pathway activity inference methods from literature in order of complexity.

2.4.1 Baseline pathway activity inference methods

2.4.1.1 Mean-based methods

Mean-based pathway activity inference methods are the most straightforward method,
which has frequently appeared in the literature in one form or another. Except the
MEAN method (mean of all pathway member genes) introduced in Section 2.3.3.2, two
other widely used mean-based methods exist. A simple variant of the MEAN method
is calculated by averaging only the top half of the member genes with larger t-statistics
(Mean top 50%), which is proposed by [82] and is used in their study as a comparison.

Another variant is called CORGs (condition-responsive genes) [96]. This method
calculates the pathway activity by the mean expression of key member genes, instead
of all the member genes. CORGs are the genes that, upon aggregating their expression
profiles by averaging, yield a pathway activity vector PAs that is the most discriminative
between two classes in the data. Identifying the CORGs of a pathway in a given two-
class dataset begins with a t-test on z-scaled PWMs,m. Then, the expression direction
(that is, up or down) of the pathway is determined as the sign of the averaged t-statistic
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values of its member genes (t). Next, all the member genes are sorted by their t-statistic
values in accordance with the overall regulatory direction of the pathway; the most
strongly up-regulated genes are arranged to the top for an overall up-regulated pathway,
whereas the most strongly down-regulated genes are arranged to the top for an overall
down-regulated pathway, as illustrated in Equation (2-4).

Tm ≥ tm+1, if t ≥ 0 (2 − 4a)

Tm ≤ tm+1, if t < 0 (2 − 4b)

Then, the CORG set is initially set to contain only the top-ranked gene and iteratively
expanded. At each iteration, the gene of the next rank is added to the candidate CORG
set, PAs is obtained by taking the mean of expression profiles of the candidate CORGs,
and a t-test is then performed to give the pathway t-statistic. The iteration stops when
the pathway’s t-statistic S(Gk) no longer improves, at which point the final CORG set
is obtained. This process is captured in Equation (2-5):

PAs =
∑

k

EXPs,m

sqrt(k) , k ∈ Gk = m1, m2, ..mk (2 − 5)

where Gk is the GORG set of pathway p, if k is the smallest number satisfying
S(Gk+1) <= S(Gk).

2.4.1.2 Projection-based methods

Principle component analysis (PCA) has long been applied to the analysis of gene
expression data, especially for exploratory data visualization to discriminate between
sample groups. Using PCA, the correlation matrix is first computed from z-scaled gene
expression data. Then, through the Eigen-decomposition of the correlation matrix,
major directions in the data with the largest variability are identified as eigenvectors
corresponding to the largest eigenvalues of the correlation matrix. The eigenvectors
are called the principal components (PCs). In addition to its use in exploratory data
visualization, PCA has also been used as a pathway-level aggregation method in several
literature studies [43, 97, 98]. In calculating pathway activity, PCs are found by
applying PCA to the z-scaled PWMs,m. The projection of the PWMs,m onto the first
PC is taken as the PAs of that pathway.
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Another projection-based pathway activity inference method is Partial least squares
Regression (PLSR) [98], a regression method that combines properties of multiple
regression and PCA. PLSR analysis consists of a data matrix X and a response matrix
Y, which contain values of the independent and the dependent variables, respectively.
Unlike the standard regression method, which builds a regression model between the
data matrix X and response matrix Y, PLSR seeks to build a regression model between
the latent component scores of X and those of Y. The latent variables are expected to
best summarise the variance in X and are the most relevant for the response Y. [98]
used PLSR as a pathway activity inference method. In this approach, data consist of a
matrix X of the z-scaled PWMs,m and a numeric sample label vector Y. Each element
in the label vector indicates class membership of the samples using 0 or 1. The first
latent component is taken as the PAs of that pathway.

However, the latent components obtained under this dummy coding scheme lack
meaningful biological interpretation. Since "1" is a larger numeric value than "0",
regression on these two dummy numeric values makes the inferred pathway activity
values larger in “1” samples and smaller in “0” samples. Although the differentiation
ability of the inferred pathway activity values increased compared with PCA, the
subsequent pathway level analysis would falsely reveal relationships among the sample
labels because numeric values are assigned to nominal labels.

2.4.2 Extensions of GSEA

The Analysis of Sample Set Enrichment Scores (ASSESS) method [99] can be considered
as a sample-level extension of the GSEA (introduced in Section 2.2.2). The difference
between GSEA and ASSESS is that GSEA provides an overall enrichment score of a
pathway for two sample groups, and ASSESS provides an enrichment score for each
sample. For this reason, ASSESS employs the random walk computations twice. The
first use of random walk is applied at the individual gene level. Given an expression
level of a gene in a sample, ASSESS calculates the sample’s log-likelihood ratio of
belonging to one class instead of the other. The second use of the random walk is at
the level of each pathway. Using the log-likelihood ratio values obtained for its member
genes, it computes the enrichment score of a pathway for a sample by the maximum
deviation of the random walk from zero.

Another more widely known extension of GSEA is Gene Set Variation Analysis (GSVA)
[100], which estimates the variation of pathway activity over a sample population.
Instead of ranking the genes using the whole set of samples, GSVA first ranks the genes
for each individual sample using non-parametric kernel estimation of its cumulative
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density function. In the case of microarray data, a Gaussian kernel [101] is used, and
in the case of RNA-Seq data, a discrete Poisson kernel [102] is employed. For each
sample, the genes are ranked according to the expression-level statistic. The following
step condenses expression-level statistics into pathway-level by calculating sample-wise
enrichment scores. The enrichment score assessment is similar to the GSEA and
ASSESS methods [40, 99] by using the Kolmogorov-Smirnov (KS) like random walk.

It should be noted that the ASSESS is a supervised method, and GSVA is an unsu-
pervised method. Therefore, ASSESS is well-suited for assessing gene set variation
across a dichotomous phenotype, while by omitting phenotypic information, GSVA
enables more flexible downstream analyses and broader applications. There are also
many other GSEA-based pathway activity inference methods, including ssGSEA [103]
and ESEA [104]. A more detailed description of these methods can be found in their
original publication.

2.4.3 Advanced arithmetic pathway activity inference methods

The basic arithmetic methods, including the MEAN, Mean top 50%, and the Median
mentioned in Section 2.3.3.2, have been widely used because they are simple and
convenient. More advanced arithmetic methods are also proposed to compensate for
their shortcomings.

A representative method is the Log-likelihood ratio (LLR) [105]. The LLR first estimates
the conditional probability density functions under different phenotypes for each gene
in the pathway. Based on the conditional probability density functions, the method
then transforms the expression values of the member genes into log-likelihood ratios to
obtain an LLR matrix from the gene expression matrix. The process is summarised in
the following formulas:

λi(xi
j) = log

[
f1

i (xi
j)

f2
i (xi

j)

]
(2 − 6a)

where i is the index of genes, and j is the index of samples. f1 and f2 are the conditional
probability density function of the expression level of gene i under phenotype 1 and 2,
respectively. λi is the log-likelihood ratio (LLR) between the two phenotypes for the
gene i. Then the gene expression value xi

j is transformed into λi(xi
j) from the LLR

matrix (PWM i
j). The LLR matrix is then normalised, and the pathway activity for

sample j is inferred by combining the normalised LLRs of its member genes using the:
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Aj =
∑

i

(λi(xi
j)) (2 − 6b)

Another method called PathAct [106] uses the median polish (MP) algorithm [107]
to summarise the pathway activity values. MP is an exploratory data analysis for
extracting both row-wide and column-wide trends from a two-dimensional matrix. MP
is an iterative procedure that consists of the following four steps: (i) calculating the
median values of each row, (ii) subtracting the median values from each row, (iii)
calculating the median values of each column, and (iv) subtracting the median values
from each column. These steps are repeated using the residual matrix, and the median
vectors for rows and columns are accumulated at each iteration. This procedure iterates
until the reduction of the sum of absolute residual is less than a specified value or the
maximum limit of iteration is exceeded. The MP method has been used for several
bioinformatics tools, including the robust multi-array average (RMA) method [108],
one of the most well-known normalization methods for DNA microarray data.

After the pre-defined number of iterations that take turns subtracting the median value
of the rows and columns, the input matrix, PWMs,m, is converged at a certain state
by PathAct as shown in the following formula:

PWMs,m = gm + as + Rs,m (2 − 7)

where gm is the gene effect that reflects a degree of bias, such as the hybridisation
efficiency of each gene, as is the individual effect, which is regarded as the pathway
activity values for each sample (individual), and Rs,m is the residual matrix.

Some methods do not only use the gene expression values, but other information,
e.g. the pathway topology [109] and post-translational control of signal transduction
[110]. PROGENy [110] is a representative method. They pointed out that inferring
the signalling activity of pathways from gene expression disregards the effect of post-
translational modifications. Therefore, they used a large compendium of publicly
available perturbation experiments to yield a common core of pathway-responsive
genes and linear regression models were used to fit genes responsive to all pathways.
However, PROGENy is available for 11 signalling pathways because of the availability
of perturbation experiments.
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2.4.4 An advanced Projection-based pathway activity inference method

The baseline projection-based pathway activity inference method, PCA, projects the
samples into one dimension with the largest variance. A more complex and informational
method, called Pathifier [111], takes a further step of PCA. Pathifier uses the principal
curve to measure the deviation of a sample from the behaviour of the control sample
group [112]. More specifically, in the dp dimensional space, where dp are the member
genes of a particular pathway, the entire set of samples forms a cloud of points. Then,
the nonlinear “principal curve” is calculated to capture the variation of this cloud.
Each sample is projected onto this curve. The pathway activity value is defined as
the distance Dp(s), measured along the curve, of the projection of sample s from the
projection of the other samples.

In the cloud of all samples, the normal (healthy) samples are defined as a reference
set, and the centroid of the reference set is defined as a reference point. The reference
set concentrates on one side of the curve due to the high similarity, and they have
large differences from disease samples. Therefore, the reference set defines the curve’s
direction by ensuring the reference set is closer to the beginning of the curve. Then, the
pathway activity score is defined as the distance along the curve between the projection
point of the sample and the reference point.

To improve the accuracy of the estimated principle curve, Pathifier performs pre-
processing on the input matrix PWM . Genes with higher variance over all samples
are selected and normalised with mean and standard deviation. The reason for the
gene selection is that many of the genes in the pathway might be highly correlated, i.e.
conveying the same information. In contrast, more important information might reside
in a single gene in the pathway.

2.4.5 Optimisation-based pathway activity inference method

The methods above are either relying on the statistical summation of the expression data
or applying the decomposition approaches to the expression data to infer the pathway
activity. Although nearly all the methods include some pre-processing operations on
the expression data before the pathway activity calculation, these approaches still rely
on the quality of the data. Moreover, their calculation processes are in a “black box”
mode that can only provide the conclusions on the pathway-level but makes it hard
to provide more gene-level details, which is more beneficial for diagnosis or prognosis
value.
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A mathematical programming model named Differential Gene Signatures (DIGS) is
proposed by [113], which defines the pathway activity inference as a mixed integer
linear programming (MILP) problem. This method is now described in detail.

First the indices, sets and parameters associated with the DIGS model are listed below:

Indices

s Sample (s = 1, 2, . . . , S)

m Gene (m = 1, 2, . . . , M)

c,k Class or phenotype (c = 1, 2, . . . , C)

cs Class label for sample s

Parameters

Asm Expression level of gene m on sample s

Gsm standardised gene expression profile

ε A small positive number

U A large positive number

NoG Number of member genes allowed to have non-zero weight in building pathway
activity for each pathway, a user-specific value

Binary Variables

Lm 1 if effect of gene m on pathway activity inference is positive; 0 if negative effect

Es 1 if pathway activity of sample s falls within the range of its class; 0 otherwise

Ykc 1 if upper bound of pathway activity range for class k is lower than lower bound
of that for class c; 0 otherwise

Wm 1 if gene m is active in pathway activity inference (have non-zero weight); 0
otherwise

Positive Variables
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rpm Positive influence of gene m towards pathway activity inference

rnm Negative influence of gene m towards pathway activity inference

Unrestricted Variables

pas Pathway activity of sample s

LOc Lower bound of range of class c on pathway activity

UPc Upper bound of range of class c on pathway activity

Next, the objective function and the constraints that form the model are introduced.
Two sets of positive variables rpm and rnm are introduced, quantifying the positive and
negative weights of gene m towards pathway activity inference. For sample s, pathway
activity, pas, is defined as the summation of the standardised gene expression values,
Gsm multiplied by the gene weight (rpm -rnm) overall member genes:

pas =
M∑
m

Gsm(rpm − rnm) ∀s (2 − 8a)

where M is the total number of member genes for the pathway and S is the total
number of samples. Both positive weights rpm and negative weights rnm of gene m are
defined as positive continuous variables; their values are determined by the optimisation
model. Using a set of binary variables, Lm, equations (2-8b) and (2-8c) below ensure
that for each gene m at most one of rpm and rnm can take positive values:

rpm ≤ Lm ∀m (2 − 8b)

rnm ≤ (1 − Lm) ∀m (2 − 8c)

where Lm = 1, rpm can take any value between 0 and 1 while rnm is forced to be
equal to 0; otherwise, when Lm = 0, rpm is forced to be equal to 0 while rnm can be
between 0 and 1. In either case, both rpm and rnm can be equal to 0, which means
this particular gene has zero weight in inferring pathway activity. Overall, a gene can
have positive, negative or zero weight towards the composite feature construction. For
normalization purposes, the summation of absolute gene weights should be equal to
one:
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M∑
m

rpm + rnm = 1 (2 − 8d)

A set of binary variables, Wm, is introduced to the model to indicate whether a member
gene m is active, i.e. having non-zero weights in constructing pathway activity or not:

rpm + rnm ≤ Wm (2 − 8e)

If Wm takes the value of 0, then both positive weight (rpm) and negative weight (rnm)
of gene m are forced to be equal to 0, while when Wm is equal to 1, gene m is allowed
to take any weight (rpm-rnm) between -1 and 1. The following equation restricts the
maximum number of genes allowed to have non-zero weights to a manually specified
value (NoG):

M∑
m=1

Wm ≤ NoG (2 − 8f)

In the case where NoG is equal to or larger than the number of member genes, the
constraint is redundant as all the member genes will be allowed to take any weight
(rpm-rnm).

For each class c, two continuous variables have been introduced as LOc and UPc,
denoting the lower and upper bound of the range of pathway activity for phenotype
c. In addition, a set of binary variables, Es, have been introduced together with the
following constraints:

0 ≤ pas − LOc + U(1 − Es)∀s cs (2 − 8g)

pas − UPc − U(1 − Es) ≤ 0∀s cs (2 − 8h)

where c s is the phenotype for sample s, and U is an arbitrarily large positive number.
On the constructed pathway activity, ranges of different classes are not allowed to
overlap. A set of binary variables, Ykc , have been introduced. The additional two sets
of constraints have been introduced to guarantee the non-overlapping condition:

UPk + ε ≤ LOc + U(1 − Ykc) ∀k < c (2 − 8i)
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UPc + ε ≤ LOk + UYkc ∀k < c (2 − 8j)

where ε is an arbitrarily small positive number ensuring that pair-wise classes do not
share a border. Equations (2-8i) and (2-8j) are generated for each pair of classes. The
objective of the optimisation problem is to infer the pathway activity such that it is as
discriminative as possible, i.e. as many samples as possible can fall within the range of
its corresponding classes (Es = 1). In other words, the objective function is to minimise
the number of misclassified samples:

Min z =
S∑

s=1
(1 − Es) (2 − 8k)

The resulting mathematical programming-based formulation for inferring pathway
activity is summarised below:

Objective function: (2-8k)

Subject to:

Pathway activity definition (2-8a)

Positive and negative gene effect constraints (2-8b) (2-8c)

Normalization constraint (2-8d)

Restriction of the number of active genes (2-8e) (2-8f)

Pathway activity enclosing constraints (2-8g) (2-8h)

Non-overlapping constraints for ranges of different classes (2-8i) (2-8j)

The superiority of this model is reflected in deciding the gene weights. Most methods
mentioned above take the gene weights as a priori data, e.g. average weights or using
pre-calculated t-scores as the weights. In DIGS, the gene weights that the optimisation
model decides, make the constructed pathway activity distinguish samples of different
classes optimally. Furthermore, the mathematical framework of this method offers
the user the ability to explicitly constrain the maximum number of constituent genes
(parameter NoG) that contribute to pathway activity inference.



2.4 Pathway activity inference methods in literature 38

The uniqueness of the DIGS model is also reflected by the gene weights decided by
the model. Most methods use gene expression values to calculate the pathway activity
values. For example, using mean and median values to summarise the expression values,
using projection approaches to transform the expression values or using regression
models to fit the expression values. However, the gene weights produced by the DIGS
model can be re-used on the other data. Therefore, the dataset can be split into training
samples and testing samples. After the DIGS model is trained in the training samples,
the pathway gene weights are obtained and can be used on the testing samples.

The flexibility in defining the weights of the member genes that participate in the
pathway activity calculation favours the investigation inside an individual pathway.
For each pathway, the optimisation model selects a group of genes that got the weights
through the NoG parameter. This set of genes is considered the important genes for
this pathway that best benefit the separation of the phenotypes. Secondly, the assigned
weights to the genes provide the ranking for the selected important genes. The gene
that is given higher weight indicates higher importance. Therefore, a novel contribution
of the DIGS model is that it provides insights for identifying the pathway-specific and
important genes, rather than providing only the important pathways towards phenotype
classification. The DIGS model will be explored into further method development in
Chapters 3 and 4.

2.4.6 Summary

In this section, a review of the most well-known pathway activity inference methods
has been presented. This area of research has attracted a large amount of interest. As
a result, a complete review of all existing pathway activity inference methods is beyond
the scope of this thesis. Here the aim was to illustrate the main approaches taken
to solve the problem of summarising the gene expression values on the pathway level
and in particular, to describe the pioneering methods that have underpinned much of
the method development. There are many other methods than those described in this
section, and new methods always appear. However, well-established methods, such as
Mean-based, PCA-based and GSEA-based methods, are still commonly used in practice
and are often used to benchmark new methods.

When choosing a pathway activity inference method, the following two conditions
need to be considered jointly. First, the existing methods can be divided into two
categories according to whether the sample labels are already known, i.e. supervised and
unsupervised methods. In the application scenario of finding the significant pathways,
the samples are well-labeled to apply statistical tests or train classifiers to identify the
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Table 2.3 List of Pathway activity inference methods

Method Supervised or
Unsupervised

Binary or
Multiclass

Scoring type Reference

MEAN Unsupervised Multiclass Arithmetic [53]
MEAN top

50%
Supervised Binary Arithmetic [82]

CORGs Supervised Binary Arithmetic [96]
PCA Unsupervised Multiclass Projection [97, 98, 43]
PLSR Supervised Binary Projection [98]

ASSESS Supervised Binary Enrichment [99]
GSVA Unsupervised Multiclass Enrichment [100]
LLR Supervised Binary Arithmetic [105]

Pathifier Supervised Multiclass Projection [111]
DIGS Supervised Multiclass Optimisation [113]

differential expression pathways. In contrast, in the diagnosis scenario, the sample class
is unknown and relies on the pathway activity results to help with diagnosis.

Second, the existing methods can be divided in two categories according to whether the
method suits multi-class sample labels or only binary labels. As pathway analysis in-
spires the pathway activity inference, most pathway activity inference methods consider
only the “healthy” and “disease” conditions that follow pathway analysis approaches.
Moreover, the involvement of t-score for finding the DEGenes in the pathway activity
inference procedure limits their suitability to the multi-class classification problem. As
a result, most current supervised methods are only suited for binary sample labels. A
summary of the pathway activity inference methods mentioned in this section is given
in Table 2.3.

Whether the method is supervised or unsupervised, its advantage is ultimately deter-
mined by the classification performance. However, it should be noted that whether
the method suits the multi-class problem requires more attention than the binary
problem. This is because when studying complex diseases, one is often faced with
multi-class problems. Overall, pathway activity inference is considered a more sensitive
and in-depth way to analyse and understand the massive and noisy gene expression
data. More and more methods are being proposed to provide an accurate and widely
applicable result.
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2.5 Conclusions

This chapter has presented the necessary preliminaries for the work described in this
thesis. First are the main properties of three high-throughput profiling techniques,
their technical principles, applications, advantages and drawbacks. With the advent of
these techniques, interpreting these large volume and noisy datasets is still challenging,
which requires joint consideration of various properties. After a short introduction
of the intuitive analysis approaches for the profiling data, identifying the differently
expressed genes directly from the data, the focus turned to combining the pathway
information as a-priori knowledge for the gene expression profiling analysis. Rather
than focusing on the gene-level differences, the pathway analysis approaches look for the
differentially expressed pathways that can be easily interpreted with cellular functions.
Finally, the pathway activity inference framework was introduced as a more advanced
concept with better biological interpretability and flexibility than the pathway analysis
approaches. The pathway activity inference methods conclude the expression values
on the pathway-level for individual samples, which allows sample classification and
prediction and is expected to be more reasonable and accurate. All of the above form
the basis for subsequent work.

The pathway activity inference methods discussed in Section 2.4 have dealt with the
problem: summarising the gene expression values of the pathway member genes into
a single value to represent the activity level of the pathway for a particular sample.
This problem statement represents the core issue of this thesis. This thesis continues
from the optimisation-based model for solving this problem. The first stage discusses
the fitness of the optimisation-based model on the more complex high-throughput
profiling technologies and the performance on sample prediction and pathway or gene
signatures identification. In the next stage, the model is further improved to obtain
better computation efficiency and performance on evaluation metrics.



Chapter 3

Pathway Activity Inference for
Acute Ischemic Stroke Microarray
Data

Pathway activity inference has been widely used as a powerful framework to reveal the
underlying significant biomarkers of complex diseases. Ischemic stroke ranks second
after heart disease as a cause of disability in high-income countries and as a cause
of death worldwide. Identifying the pathway biomarkers of ischemic stroke can help
diagnose stroke from non-stroke cases, as well as advance the understanding of the
underlying mechanisms of the disease. In this chapter, the mathematical programming
optimisation model called DIGS is applied to build a phenotype classification and
pathway inference model using stroke gene expression profile data. The DIGS model
is specifically designed for pathway activity inference towards supervised multi-class
disease classification and showed great performance among pathway activity inference
methods in the original work [113].

However, an area rarely discussed is calculating pathway activity on multiple datasets
of the same disease. The sample size in a single dataset can be limited for diseases
where samples are difficult to obtain. Therefore, it is necessary to combine multiple
data sets to increase the sample size. In extension to the original work, this chapter
demonstrates good performance of using combining multiple datasets for pathway
activity inference. The results show that the highest accuracy of the prediction on
determining stroke or non-stroke samples from the combined dataset reaches 84.4%,
which is much better than the prediction accuracy produced by currently found stroke
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gene biomarkers. Stroke-related significant pathways are also produced by the DIGS
model in this chapter.

3.1 Introduction

Acute ischemic stroke (AIS) is a dangerous disease worldwide, which has multiple
complications and is hard to cure [114]. According to reports [115], stroke is still the
second leading cause of death and the third leading cause of disability after years
of clinical treatment and relevant research analyses. Also, it is well known that the
economic costs of treatment and post-stroke care of stroke patients are substantial.
Therefore, looking for an effective way to diagnose or pathogenesis of AIS is important
for both scientific analysis and clinical practice [116, 117].

Microarray technology has become a popular methodology in deriving a comprehensive
view from gene expression data for certain conditions. Based on the development of the
microarray technology, several researchers have identified molecular biomarkers from
AIS blood samples [118–120]. However, most of these efficient - albeit simple - biomarker
deriving approaches focused on independent genes and adopt basic statistical approaches.
Therefore, they were suffering from low prediction accuracy and difficulty in biological
interpretation. Following the principle that genes do not act in isolation but work in
concert, in recent years independent gene editing therapeutic methods are increasingly
replaced by simultaneously considering functional gene groups. Biological pathways
are a key type of functional gene sets, which are available from public databases, for
example, Reactome [60], Kyoto Encyclopedia of Genes and Genomes (KEGG) [59] and
Gene Ontology (GO) [121]. Biological pathways provide the possibility of analysing
groups of genes that belongs to same pathways and identifying the target-relevant
pathways as biomarkers. A review of the pathway databases is given in Section 2.3.2.

In [113], a novel multi-class disease classification method, Differential Gene Signature
(DIGS), which infers pathway activity in a supervised manner, is proposed. DIGS is
a MILP mathematical programming formulation that consists of a linear objective
function and several linear constraints. The general idea of DIGS is using weighted
linear summation of the constitute genes expression values from same pathway as
the pathway activity evaluation of that sample, where the weights of constitute genes
are decided by the optimisation model so that the constructed pathway activity can
optimally distinguish samples from different phenotype. DIGS has been tested on
Psoriasis, Breast Cancer, Prostate Cancer and diffuse large B-cell lymphoma (DLBCL),
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and showed good performance on distinguishing their sub-phenotypes and detecting
biomarkers of these diseases [113].

In this chapter, DIGS is applied on three acute ischemic stroke microarray profile
datasets, aiming to reach high prediction accuracy between stroke and non-stroke
phenotypes and deriving relative functional pathways as biomarkers of AIS. This
chapter is structured as follows. In the next section, the acquisition of the three
datasets and the approach of integrating them are described in detail. Then, the DIGS
method implementation and validation pipeline is illustrated. Finally, the results are
evaluated in two aspects, i.e. in terms of the sample classification performance and the
relevance of identified significant pathways to the disease.

3.2 Identification of biological pathways for ischemic stroke
through mathematical programming optimisation

The work in this chapter has been performed in collaboration with Dr. Konstanti-
nos Theofilatos (KCL Cardiovascular division). The gene expression dataset sources,
pre-processing and integration were carried out by Dr. Konstantinos Theofilatos. My
contribution to this chapter is the implementation of the pathway activity inference
model, the implementation of the validation pipeline, determine the appropriate ap-
proaches for the results analysis. Specifically, Section 3.2.2 is contributed by Dr.
Konstantinos Theofilatos and the other sections can be ascribed to myself.

3.2.1 Gene expression datasets and KEGG pathway acquisition

Three publicly available gene expression datasets GSE22255 [120], GSE16561 [122]
and GSE58294 [123] were obtained from Gene Expression Omnibus (GEO). All the
experiments of these three GEO series were conducted on Affymetrix Human Genome
U133 Plus 2.0 Array Platform. GSE22255 contains 20 stroke and 20 control (non-stroke)
peripheral blood mononuclear cells (PBMCs); GSE16561 contains 39 stroke and 24
control peripheral whole blood samples; GSE58294 contains 23 control whole blood
samples and 69 stroke samples. Because the 69 stroke samples of GSE58294 were
analysed at three time points: less than 3 hours, 5 hours, and 24 hours following the
onset of stroke, only samples collected at 3 hour time points were used in this work.
After dataset integration, there are 82 stroke peripheral blood samples from stroke
patients and 55 from control patients. The datasets information is summarised in Table
3.1.
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Table 3.1 Microarray datasets of acute ischemic stroke

Session ID Tissue type No. Control No. Stroke
GSE22255 PBMCs 20 20
GSE16561 whole blood 24 39
GSE58294 whole blood 11 23

Summary 55 82

Pathway data were acquired from MsigDB KEGG C2 functional gene sets [63], which
include 186 curated pathways with in total of 5267 genes.

3.2.2 Dataset integration

Pooling data from different studies meant combining expression arrays derived from
whole blood samples vs. those from peripheral blood mononuclear cells (PBMCs).
Because PBMC excludes non-nucleate cells, one may expect somewhat different profiles
with respect to whole blood, due to differences in cell/tissue type. Consequently, it was
necessary to determine whether pooling PBMC and whole blood data may introduce
artefacts due to profile differences between the different types of blood samples. This
was achieved by comparing the Fold-Change (FC) per-gene in the whole blood-only
datasets to the pooled blood/PBMC data using Spearman rank-based correlation
analyses.

The datasets were merged by performing a second layer of joint normalization similar
to the standard approaches used for qPCR data [124]. Initially, 8 commonly used
housekeeping genes (ACTB, B2M, HMBS, HPRT1, RPL13A, SDHA, TBA, YWHAZ)
that were expressed at comparable mean levels in both treatment (stroke) and control
groups were selected and followed the procedures outlined in [124] to identify the minimal
subset of genes that show the most between-experiment variability to use as normalisers.
Because all of these genes showed relatively high FC across samples (Log2FC prior to
median per-sample normalization was > 0.3 for all the examined housekeeping genes),
normalization was performed based on median per-sample expression level rather than
rescaling with respect to expression levels of housekeeping genes.

The pooled data were filtered so that only genes with less than 10% missing expression
values would be retained for further analysis. For the remaining missing values, the
KNN-Impute method [125] was applied to properly impute the missing data with K
= 20. For the final stage of quality control, outliers were identified with a method
based on principal components analysis (PCA) – retaining the principal components
that accounted for 90% of covariation, and then applying the local outlier factor (LOF)
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approach [126] to cluster samples and detect outliers as the un-clustered samples. This
analysis indicated that less than 5% of the data were marked as outliers, thereby passing
a predefined threshold of fewer than 10% outliers for a dataset to be considered valid
for further analysis.

In conclusion, dataset integration includes three steps: (1) determining whether the
different types of blood samples would introduce artefacts, (2) using the standard
normalization approaches to merge the datasets, (3) filtering genes with too many
missing values. The integrated dataset contains 137 samples (82 stroke samples and
55 control samples) and 13243 genes. This merged dataset is used as a whole in the
following pathway activity inference procedures.

3.2.3 Pathway activity inference using the DIGS model

An overview of the computational procedure of DIGS, which is developed for pathway-
based sample phenotype classification, and mathematical details are illustrated in
Chapter 2 Section 2.4.5. In this section, an overview of the model is summarised
in Figure 3.1. Pathway-specific gene expression matrices PWMs,m consist of the
standardised gene expression values of sample, s, across pathway member gene, m. The
number of gene expression matrices is equal to the number of pathways, which in this
work is 186 KEGG pathways. For each PWMs,m matrix, DIGS assigns a pathway
activity score to each sample and pathway activity range for each phenotype through
the optimization model. The objective function of the optimization model can be
described as ensuring that as many pathway activity scores as possible fall within the
corresponding phenotype range. The following paragraphs review the details of the
DIGS model.

The mathematical programming based formulation of DIGS contains 10 constraints
and an objective function (see Chapter 2.4.5). The first part of the formulations define
how pathway activity values are calculated. For each sample s, pathway activity pas

is defined as the summation of the gene expression values PWMs,m multiplied by a
gene weight (rpm − rnm), where rpm represents the positive weight of gene m and rnm

represents the negative weight. Then, the first limitation (set by the Equations 2-8b
and 2-8c) is applied on a pair of positive variables, rpm and rnm. For each m, neither
rpm nor rnm can take positive value, which means one of them is forced to be zero. A
binary variable Lm is introduced to construct these constraints.

The second limitation (set by the Equation 2-8d) restricts the number of genes that
can be “active” genes among all member genes in a pathway. Active genes are defined
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Fig. 3.1 Schematic flow chart of DIGS pathway activity inference method. PWMs,m

serve as the input data. The DIGS model produces the pathway activity values for
samples s, and the ranges for phenotype c.

Fig. 3.2 Overview of the DIGS validation scheme using microarray gene expression
profile for phenotype classification.
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as genes that gain non-zero weights, while keeping the remaining non-active genes’
weights equal to zero. A binary variable Wm is introduced to indicate whether a gene
m is “active”. When Wm takes the value of 1, gene m is an active gene and its weight
(rpm − rnm) would take a value between -1 and 1. Also, a user-defined variable NoG
(used in the Equation 2-8e) is introduced to restrict the maximum number of active
genes. For normalization purposes, the summation of absolute gene weights is equal to
1, as defined as in Equation (2-8f).

The following part of formulations set restrictions on the phenotype ranges. According
to the Equations (2-8g) and (2-8h), the range for a phenotype c is defined by two
continuous variables, lower bound LOc and upper bound UPc. A binary variable Es is
adopted to indicate whether the pathway activity value of a sample s falls within the
LOc and UPc of its corresponded phenotype.

The last two constraints (Equations 2-8i and 2-8j) are introduced to guarantee that, for
each pair of phenotypes (c, k), the ranges do not overlap. Here a binary variable Ykc

ensures this requirement. When Ykc = 1, the relationship between c and k is k < c and
UPk is lower than the LOc; when Ykc = 0 the condition is reversed (c < k, UPc < LOk).
Also, ε, an arbitrarily small positive number, is designed to ensure pair-wise classes do
not share borders. Finally, the objective function (Equation 2-8j) of this optimization
problem can be defined by minimising the number of miss-classified samples (1 − Es).

In conclusion, all constraints of DIGS model are linear with a linear objective function
and multiple binary or continuous variables. Therefore, DIGS is a mixed integer linear
programming (MILP) model that can be solved to reach global optimum with standard
algorithms.

3.2.4 Implementation and validation scheme

The implementation procedure of pathway activity inference and pathway activity-
based disease classification is illustrated in Figure 3.2. To gain robust and objective
prediction results, all samples of the integrated stroke dataset are randomly split into
70% training set and 30% testing set. This procedure is repeated 10 times to produce
10 training/testing sets. During the model training process, testing samples are always
blind to the training procedure to ensure no information leakage. For every training
gene expression matrix, gene sets from KEGG pathways are integrated with the gene
expression matrix to create individual pathway-specific expression matrices (PWMs,m).
Therefore, 1860 pathway-specific expression matrices (10 training sets * 186 pathways)
are generated and the DIGS models are trained on them. The PWMs,m serve as the
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input of the model and the output of the model consists of the weights of the NoG
genes.

From model solving results, the composite features, which summarise the expression
patterns of member genes m into a new feature PAs, are constructed by the summation
of the gene expression values multiplied by the gene weights. This newly constructed
feature is the pathway activity values for this PWMs,m. After obtaining the pathway
activity vectors from all pathway specific expression matrices independently, pathway
activity matrices (PAsp) are formed by the ensemble of corresponded 186 pathway
activity vectors for each training set.

For each training or testing set and each pathway, gene weights (rpm and rnm) are
extracted when solving DIGS models on training samples for the pathway activity
calculation on testing samples. Therefore, the testing samples pathway activity values
are calculated using the same gene weights as the training samples. Similarly, pathway
activity vectors from testing samples are combined into testing pathway activity matrix.

The DIGS model is implemented in the General Algebraic Modelling System (GAMS)
[127] and solved using the CPLEX. CPLEX is a high-performance mathematical
programming solver for linear programming, mixed integer programming, and quadratic
programming. It was the first commercial linear optimiser on the market to be written
in the C programming language [128].

According to the sensitivity analysis for parameter NoG in the original publication,
the DIGS model is robust with respect to NoG in range of 5 to 20. Here, NoG is set
to 10, which means the model allows 10 genes per pathway to participate in pathway
activity calculation. The optimal gap (optcr) is set as 0.00 so as the attempt obtain
globally optimal solutions. The computation time limit for solving a DIGS model is set
as 200 seconds. The solving status of DIGS models includes both optimal solution and
feasible solution obtained after time limitation.

The pathway activity matrices are then used to train machine learning classifiers.
Overall, the procedure showed in Figure 3.2 produces 10 sets of training and testing
pathway activity matrices corresponding to original random division of training and
testing sets on the stroke dataset. To avoid contingency, six commonly used machine
learning classifiers, K-nearest-neighbour (KNN), Logistic Regression (LR), Random
Forest, Neural Network (NN), Naive Bayes and Support Vector Machine (SVM), are
employed in this study. The Python package sklearn version 0.22.1 is used to implement
these classifiers and produce the classification accuracies towards the sample phenotypes.
These six classifiers were trained on 10 training pathway activity matrices and tested
on testing pathway activity matrices with the following parameters: for NN, hidden
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Table 3.2 Averaged prediction accuracy on testing sets

Classifier ACC AUC
5-NN 0.844 0.895

Logistic Regression 0.833 0.932
Random Forest 0.836 0.923
Neural Network 0.840 0.917

SVM 0.830 0.927
Naive Bayes 0.843 0.907

layer is 2, learning rate is 0.1, training time is 10000; for KNN, the number of clusters
is 5. For the other classifiers, default settings are retained.

3.3 Results

In this section, the performance of DIGS is demonstrated though a comparative analysis
with other pathway activity inference methods. Also, the DIGS selected important
pathways are compared with the DEGenes and the superiority of using genes within
pathways as a whole for phenotypic classification was confirmed.

3.3.1 Evaluation of Prediction performance

To rigorously evaluate the prediction accuracy of various implemented classification
approaches, prediction accuracy are averaged over 10 training sets and testing sets for
each classifier. Due to the inherent problem of unbalanced numbers of samples across
two phenotypes (Table 3.1), both classification accuracy (ACC) and area under curve
(AUC) [76] are used as metrics to measure the prediction accuracy of a classification
model. ACC is defined as the fraction value of the number of correctly classified
samples divided by the number of all samples. Higher AUC values correspond to better
prediction performance, with AUC of 1 indicating perfect prediction, 0.5 indicating
performance equal to random. Overall, Table 3.2 shows the averaged ACC and AUC
values across 10 testing sets produced by six different classifiers on stroke dataset.

Generally, all six classifiers have produced relatively high accuracies ( 83.5%) and
high AUC scores ( 91.5%) towards the classification on stroke and control samples.
Among six classification methods, 5-Nearest-Neighbours reached the highest prediction
accuracy (84.4%) and Logistic Regression got the best AUC score (93.2%).



3.3 Results 50

To further validate the superiority of DIGS, other three widely used pathway activity
inference methods were implemented on stroke dataset for comparison. In overview,
these three methods are: (i) Mean method [53] that takes the mean gene expression
values of all genes within a pathway for each sample; (ii) the second method, referred
as Median method [129], has exactly same procedure as Mean method, replacing the
mean expression values across genes with the median expression values across genes;
and (iii) the third method is called PCA method, built by [96], which uses the first
principal component of the pathway specific expression matrix as representation of
pathway activity scores for each sample. These three methods are the most widely used
baseline pathway activity inference methods, their details can be found in Section 2.4.
To make the prediction results comparable, the validation scheme for these other three
pathway activity inference method is same as DIGS and the exact same ten training
and testing sets used for DIGS were applied to Mean, Median and PCA method. The
arrangement of the resulting 10 pathway activity matrices and same classifier training
procedures are adopted. The output prediction accuracy for these three methods are
also averaged across 10 testing sets and all results are plotted in Figure 3.3.

Specifically, the DIGS model can be trained and tested (described in Section 2.4),
whereas the other methods cannot. The implementations of the other methods are
separate for the training and testing samples. In detail, after the dataset has been split,
the Mean, Median and PCA methods first calculate the pathway activity values for
the training samples and then for the testing samples. Therefore, the training and test
pathway activity profiles are the same for all methods. This pipeline is used in the
following chapters for methods comparison.

In Figure 3.3, x-axis is labelled with six classification approaches and y-axis represents
the prediction accuracy values for each pathway activity inference methods across each
classifier. From the figure, it is obvious that DIGS-based classification approach achieves
higher classification rates than other pathway inference methods. The performance of
Mean and Median methods is similar (accuracies range from 60% to 80%), and PCA
methods gets the lowest prediction accuracies (range from 50% to 60%). It can be
concluded that DIGS is the most effective method among four methods for deriving
pathway activity scores towards classification of stroke phenotypes.
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Fig. 3.3 Classification accuracy comparison of four pathway activity inference methods.

3.3.2 AIS Relevant Pathway Identification

3.3.2.1 Pathway relevance ranking

Not only promising classification rates can be achieved by DIGS model, but also several
pathways are identified as significant, which may indicate pathway biomarkers. To
rank the pathways, Point-biserial correlation coefficient ranking method from Python
SciPy package (Version 1.3.0) is employed in this work. Point-biserial Correlation
Coefficient is a statistical measure of the relationship between a binary variable and
a continuous variable, and it is mathematically equivalent to the Pearson correlation.
In Machine Learning, Point-biserial correlation can be used to calculate the similarity
between features and categories. In other words, it is adopted to judge whether the
extracted features are positively correlated, negatively correlated, or not correlated
with the corresponding categories. The range of Point-biserial Coefficient is [-1, 1] and
the greater the absolute value is, the stronger the correlation is. In this section, this
intuitive way of the pathway selection is used, and in the next two chapters, further
approaches for pathway selection are introduced.

To gain an ultimate pathway activity value for each pair of sample and pathway, 10
pathway activity matrices (combination of the corresponded training samples and
testing samples of each training/testing set) were merged into one pathway expression
matrix by averaging. Then, for each pathway, the Point-biserial Correlation Coefficient
is calculated using the pathway activity vector across all samples and the phenotype
vector that consists of sample phenotypes (stroke or control). The absolute value of
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Table 3.3 Average prediction accuracy on testing sets

Pathway Name Coef.1
CELL_CYCLE 0.782
B_CELL_RECEPTOR_SIGNALING_PATHWAY 0.744
UBIQUITIN_MEDIATED_PROTEOLYSIS 0.743
LEISHMANIA_INFECTION 0.739
PYRIMIDINE_METABOLISM 0.739
SPLICEOSOME 0.737
CELL_ADHESION_MOLECULES_CAMS 0.736
RNA_DEGRADATION 0.727
TOLL_LIKE_RECEPTOR_SIGNALING_PATHWAY 0.725
EPITHELIAL_CELL_SIGNALING_IN_HELICOBACTER_PYLORI_INFECTION 0.721

1Point-biserial correlation coefficient

the calculated correlation metrics for each pathway were ranked in descending order
and top 10 pathways were selected as the most discriminative pathways.

The selected ten discriminative pathways are listed in Table 3.3. Apart from pathways
that have obvious links to cancer pathways, for example the well-known signalling
pathway (B cell receptor signalling pathway), and pathways involved in cell metabolism
procedures and genetic information processing (Cell cycle, Pyrimidine metabolism,
RNA degradation and Spliceosome), I note a piece of research concluding that the
immunoblockade or genetic deletion of adhesion molecules showed to reduce infarction
volume, edema, behavioural deficits and/or mortality in different animal models of
ischemic stroke [130]. Also, in [131] indicates that the ubiquitin-mediated proteolysis
pathway, especially TRAF6, may be the most vital molecules among TLR downstream
pathways in incidences of ischemic stroke, which proves that two of our top ten pathways
(Ubiquitin mediated proteolysis and Toll-like receptor signalling pathway) are strongly
related to the diagnosis of ischemic stroke.

In conclusion, these DIGS top ranked pathways are highly related to AIS, and thereby
can be treated as pathway biomarkers.

3.3.2.2 Top ranked pathway evaluation

To intuitively display the performance of significant pathways, two heat-maps were
drawn using gene expression data and pathway activity data for significant pathways.
In Figure 3.4, rows are gene names and pathway names for the upper plot and lower
plot, respectively. Columns are sample phenotypes. Samples are hierarchically clustered
based on similarity. In horizontal colour bar, different colour (green and blue) represents
"stoke" and "control" respectively. From the comparison between these two plots, most
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of the samples belonging to the same phenotype are indeed assigned to the same cluster
with the significant pathways data found by DIGS.

Fig. 3.4 Hierarchical clustering for gene expression profiles and significant pathway
activity in the stroke dataset.

To further explain to what extent the significance has been reached by the top ranked
pathways, 10 box plots in Figure 3.5 show the distribution of pathway activity values
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of the two different sample phenotypes for each significant pathway. The left box plot
in each subplot represents the activity values of stoke samples and the right box plot
represents the control samples. It is obvious that the ranges between upper quartiles
and lower quartiles of the two phenotypes are well-separated in each subplot. Even
using only one of these top discriminate pathways to classify the phenotypes, the
accuracy would be at least 75%. Similar analysis was done in [132], where the 10 most
statistically significant differentially expressed genes, illustrating the extent of Fold
Change and the separation of median expression levels between the two phenotypes,
were selected from the stroke dataset and their logarithmic relative expression values
were plotted. The box plots of these significant differentially expressed genes in [132]
presents the distribution of the expression ranges of "stroke" and "control" phenotypes.
However, Figure 3.5 shows better distribution differences between the two phenotypes.
The ranges between upper quartiles and lower quartiles of the two phenotypes in the box
plots of the selected differential expressed genes overlap in [132], which indicates that
the prediction accuracy of the significant genes is lower than the top ranked pathways.
Also, according to their study, the prediction accuracy produced by log FC expression
level significance genes (557 genes) is less than 71%, whereas the classification accuracy
of DIGS reaches 84.4%.

It can be concluded that the pathways found by DIGS model have stronger discriminate
power in separating stroke samples from control samples than the differentially expressed
biomarkers genes. Also, these results have proven that using genes belonging to the
same functional group is better than using single genes independently for phenotype
classification in gene expression profiles .

3.4 Conclusions

This chapter applies optimisation-based pathway activity inference, DIGS, on a merged
ischemic stroke gene expression profile for the purpose of inferring pathway activity
values for classifying ischemic stroke samples from the healthy. The classification results
using six machine learning classifiers show promising accuracy rates ( 83.5%) and
relatively high AUC values ( 91.5%) over 10 repetitions of training and testing data
splits. To the authors’ best knowledge, the classification accuracy reached by DIGS
is higher than most current gene-based stroke phenotype prediction methods. Also,
the biological pathways identified by DIGS model are proved relevant to the cause of
ischemic stroke and can be regarded as pathway biomarkers for ischemic stroke.
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Fig. 3.5 Boxplots: pathway activity Distributions of different phenotypes for the top
pathways.Y-axis represents pathway activity values.
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The main contribution of this chapter is to provide a validation of some of the theories
from Chapter 2. First, this chapter proves that incorporating biological pathways with
gene expression profiles improves the classification accuracy compared with former
gene-based stroke studies. The advancement of pathway activity inference is approved
by the higher classification accuracy achieved by using pathway activities in this work
compared with using differentially expression genes. Second, the advancement by the
optimization-based methods DIGS is proven by comparing the classification accuracy
with other baseline pathway activity inference methods. DIGS provides a more flexible
way for inferring stroke-related biomarkers. By modifying the number of active genes
(parameter NoG) inside DIGS model, different levels of biological information can
be extracted from the running outputs. The final contribution is that this chapter
verifies the DIGS model is highly adaptable to different datasets. This is due to the
fact that optimization models are not dependent to the quality of the data itself as
arithmetic-based or projection-based methods. Therefore, in the next chapter, the
adaptability of DIGS model on other datasets by RNA-Seq is explored.



Chapter 4

Pathway Activity Inference
Applied in Cancer RNA
Sequencing Data

Computational methods for aggregating gene-level into pathway-level data have become
a mature approach for many applications, such as gene signature identification and
drug discovery. With the emergence of high-throughput gene profiling technologies, the
volume and complexity of the transcriptomics data keep increasing. When analysis
them, gene-based dimension reduction and analysis methods suffer from low prediction
accuracy and difficulty in biological interpretation [7]. There is a need to address such
limitations with a well-built method that is not only adapted to multiple kinds of high-
throughput data but also one that is robust in accuracy and biological interpretability.

As an optimisation-based, supervised pathway activity inference method, DIGS has
shown its ability to classify multi-class complex diseases using the microarray datasets
in the previous work [113]. This chapter applies DIGS to an RNA-Seq dataset of
colorectal cancer. The samples are labelled with four molecular subtypes, CMS1, CMS2,
CMS3 and CMS4. By comparing DIGS with baseline and newly proposed pathway
activity inference methods, I illustrate that the high prediction accuracy is also achieved
in the RNA-Seq profiling technology. Additionally, DIGS enables the identification of
colorectal cancer-related gene signatures. Further, the inferred pathway activity values
are robust against noisy data and enhance the survival prediction accuracy.

The application on the RNA-Seq dataset proves that DIGS is not limited to microarray
data. The high prediction accuracy toward multi-class classification problems was
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maintained in RNA-Seq data, and the literature supported the significant pathways
detected by DIGS. Also, DIGS kept its discriminative power on the highly noisy data
in robustness evaluation, and for the survival analysis, DIGS showed good prognostic
power. Overall, this chapter highlights the potential of applying DIGS on other kinds
of high-throughput data with high-quality classification performance and biological
interpretability, contributing to one of the main goals of this thesis.

4.1 Introduction and related work

Identifying gene signatures is important for complex disease classification, diagnosis,
prognosis, and prediction of treatment outcome [133–135]. The appearance of the
various high-throughput technologies, which allow the analysis for complete genomic or
molecular profiles, has yielded a good base to tackle disease classifications and offer
a stable platform to correlate patient phenotypes to latent genetic alterations [136].
Genome-wide analyses have frequently focused on identifying differentially expressed
genes across phenotypes that can accurately classify patients into their corresponding
disease status [137].

To date, various multivariate gene signatures have been successfully proposed in the
literature, which outperform traditional pathological variables [138–140]. However,
the inherent “large-p small-n” nature of high-throughput genomic data - whereby the
number of samples is usually two orders of magnitudes smaller than the number of
genes in a single transcriptomic profile - causes lack of robustness in determining gene
signatures. It is suggested that several thousand patient samples may be needed to
achieve a desired level of robustness when deriving gene signatures [7]. Consequently,
reducing gene dimensionality can pave the way for more precise analyses.

To search for more robust and biologically relevant biomarkers, various methods recently
have employed analysing expression patterns of gene sets by incorporating a-priori
biological knowledge, typically in the form of expertly curated biological pathways
[7, 141]. It is increasingly recognised that complex diseases are associated with the
deregulation of pathways [142–145]. The fast-accumulating knowledge of pathways is
being deposited in public databases, including Reactome [60], the Kyoto Encyclopedia
of Genes and Genomes (KEGG) [146], and Gene Ontology (GO) [121]. Integrating
pathways with context-specific genomic data can significantly facilitate the identification
of disease-perturbed pathways and the construction of pathway signatures for more
robust classification [96, 147].
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Therefore, pathway activity inferencing methods are popular for improving disease
classification accuracy. Pathway activity is defined as inferring one score for each
sample-pathway pair based on context-specific profiling data. As mentioned in Chapter
3, baseline pathway activity inference methods use mean or median values [53] or
the first principal component [148–150, 111] as the pathway activity scores. A more
advanced method is proposed by [105], which presents a probabilistic inference method
that computes pathway activity as the aggregate of the log-likelihood ratios between two
phenotypes over all the pathway constituent genes. However, a common disadvantage
of these methods is the difficulty in interpreting pathway activity values biologically,
as they focus solely on capturing differences in gene expression values between sample
groups. Also, robustness of the results is limited by the data quality.

More advanced methods were proposed to bring more interpretability. [96] proposed
a heuristics-based method that ranks pathway constituent genes according to their
discriminative power. It then searches for a small set of highly differentially expressed
genes and uses their averaged expression values to produce pathway activity. [111]
proposed a method (referred to as Pathifier) which uses a principal curve to infer
the pathway activity. The principal curve is calculated with all samples. Then the
pathway activity of a disease sample is calculated as its distance to the control samples
along the curve. According to [52], which reviews 13 pathway activity inference
methods, Pathifier was proven to be the method that achieved the best performance
across multiple evaluation criteria. Although these methods focus more on biological
interpretability, they are either suitable for only binary problems or relying on capturing
the variances of the data. The adaptability of these methods to multiple types of
profiling data is still being determined.

In comparison to these methods, DIGS has the best adaptability to the different
types of genomic data. DIGS calculates the pathway activity as a weighted linear
combination of pathway constituent genes. In DIGS, weights of the genes are optimised
to maximise the discriminative power of the disease outcomes, in contrast to other
inference methods where gene weights are given a-priori (usually equal weights are
assumed, e.g. [53, 151, 37]). The supervised nature of DIGS makes it more suitable in
disease classification framework than unsupervised methods that summarise variance
in the genomic data [53, 148, 152]. Lastly, DIGS is not limited to binary classification
but is applicable to multi-phenotype disease classification problems.

In conclusion, this chapter presents the next application of the optimisation-based
pathway activity inference method, DIGS. In this chapter, the adaptability of the
DIGS model is tested on RNA-Seq dataset. RNA-Seq is a high-throughput sequencing
technology that has shown strong potential to replace microarrays for genome-wide
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transcriptome analysis [153–157] and has been adopted by several pathway analysis or
pathway activity inference methods [158–161, 100].

The dataset used in this chapter is the colorectal cancer RNA-Seq dataset obtained
from the TCGA database[162]. The molecular subtypes in colorectal cancer were used
as sample labels. The performance of DIGS was compared with three pathway activity
inference methods that are either widely used or have outstanding performance and
results illustrate promising results regarding molecular subtype classification, survival
analysis and robustness.

4.2 Optimisation-based pathway activity scoring applied
on cancer phenotype prediction and survival prognosis

In this work, the general-purpose solution algorithm CPLEX in the General Algebraic
Modelling System (GAMS) [127] is used to solve the optimisation models. The locally
optimal solutions are identified within a user-specified time limit (200 seconds). The
maximum number of the genes assigned non-zero weights was set as 10 [113].

4.2.1 Data Preparation

Raw counts of colorectal cancer RNA-Seq dataset (COAD) was downloaded from The
Cancer Genome Atlas Program (TCGA) database [162]. Labelling the samples in
COAD was done in two ways. The first is to classify the samples as tumour and normal,
which creates a two-class classification problem; the second is labelling the samples with
the molecular subtypes of colorectal cancer. For decades, determining the molecular
subtype of colorectal cancer has been difficult. Many researchers [163–166, 136, 138]
have attempted to build classification models to classify the molecular subtypes of
colorectal cancer tissue biopsy samples. CMS1, CMS2, CMS3 and CMS4 are the
newest molecular subtypes defined by recent research, which combines the previous
six techniques [167]. This chapter uses this newest labelling strategy as the molecular
subtypes for the samples in the COAD dataset to address the multi-class classification
problem.

For pre-processing, the raw read counts of RNA-Seq data is normalised by upper quartile
FPKM (FPKM-UQ) [168]. Then, genes with over 30% zero expression values across
the sample cohort are removed. Table 5.1 shows the summary of the TCGA-COAD
dataset. The “Tumour or Normal label” indicates the number of samples used for
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Table 4.1 Averaged prediction accuracy on testing sets

Dataset Disease Tumour or Normal Label Molecular Subtype label

COAD Colon Cancer
Tumor: 480 CMS1: 85

CMS2: 165

Normal: 41 CMS3: 58
CMS4: 120

binary classification, and the “Molecular subtype label” indicates the number of samples
used for multi-class classification.

To rigorously evaluate the pathway activity inference method, I applied the stratified
10-fold cross-validation strategy [169] three times on the gene expression profile so that
30 training data and testing data pairs were created. Further, to avoid the effect of the
highly unbalanced tumour-normal labels, SMOTE (described in Section 2.3.2.2) [57] is
applied to the expression profile data to balance the number of normal and tumour
samples. It should be noted that SMOTE analysis was conducted on the training sets
and did not affect the testing sets to avoid biased results. As a result, 30 training and
testing datasets for the multi-class problem and 30 training and testing sets for the
2-class problem were created.

Biological pathways were obtained through the KEGG API [170]. After eliminating
pathways with fewer than three member genes, 279 Homo sapiens pathways with a
total of 6761 unique genes were collected.

4.2.2 Validation Pipeline

Figure 4.1 depicts the pipeline for pathway inference using RNA-Seq data. There
are two procedures. The first is applying pathway activity inference methods on the
RNA-Seq gene expression data to construct the pathway activity profile. The gene
expression profile exp(s, g), where s represents the sample, and g represents the gene
name, was split into pathway expression matrices. Each pathway expression matrix
consists of samples as rows and member genes of a particular pathway as columns.
Therefore, there are 279 pathway expression matrices (279 KEGG pathways). The
DIGS model is applied to each pathway expression matrix in the next step to produce
the pathway activity values PAs. Finally, combining all the 279 PAs vectors forms the
pathway activity profile pa(s, p) that consists of samples across pathways. With three
times 10-fold CV, 30 train PA(s, p) and 30 test PA(s, p) were created.



4.2 Application of DIGS on RNA-Seq datasets 62

Fig. 4.1 WorkFlow for Pathway Activity Inference and Analysis. The normalised
RNA-Seq gene expression profile is split into pathway specific expression matrix, where
pathway activity inference methods were applied on. Combining the pathway activity
vectors of pathways to form the pathway activity profile for further analysis. Pathway
activity analysis consists of three directions, the first is to predict the disease phenotypes
using Machine Learning Classifier and evaluate the prediction performance; the second
is to fit the survival model using pathway activity profile together with dataset survival
information; the third is to test the robustness of the pathway activity inference methods
to noisy gene expression data.
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The next part of this pipeline depicts three means of performance evaluation. The first
is sample prediction accuracy, which is the traditional approach. Sample phenotype
prediction uses a machine learning classifier to train the pa(s, p) matrix to predict sample
subtypes. The following two parts explore the survival prediction performance and
robustness against noisy data. Survival analysis fitted the pa(s, p) to random survival
forest regression model to predict the survival possibility of samples; Robustness to
noisy data evaluates how the perturbation on exp(s, g) would affect the classification
performance of pa(s, p). Each experiment was conducted repeatedly on all training and
testing dataset pairs. The following sections give detailed descriptions of these three
evaluation approaches.

4.2.3 Sample Phenotype Prediction

A common strategy for testing the performance of pathway activity inference methods
is to utilise machine learning classifiers to predict the sample labels on pathway activity
values. Here I used Random Forest (RF) [171] and K-Nearest-Neighbor (KNN) [75]
classifiers to this effect. RF has been well studied in the context of gene expression
classifiers as it performs well with highly correlated, high-dimensional data and is less
prone to overfitting. To obtain the best classification performance, the parameter
n_estimators was tuned from 200 to 2000 using grid search optimisation on training
sets. As opposed to RF, KNN stands as a basic and naïve classifier. The parameter k of
the KNN algorithm was selected using a trial and error process on the training dataset
testing values 3, 5, 10, 20, 30 and 50, and k=30 was selected as the highest-performing
classification metric. RF and KNN were implemented using the Python library sklearn
0.24.0 [172]. The performance evaluation of classifier prediction performance on testing
data used four metrics: accuracy, F1-score, precision, and recall.

4.2.4 Survival data Analysis

Applying pathway activity values to survival analysis has been popular in several cancer
studies. This work adopted survival prediction as a metric for assessing prognosis. As
a new composite feature that can summarise gene expression levels, pathway activity
values are expected to predict the survival probability better than random data.

The clinical data of the COAD dataset was downloaded together with the raw RNA
read counts from the TCGA database. Then the observed samples survival status and
survival time were extracted from the clinical data. The alive samples are labeled as
"0" and the dead samples are labelled as "1", as describe in Section 2.3.4.2. Considering
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the inaccuracy caused by the loss of clinical information, I removed samples where
the time was less than one year and the status was alive. In remaining samples, "0"
samples were randomly selected so as to keep the number of "0" and "1" samples the
same. After sample selection, 196 samples were kept for survival analysis. The Survival
Random Forest [92] model was implemented using the Python package scikit-survival
0.16.0 [173] to build the survival regression models, and the goodness was measured by
concordance index (c-index) [174].

4.2.5 Robustness against noise in profile data

Data from high throughput technologies are susceptible to technical noise and biological
variations. Even though it has been proposed that grouping genes into pathways reduces
the noisiness of biological data [159], high predictive accuracy on a given dataset is not
sufficient to validate the robustness of a method due to the limitations of the chosen
dataset [95]. In this work, I assess the robustness of pathway activity inference methods
in dealing with fluctuations in gene expression values. Pathway activity inference
methods are expected to retain good prediction performance over the same dataset as
noise level increases.

Addressing noise in data is described in Figure 4.2. Perturbed genes are randomly
selected from the whole genome. The proportion of genes affected is set to 0%, 3%,
10% and 50%. Then, sample order is permuted randomly for the selected genes. In
this way, three perturbed expression profiles are generated.

By passing these gene expression datasets into pathway activity inference methods,
one original pathway activity profile and three perturbed pathway activity profiles of
different noise levels were obtained. Robustness was assessed through 30 training and
testing cycles using the sample multi-label prediction accuracy with the KNN classifier
(described in Section 4.2.4).

4.2.6 Pathway activity inference methods from literature

In this chapter, comparison will be conducted with both baseline and advanced methods
for pathway activity inference. Methods that are suit for multi-class task are required
for this chapter. Therefore, according to the summary presented in Table 2.3, the
following methods are used. The MEAN method [53] computes the mean expression
value across all constituent genes within the pathway as pathway activity. The PCA
method [148–150, 152, 95] uses the first principle component as pathway activity. The
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Fig. 4.2 Robustness evaluation pipeline. 3%, 10% and 50% of genes are randomly
selected without replacement from gene expression profile and the order of gene values is
re-combined to form the perturbed expression profiles. Then pathway activity inference
methods are applied on the perturbed expression profiles to get the pathway activity
profiles. KNN (k = 30) is trained and tested on the pathway activity profiles to produce
the prediction accuracy of sample phenotypes.
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Pathifier [111] calculates the pathway activity by generating a principal curve. Details
of these methods are described in Section 2.4.

In total, four pathway activity inference approaches are used for comparison: DIGS,
MEAN, PCA, and Pathifier. The baseline methods are MEAN and PCA and the
the more advanced method is Pathifier. Importantly, Pathifier has been proven to
outperform most contemporary proposed methods [52], therefore its use in comparative
tests is particularly powerful.

4.3 Results

In this chapter, RNA-Seq data is used to test the performance of the DIGS model
for pathway activity inference. Sample label prediction accuracy, survival regression
fitness, and robustness to noisy data are the metrics considered in the comparison. The
results in these three metrics and the biological interpretations of the DIGS model are
discussed below.

4.3.1 Two-class and multi-class classification comparison

The DIGS model’s performance was compared to other well-established approaches.
Comprehensive comparisons of three competing approaches on the TCGA-COAD
dataset have been carried out, as stated in the previous section. All four methods’
inferred pathway activity profiles were fed into the Random Forest (RF) and K-Nearest
Neighbour (KNN) classifiers to calculate prediction accuracy for the 2-class and multi-
class problems. The classification evaluation metrics were averaged across 30 testing
sets. To achieve an objective evaluation of classification performance, the training
process, including inferring pathway activity and training classifiers, is always blind to
testing datasets. The outcomes of all techniques and classifiers combinations are shown
in Table 4.2 (for multi-class problems) and Table 4.3 (for two-class problems).

In the multi-class scenario, the DIGS model inferring pathway activity produced higher
prediction accuracy than other methods, as shown in Table 4.2. With the parameter-
tuned classifier RF, DIGS enhanced accuracy by roughly 15% when compared to the two
baseline methods, MEAN and PCA. When compared to Pathifier, the accuracy improves
much more. As DIGS seeks to infer a pathway activity of optimal discriminative power
[113], the sensible performance of DIGS is not a surprise. The simpler KNN classifier
produced results that were similar to those of RF. In conclusion, DIGS performed
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Table 4.2 Comparisons of multi-class prediction performance among methods.

Random Forest
DIGS2 MEAN PCA Pathifier

Avg. Std. Avg. Std. Avg. Std. Avg. Std.
Accuracy 0.848 0.071 0.710 0.050 0.700 0.036 0.681 0.064

F1 0.868 0.062 0.743 0.015 0.730 0.030 0.640 0.069
Precision 0.848 0.071 0.710 0.050 0.700 0.036 0.683 0.064
Recall 0.845 0.073 0.690 0.050 0.683 0.039 0.622 0.067

KNN
Accuracy 0.762 0.075 0.645 0.056 0.678 0.053 0.397 0.013

F1 0.745 0.080 0.699 0.050 0.735 0.051 0.231 0.058
Precision 0.804 0.078 0.654 0.056 0.678 0.053 0.397 0.013
Recall 0.762 0.075 0.626 0.050 0.658 0.050 0.263 0.029

Table 4.3 Comparisons of 2-class prediction performance among methods.

Random Forest
DIGS2 MEAN PCA Pathifier

Avg. Std. Avg. Std. Avg. Std. Avg. Std.
Accuracy 0.944 0.032 0.926 0.03 0.906 0.013 0.973 0.037

F1 0.95 0.028 0.937 0.023 0.92 0.011 0.966 0.045
Precision 0.969 0.014 0.964 0.008 0.957 0.005 0.975 0.037
Recall 0.944 0.032 0.926 0.03 0.906 0.013 0.973 0.037

KNN
Accuracy 0.904 0.035 0.916 0.032 0.886 0.014 0.942 0.047

F1 0.935 0.022 0.92 0.025 0.91 0.012 0.95 0.035
Precision 0.949 0.023 0.949 0.013 0.947 0.012 0.96 0.035
Recall 0.934 0.035 0.906 0.026 0.896 0.016 0.953 0.035

the best, MEAN and PCA took second place, while it is noteworthy that Pathifier
performance was extremely poor for the multi-class scenario.

For the 2-class problem, the prediction performance of all four methods was similar.
Regarding the actual prediction rates, all pathway activity inference methods achieved
over 90% prediction accuracy in the 2-class problem. Therefore, in the more challenging
multiclass classification problem for colorectal cancer, the superior performance of
DIGS (84.8% prediction accuracy) further demonstrates the applicability and efficiency
of the DIGS model on molecular subtype classification.
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4.3.2 Survival analysis comparison

I examined pathway activity inference methods for predicting sample survival on the
COAD dataset. The Random Survival Forest model was fitted to the pathway activity
profiles over the 30 training splits of all methods. The predictive performance of those
survival regression models was evaluated by calculating the concordance index.

In Figure 4.3, the estimated survival function fitted by the Random Survival Forest of
six training samples illustrated that the survival prediction of DIGS is more in line with
expectations compared to the other three methods. For DIGS, it is obvious that the
survival probability of samples labelled as "0" was higher than samples labelled as "1",
and the differences in survival curves between "0" samples and "1" samples are distinct.
The concordance index comparison further showed the superiority of the DIGS model.

The c-index distribution comparison between four pathway activity inference methods
is shown in Figure 4.4. The c-index values are obtained from the three times 10-fold
cross-validation using from the 147 training samples and the 49 testing samples. The
dotted lines on the boxes indicates mean values. According to the figure, all methods
perform well on training samples, as the mean values of the c-index are all above 0.8.
For testing samples, except Pathifier, the mean and median c-index of the other three
methods were all above 0.5 (c-index = 0.5 indicates random performance). However,
DIGS attains higher mean concordance index values than other methods in both
training and testing datasets, which shows that the survival prediction provided by
DIGS is better than other methods.

4.3.3 Robustness comparison

I compared the sample phenotype prediction accuracy of the pathway activity inference
methods in the presence of various levels of perturbation in transcriptome data. A
KNN classifier with k = 30 was used on inferred pathway activity profiles to train
and evaluate the models. Because the two-class problem was too basic to demonstrate
distinctions, the multi-class problem scenario was used.

Figure 4.5 displays the prediction accuracies of KNN classifier. The values are averaged
over 30 testing datasets. According to the figure, DIGS certainly provides the best
overall performance. As more noise was introduced to the data, the DIGS model
accuracy remained above 0.65. Although PCA and Pathifier performed the best in
terms of decline degree (decreased from 0.66 in 0% to 0.60 in 50% and from 0.44 in 0%
to 0.37 in 50%, respectively), the comparatively low accuracy in non-perturbed datasets
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Fig. 4.3 Kaplan-Meier survival curves generated using the survival probabilities esti-
mated by Random Survival Regression. Confidence interval is sets as 95%. Six CMS1
samples are randomly selected for plot.

Fig. 4.4 The c-index distribution comparison between four pathway activity inference
methods
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Fig. 4.5 Robustness comparison.

(0% perturbation rate) inversely corroborated the poor power in differentiating sample
labels of these two methods.

4.3.4 Overall performance of DIGS model

In this work, the performance of the DIGS model is evaluated with three metrics and
is compared against three other pathway activity inference methods. The performance
over four methods on the three metrics is summarised in the radar chart (Figure 4.6).

Each vertex counter-clockwise from 12 o’clock in the radar chart indicates sample
phenotype prediction accuracy, robustness against 50% perturbed genes and survival re-
gression evaluated by c-index. The Multi-class Prediction vertex uses the RF prediction
accuracies of molecular subtypes (multi-class problem). Robustness (50%) vertex is
the KNN prediction accuracies of pathway activity values produced on 50% perturbed
transcriptome dataset (under multi-class scenario). The Survival Regression vertex is
the c-index value of testing samples. Overall, DIGS outperforms other methods on all
vertices, especially in Multi-class Prediction. It is reasonable that DIGS performed well
in predicting multiple sample classes as it is embedded in its objective function. The
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Fig. 4.6 Radar Chart for comparison between three pathway activity inference methods.
Each vertex counter-clockwise from 12 o’clock of the radar chart indicates COAD
molecular subtype prediction accuracy, robustness against 50% perturbed genes and
survival regression evaluated by c-index.

tSNE dimension reduction visualisation also supports this finding (Figure 4.7), as the
separation of the clusters of different sample subtypes was much clearer in DIGS than
in other methods. These results show the adaptability of DIGS on RNA-Seq data. The
exceptional performance of DIGS on the other two dimensions suggests the stability of
this supervised mathematical optimisation model.

4.3.5 Pathway ranking

Most of the previous research used statistical methods to identify relevant pathways,
such as ranking the p-value and information gain index [159, 161, 100, 175]. I present
a self-based strategy for identifying significant pathways using the outputs of the DIGS
model.

The DIGS model provides two kinds of outputs, the weights of pathway member genes
(used to calculate pathway activity values) and the class intervals for each subtype.
This procedure is illustrated in Figure 4.8. With each pathway expression matrix
serving as input, the DIGS model is trained on training samples to get the member
gene weights and subtype ranges. Then these results are applied to the testing samples.
The gene weights are used to calculate pathway activity values, and subtype ranges
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Fig. 4.7 Dimension reduction by TNSE. (a) scatter plot for the first two principal
components of the RNA Seq data of COAD. (b) consists of the scatter plots for the
first two principal components of pathway activity profiles of the four pathway activity
inference methods.
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Fig. 4.8 Sample allocation using DIGS outputs. For each individual pathway, DIGS
returns gene weights Wg and the class ranges LOc, UPc. The pathway activity values
pas (dots on the strip plot) are calculated using Wg.dsc is defined as the distance of
pas to each class range. The sample s is allocated to c where dsc is minimum. The
classification accuracy for this specific pathway accp is calculated by how many samples
are correctly allocated.
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are used for allocating the pathway activity values. Specifically, testing samples can
be allocated to their nearest subtype according to the distance between the samples
to the class boundaries. There are three possible scenarios for dsc calculation. When
pas is inside the [LOc, UPc], the dsc = 0. When pas on the left of the [LOc, UPc], the
dsc = LOc − pas. When pas on the right of the [LOc, UPc], the dsc = pas − UPc. The
allocated class is selected with the minimum dsc. Thus, the prediction accuracy for this
pathway accp can be calculated as the percentage of samples allocated to their correct
class. This percentage is referred to as Individual Pathway Prediction Accuracy
and will be used throughout the rest of the thesis.

By ranking the accp for individual pathways, the top 30 pathways for the COAD
dataset are selected and listed in Figure 4.9. The values presented in the heatmap were
averaged pathway activity values across the samples belonging to the same molecular
subtype. The values were scaled to 0-1 to indicate the pathway distinguishing power
among different phenotypes. For example, the Mismatch Repair pathway shows great
discriminative power among four phenotypes, while the Hedgehog Signalling pathway
is better for distinguishing CMS4 from the other three phenotypes.

4.4 Discussion

4.4.1 DIGS reveals significant disease-relevant pathways

With the pathway ranking approach proposed in Section 4.3.4, the DIGS model provides
pathway ranking of all 279 KEGG pathways for colorectal cancer. The Top 70 pathways
related to the colorectal cancer molecular subtypes (CMS1 to CMS4) are listed in
Appendix A. A large part of these Top 70 pathways was known as deregulation pathways
in colorectal cancer or other types of human cancer.

In [136] a set of pathways that are associated with the molecular subtypes of colorectal
cancer was reported. They identified these highly relevant pathways through gene
set enrichment analysis. For some of these pathways, DIGS also yieds high ranking.
For example, Renin-angiotensin System ranks 12, the Mismatch repair ranks 21, and
the Hedgehog signalling pathway ranks 26. In [176] KEGG pathway analysis was
done with differential expression genes in colorectal cancer. They indicated that the
Vitamin Digestion pathway was among the most relevant. This pathway ranks 13 in the
DIGS pathway. [177] investigated the involvement of signalling pathways in colorectal
cancer and among nine pathways they reported, Hedgehog Signaling pathway and the
Hippo Signaling pathway rank 26 and 22, respectively, in our analysis. The complete
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Fig. 4.9 Clustering Map of the averaged pathway activities (Top 30 pathways). Top
pathways were selected by ranking the individual pathway prediction accuracy (accp).
For each phenotype, pathway activities are averaged across constituent samples. For
each pathway, the four averaged values are scaled to 0-1 to illustrate the distinguishing
power between different colorectal cancer subtypes. The numbers in brackets indicates
the number of member genes.
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information on relevant literature pathways with DIGS ranking is provided in Appendix
A.

As not all pathway member genes can obtain non-zero weights in the DIGS model, the
weighted genes (no more than 10 genes) can be seen as important genes that contribute
more to pathway activity levels and can thus be used as biomarkers to estimate the
activity of the corresponding pathways. I further ranked the genes into three levels:
high, medium and low, as follows. For each pathway, the DIGS model was trained 30
times and, as each training gives different weights to genes, the participating genes
were first ranked inside each training, then the ranks of 30 pieces of training were
combined to produce the final participating genes and their ranks for the corresponding
pathways. Figure 4.10 shows the gene weights for top10 pathways. Figure 4.11 shows
the KEGG pathway map with colors for important genes of the representative pathways:
Hippo Signalling pathway. The KEGG maps of the other pathways mentioned in this
paragraph can be found in Appendix A.

These genes marked by DIGS were also reported as frequently mutated genes. For
example, [64] indicated FAT4 is the most compelling gene in colorectal cancers, and
mutations in DCHS1 and DCHS2 were reported too. From DIGS results, the FAT4
and DCHS2 were the top two important genes marked in red in the Hippo Signaling
pathway map. Also, in the Renin Angiotensin System pathway, the ENPEP that
is ranked first was indicated by [178] as a risk factor associated with a high risk of
developing colorectal cancer.

4.4.2 Conclusions

In this chapter, the adaptability of the optimisation-based pathway activity inference
method on RNA-Seq data was investigated on a dataset of colorectal cancer from the
TCGA dataset. Three state-of-art pathway activity inference methods, MEAN, PCA
and Pathifier, were used for comparison. I used three metrics, sample subtype prediction,
survival information prediction and robustness to noise to demonstrate the utility of
the DIGS model. The results illustrated that the DIGS method, which summarises
pathway activity values as a weighted linear combination of pathway constituent genes,
produced the best performances in all three pathway activity evaluation metrics. It
is worth mentioning that DIGS has an independent approach for finding important
pathways and important genes, rather than relying on an out-of-frame statistical proof
approach. The solution outputs of DIGS directly provide the ranges of the sample
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Fig. 4.10 Gene Weights for top 10 pathways. Top pathways were selected by ranking
the individual pathway classification accuracy.
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Fig. 4.11 KEGG pathway map with colors for significant genes identified.

labels and the weights of genes. Literature supports the pathways and genes deduced
as significant by DIGS in complex diseases such as colorectal cancer.

Overall, the contribution of this chapter is two-fold. First, the DIGS model is applied to
RNA-Seq data and validated using three metrics; the results prove the adaptability of
the DIGS model to RNA-Seq data. Second, the special and specific way of interpreting
the biological meaning from the pathway activity inference model makes DIGS easier to
interpret than other methods. In the next chapter, the focus will shift from exploring
the existing model to modifying the model for better computational efficiency.



Chapter 5

A Novel Optimisation Model for
Pathway Activity Inference

Motivated by the excellent performance of DIGS, the model is refined to a more
robust optimisation-based pathway activity inference method for multi-class disease
classification tasks in this chapter, called DIGS2. Compared with the original model,
DIGS2 reduces the number of binary decision variables to decrease computational
complexity. Therefore, the DIGS2 model is more computationally efficient. This chapter
adopts the evaluation pipeline from the former chapters to evaluate the performance
of the new proposed model. In brief, three evaluation metrics (e.g. classification
accuracy, survival prediction and robustness) are used for evaluation. Also, biological
interpretation is derived from the output of the optimisation model. This chapter also
extends the individual pathway evaluation process introduced in Chapter 4.3.4 to form
a more powerful evaluation method named NaiveDIGS.

5.1 Introduction

Reducing the dimensionality of the gene expression profiles from gene-level data to
pathway-level data is important for the diagnosing and prognosis of complex diseases like
cancers [179–181]. A series of methods have been proposed to address this problem by
constructing a one-dimension feature called Pathway Activity [53]. However, robustness
and biological interpretability are challenging problems when trying to reduce the
dimensionality from whole-genome profiling to a few hundreds of pathways.
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Except for the baseline methods (e.g. MEAN [53], z-score [182] , PCA [148–150, 111]
and Bayesian [183]), various methods have been introduced to improve interpretability
and predictive power. A method called CORGs [96] ranks the pathway constituent
genes according to their discriminative power, thereby identifying a small set of highly
differentially expressed genes. Pathifier [111] uses a principal curve generated from
non-tumour samples to calculate the pathway deregulation score of the tumour sample.
The top pathways from Pathifier demonstrated high relevance to critical pathways of
various diseases. Although these methods emphasise interpretability, most are still
arithmetic, i.e. being based and relying on capturing the variance from the input
dataset. Therefore, for these methods, the performance of disease classification and
biological interpretation highly depends on the quality and volume of the input data.
Also, most of the advanced methods are either applied to binary classification problems
or are designed for a small number of signalling pathways [183, 184], as summarised in
Table 2.1.

The mathematical programming optimisation model DIGS [113, 185] introduced in
Chapter 2 aims to overcome these shortages. The superiority of the DIGS model has
been demonstrated in Chapters 3 and Chapter 4, where the DIGS model is applied to
two kinds of high-throughput data and explore its multiple applications. The advantages
of the DIGS model derived from these two chapters are summarised below: (i) the DIGS
model applies to multi-class disease classification problems, (ii) has been demonstrated
to outperform other pathway activity inference methods in multi-classification tasks.
(iii) DIGS offers interpretable rules and such biological interpretability is obtained at
both pathway, as well as gene level (iv) DIGS can be applied on any type of high
throughput profiling method.

It is noted that the computational complexity of the DIGS optimisation model prevents
it from reaching a optimal solution in reasonable time. This is summarised from the
model solutions of over one thousand runs from the former two chapters. Within the
computation time limit that was set in the model implementation (200 seconds), the
number of global optimal solutions achieved did not reach expectations. The optimal
solution is the solution where there are no other feasible solutions with the better
objective values [8]. It is reasonable to believe that the optimal solution represents a
better objective value and, therefore, a better degree of sample separation at pathway
activity level. More detailed statistics of the solutions will be presented in this chapter.

To achieve better solution quality, the DIGS model is refined to a more robust
optimisation-based pathway activity inference method for multi-class disease clas-
sification tasks in this chapter, called DIGS2. The large number of binary decision
variables prevented the DIGS model from getting more optimal solutions. Therefore,
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the model in DIGS2 was reformulated to include fewer number of binary decision
variables. At the same time, DIGS2 retains the core concept of the original DIGS
model for calculating the pathway activity values, i.e. the weighted summation of genes
expression values. The mathematical model with descriptions of each constraint will
be delivered in Section 5.2. Also, this chapter proposes a new phenotype prediction
method NaïveDIGS, which can conduct sample phenotype prediction directly using the
outputs of DIGS2 and does not rely on external machine learning classifiers.

In terms of experiment design, this chapter uses RNA-Seq datasets of colorectal cancer
and breast cancer from The Cancer Genome Atlas (TCGA) database [162]. The
colorectal cancer dataset is the same as the dataset used in Chapter 4. The results
show that the newly proposed optimisation model significantly improves classification
accuracy on multi-class problems compared to the original DIGS model and other
comparative pathway activity inference methods.

5.2 A Novel Method for Pathway Activity Inference for
Disease Classification

This section proposes a novel optimisation model for pathway activity inference. First,
the indices, sets and parameters associated with the DIGS2 model are listed below:

Indices

s Sample (s=1,2,. . . ,S)

m Gene (m=1,2,. . . ,M)

c, k Class or phenotype (c=1,2,. . . ,C)

cs Class label for sample s

Parameters

Gsm Standardised gene expression profile

ε A small positive number

U A large positive number
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Binary Variables

Lm 1 if effect of gene m on pathway activity inference is positive; 0 if negative effect

Ykc 1 if upper bound of pathway activity range for class k is lower than lower bound
of that for class c; 0 otherwise

Positive Variables

rpm Positive influence of gene m towards pathway activity inference

rnm Negative influence of gene m towards pathway activity inference

Ds Distance between sample pathway activity pas and pathway activity range of the
phenotype that the sample belongs to

Unrestricted Variables

pas Pathway activity of sample s

LOc Lower bound of range of class c on pathway activity

UPc Upper bound of range of class c on pathway activity

Next, the objective function and the constraints that form the model are introduced.

In a similar manner as in DIGS, pathway activity value pas in the new model is also
defined as a weighted linear summation of the expressions of pathway constituent genes:

pas =
M∑
m

Gsm(rpm − rnm)∀s(5 − 1)

where Gsm is the gene expression value for sample s and gene m, M is the total number
of member genes for the current pathway, and S is the total number of samples. rpm

and rnm are positive continuous variables that model the positive and negative weights
of a gene m; the optimination model determines their values.

The following Equations (5-2), (5-3) and (5-4) set the restrictions on gene weights. A
set of binary variables Lm, which takes values of either 0 or 1, is introduced. Equations
(2) and (3) below ensure that, for each gene m, at most one of rpm and rnm can take
positive values:
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rpm <= Lm ∀m (5 − 2)

rnm <= (1 − Lm) ∀m (5 − 3)

When Lm = 1, rpm can take any value between 0 and 1 while rnm is forced to be equal
to 0; otherwise, when Lm = 0, rpmis forced to be equal to 0 while rnm can be between
0 and 1. In the other case, both rpm and rnm can equal 0, which means this particular
gene gets zero weight towards its contribution to pathway activity. Overall, a gene can
have positive, negative or zero weight toward the composite feature construction.

For normalination purposes, the summation of absolute gene weights should equal :

M∑
m

(rpm + rnm) = 1 (5 − 4)

Each phenotype occupies a unique interval on the pathway activity dimension and
should not overlap with the intervals where samples of other phenotypes belong, which
is implemented by Equations (5), (6) and (7):

UPk + ε ≤ LOc + U(1 − Ykc) ∀k < c (5 − 5)

UPc + ε ≤ LOk + UYkc ∀k < c (5 − 6)

LOc ≤ UPc (5 − 7)

where both c and k denote phenotype; LOc and UPc are continuous variables modelling
the lower and upper bound of the activity interval of phenotype c. U and ε are
respectively arbitrarily large and small positive constants. Ykc is a set of binary
variables used to ensure the non-overlapping property in pair-wise phenotype intervals.
When Ykc = 1, the lower bound of phenotype c is greater than the upper bound of
phenotype k (LOc > UPk); when Ykc = 0, the lower bound of phenotype k is greater
than the upper bound of phenotype c (LOk > UPc). In either case, the phenotype
ranges of k and c do not overlap.
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For sample s, the violation distance Ds (positive continuous variable) is defined as
the distance between sample pathway activity pas and pathway activity range of the
phenotype that the sample belongs to [LOcs , UPcs ].

pas − UPc ≤ Ds ∀scs (5 − 8)

LOc − pas ≤ Ds ∀scs (5 − 9)

Figure 5.1b shows three possible scenarios between pas and[LOcs , UPcs ]. When pas

is outside its target phenotype interval and smaller than its lower bound LOcs , the
violation distance becomes Ds = LOcs − pas. When pas is outside its target range and
greater than its upper bound UPcs , the violation distance becomes Ds = pas − UPcs .
When pas is inside its target range, violation distance is equal to 0.

The objective function (5-10) in the new model minimises the sum of violation distances
Ds over all samples. The new objective function removes a large number of binary
variables compared with DIGS (Equation 2-8k), which employs the binary variable Es

to decide whether a sample s falls within the correct range.

Min z =
∑

Ds (5 − 10)

This novel optimisation model, named DIGS2, consists of a linear objective function
and linear constraints. The presence of both binary variables and continuous variables
makes it a mixed-integer linear programming (MILP) model. DIGS2 builds on our
previous DIGS model but is formulated intentionally to lose most of the binary decision
variables in DIGS, therefore, making it easily solvable. The mathematical formulation
is summarised below:

Objective function:

Minimising the summation of violation distance (5-10)

Subjected to:

Pathway activity definition (5-1)

Restrictions on positive and negative gene weights (5-2, 5-3 and 5-4)
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Fig. 5.1 Individual pathway evaluation and naïveDIGS classification. (a) presents a
motivating example of the DIGS2 model. Pathway activity is defined as the weighted
linear summation of expressions of constituent genes. Gene weights Wg are modelled
as free continuous variables in the DIGS2 model. Each phenotype occupies a distinct
range (continuous variables [LOcs , UPcs ]). The ranges are not overlap. (b) shows
three possible scenarios between sample pathway pathway activities and the pathway
activity range of its phenotype [LOcs , UPcs ].The distance between PAs and range of
its phenotype is termed as violation distance Ds.(c) Two applications of the outputs of
the DIGS2 model are introduced. i) Individual pathway evaluation accuracy. ii) The
NaïveDIGS accuracy evaluates the prediction accuracy by combining the results of all
pathways.
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Non-overlapping constraints for phenotype ranges (5-5, 5-6, and 5-7)

Sample violation distance calculation (5-8 and 5-9)

Figure 5.1a shows a motivating example of how DIGS2 separates the samples of different
classes. The input data is a pathway expression matrix, where columns consist of
30 pathway member genes, and rows consist of samples from the gene expression
profile. The model outputs consist of gene weights (rpm − rnm), which are further
used for calculating the pathway activity values with equation (5-1), and class intervals
(LOc, UPc). The points on the plot represent the inferred pathway activity values,
and the black boxes on the four axes represent the class intervals. The colours of
sample points represent the true class. All the intervals on the plot are non-overlapping,
restricted by the Equations (5-5 to 5-7). Through Equations (5-8) and (5-9), the
objective function (5-10) can perform the task of minimising the summation of Ds for
all samples. As shown in Figure 5.1a, the pathway activity values for samples of the
same class label are clearly clustered together, and the bounds of each class are close
to the centres of the clusters, which verifies that the DIGS2 model can separate the
sample labels to the largest extent.

The DIGS2 model is implemented using general-purpose solution algorithm CPLEX in
the General Algebraic Modelling System (GAMS) [127], and the solutions are identified
in a user-specified time limit (200 seconds by default). Note that simply increasing the
time limit only marginally improves the quality of the solution. At the same time, the
Relative Optimality criterion solver (optcr) is set to its default value of zero.

5.2.1 Other comparative pathway activity inference methods

A range of other pathway activity inference methods were implemented for comparison,
including two baseline methods: i) MEAN [53] method that calculates the average gene
expression values as pathway activity, which is the original work that proposed the
concept of pathway activity inference. ii) PCA [97] approach that calculates the first
principle component as a representation of pathway activity.

Three more advanced methods were used for comparison: i) our original DIGS model,
which selects the best subset of genes to build pathway activity, minimising the number
of misclassified samples; ii) The GSVA [100] approach, which is a variation of Gene set
Enrichment analysis [40]; iii) The Pathifier [111] method, who investigates the extent to
which the behaviour of a sample deviates from the control group. Pathifier was proven



5.2 A Novel Method for Pathway Activity Inference for Disease Classification 87

Table 5.1 TCGA Datasets

Dataset Tumour or Normal Label Molecular Subtype label
CMS1: 85
CMS2: 165
CMS3: 58COAD Tumour: 480

Normal: 41
CMS4: 120
LumA: 579
LumB: 217
Basal: 191
Her2: 82

BRCA Tumor: 480
Normal: 41

Normal: 22

to be the method that achieved the best performance in a recent review [52], which
evaluated 13 pathway activity inference methods. Many other studies have employed
these methods, and detailed descriptions are given in Chapter 2.4. The criteria for
selecting these methods are (1) the method is widely used, and (2) the method is
eligible for multi-class classification.

5.2.2 Dataset preparation

The experiments in this chapter use a widely referenced breast cancer dataset with
standard molecular subtype annotations. As a representative cancer, breast cancer
has been extensively studied and has been used as the testing dataset in many studies
related to pathway activity inference [182, 52, 84]. The colorectal cancer dataset used
in Chapter 4 is also used here.

The raw count RNA-Seq dataset was downloaded from The Cancer Genome Atlas
(TCGA) [162] with their corresponding clinical information. Two publicly available
TCGA projects (BRCA and COAD) were chosen as the experimental datasets for this
work [111, 186, 187, 161]. The read count data is normalised by the Upper quartile
FPKM (FPKM-UQ) [168] approach to obtain the gene expression profiles. Then, genes
with very high missingness (over 30% zero expression values across the sample cohort)
are removed. Table 5.1 shows details of these two RNA-Seq datasets.

The total number of samples in the COAD dataset is 521, of which 480 are tumour tissue
samples, and 41 are normal tissue samples. The number of samples of four molecular
subtypes is 85, 165, 58 and 120 for CMS1, CMS2, CMS3 and CMS4, respectively [167].
For the BRCA dataset, the total number of samples is 1211; among them, 1091 are
tumour tissue samples, and 120 are normal tissue samples. PAM50 subtype [188] is
used to determine the molecular subtype (retrieved using TCGAbiolinks package [55])
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Table 5.2 Characteristics of breast cancer subtypes

Subtype Gene Phenotype Characteristics
Luminal A ER+, PR+, HER2- Grow slowly and good prognosis
Luminal B ER+, PR-, HER- or ER+,

PR+-, HER2+
Faster than Luminal A and slighted
worse prognosis

HER2 ER-, PR-, HER2+ Faster than Luminal, worse prognosis
but successful treated

TNBC ER-, PR-, HER2- More aggressive than Luminal with
BRCA1 mutation

of BRCA. The subtype of breast cancer can be divided into Luminal A, Luminal B,
Her2 and Basal (Table 5.2). Luminal A type is defined as the lack of HER2 expression;
Luminal B is defined as the lack of progesterone receptor (PR); Her2 type is defined as
the lack of estrogen receptor (ER) and PR; Basal type is defined as the lack of ER, PR,
and HER2 expression [189]. In BRCA, there are 579 Luminal A samples, 217 Luminal
B samples, 191 Basal samples, 82 Her2 samples and 22 Normal samples.

Biological pathway information was retrieved through the Kyoto Encyclopedia of Genes
and Genomes (KEGG) API [170, 146] In total, 279 Homo sapiens pathways were used
in this work, the number of genes in these pathways is 6761.

5.2.3 Pathway activity evaluation

The method implementation and validation pipeline in this chapter are similar to
Chapter 4. In the following subsections, the implementation process for the three
pathway activity evaluation metrics of classification, survival prediction and robustness
are described, as well as the cross-validation process.

5.2.3.1 Classification

In this work, two classifiers, Random Forest (referred to as RF) and K-Nearest-Neighbor
(referred to as KNN), are used. For each dataset, 10-fold cross-validation was applied
on the normalised RNA-Seq data three times to gain robust results, creating 30 training
sets and 30 testing sets. All the pathway activity inference methods were trained
separately for each pair of training and testing sets. Then classifiers were trained on
the inferred pathway activity of training samples and tested on the testing samples.

As shown in Table 5.1, 2-class classification uses tumour and normal as the sample labels;
multi-class classification uses the molecular subtypes as the sample label. To avoid the
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effects of unbalanced 2-class labels for both datasets, SMOTE [57] (described in Section
2.3.2.2) is applied to the training sets to make the number of normal samples equal to
the number of tumour samples. The RF parameter n_estimators was tuned from 200
to 2000 using grid search optimisation on the training sets to optimise the performance
of the trained model. The parameter k of KNN was selected using a trial-and-error
process on the training dataset testing values 3, 5, 10, 20, 30 and 50. k=30 was selected
as it was the one performing the highest classification metrics. RF and KNN were
implemented by the Python library sklearn 0.24.0 [172]. The performance of classifiers
was evaluated with four metrics: Accuracy, F1-score, Precision, and Recall, averaging
over 30 testing sets.

5.2.3.2 Robustness against noise in data

The robustness of the pathway activity inference methods when facing the unpredicted
fluctuations in the gene expression values were assessed. Pathway activity inference
methods are expected to retain good prediction performance as the noise level increases.

The Gene expression perturbation simulation process is performed by permuting the
sample order for the randomly selected genes [95]. The proportion of genes affected
was set as 0%, 3%, 10% and 50% (see Figure 4.2). Therefore, in addition to the original
gene expression profile, three perturbed expression profiles were created for the two
datasets. The five pathway activity inference methods were performed on all expression
profiles with the 10-fold cross-validation strategy. Then the robustness of the methods
was evaluated by the multi-class classification accuracy with the KNN classifier.

5.2.3.3 Survival analysis

Survival analysis is a key metric to express prognosis in cancer studies. As a new
composite feature that can aggregate the gene expression values, pathway activity
values are expected to perform better in predicting survival than on the random data.

Clinical data of both datasets were downloaded together with the raw read counts
from the TCGA database, and the survival status and survival time for samples were
extracted. Considering the inaccuracy caused by the loss of clinical information, samples
with too short of a follow-up time (where the time was less than one year, and the
status was alive) were removed. In the remaining cases, the "0" samples were randomly
selected to keep the number of "0" and "1" samples the same. After sample selection,
196 samples were employed for COAD, and 206 were kept for BRCA.
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Survival Random Forest [14] model (implemented using the Python package scikit-
survival 0.16.0 [173]) is used for training and testing the survival model on 30 pairs of
training and testing pathway activity matrices. Concordance index (c-index) [174] is
used for evaluating the model. The c-index on random data is 0.5.

5.3 Comparative study

The comparative study consists of two parts. The first is to compare the computation
efficiency between the original DIGS model and the newly proposed DIGS2 model.
With fewer binary variables involved, the DIGS2 model is expected to have a higher
optimal solution rate. The second comparison compares the three pathway activity
evaluation metrics among all the methods, and DIGS2 is expected to perform well.

5.3.1 Efficiency improvement in the DIGS2 model

The solver status, model status and objective value can express the solution quality
of the optimisation problems. GAMS contains many components for checking and
comprehending a model through the output file (GAMS listing file) [127]. The “Solve
Status” and “Gap” reported in the GAMS listing files are extracted to evaluate the
solution qualities of the DIGS and DIGS2 models.

The “Solve Status” for all the solutions produced from the cross-validation process is
summarised in Figure 5.2. For each dataset, DIGS2 and DIGS models were solved 30
times per pathway; the total number of solutions is 8370 (30 multiple 279 pathways) for
each dataset. Although the optimisation models aim to gain global optimal solutions,
feasible solutions are also acceptable for real problems because of the limitations, such
as high dimensional data and the limited execution time [190]. The results showed
that, in both datasets, DIGS2 gets more “Optimal” solutions and “Integer Solution”
solutions than DIGS (22 more “Optimal” in COAD and three more “Integer” solutions
in BRCA), which reflects that DIGS2 has capability of solving the same problems to
better quality.

Another solution quality evaluation metric, “Gap”, was plotted as histograms in Figure
5.2. Gap indicates the difference (in percentage) between the best potential and the
best-found objective value. Instead of looking for optimal solutions that take a long
time to compute, a solution guaranteed to be not worse than a certain percentage of the
optimal solution is also acceptable in practical applications. Therefore, the Gap value
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Fig. 5.2 Calculation efficiency Comparison

is in the range of 0 to 1, and a smaller Gap value represents better solution quality. It
can be concluded from the figure that DIGS2 shows great improvements in decreasing
the gap values. For smaller datasets (COAD), a large proportion of the solutions got
gap values less than one among solutions of DIGS2; for a larger dataset that is more
computationally consuming (BRCA), the observations of DIGS2 achieving less than
one gap value still increased.

5.3.2 Evaluations on classification, survival analysis and robustness

The DIGS2 model performance was compared to other approaches in four aspects:
Classification performance on 2-class labels, Classification performance on multi-class
labels, Robustness against noise in data and survival analysis.

For Classification performance comparison on 2-class and multi-class problems, the
inferred pathway activity profiles from 30 training sets of six methods (DIGS2, DIGS,
MEAN, PCA, GSVA and Pathifier) were fed into the RF and KNN to train the
classifiers. Pathifier is used for only 2-class classification problems as it is not designed
for the multi-class problem. Then the classification evaluation metrics were averaged
across 30 testing sets. To achieve an objective evaluation of classification performance,
the training approach, i.e. inferring pathway activity and training a classifier, is always
blind to testing sets. The outcomes of all methods and classifier combinations are
shown in Figure 5.3a and 5.3b for multi-class and 2-class classification, respectively.
The classification metrics are summarised in Table 5.3.
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Fig. 5.3 Comparison between pathway activity inference methods. (a) Prediction
performance comparison of five pathway activity inference methods (DIGS2, DIGS,
MEAN, PCA, GSVA) on the multiclass scenario (molecular subtype) with two classifi-
cation algorithm Random Forest (RF) and K-Neatest Neighbour (KNN). Prediction
performance is summarised as the mean and standard error of classification accuracies
achieved over three times of stratified 10-fold cross-validation. (b) follows the same
pipeline as (a) with one more method, Pathifier, that is designed for inferring pathway
activity towards binary sample labels. The prediction accuracy of RF on pathway
activity matrices inferred under a 2-class scenario is plotted. (c) displays the prediction
accuracy with noisy data added to RNA-Seq data. The x-axis is the percentage of
perturbation performed on the RNA-Seq counts; the y-axis indicates the averaged
prediction accuracy and standard errors of the KNN classifier over one time of 10-fold
cross-validation. AllGENE refers to directly using the gene expression values to train
and test the classifier. Pathway activity methods are implemented under a multiclass
scenario. (d) shows the c-index for evaluating the fitted Random Survival Forest model
on the pathway activity matrices (multiclass scenario). Both training and testing sets
are included. c-index = 0.5 indicates the performance on the random dataset.
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Table 5.3 Multi-class classification results

Random Forest
DIGS2 DIGS MEAN PCA

Avg. Std. Avg. Std. Avg. Std. Avg. Std.
Accuracy 0.845 0.028 0.786 0.033 0.733 0.036 0.785 0.039
F1-socre 0.843 0.031 0.756 0.039 0.706 0.041 0.761 0.040
Precision 0.849 0.033 0.788 0.042 0.72 0.055 0.762 0.055
Recall 0.845 0.028 0.786 0.033 0.733 0.036 0.785 0.039

KNN
Accuracy 0.771 0.034 0.703 0.026 0.632 0.018 0.662 0.038
F1-socre 0.74 0.045 0.643 0.038 0.581 0.026 0.623 0.043
Precision 0.797 0.043 0.748 0.049 0.63 0.04 0.662 0.034
Recall 0.771 0.034 0.703 0.026 0.632 0.018 0.662 0.038

From Figure 5.3a, it is concluded that the inferred pathway activity using the proposed
DIGS2 model has resulted in more accurate predictions when compared to existing
methods in the literature. DIGS2 achieved higher averaged accuracy for all datasets
and classifiers in classifying molecular subtypes. As shown in Figure 5.3b, although
GSVA performs best for BRCA and Pathifier performs best for COAD, DIGS2 is the
second-best method in both datasets. Also, as all methods perform well in 2-class
classification problems (over 90% accuracy, except for MEAN on BRCA), the slight
differences between methods are negligible to some extent. Therefore, DIGS2 has shown
its strong superiority in predicting the sample classes, especially in the multi-class
scenario.

Robustness is evaluated by the sample prediction accuracies on the testing pathway
activity profiles across different perturbation percentages (0%, 3%, 10% and 50%) of
the RNA-Seq datasets. The classifier used for sample prediction is KNN (with k =
30) under the multi-class classification scenario. The results are shown in Figure 5.3c.
AllGENE refers to the direct use of gene expression values to train and test KNN
classifiers. It is used as a baseline to evaluate the extent to which noisy data will affect
the accuracy of predictions without the participation of path information.

From Figure 5.3c, it is evident that DIGS2 provides the best overall performance. As
more noise was introduced to the data, the DIGS2 accuracy stayed above 70% for
both COAD and BRCA. Although PCA can keep a more stable performance while
increasing the perturbation degree, the comparatively low accuracy in non-perturbed
datasets inversely corroborated the poor power in differentiating sample types. For the
performance of GSVA, while increasing the perturbation degree, the accuracies do not
fluctuate in COAD but drops in BRCA. This phenomenon can be explained by the
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principle of GSVA, as it focuses on the ranking of the genes, not the exact count values.
The distribution within the genes could only slightly affect the ranking between genes.

Survival regression was conducted for both training sets and testing sets. The c-index
are presented in Figure 5.3d. For the training sets, all methods perform well on the two
datasets. For the COAD dataset, DIGS takes the first place, and for the BRCA dataset,
DIGS2 takes the first place. In the testing sets, nearly all methods yield c-index over 0.5
except MEAN on BRCA. Although the differences between the five pathway activity
inference methods are not particularly distinct, DIGS2 and DIGS models still show
more outstanding performance in predicting sample survival.

The Radar chart (Figure 5.4) compares the performance of the resulting pathway
activity values of different methods on the three pathway activity evaluation metrics.
The upper two plots compare the DIGS and DIGS2 models. For both datasets, the
areas of DIGS2 are bigger than DIGS1, which proves that the DIGS2 model has better
pathway activity quality. The other two plots summarise the performance over the
three representative methods (DIGS2 for optimination, PCA for projection and GSVA
for member gene ranking). The Multi-class Prediction vertex uses the RF prediction
accuracies of molecular subtypes; Robustness (50%) vertex is the KNN prediction
accuracies produced on 50% perturbed dataset; the c-index vertex is the c-index values
of testing samples. The number on each vertex is normalised in a scale of 0-1 to
illustrate the differences between methods. By comparing the areas in the radar chart,
DIGS outperforms the other methods for nearly all the metrics for both datasets,
especially on the multi-class Prediction vertex.

5.4 Biological interpretation

Another aspect of the analysis is how the new proposed DIGS2 model can be applied for
deriving disease-related significant pathways and genes. In contrast to other methods,
DIGS2 allows the user to explore the contribution of pathways in disease classification
in greater depth. Extended from the works in the former chapters, a standard process
for evaluating the pathway activity values of individual pathways is proposed in this
section, called NaïveDIGS. Then its practical usage is applied to the BRCA dataset.
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Fig. 5.4 Radar Charts. Each vertex counter-clockwise from 12 o’clock of the radar chart
indicates sample phenotype prediction accuracy on molecular subtypes, robustness
against 50% perturbed genes and survival regression evaluated by c-index. (a) compares
the performance between three representative methods (DIGS2, PCA and GSVA). The
number on each vertex is scaled to 0-1. (b) compares the performance between DIGS2
and original DIGS.
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5.4.1 Individual pathway evaluation

One of the most important applications of pathway activity inference is identifying
significant pathway signatures. Previous research uses computational or statistical
approaches, such as p-value ranking or Information Gain index [161, 100, 159, 175], to
select the pathways with relatively high significance. In this work, benefiting from the
explainability of the optimisation model, we present a comprehensive method that can
identify the important pathways directly from the outputs of DIGS2.

In Figure 5.1a and 5.1b, the mechanism of how the DIGS2 model explains the distribu-
tion of sample activity values for one pathway is illustrated. Based on that, another
application of the outputs of the DIGS2 model is introduced in Figure 5.1c. For each
pathway, the DIGS2 model provides the pathway activity value for each sample s

and the class ranges for each class c. By calculating the distances of the samples to
each class (Violation distance Ds), samples can be allocated to their nearest class. In
other words, the allocation result is the predicted class of the sample s by pathway pi.
Therefore, the prediction accuracy of the pathway pi can be calculated as the number of
true positive samples divided by the total amount of samples. This accuracy has been
mentioned in Chapter 4.3.5 and is termed as Individual Pathway Prediction Accuracy.
Consequently, the pathways can be ranked according to their prediction accuracy, and
the pathways with higher prediction accuracy are seen as significant pathways.

Except the ranking of pathways, DIGS2 also provides quantifiable evaluation of the
constituent genes inside pathways. As the pathway activity value is defined as the
weighted linear summation of the gene expression values, the gene that obtains higher
weight from the DIGS2 model has a higher influence on the pathway activity values.
Therefore, the member genes of a pathway can be ranked by their weights (rpm − rnm).
Further, the importance of the genes can be quantified by the value of the weights.
In this work, the final ranking of the genes is decided by accumulating the absolute
weights from all the available results for the same pathway.

The power of classifying sample subtypes in a pathway activity inference method is
often assessed using machine learning classifiers (e.g. use of the RF and KNN in this
work). However, as the DIGS2 model by itself can be used to evaluate the pathway
classification accuracy, here we propose a method to compute the overall classification
accuracy for the DIGS2 model.

Continued from the calculation of Individual Pathway Prediction Accuracy in Fig-
ure 5.1c, for a specific sample s, the allocation results made by all the pathways are
aggregated and transferred into percentage values. The percentage value for a class
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Table 5.4 Prediction Accuracy between NaïveDIGS and ML classifiers.

Classifier BRCA COAD
NaiveDIGS 0.67 (0.064) 0.75 (0.043)

KNN 0.74 (0.046) 0.76 (0.068)
RF 0.84 (0.031) 0.85 (0.060)

c represents the number of pathways that allocate sample s into class c. Then, The
final predicted class for sample s is the class that has the highest percentage. As the
example shown in the figure, the highest percentage is 40%, which means 40% of the
279 KEGG pathways allocate the sample s into class c2. Therefore, the predicted class
for s is c2 after aggregating all the pathways. In the next step, the predicted classes
of all samples can be used for calculating the NaïveDIGS Prediction Accuracy, which
is defined as the number of correctly predicted samples divided by the number of all
samples. This method (referred to as NaïveDIGS) can be seen as an alternative to
using machine learning classifiers.

In Table 5.4, the performance of NaïveDIGS is compared to Random Forest and KNN
for multiclass scenarios (i.e. molecular subtypes). It is promising that the accuracy
of NaïveDIGS is not significantly reduced compared to KNN, which implies that the
relatively simple machine learning classifier brings little improvement to the classification
capability of the model itself. The powerful classification ability of the DIGS2 model is
further confirmed. Also, it is noticeable that the accuracy of NaïveDIGS is of the same
level as the KNN accuracies for other pathway activity inference methods (referring to
Figure 5.3a). This means that DIGS2 itself can provide high accuracy in predicting
sample classes without the introducing of a classifier.

5.4.2 Biological pathway markers and gene marker identification

Beyond good prediction performance, the proposed DIGS2 model can also provide
biological insights by identifying disease-relevant pathway markers. Pathway markers
are the pathways most influential in the separation of molecular subtypes; therefore,
based on the DIGS2 model, pathways that can predict the highest number of testing
samples into the correct class are the pathways that should take the highest rank.
Consequently, pathways are ranked according to the Individual Pathway Evaluation
(Figure 5.1c) accuracies for both datasets.

Except ranking of pathways, DIGS2 also provides quantifiable evaluation for the
constituent genes inside each pathway. According to the pathway activity definition in
Equation (5-1), the gene gaining higher weight from the DIGS2 model means a stronger
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influence on the inferred pathway activity values. Because the gene weights for DIGS2
are normalised by making the summation of all weights equal to 1 (Equation (5-4)),
the ranking of constituent genes can be inferred by accumulating the absolute weights
from 30 runs on the training samples for the same pathway. The gene ranking and
corresponding weights of the top 70 pathways of BRCA are listed in Appendix B. Table
5.5 shows the top 10 pathways for BRCA with the top 5 pathway constituent genes
and their accumulated weights.

I searched the literature to support the relationships between these pathways and genes
and breast cancer. Several studies have demonstrated the role of Circadian Rhythm as an
effective tumour suppressor [191]. Tumour development is triggered by the cellular level
stimulation or disruption of signalling pathways due to the interaction between cells and
environmental stimuli. The Circadian Rhythm pathway synchronizes the timekeeping
in the peripheral tissues by integrating the light-dark input from the environment. It,
therefore, has an impact on the development of tumours. The ROR family genes in
Circadian Rhythm pathway regulate the secondary transcription/translational feedback
loop and guide the rhythmic oscillation [192]. Peroxisome protein levels or enzymatic
activities of peroxisome metabolism were largely reduced in breast tumor [193]. The top
constituent gene AGXT is highly involved in colorectal cancer [194] and hepatocellular
carcinoma [195]. Also, the relationship between folate and the risk of breast cancer has
been massively investigated [196, 197]. It is noticeable that for Chemical carcinogenesis,
Platinum drug resistance, Drug metabolism cytochrome P450, and Drug metabolism
of other enzymes pathways, the GSTM5, GSTA1, and GSTA2 genes take important
place in them. Several studies have verified the importance of GSTM family to the
risk of breast cancer [198–201]. Our results are thus in agreement with existing reports,
and the DIGS2 model was proven to possess the ability to identify new disease-gene
associations.

For the two highly ranked pathways, Pancreatic secretion and Chemical carcinogenesis,
that were not found in the literature to have a direct association with breast cancer,
this work performs further analysis by reconstructing and clustering their corresponding
protein-protein interaction (PPI) networks. Although the weight of a gene may be
much higher than that of other member genes, the ranking of pathways results from the
synergistic effect of all member genes. Therefore, finding the genes physically close to
the highest weighted gene in the PPI network is another way to understand which part
of the pathway is involved with the disease under study. In this chapter, the PPI data
are collected from STRING [202], and MCL algorithm [203] was used to cluster them.
The clusters are visualised in Figure 5.5 using Cytoscape software [204], with the size of
nodes being proportional to the weight identified by DIGS and the edges proportional
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to the interaction confidence score. In principle, proteins in the same cluster either are
part of the same protein complex or perform a similar molecular function.

Fig. 5.5 Protein-protein interaction network for pancreatic secretion and chemical
carcinogenesis. The Protein-protein interaction networks are retrieved the protein-
protein interaction network from the Stringdb for the proteins of each pathway. Proteins
are clustered using MCL algorithm. The size of nodes is proportional to the weight
identified by DIGS and the edges are proportional to the interaction confidence score.

For the Pancreatic secretion pathway, the gene with the highest weight, CA2, is the
most active enzyme found in nature [205]. The cluster showed that CA2 communicates
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very closely with many SLC family member genes in the PPI network. Therefore, the
role of SLC family genes is essential for the high ranking of the Pancreatic secretion
pathway. In contrast, the SLC gene family was found to be highly correlated with
breast cancer [206]. For the Chemical carcinogenesis pathway, the previously described
GSTM family genes are abundantly present in the GSTM5-centered cluster. The ADH
and ALDH gene families also presented in this cluster are risk factors for many types
of cancer and have abnormal activity in stage IV breast cancer [207].

SHapley Additive exPlanations (SHAP), which is a unified framework for interpreting
the predictions of ML methods by assigning importance values to the input features
[208], also verify these DIGS2-identified important pathways. This work applies the Tree
explainer from the python package SHAP [209] on our trained RF classifier. The results
of SHAP provide the pathways with the highest impact on the prediction accuracy of
the RF classifier. The top 30 pathways are presented in Figure 5.6; the top 10 pathways
for each molecular subtype are presented in Appendix. Significant pathways identified
by the DIGS2 model overlap highly with pathways that significantly impact the RF
classifier. Over half of the top 30 pathways from SHAP overlapped with the top 70
pathways of the DIGS2 pathway ranking list.

The tSNE dimensionality reduction scatter plots and Hierarchical clustering heatmaps
were created using the RNA count data and pathway activity data. In Figure 5.7, the
two tSNE plots show how the pathway-level data can cluster the different sample labels
compared to the gene-level RNA counts data. From the pathway activity scatter plot,
it is clear that the subtypes with large samples, Luminal A, Luminal B and Basel, are
well clustered. The heatmap using only significant pathways also verified that. The
same analysis is repeated for the remaining pathway activity inference methods and
COAD dataset (Appendix B).

5.5 Discussion and Conclusions

This chapter presents a new optimisation model, DIGS2, which is formulated to contain
a much smaller number of binary variables than the DIGS model. DIGS2 has better
solution quality than DIGS and outperforms several widely used models in binary
classification, multi-class classification, survival analysis and robustness. Another
outstanding contribution of DIGS2 is the nature of independent and in-depth insight
into each pathway. Using the optimisation solution outputs, DIGS2 can calculate
the prediction accuracy of individual pathways and provide rankings for the pathway
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Fig. 5.6 Top 30 pathway from SHAP algorithm for BRCA.
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Fig. 5.7 tSNE dimensionality reduction scatter plot and Hierarchical clustering map of
significant pathways in BRCA. Pathway activities are derived with the DIGS2 model
using all samples. The left scatter plot is generated from the RNA count data with all
KEGG genes; the right scatter plot is generated from the KEGG pathway activities
derived from the DIGS2 model using all samples. The hierarchical clustering heatmap
is developed with the pathway activities of the top 70 pathways of DIGS2.
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member genes. In addition, the pipeline for analysing the individual pathway is
standardised to formulate the NaiveDIGS method.

The biological interpretation ability of the DIGS2 model is verified in the breast
cancer RNA-Seq dataset. DIGS2 ranked the pathways according to their degree of
differentiation of disease subtypes and ranked the pathway member genes according to
the gene weights inferred by the model. These deduced pathways and genes are validated
in multiple ways: The top-ranked pathways are found to be related to the pathology of
breast cancer in literature. These top pathways are found highly overlapped with the
pathways identified by SHAP. The clustering using the DIGS2 inferred gene weights on
the PPI connection network further verify the inferred gene weights play an important
role in indicating the important genes.

In summary, the new proposed method DIGS2 is more robust and powerful than other
pathway activity inference methods. In the next chapter, the performance of the DIGS2
model on single-cell RNA-Seq data is explored.



Chapter 6

Exploration of the Pathway
Activity Inference Model on
Single-cell RNA-Seq Data

The single-cell RNA-Seq (scRNA-Seq) technology offers a more detailed view of tran-
scriptome, allowing to decipher the contribution of single cells to disease dynamics.
However, the scRNA-Seq data generally suffer from high noise and sparsity, as hetero-
geneity exists among individual cells. Although methods and approaches designed for
analysing bulk data may be unsuitable for single cell, some of these bulk methods have
been shown to perform well on scRNA-Seq data. Therefore, it is worth seeing how the
pathway activity inference method proposed in Chapter 5 can be applied to analyse
scRNA-Seq data.

This chapter employs the pathway activity inference method DIGS2 to three scRNA-Seq
datasets. The pathway activity values are expected to achieve three objectives. The
first is identifying the cell types, e.g. B cells, T cells and monocyte cells, in human
peripheral blood. The second is identifying breast cancer tumour subtypes using the
tumour cells from breast cancer patients. The last is using the pathway activity values
to integrate the scRNA-Seq datasets. As for evaluating the performance of the DIGS2
model, in addition to the traditional way of training machine learning classifiers and
accessing prediction accuracy, this chapter also uses UMAP projection to assess how the
pathway activity values can cluster the cells of the same labels. DIGS2 showed great
performance on scRNA-Seq data when comparing it with the baseline method GSVA.
Also, interesting results appeared when using DIGS2 for disease-related significant
pathway identification.
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6.1 Introduction and Background

The development of single-cell RNA-sequencing (scRNA-Seq) technologies has dra-
matically advanced our understanding of cellular states. Significantly, the scRNA-Seq
technology reveals the heterogeneity of cellular populations at unprecedented resolu-
tions [210–212]. This new technology is described in Section 2.1 in detail and is briefly
summarised here to highlight how it differs from bulk technologies.

it is well established that what is observed at tissue level results from many interactions
of several different single cells. Thus, the observable "average" cannot represent the
"average cell". Instead, it is the resulting behaviour of the actions and interactions
of many different cells. The appearance of scRNA-Seq enables the comparison of the
transcriptomes of individual cells. Compared with the bulk technologies, the scRNA-Seq
benefits research in two aspects. First, it allows addressing medical questions such
as the role of cell populations contributing to disease progression and therapeutic
potential. Also, it provides an understanding of context-specific dependencies, namely
the behaviour and function that a cell has in a specific context, which can be crucial to
understand some complex diseases, such as diabetes, cardiovascular disease and cancers
[20]. In summary, scRNA-Seq analysis enables the uncovering of more refined and novel
cell clusters [213], which have greatly advanced understanding of cellular states.

Although methods and principles previously developed for bulk data can be used,
scRNA-Seq data analysis poses several unique challenges that require new strategies.
In detail, scRNA-Seq data has characteristics such as drop-out events and low library
sizes, consequently causing the data to suffer from low gene coverage, namely data
sparsity. As a result, the robustness and applicability of the methods designed for
analysing bulk gene expression data, to some extent, might be affected [214, 160]. From
this perspective, pathway-level analysis also shows its power on this challenging data.
Pathways are composed of a limited number of genes, so the proportion of missing
genes can be reduced and low coverage difficulties can be avoided.

Many researchers have focused on incorporating prior gene set knowledge with the
scRNA-Seq data. Specifically, [160] focuses on the possibility of applying the pathway
analysis tools established for bulk sequencing data to scRNA-Seq data in a meaningful
way. In this work, they investigated the performance of bulk data analysis tools
(PROGENy [215], DoRothEA [216] and GSEA analysis) and tools designed for scRNA-
Seq data (SCENIC/AUCell [217] and metaVIPER [218]) on simulated and real scRNA-
Seq datasets. Their experimental results led to two conclusions. First, the bulk-based
pathway analysis tools can be applied to scRNA-Seq data and partially outperform
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dedicated single-cell tools. Second, they further proved that the pathway analysis tools
are more sensitive than statistical approaches.

Besides focusing on pathway analysis, many researchers also discussed the application of
pathway activity inference on scRNA-Seq data. [218] uses the pathway activity values
inferred using the Gene Ontology biological process gene sets to align the scRNA-Seq
profiles of human and mice. They used a GSEA-based pathway activity inference
method (see Chapter 2.4.2) to calculate the pathway activity values for humans and
mice separately, then concatenate the two pathway activity profiles to see how the
different cell types cluster on the joint dataset. Their results proved that transforming
the gene-level data into pathway activity values can produce a dataset less influenced
by common technical noises in scRNA-Seq profiles. Moreover, the transformed data
preserve cellular state integrity and transitions.

Another work evaluates the performance of widely used pathway activity inference
methods on scRNA-Seq data [219, 220]. This work follows the typical pathway activity
inference and validation framework described in Chapter 2. More specifically, they
concentrated on the performance of these tools on their ability to dissect meaningful
cellular heterogeneity, which is expected to be retained in reduced dimensionality
space. In other words, their research is answering whether the pathway activity values
produced by these tools can classify cell types through either supervised or unsupervised
classification. They used methods designed for bulk data, including methods such
as GSVA, ssGSEA, and z-score, described or mentioned in Chapter 2.4, in their
comparative study. Their study found that pre-processing of scRNA-Seq data (gene
filtering or normalisation) is essential to obtain the desired performance, regardless of
whether the method is designed for bulk or single cell data.

It can be concluded from the above background information that the analysis of
scRNA-Seq data needs to incorporate functional biological pathways. Moreover, it is
worth exploring whether pathway activity methods designed for the bulk data suit
scRNA-Seq data. Therefore, this chapter discusses the adaptation of the DIGS2 model
on scRNA-Seq datasets. The experiments in this chapter follow data collection, model
implementation, cross-validation, and results evaluation. Because of the specificity
of the scRNA-Seq data, there are some differences in the implementation pipelines
compared to previous chapters.

First, the scRNA-Seq data provide unique analysis opportunities that allow novel
biological discoveries, including the identification and characterisation of cell types and
the study of their organisation in space. Therefore, a few experiments in the chapter use
the DIGS2 model to separate cell types of healthy human peripheral blood mononuclear
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cells (PBMCs) . This part can also be used to validate that DIGS2 can analyse scRNA-
Seq data. Then, the DIGS2 model is applied to breast cancer to discuss how the pathway
activity values inferred by DIGS2 perform on separating the molecular subtypes of
cancer. Second, concerning the evaluation of the inferred pathway activity values, a
new metric is added to show the performance of clustering cells using pathway activity.
In the general analysis pipeline, visualising low-dimensional representations with scatter
plots of data is a step in analysing single-cell genomic data [221]. By feature selection,
significant genes are selected and passed into dimensionality reduction algorithms,
such as PCA, tSNE [222], and UMAP [223], to produce two-dimension vectors for
scatter plot visualisation. Therefore, comparing the low-dimensional visualisation of
pathway activity data with the gene expression data is meaningful for understanding
how pathway activity boosts the analysis of scRNA-Seq data. (Figure 6.1)

This chapter explores the efficiency of pathway activity inference in analysing scRNA-
Seq data using the DIGS2 model. Also, pathway activity inference is used not only for
classifying disease subtypes but also for classifying the cell types. In parallel, the goal
of extracting meaningful biological interpretations from DIGS2 results is preserved.

6.2 Application of optimisation-based pathway activity
inference for dataset integration, cell clustering and
breast cancer subtype prediction on scRNA Seq

6.2.1 Single-Cell RNA-Seq dataset acquisition

Using benchmarking datasets is essential for analysing scRNA-Seq data. Therefore, two
typical scRNA-Seq datasets of human peripheral blood mononuclear cells are used in this
work [224]. These datasets are available from 10X Genomics (https://www.10xgenomics.co-
m/resources/datasets). The first dataset, refer to as PBMC 3k, contains 2700 immune
cells. After filtering the cells and genes with too few reading counts, the dataset consists
of 2,638 cells across 32,738 genes. The cells are allocated into nine subsets, Naïve CD4
T cells, Memory CD4 T cells, CD8 T cells, B cells, CD14+ Mono cells, Mono cells, DC
cells, Platelet cells and Natural Kill cells. Two (DC and Platelet cells) of the nine cell
types are removed from following analysis because of the highly unbalanced cell amount
compared with the other seven cell types. The second PBMC dataset, refer to as PBMC
10k, has 10990 cells and 20292 genes after pre-processing. Cells are annotated into
seven subsets: B cells, DC cells, Mono/Macro cells, Platelets cells, T cells, Duplicated
and Unknown cells. The PBMC 10k dataset will be used for dataset merging, which is
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Fig. 6.1 Pathway activity implementation for scRNA-Seq data.
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illustrated in Section 6.2.7. Therefore, only the three main cell population are kept for
this work (B cell, T cell and Mono/Macro cell).

Except baseline datasets, this chapter also explores using scRNA-Seq data to analyse the
breast cancer subtypes. The immune cells in the tumour microenvironment is essential
for understanding the mechanism of immunotherapy response and pathology of breast
cancer. Therefore, I downloaded the scRNA-Seq data of diverse immune phenotypes
in breast cancer tumour microenvironment (refer to as the Azizi dataset) from the
GEO data repository accession number GEO: GSE114725 [225]. The structure of this
dataset is as follows: (i) this dataset contains 45,000 immune cells; (ii) these cells come
from four tissues of eight breast cancer patients, breast carcinomas (TUMOR), normal
breast tissue (NORMAL), blood (BLOOD) and lymph node (LYMPHNODE); (iii) the
cells are annotated by seven cell types, Neutrophil cell, T cell, myeloid cell, Natural
Kill T cell, Mast cell, B cell Natural Kill cell; (iv) the eight patients are annotated with
four kinds of breast cancer subtypes, ER+PR+, ER+, HER2+ and Triple Negative
(TNBC). Only the B cells (3,890 cells) in the Azizi dataset are used in this work, as
the B cell population in the Azizi dataset has the cleanest clusters between TUMOR
tissue and BLOOD tissue shown in Figure 6.2c. To perform different experimental
aims, I applied corresponding sampling strategies for these three scRNA-Seq datasets,
further illustrated in the following sections. A summary of the datasets after sampling
is shown in Table 6.1.

6.2.2 Biological pathway acquisition

This chapter looks into the biological processes in single cells, which means more precise
intra-cellular processes can be obtained than the bulk data. Therefore, except the large
size pathways that describe the complete biological processes, smaller pathways that
focus on more detailed procedures in a biological process are also used in this work.

Molecular Signature Database (MSigDB) groups the pathways into different collections.
I selected two collections from MSigDB v2022.1 [66]. Hallmark gene sets collection
(4,383 unique genes) is an initial release of 50 hallmarks which condense information
from over 4,000 original overlapping gene sets from all the C1 to C6 collections of
MSigDB v4.0. These gene sets summarise and represent specific, well-defined biological
states or processes and display coherent expression. Each gene set in this collection
contains around 200 genes. Another collection, the BioCarta gene sets collection (292
pathways, 1,509 unique genes), is also downloaded. The BioCarta collection contains
canonical pathways gene sets derived from the BioCarta pathway database. This



6.2 Application of DIGS2 on scRNA-Seq data 111

Table 6.1 Summary of the scRNA-Seq datasets

Dataset Coarse cell type Cell type Cell Amount

PBMC 3k

B cell B cell 344

Mono/Macro CD14+ Mono 480
FCGR3A+ Mono 162

T cell
CD8 T 279

Memory CD4 T 472
Naive CD4 T 711

NK cell NK 144
Sum 2592

PBMC 10k
B cell B cell 1485

Mono/Macro Mono/Macro 2890
T cell T cell 5159

Sum 9534

Dataset Coarse cell type Cell type

Azizi

ER+ 203
ER+PR+ 470
HER2+ 78
TNBC 378

Sum 1129

Azizi(B cells)
Tissue type Cell Amount

BLOOD 1486
TUMOR 1128

Sum 2614
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Fig. 6.2 Overview of the Azizi dataset and PBMC 3k dataset. (a) UMAP projection of
PBMC 3k cell populations between nine cell types (b) UMAP projection of Azizi B
cell populations between four tissues (c) UMAP projection of Azizi B cell populations
between tissues: BLOOD and TUMOR. Figure is taken from [225]
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collection highlights the common metabolic pathways, signal transduction pathways,
and other biochemical pathways. The size of the BioCarta pathways is in the range
of 10 to 50 genes, which are relatively small size pathways among various pathway
collections.

6.2.3 Pathway activity inference methods

This chapter mainly discusses the application of the DIGS2 model for pathway activity
inference on scRNA-Seq datasets. DIGS2 is an optimisation-based supervised pathway
activity inference method, defined by a mixed linear programming (MILP) model
that can be solved to global optimality using some of the standard algorithms like
branch-and-bound [113]. Chapter 5 has provided that DIGS2 achieves high-quality
solutions and is competitive with other pathway activity inference methods on RNA-Seq
datasets. The DIGS2 model is implemented using general-purpose solution algorithm
CPLEX in the General Algebraic Modelling System (GAMS) [127]. Time limit is set as
200 seconds.The Relative Optimality criterion solver (optcr) is set to its default value
of zero.

A baseline method GSVA is used for comparison, which has been used in other studies
for pathway activity inference on scRNA-Seq data. Gene Set Variation Analysis (GSVA)
[100] is selected as the baseline method for comparison. As a variation to the GSEA
[40], GSVA extends the pathway enrichment scores by calculating the sample-wise
enrichment score. More details can be found in Section 2.4.2. GSVA is implemented
using the Python package decoupler [226].

6.2.4 Pathway activity inference implementation

Four experiments of increasing complexity were applied on the PBMC 3k datasets and
Azizi datasets to establish performance comparisons.

Separating seven immune cell types on PBMC 3k data. As a baseline dataset
for scRNA-Seq analysis, the cells in PBMC 3k are well annotated with clear clusters
and cell types (Fig 6.2a). Therefore, this experiment is designed to calculate the
pathway activity values using the DIGS2 model in the PBMC dataset to compare
the official results from 10X Genomics with the pathway activity values. From the
perspective of dimension reduction, losing information is unavoidable when compressing
high-dimensional data into low-dimension. However, the calculation behind the pathway
activity contains a biological interpretation of the high-dimensional features (genes).
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Consequently, the different biological processes behind the different cell types make it
possible for the dimension reduction from gene-level to pathway-level to minimise the
information loss and give similar clustering results.

Separating the BLOOD and TUMOR tissues on Azizi data. This experiment
is designed to look into the differences between different tissues (blood and tumour).
According to the UMAP plot for tissues (Fig 6.2b), BLOOD and TUMOR are the two
most clearly separated clusters among four kinds of tissues. Also, from the UMAP plot
for cell types (Fig 6.2c), B cells are well clustered with compact intra-group distance.
Therefore, BLOOD B cells and TUMOR B cells are chosen for analysis. As there
is a mixture of other types of cells (e.g., T cells, myeloid cells) in Azizi original cell
annotations, I extracted the B cells from the raw data and got a cleaner separation
between BLOOD B cells and TUMOR B cells (Fig 6.2c). After pre-processing, there
are 1336 cells in the BLOOD and 944 cells in the TUMOR.

Separating four breast cancer subtypes on Azizi data. Next, I look into how
pathway activity can separate the different breast cancer subtypes, which is a much
more complex task compared with the separation of cell types. The eight breast cancer
patients of Azizi datasets consist of four kinds of subtypes, ER+PR+, ER+, HER2+
and Triple negative breast cancer (TNBC). Only the TUMOR cells in Azizi dataset
are used for this experiment. Since the number of TUMOR cells (21,253 cells) is too
large, which could affect the computation efficiency, I did stratified sampling for the
seven cell types and kept 500 cells for each subtype. The final input dataset contains
1,998 cells with the same amount of cells for each subtype.

Separating TNBC type breast cancer versus other subtypes on Azizi data.
To further investigate the pathway activity values for the most aggressive type of
breast cancer, I design this experiment using the same Azizi TUMOR dataset as the
former one. In this experiment, the 1,998 cells are marked as TNBC and nonTNBC
with 499 and 1,499 cells, respectively. TNBC, characterised by estrogen receptor
(ER/ESR1)-negative, progesterone receptor (PR/PgR)-negative, and epidermal growth
factor receptor 2 (HER2/ERBB2)-negative, is known to have high mutational burden.
Among various breast cancer subtypes, TNBC is highly aggressive with a generally poor
prognosis [227, 228]. The characteristics of four breast cancer subtypes are summarised
in Chapter 5 Table 5.2. The pathway activity for distinguishing TNBC from the other
three subtypes is expected to provide specific biological insights that can contribute to
understanding the pathology and prognosis of TNBC.

In summary, the first two experiments focus on the widely discussed question for
scRNA-Seq data, i.e. the identification of cell types. The following two experiments
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focus on how the scRNA-Seq data can provide biological insights into identifying breast
cancer subtypes. To gain robust results, for each experiment, 5-fold cross-validation
is applied. The DIGS2 model is trained on the training sets to calculate the training
pathway activity profiles. Then the gene weights generated from the cells in training set
are used on testing cells to compute the testing pathway activity profiles. For GSVA,
the pathway activity calculation is conducted separately for the training and testing
sets. Therefore, for each method, five pairs of training and testing pathway activity
profiles are generated. In the whole pipeline, the testing cells are kept blind to the
model training process. The data split from cross-validation are kept constant in the
pathway activity calculation for both methods.

6.2.5 Pathway activity evaluation criteria

The first pathway activity evaluation criterion is dimension reduction. Dimension
reduction is a common step in the standard analysis pipeline for scRNA-Seq, used to
visualise the data. In the standard pipeline, datasets used for dimension reduction
are already filtered to keep only the genes that have high variability; often, the
number of genes after filtering is between 200 to 2,400 [229]. After gene selection,
the dimension of the dataset is further reduced by dimension reduction approaches to
two or three dimensions, which are combinations of the original features. The two or
three dimensions are used for visualisation. Therefore, in this work, comparing the
visualisation of the highly variable genes and the visualisation of pathways can be used
to assess the performance of pathway activities. I use Uniform Approximation and
Projection method (UMAP) [223] to achieve the reduced two dimensions to visualise
the gene expression profiles and pathway activity profiles for each dataset. Then the
averaged silhouette width [230] across all cells was used to evaluate the performance
of dimensionality reduction for each dataset. The averaged silhouette width score is
implemented by the python package sklearn [172].

The second evaluation criterion is sample label prediction (i.e. cell types for the first
experiment, tissue types for the second experiment and cancer subtypes for the last two
experiments). Since the appearance of pathway activity inference for high-throughput
profiling data, precise disease phenotype prediction has been the main target to be
achieved [53]. Machine Learning classifiers verify the prediction performance of pathway
activity values. In this work, I used the Random Forest (Python package scikit-learn,
n_trees set as 200) to evaluate the prediction accuracy of the pathway activity values
produced by the two methods (DIGS2 and GSVA). The AllGENE method used in
Chapter 5, which refers to the direct use of gene expression values to train and test
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KNN classifiers, is also used in this chapter to show the prediction accuracy using
gene-level data.

6.2.6 Single-cell RNA-Seq dataset integration

Except using the pathway activity values to cluster the cell populations and make
predictions on cell labels, many researchers investigate merging the scRNA-Seq datasets
using pathway activity values. Although individual experiments have expanded under-
standing of the properties of cell types, obtaining a comprehensive understanding of
healthy and diseased cells requires integrating multiple datasets across datasets [231].
A study [232] uses the pathways activity values to do the cross-species integration for
human and mouse scRNA-Seq datasets. Another study [233] did the integration of the
different technologies (snDrop-seq and scTHS-seq) for human adult brain cells. Their
results show that, when datasets integration are made, sparse scRNA-Seq datasets can
be as informative as bulk sequencing of different cell populations, thus providing richer
information for further analysis.

Figure 6.3 illustrates the aim for scRNA-Seq dataset integration. Because batch effects
exist among different datasets, the initial dimension-reduced visualisation (Figure 6.3a)
tends to cluster the cells of the same datasets together. However, after integration, the
dataset borders disappear, and the cells are clustered by their cell types (Figure 6.3b).
The overall purpose of scRNA-Seq dataset integration is to eliminate the batch effects
of different datasets and cluster cells according to their type.

I primarily attempt to integrate the PBMC 3k and PBMC 10k datasets using their
pathway activity values in this work. PBMC 3k and PBMC 10k datasets consist of
the human peripheral blood mononuclear cells. Therefore, they have similar cell types
and are comparable to each other. The integration process follows three steps: (i)
calculating the pathway activity values for each dataset separately; (ii) scaling the
pathway activity values in the range of 0 to 1; (iii) connecting the two pathway activity
matrices and visualising it using UMAP.

DIGS2 is used to train the pathway activities with the Hallmark pathway collection.
For PBMC 3k, the pathway activity values obtained from the experiment of Separating
seven immune cell types (Section 6.2.4) are used. For PBMC 10k, three cell types
(listed in Table 6.1) are used for training the pathway activity. As the size of the PBMC
10k dataset was too large and would affect the calculation efficiency, stratified sampling
was applied to select a subset that contains 2,000 cells. The proportion of each cell
type in the selected cells was consistent with the original dataset.



6.3 Comparison Results 117

Fig. 6.3 Principle for integrating the scRNA-Seq datasets. (a) shows cell clusters before
integration. (b) shows the cell clusters after integration. The purpose of integration is
to eliminate the dataset borders and cluster cells by their cell types. Figure taken from
[231]

The pathway activity profiles produced individually on the two datasets are then merged
into one dataset. The integrated dataset consists of Hallmark pathways across cells
from the two datasets. After normalising the pathway activity values to a 0-1 scale,
the integrated pathway activity dataset is projected using UMAP into two-dimension
representations for visualisation.

6.3 Comparison Results

The pathway activity profile is expected to preserve the integrity of cellular states and
their transitions while increasing the separation degree between different cell types or
disease types. Therefore, the three key results of the experimental studies on scRNA-Seq
datasets in this work are (i) using pathway activity values to separate the cell types,
(ii) using pathway activity values to separate the cells from different tissues and (iii)
using pathway activity values to separate the breast cancer molecular subtypes. The
performance of the inferred pathway activity is evaluated by the cell clustering and cell
label prediction.
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6.3.1 Clustering of cell types in PBMC 3k

Seven class separation is a complex task. Most pathway activity inference methods are
designed for binary class separation, as shown in Table 2.3 and only a few of them are
designed for multi-class tasks. Moreover, the most frequently used disease that the
pathway activity inference methods are applied to, i.e. breast cancer, usually involves
four or five subtypes. Therefore, applying pathway activity inference for separating
seven classes is an advance in methodology.

Presentation of how the pathway activity values perform on separating the seven cell
types in healthy human peripheral blood mononuclear cells (PBMC) is shown in Figure
6.4. The clustering of cells using pathway activity values produced with identical
cell populations show significant differences between DIGS2 and GSVA. The edges
of the clusters for DIGS2 are much more well-defined than GSVA, and almost no
overlap between clusters is observed. The averaged silhouette score also reflects the
improvement achieved by DIGS2. DIGS2 gets higher averaged silhouette scores for
both pathway collections compared with GSVA. This observation proves that DIGS2
outperforms the widely used pathway activity inference methods GSVA and shows its
power on a challenging problem.

Another fact that can be observed is that the cell clustering performance is better
using Hallmark pathways (Figure 6.4a and 6.4b) than BioCarta (Figure 6.4c and 6.4d).
Considering that pathways for irrelevant biological processes may not contribute to cell
type separation but increase the noise instead, top pathways were selected according
to the pathway ranking produced by the individual pathway analysis (see Chapter
5 Figure 5.1). The top 50 BioCarta pathways were used to plot the scatter plot
figures. The higher the ranking, the more powerful the pathway in separating cell
types. However, BioCarta pathways still suffer from the lower average silhouette score
under such conditions. The possible explanation is the number of unique genes in
the pathway collection and the size of each pathway. The number of unique genes in
the Hallmark collection is twice as large as in the BioCarta collection, and the size of
individual pathways is approximately ten times larger than in the BioCarta collection.
Therefore, the information abundance is limited by the number of genes included in
BioCarta pathways. Consequently, the performance of pathway activity is poorer than
the pathway collection that contains a larger quantity of genes.

In the next step, comparisons are conducted between the UMAP visualisation generated
from gene expression values (Figure 6.2a) with the UMAP visualisation of pathway
activity values generated by DIGS2 using the Hallmark pathway collection Figure 6.4a).
Although the datasets behind the plots employ different dimensions and biological
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Fig. 6.4 UMAP projections for pathway activity values for PBMC 3k. The dimension
of the pathway activity profiles calculated by DIGS2 and GSVA is reduced by UMAP
and visualised as scatter plots. Each dot represents a cell. (a) and (b) are Hallmark
collection pathway activity values, and (c) and (d) are BioCarta collection pathway
activity values. The averaged Silhouette score is used to calculate the goodness of the
clustering.
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meanings, they show a similar relationship between the clusters. Specifically, the three
types of T cells (CD8 T, Memory CD4 T and Naive CD4 T) are closely clustered
together; The NK cell cluster is linked to the CD8 T cell cluster; B cell population
and monocyte population separate in the plot away from the largest T cell population.
In short, the distribution of the cell clusters generated by the best quality pathway
activity profiles and gene expression profiles is identical. This fact provides important
information that compressing the gene-level data into pathway-level data on scRNA-Seq
data does preserve the integrity of cellular states. Therefore, results show the potential
of applying pathway activity inference on scRNA-Seq data.

6.3.2 Clustering of tissues in Azizi B cell population

As the feasibility of pathway activity inference on the scRNA-Seq dataset has been
demonstrated on the baseline dataset PBMC 3k, the next step shifts the focus to the
analysis of the scRNA-Seq dataset for breast cancer (Figure 6.5). This section examines
the discrimination of pathway activity to distinguish the same cell type (B cell) in
different tissues (BLOOD and TUMOR).

The overall results of the performance for different pathway activity inference methods
and pathway collections is the same as the separation of cell types on PBMC 3k data
in the UMAP visualisations. In brief, DIGS2 performs better than GSVA and the
Hallmark pathway collection performs better than the BioCarta collection. However,
with the clustering task now only including two cell labels, the averaged silhouette
scores increase substantially.

6.3.3 Clustering of breast cancer subtypes in Azizi TUMOR cell
population

Previous results (i.e. using pathway activity separating cell types and separating
tissue types) prove that larger pathways with more unique genes have better clustering
performance for cell label separation than small-size pathways. Therefore, only Hallmark
pathway collection is used for the much more challenging problem of separating the cells
of different breast cancer subtypes. The UMAP visualisations for pathway activities
produced by the DIGS2 and GSVA methods are presented in Figure 6.6.

In the clustering map of cancer subtypes (Figure 6.6a and 6.6b), GSVA could not find
distinct cell clusters, and the cell labels were mixed. In contrast, DIGS2 produces better
results. Although the cells of four subtypes overlap in the plot’s middle area, the cells
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Fig. 6.5 UMAP projections for pathway activity values for Azizi B cell population.
The pathway activity is calculated for cells in BLOOD and TUMOR from the B cells
population in Azizi dataset. UMAP projections for two pathway activity inference
methods and two pathway collections are visualised as scatter plots. (a) and (b) are
Hallmark collection pathway activity values, and (c) and (d) are BioCarta collection
pathway activity values. The averaged Silhouette score is used to calculate the goodness
of clustering.
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Table 6.2 RF prediction accuracy on the four experiments using Hallmark collection

Dataset PBMC Azizi
Expriment Cell Types(7

classes)
Tissue:
BOOLD/TUMOR
(binary)

Breast Cancer
Subtypes (4
classes)

TNBC vs. Other
subtypes(binary)

DIGS2 0.804 0.888 0.68 0.904
GSVA 0.536 0.86 0.652 0.888
AllGene 0.416 0.432 0.408 0.792

of different subtypes are clustered together. Moreover, two subtypes, ER+PR+ and
TNBC, share a limited area with the other subtypes. Also, ER+ has a stand-alone area
away from the mixed area. The condition is also reflected by the averaged silhouette
score, with DIGS2 having a positive score and GSVA a negative one.

In particular, another experiment is conducted for the separation of TNBC versus
the other three subtypes. As TNBC is the worst subtype of breast cancer, accurate
identification of TNBC is beneficial. Figure 6.6c and 6.6d show the cell clustering
results for this experiment.

Compared with UMAP projections for all four subtypes, both methods were significantly
better at separating TNBC with other subtypes (Figure 6.6c and 6.6d). The two
clusters are well separated in DIGS2, with a few numbers of cells overlapping. However,
compared to another binary classification problem (separating TUMOR and BLOOD
tissue), separating TNBC and the other three subtypes could not achieve the same
mean silhouette scores. This observation also indicates the challenges faced by the
identification of disease subtypes.

6.3.4 Cell label prediction accuracy

Following the traditional evaluation approach for pathway activity inference methods,
using machine learning classifiers to predict sample labels is adopted to assess the
quality of the pathway activity values inferred from scRNA-Seq data in this work.
Random Forest (RF) is used for predicting the cell labels of all four experiments.

In addition to the two pathway activity inference methods (DIGS2 and GSVA), using
the gene expression values to make the prediction is also included in this section to
provide more information about how the pathway activity inference can boost the cell
label prediction results. The gene-level classification approach is called AllGene, which
uses all the unique genes of a pathway collection as the features to be trained by the
RF classifier.
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Fig. 6.6 UMAP projections for pathway activity values for Azizi TUMOR cells. (a)
and (b) are the UMAP projections of pathway activity values calculated for four breast
cancer molecular subtypes, ER+, ER+PR+, HER2+ and TNBC; (c) and (d) are the
UMAP projections of pathway activity values calculated for the TNBC versus the other
three subtypes. Hallmark pathway collection is used. All seven cell types of Azizi
TUMOR population are used.

Table 6.3 RF prediction accuracy on the two experiments using Biocarta collection

Dataset PBMC Azizi
Expriment Cell Types (7 classes) Tissue: BOOLD/TUMOR

(binary)
DIGS2 0.632 0.914
GSVA 0.556 0.898
AllGene 0.435 0.45
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Table 6.2 and Table 6.3 present the results of the average accuracy over 5-fold cross-
validation for each experiment and each method. The classifiers are trained on the
pathway activity values/expression values of the training cells and tested on the testing
cells. For every experiment, the data splits (e.g. 5-fold cross-validation) are done
once for all the methods. In other words, the cells for training and testing are kept
consistent. During the whole process, the testing data is kept blind to the training
data. The prediction accuracy is calculated by the number of true positives divided
by the number of all the cells. The final accuracy is the average number over 5-fold
training and testing sets.

The first conclusion that can be derived is that the pathway activity methods increase
the prediction accuracy to a large extent. Using individual genes to predict cell labels
can hardly reach 50% accuracy. However, by altering and transferring the gene-level
values to pathway-level values, the accuracies increased to a promising level, as the
most accurate values of DIGS2 and GSVA in these two tables are over 80%. Secondly,
DIGS2 outperforms the other two methods in all the experiments. Moreover, it is
noticeable that the prediction accuracy of DIGS2 exceeds GSVA to a large extent in
the experiment of separating cell types using Hallmark pathways (Table 6.2). In the
use of Biocarta pathways, DIGS2 still keeps such improvement.

In summary, from the perspective of predicting the cell labels, pathway-level representa-
tion of gene expression values is superior to directly using gene-level expression values.
This widely accepted concept for analysing bulk expression data is again proved in single
cell expression data analysis. Also, compared with the baseline method GSVA, DIGS2
exhibits its power to achieve higher prediction accuracies. The significant improvements
on the complex 7-class cell type prediction experiment provides confidence for the
applicability of the DIGS2 method.

6.4 Biological interpretations

This section investigates the significant pathways and genes found by the DIGS2 method.
The Individual Pathway Prediction Accuracy approach introduced in Chapter 5.4.1
(or see Figure 5.2) is applied to rank the pathways for each experiment in this work.
The ranking of the constituent genes is implemented following the steps illustrated in
Chapter 5.4.2.
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6.4.1 Significant pathways and genes for identifying cell types in
PBMC

The distribution of the pathway activity values for an individual pathway is shown
in Figure 6.7 and Figure 6.8. Visualising the pathway activities using a strip plot
(categorical scatter plot) provides an intuitive overview of how pathway activity values
are differentiated for cells belonging to different classes. For example, in the Hallmark
Allograft Rejection pathway strip plots, the NK cells and Mono cells (CD14+ Mono and
FCGR3A+ Mono) are distinguished from the other cell types. The CD+ Mono cells
are the most significant cell type in the Hallmark Apoptosis pathway. These results
imply that the Allograft Rejection pathway acts differently in NK and Mono cells, and
the Apoptosis pathway acts differently in Mono cells. The relationship between these
two pathways and the corresponding cell types have been mentioned in the literature
[234–237].

For the top 3 Biocarta pathways, related literature supporting the strip plot results
can also be found. For example, [238] indicates that the expression of D4GDI in CD8+
T cells displayed a differential expression so that D4GDI could be involved in the
functional differences between these cell subpopulations. Also, the caspase activation is
well known for its relationship with Natural Killer (NK) cells [239–241].

For more information about the significant pathways and genes, Table 6.4 lists the top
5 pathways for Biocarta and Hallmark collections, with the top 5 constituent genes for
each pathway. It can be seen that these top pathways from different pathway collections
share many high-ranked genes, which also proves that the results produced by DIGS
are kept consistent.

6.4.2 Significant pathways and genes for identifying breast cancer
subtypes

Table 6.5 lists the set of Hallmark pathways and genes that are found as most dis-
criminant with DIGS2. As the pathway activity for breast cancer cells is implemented
using only the Hallmark pathway collection, the ranking of the pathways includes
only the Hallmark pathways too. Interestingly, the top pathway for separating the
four breast cancer subtypes, Hallmark Pancreas beta cells pathways, matches the
top pathway in Chapter 5 Table 5.5, KEGG pathway Pancreatic secretion pathway.
These two works are different in many aspects, i.e. Chapter 5 uses the bulk RNA-Seq
breast cancer datasets whereas this chapter uses the scRNA-Seq datasets, Chapter 5
uses KEGG pathways, whereas this chapter uses the Hallmarks pathways. Although
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Fig. 6.7 Visualisation of the pathway activity values of the top three pathways in
Hallmark. These three pathways are the top pathways for separating the cell types
using PBMC 3k dataset. The top pathways are selected by ranking all the Hallmark
pathways using the Individual Pathway Prediction Accuracy approach of DIGS2 method.
Each dot represents the pathway activity value of a cell.
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Fig. 6.8 Visualisation of the pathway activity values of the top three pathways in
BioCarta. These three pathways are the top pathways for separating the cell types
using PBMC 3k dataset. The top pathways are selected by ranking all the Biocarta
pathways using the Individual Pathway Prediction Accuracy approach of DIGS2 method.
Each dot represents a pathway activity value of a cell.
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Hallmark pathways are integrated from multiple pathway database resources, among
which KEGG is included, the details (e.g. number of pathways in the collection, sizes
of the pathways, biological processes described) of Hallmark pathways and KEGG
pathways are quite different. The common part of Chapter 5 and this chapter is that
the pathways are ranked using the same approach (Individual Pathway Prediction
Accuracy). In summary, pancreas-related pathways are identified when training the
DIGS2 model using different input datasets. This result gives a new perspective on the
stability and reproducibility of the conclusions obtained using DIGS2. Also, it shows
that pancreas-related pathways are strongly related to breast cancer. The relationship
between pancreatic cancer and breast cancer can be found in the literature. A survey
[242] found that BRCA2 mutation appears to be associated with pancreas cancer in
the familial breast cancer population. Another study [243] made a similar conclusion
using retrospective cohort analysis.

For the other pathways listed in Table 6.6, cholesterol homeostasis is found disrupted
in rapidly proliferating breast cancer cells and increasing the proliferation of estrogen
receptor (ER)-positive breast cancer cells [244]. The NF-Kb signalling pathway is
found to be related to the TNBC by many researchers [228, 245, 246]. These research
works show that it is highly related to the Hedgehog Signalling pathway, a well-
known pathway related to multiple types of cancer and has been introduced in detail
in Chapter 4. Moreover, the NF-kB signalling pathways contribute to deregulating
Hedgehog signalling, thereby leading to the acquisition of the mesenchymal phenotype,
enhanced growth, and invasion in TNBC. The activation of the IFN-γ pathway plays a
key role in immunosuppression and is associated with the depletion and dysfunction of
CD8+ T cells in the TNBC [247, 248].

6.5 Integration of PBMC 3k and PBMC 10k

The UMAP projection on the merged pathway activity dataset is shown in Figure
6.9. Both scatter plots use the same UMAP embeddings but use different cell labels.
The left plot shows the nine cell types for both datasets (i.e. B_cells, T_cells and
Mono/Macro from PMBC 10k and the other six cell types from PBMC 3k). Because
the PBMC 10k dataset contains only B cells, T cells and mono/macro cells, the NK cell
population in PBMC 3k is removed before merging the two datasets. In principle, the
cell annotation for the two datasets should be consistent. However, in this experiment,
the cell types in PBMC 10k are annotated coarsely, while in PBMC 3k, the annotations
are refined. For example, the T cells in PBMC 10k are annotated with Memory CD4+
T, Naïve CD4+ T and CD8+ T in PBMC 3k.
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Overall, the integration result of these two datasets is at an intermediate stage between
Figure 6.3a and Figure 6.3b. The negative aspect is that the two datasets are not mixed.
The PBMC 10k is clustered into three clusters, and the PBMC 3k is clustered into
two clusters. These five clusters can be found in the right-hand side plots. However,
the positive aspect is that the distances of clusters for the same cell types are close.
For example, the cluster of T cell population from PBMC 10k and the cluster T cell
population from PBMC 3k have only a tiny gap between their borders. The situation
is similar for the Mono cell populations from these two datasets. The two Mono cell
clusters are all located at the bottom right corner of the plot.

Fig. 6.9 Projection of the integrated PBMC datasets. Both of these two figures are
created using the same pathway activity profile of the integrated PBMC datasets. Cells
in the left figure is labelled with 7 cell types, and labelled with dataset in the right
figure.

In conclusion, the current results do not reach expectations, as the same cell types from
the two datasets are not totally clustered together. they still show promising direction
for refining the implementation steps. For example, as DIGS2 is a supervised method,
the different cell label settings could affect the integration results. Thus, training the
PBMC 3k dataset with the same cell labels as PBMC 10k dataset may lead to better
results.

6.6 Conclusion and Discussion

This chapter explores the application of the DIGS2 model on scRNA-Seq data. As a
newly emerged gene expression profiling technology, scRNA-Seq breaks the limitations
of deep sequencing in single cells. However, the sparsity of the scRNA-Seq data is still
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unavoidable and brings challenges in analysing them. Therefore, this chapter uses a
wide range of datasets to test the performance of the DIGS2 model.

Four experiments were implemented on two scRNA-Seq datasets. First, using the
pathway activity values to separate the different immune cell types in human peripheral
blood mononuclear cells; second, using pathway activity values to separate the cells
from different body tissues, i.e. blood and tumour; third, using pathway activity values
to separate the four breast cancer subtype and lastly using pathway activity to separate
the breast cancer subtype of worst prognosis, TNBC, with the other subtypes. The
first experiment was conducted on the PBMC 3k dataset; the other three experiments
were implemented on the breast cancer dataset. These experiments aim to provide a
comprehensive view for exhibiting the performance of the DIGS2 model on scRNA-Seq
datasets by using both the primary PBMC dataset and the more complex breast cancer
datasets.

The evaluation in this chapter focuses more on how the cells are clustered with the
inferred pathway activity values, as cell clustering and low-dimensional visualisation are
crucial steps in analysing single-cell data. Therefore, the method is evaluated using the
averaged silhouette score calculated on the cell clusters in the UMAP projection scatter
plots. The results showed that DIGS2 outperforms the baseline method GSVA, which
is prevalent in analysing scRNA-Seq data. More importantly, the results showed that
the DIGS2 model could provide much knowledge for analysing the scRNA-Seq datasets.
Compared with the standard analysing pipeline, DIGS2 not only can provide significant
genes but also can provide significant pathways. Also, DIGS2 is proven to derive the
disease-related pathway and genes, which benefits the research of the complex disease.

Also, this chapter discusses the possibility of using pathway activity values to integrate
the different scRNA-Seq datasets. The pathway activity values are produced separately
for PBMC 3k and PBMC 10k, and then combined to form integrated pathway activity
profiles. The UMAP projection of the integrated pathway activity values showed that,
although the datasets are not merged very well, the cells of the same types show the
trends of being clustered together. Therefore, it can gain better results after refining
the implementation pipeline.

In conclusion, DIGS2 shows its superiority in analysing the scRNA-Seq data and more
applications of the pathway activity values of scRNA-Seq data are worth discovering.



Chapter 7

Conclusions and future work

7.1 Overview of thesis

The thesis focused on using optimisation models for pathway activity inference on
different kinds of gene profiling data. Chapters 1 and 2 provided the introduction and
related background for addressing this problem. Chapters 3 and 4 discussed applying an
existing optimisation model on microarray and RNA-Seq datasets. Chapter 5 proposed
a new optimisation model and applied it to RNA-Seq data to verify its advancements.
Chapter 6 explored using the new proposed model on the newest and most challenging
data, scRNA-Seq. A brief overview of each chapter is given below.

Chapter 1 introduced the general topic of research undertaken in this thesis and briefly
explained the rationale behind the work. It placed the pathway activity inference
problem in the System Biology context, outlining the thesis’s key research goals.

Chapter 2 provided a detailed review of the essential background and related work.
First, three gene profiling technologies and their properties were introduced. Then
an introduction of how biological pathways can be incorporated within the analysis
of the profiling data, followed by the definition of pathway activity inference. The
functions and advancements of reducing the data dimensionality from gene-level to
pathway-level by pathway activity inference methods were described. The overview of
the pathway activity inference framework was given in detail, including the profiling
data and pathway data collection, pathway activity profile calculation and metrics to
evaluate the pathway activity inference method. Finally, a review of pathway activity
inference methods was given.
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Chapter 3 discussed the problem of classifying the binary phenotypes, i.e. disease and
healthy, of ischemic stroke. An existing MILP optimisation model DIGS was applied
for inferring the pathway activity values using microarray gene profiling datasets of
ischemic stroke. The classification results using six machine learning classifiers showed
promising accuracy rates (83.5%) and relatively high AUC values (91.5%) over ten
times training and testing data split, which was higher than most current gene-based
stroke phenotype prediction methods. Also, the important pathways identified by the
DIGS model were proven related to the cause of ischemic stroke and can be seen as the
pathway biomarkers of ischemic stroke.

Chapter 4 discussed the problem of classifying the multi-class phenotypes in the four
molecular subtypes of colorectal cancer. The DIGS model was applied for inferring the
pathway activity values using the advanced high-throughput profiling technology, RNA-
Seq gene profiling dataset. In addition to the classification accuracy, this chapter added
two more evaluation metrics for evaluating the pathway activity inference method, the
robustness against noisy data and survival analysis. The results comprising DIGS with
baseline and newly proposed pathway activity inference methods showed that the DIGS
model outperformed the other models in all three evaluation metrics. Therefore the
adaptation of the DIGS model on RNA-Seq data is illustrated. Moreover, concerning
identifying disease-related pathways, this chapter proposed a follow-up approach to
calculate the sample classification accuracy for individual pathways based on the
outputs of the DIGS model. Therefore the pathways can be ranked according to their
classification accuracies. By searching the literature, the top-ranked pathways also
proved to be those highly related to colorectal cancer.

Chapter 5 refined the DIGS model to a more robust optimisation-based pathway activity
inference method for multi-class disease classification tasks, called DIGS2. DIGS2 is
also a MILP optimisation model, which reduces the number of binary variables to
decrease computational complexity. Therefore, the DIGS2 model can be solved to
global optimality easier than DIGS using the same input data. The DIGS2 model is
verified on the breast cancer and colorectal cancer RNA-Seq datasets for binary and
multi-class classification tasks. The comparative study showed that DIGS2 improved
the computational efficiency compared with DIGS. The number of optimal solutions
increased, and the gap values decreased. Also, DIGS2 outperformed the DIGS model and
other comparative pathway activity inference methods for the three evaluation metrics.
Moreover, the approach of evaluating individual pathways was further extended to build
the NaiveDIGS method, which could aggregate the DIGS2 outputs of all pathways
and produce the overall classification accuracy. The NaiveDIGS enabled the DIGS2
method to get rid of the outsider machine learning classifiers and directly provide the
evaluation for disease phenotype classification.
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Chapter 6 explores the application of DIGS2 model on single-cell RNA-Seq datasets.
The objectives consisted of three parts. First pathway activity values are used to
separate the cell types of healthy human blood cells. Next pathway activity values are
used to separate the molecular subtypes of breast cancer cells. The DIGS2 model was
compared with a widely used pathway activity inference method applied to scRNA-Seq
data. The results showed that DIGS2 performed better on the scRNA-Seq data for
clustering and classifying the cells than the comparative method. In the last objective
the pathway activity values are used to integrate cells from different datasets. Two
human blood cell datasets were merged using the pathway activity value inferred by
DIGS2. Although the merged dataset did not reach the best integration status, the
results still were promised to be improved with refined cell label settings.

7.2 Research aims revisited

In Chapter 1, five research aims were outlined. These are now revisited in this section
in order to ascertain how effectively they have been fulfilled.

1. To build on existing pathway activity inference method to evaluate its ability on
analysing bulk gene expression profiling data.

The DIGS method was applied to a microarray dataset in Chapter 3 and two RNA-Seq
datasets in Chapter 4 and Chapter 5. Traditionally, the pathway activity inference
method is evaluated by machine learning classifiers. The pathway activity profile is
passed into the classifier for training and testing. The prediction accuracy is used for
assessing how well the pathway activity values can classify sample phenotypes. In this
thesis, two more evaluation metrics are designed to evaluate its ability to represent
data efficiently. The first is the robustness against noise in gene expression data. As the
gene profiling technologies would unavoidably introduce noise into the expression data,
pathway activity values are expected to have the ability to eliminate the noise to some
extent. The other is how the pathway activity values can predict the survival of patient
samples. Compared with using gene-level data to predict the survival probability,
pathway-level data incorporates the higher level information, the functions of gene
groups. Therefore, the pathway activity values are expected to perform better in
survival prediction. The results from these two chapters showed that the DIGS model
outperformed the comparative methods for classification accuracy and performed better
for robustness and survival analysis. Therefore this research aim was addressed.

2. To build and implement a new pathway activity inference method that has higher
solution quality and higher prediction accuracy.
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In Chapter 5, a refined MILP optimisation model DIGS2 is proposed. A large number
of binary decision variables made the original DIGS model suffer from difficulties in
obtaining global optimal solutions. Therefore, in DIGS2 the model was reformulated to
reduce the number of binary decision variables. The strategy for reducing the number of
binary variables is replacing the pathway activity enclosing constraints with the sample
violation distance constraints. To be more specific, the original model needs binary
variables to judge whether a sample fills within a class or not, while the new model uses
a constant to describe the distance between samples and classes. Therefore the new
model can get rid of some binary decision variables. At the same time, DIGS2 retains
the core concept of the DIGS model for inference of pathway activity, i.e. calculating
the pathway activity as the weighted summation of gene expression values, where the
gene weights were optimised to maximise the separation of pathway activity values.
Consequently, the new model is expected to perform similarly to the original model in
practical usage.

Chapter 5.3.1 compares the computational efficiency between DIGS and DIGS2 models.
A great increase can be seen in the number of optimal solutions. Also, DIGS2 model
solutions had a much smaller number of Gap values for those feasible solutions. Chapter
5.3.2 compares the performance of these two models in terms of the quality of pathway
activities. The results showed that DIGS2 had higher prediction accuracy for binary
and multi-class problems. Therefore, the comparisons proved that DIGS2 is a better
model with higher solution quality and prediction accuracy.

3. To extend the application of pathway activity inference method from bulk data to
single cell data.

Chapter 6 applies the DIGS2 model to single-cell RNA-Seq datasets. As a newly
emerging technology, pathway activity inference on scRNA-Seq data has yet to be
widely investigated. The sparse nature of single-cell data and large number of cells
make analysis methods designed for bulk data only sometimes applicable to single-cell
data. Therefore, the flexible nature of the optimization models makes it more suitable
for single-cell data than other methods that rely on data quality. The results of Chapter
6 verified this view. The pathway activity calculated by DIGS2 not only showed great
improvements for cell clustering and cell label prediction but also got better performance
compared with the bulk method that had been applied for scRNA-Seq data analysis
(GSVA). Therefore, this research aim was addressed.

4. To evaluate the methodology to show comparability with existing methods from
literature.
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From Chapter 3 to Chapter 6, the DIGS and DIGS2 models were compared with the
most compatible methods listed in Table 2.3. Chapter 3 compared the DIGS model
with MEAN, Median and PCA. Chapter 4 compared the DIGS model with MEAN,
PCA and Pathifier. Chapter 5 compared two optimisation models with MEAN, PCA,
Pathifier and GSVA. Chapter 6 compares the DIGS2 model with GSVA. The other four
methods listed in Table 2.3 are not used for comparative study in this thesis because
they were only adopted to the binary problem, which did not meet the requirements for
solving multi-class classification problems. Among the comparative methods used in
this thesis, the MEAN and PCA represented the baseline methods, which are aimed at
providing a standard of the performance of pathway activity. GSVA is a well-known and
popular method. Pathifier represents the advanced method with complex calculation
processes and has been proven the best method from the literature. Therefore, by
comparing these methods, DIGS and DIGS2 models showed their comparability with
existing methods.

5. To demonstrate the potential of such methods to find meaningful results in biological
applications.

One of the most outstanding advantages of the DIGS and DIGS2 models is that they
allow in-depth analysis of individual pathways. The DIGS and DIGS2 outputs consist
of the pathway activity values and class intervals for each pathway. Given the pathway
activity values and class intervals, the samples can be allocated to their nearest class.
Consequently, the importance of a single pathway can be assessed by how many samples
are allocated into the correct class. Compared with the other methods that rely on
statistical tests to evaluate the correlations between pathway activity values with
sample labels, DIGS and DIGS2 models provide a highly explainable way to identify
highly relevant pathways. Also, as these two optimisation models use gene weights
to construct the pathway activity values, the member genes of the pathways can be
assessed through their weight values.

In the results and discussion sections of Chapter 3, Chapter 4, Chapter 5, and Chapter
6, the important pathways and genes identified by DIGS or DIGS2 were verified in the
literature. Nearly all the high-ranked pathways and gene families had been proven to
be related to the disease of interest. Also, the robustness of these identified pathways
was shown throughout this thesis. For example, in Chapter 5 and Chapter 6, two
different breast cancer datasets (RNA-Seq and scRNA-Seq) and two different pathway
collections (KEGG and Hallmark) were input into the DIGS2 model. However, the
top-ranked pathways for separating the breast cancer subtypes from these two different
datasets are the same pathway (Chapter 6.9). Therefore, the important pathways
identified by the DIGS and DIGS2 models are meaningful and reproducible.
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7.3 Limitations

The optimisation models used in this thesis focused on dealing with the main concern
of the pathway activity inference problem and showed excellent results. However, there
are two limitations to these optimisation models.

The first limitation is that they do not consider the topology of pathways. Pathway
topology is the role, position, and interaction directions of the pathway genes [109].
From the conclusions of a review [249], for the pathway analysis methods, topology-
based methods appear to perform better than non-topology-based methods. This is
somewhat expected since the topology-based methods consider the structure of the
pathway, which is meant to describe underlying phenomena better than using only the
gene expression values.

The second limitation is that the optimisation models cannot indicate the regulation
directions of the pathways. Up- or down-regulation is a process by which the availability
of molecules involved in the pathway, such as proteins and mRNA, is increased or
decreased in the cell [250]. Some popular methods provide an up- or down-regulated
call at the pathway level. For example, GSVA compares the rank statistics of pathway
member genes with the complement genes to indicate the regulation direction of the
pathway [100]. For the optimisation models in this thesis, the gene weight variables
can potentially complete this task through their positive or negative signs. However,
the signs of gene wights have yet to have specific meanings in current models.

These limitations are not necessary for interpreting the pathway activities but imply the
potential improvements for the models built in this thesis. Therefore, it is reasonable
to invest time in exploring them further.

7.4 Future work

Future work will involve complementing work in Chapter 6 further. The scRNA-Seq
datasets integration process needs more reasonable pathway activity values as inputs.
The cell labels of the two datasets should be consistent. Therefore, the first step
is re-calculate the pathway activity values of PBMC 3k using the coarse cell type
annotations and then repeat the integration process to check the performance.

Future work will also involve the improvement of the methodologies presented in this
thesis. There is now a prototype of the new optimisation model for pathway activity
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inference, named as DIGS3. DIGS or DIGS2 uses the concept of class intervals to
limit the pathway activity values of samples to fall within a specific area on the axis to
separate the samples of different labels through the objective function. However, the
class ranges did not show their power in practical usage. For example, in the usage
of DIGS2 in Chapter 6, when the number of classes reached seven, many classes did
not have a valid range (i.e. the lower bound equals the upper bound). In particular,
some classes have a distribution of pathway activity values that is more prominent than
others. However, this is not reflected in its ranges, i.e. the samples of the same class
are clustered on the axis but are far away from the class interval.

Therefore, in this new version model, I tried to use another concept, the class anchor,
to replace the class intervals. The anchor represents a point on the axis that collects
samples from this class. In other words, DIGS3 brings the samples of the same class as
close as possible to the anchor point.

The indices, sets and parameters associated with the DIGS3 model are listed below:

Indices:
s cells (s = 1,2,...,S)
m pathway member genes (m = 1,2,...,M)
c class (c = 1,2,...,C)
cs mapping of classes and samples

Parameter:
Gsm gene expression values for cell s and gene m

Free Variable:
rm gene weight
ACc anchor point of class c
pas pathway activity value of sample s

Positive variable:
Ds distance of samples s to its class c

The objective function and the constraints that form the model are:
Objective:
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Min z =
∑

s

Ds (7 − 1)

Subject to:

pas =
M∑
m

Gsmrm ∀s (7 − 2)

(ACc − pas)2 ≤ Ds ∀s cs (7 − 3)

ACc − ACk ≥ 1 ∀k < c (7 − 4)

Because equation (7-3) introduced non-linear constraint into the model, this model is
an NLP model. This primary model aims to implement the concept of the class anchor.
By testing it on toy data with ten samples of two classes and six genes, the DIGS3
model has gotten better separation for the two phenotypes than the DIGS model. As
shown in Figure 7.1, the samples of different label are more clearly separated in DIGS3.
Therefore, in this next step, the DIGS3 model needed to be refined and made more
reasonable mathematically. In the meantime, it is tested on gene expression datasets
to indicate promising potential.

Overall, this thesis demonstrates the flexible and interpretable modelling offered by
mathematical optimisation methods in analysing high-throughput data to improve
disease classification. A series of DIGS models are implemented and tested on various
types of gene expression profiling data. The comparison results of these models showed
their superiority of the other pathway activity inference models. Their biological
interpretability has also been demonstrated. By analysing the output of the optimised
models, this thesis identifies several important genes and pathways associated with
disease.

The DIGS series models are keeping improving to deal with the more and more complex
up-to-date data and aim to achieve better performance.
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Fig. 7.1 Comparison between DIGS and DIGS3 using toy data.



References

[1] Iman Tavassoly, Joseph Goldfarb, and Ravi Iyengar. Systems biology primer: the
basic methods and approaches. Essays in Biochemistry, 62(4):487–500, October
2018.

[2] Teri A. Manolio. Genomewide Association Studies and Assessment of the Risk of
Disease. New England Journal of Medicine, 363(2):166–176, July 2010.

[3] David B. Goldstein, Andrew Allen, Jonathan Keebler, Elliott H. Margulies,
Steven Petrou, Slavé Petrovski, and Shamil Sunyaev. Sequencing studies in
human genetics: design and interpretation. Nature Reviews Genetics, 14(7):460–
470, July 2013.

[4] Yunjin Li, Lu Ma, Duojiao Wu, and Geng Chen. Advances in bulk and single-cell
multi-omics approaches for systems biology and precision medicine. Briefings in
Bioinformatics, page bbab024, March 2021.

[5] JG Liao and Khew-Voon Chin. Logistic regression for disease classification using
microarray data: model selection in a large p and small n case. Bioinformatics,
23(15):1945–1951, 2007.

[6] Harish Bhaskar, David C. Hoyle, and Sameer Singh. Machine learning in bioin-
formatics: A brief survey and recommendations for practitioners. Computers in
Biology and Medicine, 36(10):1104–1125, October 2006.

[7] L. Ein-Dor, O. Zuk, and E. Domany. Thousands of samples are needed to generate
a robust gene list for predicting outcome in cancer. Proceedings of the National
Academy of Sciences, 103(15):5923–5928, April 2006.

[8] H Paul Williams. Model building in mathematical programming. John Wiley &
Sons, 2013.

[9] Matthew V. Rockman and Leonid Kruglyak. Genetics of global gene expression.
Nature Reviews Genetics, 7(11):862–872, November 2006.

[10] Susan D. Thompson, Sampath Prahalad, and Robert Allen Colbert. Integrative
Genomics. In Textbook of Pediatric Rheumatology, pages 43–53.e3. Elsevier, 2016.

[11] Patrick O. Brown and David Botstein. Exploring the new world of the genome
with DNA microarrays. Nature Genetics, 21(S1):33–37, January 1999.

[12] Dennise D. Dalma-Weiszhausz, Janet Warrington, Eugene Y. Tanimoto, and
C. Garrett Miyada. [1] The Affymetrix GeneChip® Platform: An Overview. In
Methods in Enzymology, volume 410, pages 3–28. Elsevier, 2006.



References 143

[13] Likun Wang, Zhixing Feng, Xi Wang, Xiaowo Wang, and Xuegong Zhang. DEGseq:
an R package for identifying differentially expressed genes from RNA-seq data.
Bioinformatics, 26(1):136–138, January 2010.

[14] Fangxin Hong, Rainer Breitling, Connor W. McEntee, Ben S. Wittner, Jennifer L.
Nemhauser, and Joanne Chory. RankProd: a bioconductor package for detecting
differentially expressed genes in meta-analysis. Bioinformatics, 22(22):2825–2827,
November 2006.

[15] W. Pan. A comparative review of statistical methods for discovering differentially
expressed genes in replicated microarray experiments. Bioinformatics, 18(4):546–
554, April 2002.

[16] Roger Bumgarner. Overview of DNA Microarrays: Types, Applications, and
Their Future. Current Protocols in Molecular Biology, 101(1), January 2013.

[17] Zhong Wang, Mark Gerstein, and Michael Snyder. RNA-Seq: a revolutionary
tool for transcriptomics. Nature Reviews Genetics, 10(1):57–63, January 2009.

[18] Fatih Ozsolak and Patrice M. Milos. RNA sequencing: advances, challenges and
opportunities. Nature Reviews Genetics, 12(2):87–98, February 2011.

[19] Bo Li, Victor Ruotti, Ron M. Stewart, James A. Thomson, and Colin N. Dewey.
RNA-Seq gene expression estimation with read mapping uncertainty. Bioinfor-
matics, 26(4):493–500, February 2010.

[20] May Ke, Badran Elshenawy, Helen Sheldon, Anjali Arora, and Francesca M Buffa.
Single cell RNA-sequencing: A powerful yet still challenging technology to study
cellular heterogeneity. BioEssays, page 2200084, September 2022.

[21] Xiliang Wang, Yao He, Qiming Zhang, Xianwen Ren, and Zemin Zhang. Direct
Comparative Analyses of 10X Genomics Chromium and Smart-seq2. Genomics,
Proteomics & Bioinformatics, 19(2):253–266, April 2021.

[22] Allon M. Klein, Linas Mazutis, Ilke Akartuna, Naren Tallapragada, Adrian Veres,
Victor Li, Leonid Peshkin, David A. Weitz, and Marc W. Kirschner. Droplet
Barcoding for Single-Cell Transcriptomics Applied to Embryonic Stem Cells. Cell,
161(5):1187–1201, May 2015.

[23] Serge Koscielny. Why Most Gene Expression Signatures of Tumors Have Not
Been Useful in the Clinic. Science Translational Medicine, 2(14), January 2010.

[24] B. van der Vegt, G.H. de Bock, H. Hollema, and J. Wesseling. Microarray methods
to identify factors determining breast cancer progression: Potentials, limitations,
and challenges. Critical Reviews in Oncology/Hematology, 70(1):1–11, April 2009.

[25] Eytan Domany. Using High-Throughput Transcriptomic Data for Prognosis: A
Critical Overview and Perspectives. Cancer Research, 74(17):4612–4621, Septem-
ber 2014.

[26] Marc J. van de Vijver, Yudong D. He, Laura J. van ’t Veer, Hongyue Dai,
Augustinus A.M. Hart, Dorien W. Voskuil, George J. Schreiber, Johannes L.
Peterse, Chris Roberts, Matthew J. Marton, Mark Parrish, Douwe Atsma, Anke
Witteveen, Annuska Glas, Leonie Delahaye, Tony van der Velde, Harry Bartelink,
Sjoerd Rodenhuis, Emiel T. Rutgers, Stephen H. Friend, and René Bernards. A
Gene-Expression Signature as a Predictor of Survival in Breast Cancer. New
England Journal of Medicine, 347(25):1999–2009, December 2002.



References 144

[27] Yixin Wang, Jan GM Klijn, Yi Zhang, Anieta M Sieuwerts, Maxime P Look,
Fei Yang, Dmitri Talantov, Mieke Timmermans, Marion E Meijer-van Gelder,
Jack Yu, Tim Jatkoe, Els MJJ Berns, David Atkins, and John A Foekens. Gene-
expression profiles to predict distant metastasis of lymph-node-negative primary
breast cancer. The Lancet, 365(9460):671–679, February 2005.

[28] Sridhar Ramaswamy, Ken N. Ross, Eric S. Lander, and Todd R. Golub. A
molecular signature of metastasis in primary solid tumors. Nature Genetics,
33(1):49–54, January 2003.

[29] L. Ein-Dor, I. Kela, G. Getz, D. Givol, and E. Domany. Outcome signature genes
in breast cancer: is there a unique set? Bioinformatics, 21(2):171–178, January
2005.

[30] Biological Pathways Fact Sheet, August 2020.

[31] A L Fridman and M A Tainsky. Critical pathways in cellular senescence and
immortalization revealed by gene expression profiling. Oncogene, 27(46):5975–
5987, October 2008.

[32] Zhaohui Feng, Wenwei Hu, Gunaretnam Rajagopal, and Arnold J. Levine. The
tumor suppressor p53: Cancer and aging. Cell Cycle, 7(7):842–847, April 2008.

[33] A Ben-Ze’ev. Cytoskeletal and adhesion proteins as tumor suppressors. Current
Opinion in Cell Biology, 9(1):99–108, 1997.

[34] Mathew Loesch. The p38 MAPK stress pathway as a tumor suppressor or more?
Frontiers in Bioscience, Volume(13):3581, 2008.

[35] Miguel A García-Campos, Jesús Espinal-Enríquez, and Enrique Hernández-Lemus.
Pathway analysis: state of the art. Frontiers in physiology, 6:383, 2015.

[36] Mike West, Carrie Blanchette, Holly Dressman, Erich Huang, Seiichi Ishida,
Rainer Spang, Harry Zuzan, John A. Olson, Jeffrey R. Marks, and Joseph R.
Nevins. Predicting the clinical status of human breast cancer by using gene
expression profiles. Proceedings of the National Academy of Sciences, 98(20):11462–
11467, September 2001.

[37] Andrea H. Bild, Guang Yao, Jeffrey T. Chang, Quanli Wang, Anil Potti, Dawn
Chasse, Mary-Beth Joshi, David Harpole, Johnathan M. Lancaster, Andrew
Berchuck, John A. Olson, Jeffrey R. Marks, Holly K. Dressman, Mike West, and
Joseph R. Nevins. Oncogenic pathway signatures in human cancers as a guide to
targeted therapies. Nature, 439(7074):353–357, January 2006.

[38] Bert Vogelstein and Kenneth W Kinzler. Cancer genes and the pathways they
control. Nature Medicine, 10(8):789–799, August 2004.

[39] James W. Watters and Christopher J. Roberts. Developing gene expression
signatures of pathway deregulation in tumors. Molecular Cancer Therapeutics,
5(10):2444–2449, October 2006.

[40] Aravind Subramanian, Pablo Tamayo, Vamsi K. Mootha, Sayan Mukherjee,
Benjamin L. Ebert, Michael A. Gillette, Amanda Paulovich, Scott L. Pomeroy,
Todd R. Golub, Eric S. Lander, and Jill P. Mesirov. Gene set enrichment analysis:
A knowledge-based approach for interpreting genome-wide expression profiles.
Proceedings of the National Academy of Sciences, 102(43):15545–15550, October
2005.



References 145

[41] Marit Ackermann and Korbinian Strimmer. A general modular framework for
gene set enrichment analysis. BMC Bioinformatics, 10(1):47, December 2009.

[42] Dan Nettleton, Justin Recknor, and James M. Reecy. Identification of differentially
expressed gene categories in microarray studies using nonparametric multivariate
analysis. Bioinformatics, 24(2):192–201, January 2008.

[43] John Tomfohr, Jun Lu, and Thomas B Kepler. Pathway level analysis of gene
expression using singular value decomposition. BMC Bioinformatics, 6(1):225,
December 2005.

[44] J. J. Goeman and P. Buhlmann. Analyzing gene expression data in terms of gene
sets: methodological issues. Bioinformatics, 23(8):980–987, April 2007.

[45] I. Dinu, J. D. Potter, T. Mueller, Q. Liu, A. J. Adewale, G. S. Jhangri, G. Einecke,
K. S. Famulski, P. Halloran, and Y. Yasui. Gene-set analysis and reduction.
Briefings in Bioinformatics, 10(1):24–34, October 2008.

[46] Qi Liu, Irina Dinu, Adeniyi J Adewale, John D Potter, and Yutaka Yasui.
Comparative evaluation of gene-set analysis methods. BMC Bioinformatics,
8(1):431, December 2007.

[47] J. J. Goeman, S. A. van de Geer, F. de Kort, and H. C. van Houwelingen.
A global test for groups of genes: testing association with a clinical outcome.
Bioinformatics, 20(1):93–99, January 2004.

[48] U. Mansmann and R. Meister. Testing Differential Gene Expression in Functional
Groups: Goeman’s Global Test versus an ANCOVA Approach. Methods of
Information in Medicine, 44(03):449–453, 2005.

[49] Irina Dinu, John D Potter, Thomas Mueller, Qi Liu, Adeniyi J Adewale, Gian S
Jhangri, Gunilla Einecke, Konrad S Famulski, Philip Halloran, and Yutaka Yasui.
Improving gene set analysis of microarray data by SAM-GS. BMC Bioinformatics,
8(1):242, December 2007.

[50] W. T. Barry, A. B. Nobel, and F. A. Wright. Significance analysis of func-
tional categories in gene expression studies: a structured permutation approach.
Bioinformatics, 21(9):1943–1949, May 2005.
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Appendix A

DIGS released COAD relevant
pathways

A.1 Ranking for KEGG Pathways for COAD

Table A.1 Top 50 KEGG Pathways of COAD (DIGS)

Pathway No.
Gene

Genes with weights (Ranked High to Low)

Primary bile acid biosyn-
thesis

18 ACOT8 HSD17B4 CYP7B1 SCP2 SLC27A5

Other glycan degrada-
tion

17 MAN2B1 ENGASE MANBA FUCA1 GLB1

Sulfur relay system 7 MOCS3 URM1 CTU2 NFS1 MPST

Glycosaminoglycan
biosynthesis keratan
sulfate

14 CHST4 ST3GAL3 CHST1 FUT8 CHST6

Maturity onset diabetes
of the young

27 RFX6 MNX1 PKLR HNF4A GCK

Pantothenate and CoA
biosynthesis

22 VNN3 BCAT1 PANK1 VNN1 ENPP3

Non homologous end join-
ing

13 MRE11 XRCC4 FEN1 PRKDC POLM

2 Oxocarboxylic acid
metabolism

19 GPT BCAT1 BCAT2 ABHD14A-
ACY1

IDH3A

One carbon pool by fo-
late

21 FTCD TYMS ATIC ALDH1L2 AMT

Continued on next page
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Table A.1 – Continued from previous page
Pathway No.

Gene
Genes with weights (Ranked High to Low)

Glycosaminoglycan
biosynthesis chondroitin
sulfate dermatan sulfate

20 CHST12 CHST13 DSE CHSY3 CHST11

Proximal tubule bicar-
bonate reclamation

25 CA4 CA2 ATP1A3 SLC4A4 SLC9A3

Renin angiotensin system 20 ENPEP ACE2 ACE KLK2 ANPEP

Vitamin digestion and
absorption

25 SLC19A3 LRAT SLC23A1 RBP2 CBLIF

Graft versus host disease 38 HLA-
DMA

GZMB PRF1 IFNG KLRD1

Asthma 30 IL5 HLA-
DMA

CCL11 HLA-
DPB1

IL10

Phototransduction 28 SAG GUCA1A PDE6A GRK7 CNGB1

Steroid hormone biosyn-
thesis

64 CPN1 UGT2B10 DHRS11 UGT2B7 CYP7B1

Cocaine addiction 50 SLC18A1 DRD2 GRIN2B BDNF CREB3L3

Glycosylphosphatidylinositol
(GPI) anchor biosynthe-
sis

26 PIGU PIGH PIGB GAB1 PIGC

Mismatch repair 23 RPA4 RFC3 RPA1 POLD3 MLH1

Primary immunodefi-
ciency

37 IGLL1 AIRE TNFRSF13CBTK ORAI1

Hippo signaling pathway
multiple species

27 DCHS2 FAT4 FRMD6 RASSF6 TEAD3

Biosynthesis of unsatu-
rated fatty acids

28 BAAT ELOVL3 HACD4 ELOVL2 HACD1

Terpenoid backbone
biosynthesis

21 HMGCS2 FDPS ICMT GGPS1 MVD

Type I diabetes mellitus 40 GAD1 HLA-
DQA1

TNF HLA-
DRB5

FASLG

Hedgehog signaling path-
way

55 GAS1 DHH SMURF2 HHIP EVC

Glycosaminoglycan
biosynthesis heparan
sulfate heparin

24 HS6ST3 GLCE EXT1 XYLT1 NDST1

Allograft rejection 34 IL5 HLA-
DOA

HLA-
DMA

HLA-
DRB5

CD40LG

Fatty acid elongation 27 ELOVL2 ELOVL3 HACD4 THEM4 ELOVL4

Prolactin signaling path-
way

70 MAPK12 HGF TNFSF11 SHC2 ELF5

Continued on next page
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Table A.1 – Continued from previous page
Pathway No.

Gene
Genes with weights (Ranked High to Low)

Folate biosynthesis 30 ALPG ALPP GGH TH AR

Fatty acid degradation 44 LBP ACSL6 CPT1C ADH4 ACSBG2

Porphyrin and chloro-
phyll metabolism

43 UGT1A1 ALAS1 UGT1A8 COX10 PPOX

SNARE interactions in
vesicular transport

33 STX1B STX3 VAMP2 STX19 STX16

Estrogen signaling path-
way

138 CALML6 HSPA2 KRT16 ADCY6 ADCY4

African trypanosomiasis 41 HP LAMA3 IFNG APOA1 IL12A

Cholesterol metabolism 56 APOH ABCG8 VAPB STAR PLTP

Antifolate resistance 34 FOLR1 FOLR2 DHFR GGH TYMS

Collecting duct acid se-
cretion

27 ATP6V0A4CLCNKB ATP6V0E2ATP6V1B2 CA2

ABC transporters 45 ABCC9 ABCG8 ABCA12 ABCG2 ABCB11

Ether lipid metabolism 49 PLA2G2F PLA2G3 PLA2G2D JMJD7-
PLA2G4B

PLA2G2A

Regulation of lipolysis in
adipocytes

55 FABP4 ADORA1 PLIN1 AKT3 ADCY2

Protein export 23 IMMP2L HSPA5 IMMP1L SEC62 SPCS1

Other types of O glycan
biosynthesis

47 POFUT1 COLGALT2GXYLT2 GALNT14 GALNT4

Fat digestion and absorp-
tion

46 MTTP CEL ABCG5 FABP2 ABCG8

RNA polymerase 33 POLR2F POLR3K POLR2I POLR2J POLR3H

Aldosterone regulated
sodium reabsorption

39 SGK1 SCNN1G PDK1 FXYD2 ATP1B1

RIG I like receptor signal-
ing pathway

72 PIN1 MAPK11 CXCL10 RIPK1 RNF125

Yersinia infection 140 CD8B2 ACTR3C MAPK11 TRAF2 MAPK10

Relaxin signaling path-
way

129 ADCY1 MMP1 COL3A1 GNAI2 CREB3L3

A.2 Significant COAD related pathways from literature

[136] analyzed cancer-related signaling pathways from the KEGG for specific deregu-
lation in each cancer subtype signature. They pointed out 19 KEGG pathways that
are up- or down- regulated for colorectal cancer using gene set enrichment analysis,
among them 6 pathways are given high rank by DIGS. They are Renin-angiotensin
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system (rank 12), Mismatch repair (rank 20), Hedgehog signalling pathway (rank 26),
Apoptosis (rank 55), ECM-receptor interaction (rank 57), DNA replication (rank 86).

[176] uploaded the DEGenes to the Database for Annotation Visualization and Inte-
grated Discovery (DAVID) online tool for KEGG pathway analysis. They found the
Vitamin digestion and absorption is the most relevant pathway for colon cancer progres-
sion. This pathway is ranked 13 by DIGS. The forth and fifth important pathways, Fat
digestion and absorption and Carbohydrate digestion and absorption are also ranked
high in DIGS, which are 45 and 58 respectively.

[177] focus on the relationship between colorectal cancer and signalling pathways. They
summarised 9 signalling pathways that are contributing to carcinogenesis. Among
them, 2 signalling pathways are given high rank by DIGS, Hippo signalling pathway
(rank 22) and Hedgehog signalling pathway (rank 26).

A.3 Pathway maps colored by gene weights
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Fig. A.1 KEGG pathway maps with colors for important genes. Genes marked with
red, orange and yellow are genes were assigned weights by DIGS, green genes do not
have weights.
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Fig. A.2 KEGG pathway maps with colors for important genes. Genes marked with
red, orange and yellow are genes were assigned weights by DIGS, green genes do not
have weights.



Appendix B

DIGS2 released COAD and
BRCA relevant pathways

Table B.1 Top 50 KEGG Pathways of BRCA (DIGS2)

Pathway No.
Gene

Genes with weights (Ranked High to Low)

Pancreatic secretion 104 CA2 CPA1 CHRM3 PRSS2 CPA2

Circadian rhythm 32 RORB ROR1 PRKAA2 RORA CUL1

Peroxisome 87 AGXT HAO2 ACSL6 PEX11A IDH2

Chemical carcinogenesis 81 GSTM5 PTGS2 GSTA1 GSTA2 CYP1A1

Platinum drug resistance 73 GSTM5 GSTA2 GSTA1 CDKN2A GSTT2B

Drug metabolism
cytochrome P450

70 GSTM5 GSTA1 GSTA2 UGT2B11 FMO2

Folate biosynthesis 30 TPH1 PAH ALPL MOCOS FPGS

Drug metabolism other
enzymes

79 GSTM5 GSTA1 GSTA2 XDH GSTT2B

Cocaine addiction 50 SLC18A2 DRD1 GRIN2A CREB3L3 SLC18A1

Carbon metabolism 118 AGXT HAO2 ALDOB PHGDH PSAT1

Nicotine addiction 41 CHRNA6 GABRQ GABRP CHRNA7 GRIN2A

Complement and coagu-
lation cascades

93 C4BPA C4BPB C1QC C1QB PLAT

RNA polymerase 33 POLR2F POLR1F POLR2D POLR3G POLR1B

Glutamatergic synapse 122 GRIK1 PLA2G4A SLC1A6 ADCY3 PRKCG

Metabolism of xenobi-
otics by cytochrome P450

77 GSTM5 GSTA1 GSTA2 CYP1A1 UGT2B11

Pathways in cancer 539 GSTM5 GSTA2 NKX3-1 FGF10 F2

Continued on next page
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Table B.1 – Continued from previous page
Pathway No.

Gene
Genes with weights (Ranked High to Low)

Herpes simplex virus 1 in-
fection

499 ITGB3 ZNF705E ZFP57 POU2F3 IL6

Pathways of neurodegen-
eration multiple diseases

482 ATP2A1 DNAI2 COX7A1 GRIA3 TUBA3E

PPAR signaling pathway 74 UCP1 FABP5 ACSL6 HMGCS2 PLTP

Glycosylphosphatidylinositol
(GPI) anchor biosynthe-
sis

26 PIGA PIGQ PIGB PIGT PIGC

Spinocerebellar ataxia 150 FGF14 RBPJL PSMD4 ATP2A1 NFYA

Synaptic vesicle cycle 83 SLC18A2 SLC6A2 UNC13C ATP6V0D2ATP6V1B2

HIF 1 signaling pathway 106 ALDOB EGFR PLCG2 ANGPT1 PRKCG

Amphetamine addiction 69 SLC18A2 GRIA3 DRD1 PRKCG GRIA1

Steroid hormone biosyn-
thesis

64 CYP1A1 AKR1D1 AKR1C2 UGT2B28 UGT2B7

Other glycan degrada-
tion

17 NEU4 FUCA2 MAN2C1 MAN2B2 HEXA

Terpenoid backbone
biosynthesis

21 HMGCS2 FDPS PDSS1 RCE1 IDI1

Primary bile acid biosyn-
thesis

18 BAAT CYP39A1 AKR1D1 CYP7B1 CYP7A1

Biosynthesis of unsatu-
rated fatty acids

28 BAAT ELOVL4 SCP2 ELOVL5 HACD2

Collecting duct acid se-
cretion

27 CA2 ATP6V0D2ATP6V1C2SLC4A1 ATP6V1B2

Alzheimer disease 375 ATP2A1 WNT7A IL1A COX7A1 TUBA3E

Retinol metabolism 68 CYP1A1 RDH12 CYP2W1 CYP27C1 CYP2A7

Mismatch repair 23 MSH2 MSH6 RFC3 POLD1 EXO1

Thyroid hormone synthe-
sis

77 TTN F2 ATF2 ATP1B3 GPX2

Cholinergic synapse 116 CHRNA6 NRAS CHRM3 FYN KCNQ4

Ribosome 154 RPL3L RPL31 RPL37 RPS3A RPL14

Biosynthesis of amino
acids

75 ALDOB PHGDH PSAT1 TKTL1 PAH

Proteasome 49 PSMB4 PSMD4 PSMB5 ADRM1 PSME2

Amyotrophic lateral scle-
rosis

369 TUBA3E DNAI2 COX7A1 GRIA1 CASP12

Arginine and proline
metabolism

47 CKM SMO ODC1 P4HA2 P4HA3

Continued on next page
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Table B.1 – Continued from previous page
Pathway No.

Gene
Genes with weights (Ranked High to Low)

Autoimmune thyroid dis-
ease

49 HLA-B HLA-
DRA

HLA-
DOB

HLA-F HLA-
DRB1

Sphingolipid metabolism 49 CERS3 UGT8 GLA ACER1 SPHK1

Lysosome 128 CTSK ATP6V0D2LAMP3 ACP5 AP3M1

2 Oxocarboxylic acid
metabolism

19 BCAT1 NAGS ACY1 BCAT2 GOT1

Allograft rejection 34 HLA-
DRA

HLA-B HLA-
DRB1

HLA-
DOB

HLA-F

Non homologous end join-
ing

13 RAD50 PRKDC XRCC5 FEN1 MRE11

Huntington disease 312 UCP1 COX7A1 TUBA3E ITPR1 DNAH9

Oocyte meiosis 128 BUB1 CCNB2 YWHAG PPP2R1B ESPL1

Apoptosis multiple
species

32 SEPTIN4 BIRC7 NGFR BIRC5 CASP7
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Fig. B.1 Pathway activity dimension reduction plots (TSNE) for six PA inference
methods and Hierarchical clustering map of significant pathways (COAD).
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Fig. B.2 Pathway activity dimension reduction plots (TSNE) for six PA inference
methods (BRCA).
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Fig. B.3 Top 30 pathways from SHAP for COAD
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Fig. B.4 Top 10 pathways from SHAP for each subtype of COAD.
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Fig. B.5 Top 10 pathways from SHAP for each subtype of BRCA.
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