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BER Analysis of IRS-Assisted Wireless
Communications in Generalized Gaussian Noise

Ahmad Massud Tota Khel, and Khairi Ashour Hamdi, Senior Member, IEEE

Abstract—This paper considers intelligent reflecting surface
(IRS)-assisted wireless communication systems having an
arbitrary number of reflecting elements in additive white
generalized Gaussian noise and general fading channels. It
presents unified expressions for the precise bit error rate (BER)
analysis of different modulation schemes, including M-ary pulse
amplitude modulation (MPAM), M-ary quadrature amplitude
modulation (MQAM), and M-ary phase shift keying modulation
(MPSK). By applying the unified expressions, we analyze the BER
performance in different IRS transmission schemes: intelligent
transmission, where the phases of the fading channels are known
at the IRS; transmission with imperfect phase shifts, where the
phases are partially known and/or the IRS is able to apply
discrete phase shifts; and blind transmission, where the phases
are unknown at the IRS. The preciseness of the expressions is
then verified by Monte-Carlo simulations. Although an IRS with
blind transmission achieves a higher BER, it can be a promising
candidate for low-cost and low-data rate communications through
an ambient IRS that does not require implementation complexity
and channel estimation overhead.

Index Terms—Arbitrary number of reflecting elements, bit
error rate, general fading channels, generalized Gaussian noise,
intelligent reflecting surfaces.

I. INTRODUCTION

THE propagation environment in conventional wireless
communications itself is random and uncontrollable,

which is a major limiting factor and leads to significant
performance degradation [1]. In order to manipulate and
control the wireless environment, intelligent reflecting surfaces
(IRSs) have been introduced which revolutionize the design
of future wireless systems. An IRS is composed of a number
of nearly passive reflecting elements (REs), which offers the
ability to smartly modify the propagation environment and
provides indirect transmission paths to wireless systems. Based
on the availability of IRS fading channels’ phases, the REs
apply phase shifts to form beams and direct the incident signals
towards a desired destination, and thus the received signal and
overall performance are significantly improved [1], [2].

In IRS-assisted systems, when the phases of the fading
channels are fully known at the IRS, and the REs apply
continuous phase shifts to optimize and align the phases,
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resulting in signal-to-noise ratio (SNR) maximization, the IRS
transmission is referred to as intelligent transmission [3]–[10].
Moreover, when the phases are partially known at the IRS
and/or the IRS is able to apply discrete phase shifts, the
incident signals are reflected with phase shift errors, which
improves the SNR but not maximizes it, and thus it is referred
to as transmission with imperfect phase shifts [11]–[14]. On
the other hand, when the phases are not known at the IRS, the
REs do not apply phase shifts but blindly reflect the incident
signals, which is referred to as blind transmission [15]–[18].

In the design and analysis of wireless communications, it
has conventionally been assumed that the received signals are
impacted solely by additive white Gaussian noise (AWGN),
which accounts only for thermal noise. In fact, the background
noise in various practical systems can arise from non-Gaussian
noise sources as well, that follow distributions with heavier
tails than Gaussian distribution [19]–[25]. For instance, man-
made interference noise, natural noise, atmospheric noise due
to thunderstorms and lighting, noise due the interference
signals that appear as short-term random bursts in ultra wide-
band wireless systems such as millimeter wave (mmWave)
and terahertz (THz) communications, as well as non-Gaussian
noise sources in wireless sensor networks, indoor and
outdoor wireless systems, wireless-powered communications,
and so forth [19]–[25]. Therefore, for an accurate analysis
of wireless systems, additive white generalized Gaussian
noise (AWGGN), which follows the generalized Gaussian
distribution, is used to model different types of noise such as
AWGN, gamma noise, and Laplacian noise [19], [23]–[25].

A. Related Works
Since IRSs are envisioned as a promising contender for

future wireless systems, the error rate performance of IRS-
assisted systems under AWGN, specific fading channels, and
a specific transmission scheme has been extensively analyzed
[3]–[14], [16]–[18]. In more details, the authors in [3] have
analyzed the symbol error rate (SER) of differential phase shift
keying modulation for an IRS-assisted system with intelligent
transmission under AWGN and Rician fading channels. In [4]–
[7], the SER of M-ary phase shift keying (MPSK) modulation
for IRS-assisted systems with intelligent transmission over
AWGN and Rayleigh fading channels has been studied. In
[8] and [9], the SER performance of IRSs-assisted systems
with intelligent transmission in the presence of AWGN under
Rayleigh and Nakagami-m fading channels has been analyzed,
respectively. Moreover, the bit error rate (BER) performance of
an IRS-assisted system with binary phase shift keying (BPSK)
modulation and intelligent transmission under AWGN and
extended η-µ fading channels has been evaluated in [10].
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In [11] and [12], by considering the IRS transmission with
imperfect phase shifts, the approximate SER performance
of IRS-assisted systems with different modulation formats
over AWGN and Rayleigh fading channels has been studied.
In [13], the approximate SER performance of IRS-assisted
systems with imperfect phase shifts under AWGN and Rician
fading channels has been studied. Moreover, the authors in
[14] have analyzed the BER of BPSK modulation for an IRS-
assisted system with imperfect phase shifts under AWGN and
Nakagami-m fading channels. In [16], by considering MPSK
modulation, the SER performance of IRS-assisted wireless
communication systems with blind transmission scheme in the
presence of AWGN and zero-mean complex Gaussian fading
channels has been investigated. In [17], the pairwise error
probability of an IRS-assisted system in blind transmission
under AWGN and non-zero mean complex Gaussian fading
channels has been assessed. In [18], the BER performance of
IRS-assisted systems with blind transmission under AWGN
and Nakagami-m fading channels has been investigated.

On the other hand, a very limited number of studies has been
reported on the BER/SER analysis of IRS-assisted systems
under AWGGN [19]–[21]. In further details, the authors in
[19] have considered an IRS-assisted system with intelligent
transmission under AWGGN and Rayleigh fading channels,
and have assessed the approximate SER of the system. In
[20], an IRS has been utilized as an access point, where the
communication has been assumed to be established through
intelligent transmission over Rayleigh fading channels. By
considering the AWGN plus Laplacian noise and BPSK
modulation, the authors have analyzed the approximate BER
performance of the system. Moreover, the authors in [21]
have considered BPSK modulation and studied the BER
performance of an IRS-assisted system under impulsive noise,
intelligent transmission, and Weibull fading channels.

B. Motivations, Contributions, and Organization

The vast majority of the aforementioned literature is
based on the assumption of classical AWGN (e.g. [3]–[14],
[16]–[18]). Nevertheless, in many applications of wireless
communications, relying solely on the assumption of AWGN
to describe the noise model is inadequate and neglects other
important sources of noise [19]–[25]. Additionally, despite the
Gaussian and generalized Gaussian distributions having the
same symmetry properties, the heavier-tailed noise types that
arise in different wireless environments cannot be modeled
by the Gaussian distribution [22], [25]. Therefore, to conduct
a precise analysis of IRS-assisted wireless systems, it is
necessary to consider a generalized noise model that accurately
characterizes various types of noise.

All of the works discussed in Section I-A have analyzed
the approximate BER/SER of IRS-assisted systems in specific
IRS transmission and fading channels. However, IRSs may
operate in different transmission schemes, including intelligent
transmission, transmission with imperfect phase shifts, and
blind transmission, which are determined based on the
availability or lack of the fading channels’ phase information.
Furthermore, considering the practical applications of wireless
systems, IRSs may operate in various wireless environments

and scenarios, such as clear line-of-sight (LOS) scenarios,
scattering and non-LOS scenarios, indoor and outdoor
communications, mmWave and THz communications under
different fading conditions, and so forth. Therefore, a
generalized framework is needed to accurately analyze the
BER of IRS-assisted systems, which can be applied to different
transmission schemes and arbitrary types of fading channels.

In addition, several existing works have analyzed the
performance of IRS-assisted systems using the central limit
theorem-based Gaussian approximation, which relies on the
assumption of a large number of REs (e.g. [4]–[8], [14],
[16], [17]). Whereas, in practice, due to possible blockages,
design requirements and/or hardware failure, a large number
of REs might not be always available, which implies the
inappropriateness of the Gaussian approximation. To the best
of the authors’ knowledge, a precise framework for the
BER analysis of IRS-assisted systems with M-ary modulation
formats and an arbitrary number of REs over general fading
channels has not been reported. Moreover, it is noteworthy
that the BER behavior of IRS-assisted systems in different IRS
transmission schemes has not been compared and investigated.
In addition, the impacts of the location of IRS and angle of
incidence on the BER performance in different transmission
schemes and noise models have not been studied.

Driven by the aforementioned factors, this paper describes
its primary contributions and organization as follows.

• In Section II, we consider an IRS-assisted single-antenna
wireless communication system with an arbitrary number
of REs in general fading channels and AWGGN. The
IRS is assumed to operate under various transmission
schemes, including intelligent transmission, transmission
with imperfect phase shifts, and blind transmission.

• In Section III, we derive unified expressions in terms
of the characteristic functions (CHFs) of the end-to-
end channel amplitude that facilitate a precise BER
analysis of various M-ary modulation schemes, including
M-ary pulse amplitude modulation (MPAM), M-ary
quadrature amplitude modulation (MQAM), and MPSK
modulation over AWGGN. Moreover, as the special cases
of AWGGN, further simplified expressions for the precise
BER analysis of IRS-assisted systems subject to the well-
known AWGN and Laplacian noise are derived.

• In Section IV, taking into account different IRS
transmission schemes, accurate CHF expressions for
various fading channels such as double Rayleigh, double
Nakagami-m, double α-µ, double Rician, double Weibull,
and the sum of zero/non-zero mean double complex
Gaussian random variables (RVs) are derived.

• In Section V, the performance analysis is extended to
IRS-assisted multi-antenna systems. More specifically, it
is demonstrated that the unified BER expressions are
applicable to a multi-antenna receiver/transmitter that
employs equal gain combining/equal gain transmission
(EGC/EGT) and maximum ratio combining/maximum
ratio transmission (MRC/MRT) diversity schemes.

• In Section VI, the BER performance for an arbitrary
number of REs and antennas under different fading
channels, transmission schemes, diversity schemes, and
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noise models is evaluated via numerical and Monte-Carlo
simulations. Finally, the work is concluded in Section VII.

The results demonstrate that under different fading channels
and conditions, the impact of Laplacian noise on the BER is
more dominant. This is due to the smaller shape parameter
of the generalized Gaussian distributed RV in Laplacian noise
compared to that of AWGN, which implies that in addition
to the thermal noise, other sources of non-Gaussian noise
that arise in various wireless environments are also taken
into account. The results also demonstrate that, under various
noise models and fading channels, an IRS with intelligent
transmission achieves the lowest BER. This is attributed to
the IRS’s perfect knowledge of phases, enabling it to form
concentrated beams towards the desired destination, which
significantly improves the received signal power and BER.
In contrast, the system with blind transmission achieves a
higher BER compared to other transmission schemes as
the IRS blindly reflects the incident signals without phases
information. However, it is cost-efficient and can be a
promising candidate for low-data rate applications such as the
internet of things (IoT) communications as an ambient IRS can
be exploited, eliminating the need for the channel estimation
overhead and computational complexity.

It is also shown that under various fading channels and
noise models, the impact of phase shift quantization errors,
resulting from partial knowledge of phases and/or discrete
phase shifters of IRSs, can be mitigated by increasing the
number of quantization bits and antennas, albeit at the expense
of cost and hardware complexity. Finally, the effects of the
location of IRS and angle of incidence in different conditions
are assessed. It is observed that when the IRS is positioned in
the direct sight of the transmitter, where the angle of incidence
becomes zero, the lowest BER is achieved by placing it close
to either the transmitter or receiver. Otherwise, the lowest BER
can be achieved when it is deployed close to the transmitter.

C. Mathematical Notations

z ∼ CN (µ, σ2) and z ∼ N (µ, σ2) represent a circularly
symmetric complex Gaussian RV and a normal RV with a
mean and variance of µ and σ2, respectively. The notations
|z|, Pr(z), E[z], and V[z] represent the absolute value,
the probability, the expectation operator, and the variance
of z, respectively. Moreover, fZ(z), Φz (ω), and ReΦz (ω)
represent the probability density function (PDF), the CHF,
and the real part of the CHF of z, respectively. In addition,
Γ(.) is the gamma function [26, Eq. (8.310)], Γ(., .) is the
upper incomplete gamma function [26, Eq. (8.350.2)], Lℓ/2(.)
is the Laguerre polynomial with order ℓ/2 [26, Eq. (8.970.1)],
Kn(.) is the modified Bessel function of the second kind
with order n [26, Eq. (8.432.1)], 1F1 [.; .; .] is the Confluent
hypergeometric function [26, Eq. (9.210.1)], 2F1 [., .; .; .] is
the Gauss Hypergeometric function [26, Eq. (9.111)], erfc(.)
is the complementary error function [26, Eq. (8.250.4)],
Qη(x) is the generalized Gaussian Q-function [24, Eq. (A.1)],
Gm,n

p,q

[
. |. , .

]
is the MeijerG function [26, Eq. (9.301)],

and Hm,n
p,q

[
. |. , .

]
is the univariate Fox’s H-function [27,

Eq. (1.2)], respectively.

II. SYSTEM MODEL

We consider a wireless communication system in which a
transmitter (T) conveys information to a receiver (R)1. We
assume that due to severe blockage and obstacles, the direct
T-R link does not exist [3]–[9]. Therefore, an IRS with a total
area of W × L between T and R is deployed to facilitate
the T-R communication, where the IRS is equipped with an
arbitrary number of N = NWNL REs. Moreover, the size
of each RE is expressed as W

NW
× L

NL
such that W

NW
, L
NL

≤
λ, where λ represents the wavelength of the incident signal
[28]. Let D, dT , and dR represent the T-R horizontal distance,
the T-IRS distance, and the IRS-R distance, respectively. In
addition, assuming that the T-R, IRS-T, or IRS-R distances
are considerably larger than the size of the IRS, e.g. D, dT ,

or dR ≥ 2max(W 2,L2)
λ , and thus the plane-wave approximation

allows for the assumption of identical large-scale path losses
across all REs [28]–[33]. As a result, using [28, Eq. (19)] and
[28, Eq. (21)], the large-scale path-loss for the T-IRS and IRS-
R paths which takes into account the angle of incidence and
size of the IRS can be written as

ζ =
GTGR

16π2

(
WL

dT dR

)2

cos2 ψ, (1)

where GT and GR are the transmit and receive antennas gain,
and ψ is the angle of incidence at the IRS.

Let θi, hi and gi ∀i = 1, . . . , N respectively represent the
phase shift applied by the i-th RE, and the T-IRS and IRS-R
fading channel coefficients which are assumed to follow any
arbitrary distribution under different transmission schemes.
Therefore, the combined received signal at R is written as

y =
√
ζ

N∑
i=1

hiejθigi s+ n, (2)

where s is a data symbol selected from M-ary modulation
constellations with a bit energy of Eb, and n is the additive
white noise which is assumed to follow generalized Gaussian
distribution with a mean of zero and variance of N0/2.

The PDF of the generalized Gaussian distributed noise is
expressed as [24, Eq. (2)]

f|n|(x) =
ηϑ0

2
√
N0Γ

(
1
η

) exp

(
−
(
xϑ0√
N0

)η)
, (3)

where ϑ0 =

√
2Γ( 3

η )
Γ( 1

η )
is the noise power normalization

coefficient, and η ∈ R+ is the shape parameter of the
generalized Gaussian distributed RV.

It is to note that from (3), in addition to mean and variance,
AWGGN is also characterized by its shape parameter.
Therefore, by varying the value of η in (3), different types of
noise can be modeled. For instance, the AWGN and Laplacian
noise models are obtained by setting η = 2 and η = 1,
respectively. Moreover, by increasing the value of η, the
adverse effects of noise on the received signal is decreased
and vice versa [19], [23]–[25].

1In this section, for the sake of simplicity and readability, both T and R are
assumed to be equipped with a single antenna, where the analysis is extended
to the case of multiple antennas in Section V.
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III. BER IN AWGGN AND GENERAL FADING CHANNELS

This section derives CHF-based expressions for the precise
BER analysis of IRS-assisted systems in different M-ary
modulations over AWGGN and general fading channels, which
are applicable to different IRS transmission schemes.

A. M-ary Pulse Amplitude Modulation (MPAM)
We first derive a precise BER expression for 4PAM

modulation under pure AWGGN. Next, we establish the
relationship between the BER in AWGN and the BER in
AWGGN. Finally, we generalize the BER expression for
MPAM in the presence of AWGGN and fading channels.
Therefore, let’s consider the constellation diagram shown in
Fig. 1, which illustrates the 2-bit equiprobable symbols of
4PAM with Gray coding labeled as {s0, s1, s2, s3}, where it
has 4 decision regions. Furthermore, 2APAM represents the
minimum distance between two adjacent symbols, and the
magnitude of the signal is independently selected from the set
of {±APAM,±3APAM}, where APAM is written as [34, Eq. (2)]

APAM =

√
3Eb log2M

M2 − 1
. (4)

Let b1 and b2 represent the first and second bits in each
symbol, respectively. From Fig. 1, for b1 = 0, a bit error
occurs in s0/s1 when the magnitude of noise, |n|, exceeds
APAM or 3APAM. Similarly, for b1 = 1, a bit error occurs in
s2/s3 when the magnitude of noise exceeds APAM or 3APAM.
Therefore, the probability that b1 is in error can be written as

Pb1 =
2Pr

(
|n| > APAM

)
+ 2Pr

(
|n| > 3APAM

)
4

. (5)

Now let’s consider the second bit, for b2 = 0, a bit error
occurs in s0 and s3 when the magnitude of noise is greater
than APAM but less than 5APAM. Moreover, for b2 = 1, a bit
error occurs in s1 and s2 when the magnitude of noise exceeds
APAM or 3APAM. Therefore, the probability that b2 is in error
can be expressed as

Pb2 =
1

4

[
2Pr

(
APAM < |n| < 5APAM)+ 2Pr

(
|n| > APAM)

+2Pr

(
|n| > 3APAM) ]

= Pr

(
|n| > APAM)+ 1

2
Pr

(
|n| > 3APAM)

−1

2
Pr

(
|n| > 5APAM) . (6)

To find the probability that a bit error occurs in 4PAM, we
need to calculate the average of Pb1 and Pb2 as

P 4PAM
e =

1

2
[Pb1 + Pb2 ]

=
3

4
I1 +

1

2
I2 −

1

4
I3, (7)

where I1 ≜ Pr

(
|n| > APAM

)
, I2 ≜ Pr

(
|n| > 3APAM

)
and

I3 ≜ Pr

(
|n| > 5APAM

)
.

Since |n| is an AWGGN with a mean of zero and variance
of N0/2, where its PDF is given as (3), it can be written that

I1=
ηϑ0

2
√
N0Γ

(
1
η

) ∫ ∞

APAM
exp

(
−
(
xϑ0√
N0

)η)
dx. (8)

Fig. 1 Constellation diagram for 4PAM with Gray coding.

By interchange of t =
(

xϑ0√
N0

)η
, x =

√
N0t

1
η

ϑ0
and dx =

√
N0

ηϑ0
t

1
η−1 dt, (8) is equivalently expressed as

I1 =
1

2Γ
(

1
η

) ∫ ∞(
ϑ0APAM√

N0

)η exp (−t) t
1
η−1dt

=
1

2Γ
(

1
η

)Γ(1

η
,

(
ϑ0APAM
√
N0

)η)
, (9)

where the integral of (9) is evaluated by [26, Eq. (8.350.2)].
It is worth noting that I2 and I3 are derived by following

the same steps used for I1. Therefore, the BER of 4PAM in
the presence of pure AWGGN is obtained as

P 4PAM
e =

3Γ
(

1
η ,
(

ϑ0APAM
√
N0

)η)
8Γ
(

1
η

) +
Γ
(

1
η ,
(

3ϑ0APAM
√
N0

)η)
4Γ
(

1
η

)
− 1

8Γ
(

1
η

)Γ(1

η
,

(
5ϑ0APAM
√
N0

)η)
. (10)

It is noteworthy that by setting η = 2 resulting in
AWGN, and using the identity Γ

(
1/2, x2

)
/Γ (1/2) = erfc (x)

[35, Eq. (6.5.17)], the expression given in (10) becomes
identical to [34, Eq. (7)] and [36, Eq. (3)]. This establishes
a direct relationship between the BER in AWGN and BER in
AWGGN. Therefore, by varying the shape parameter of the
AWGGN, η, the BER in different types of noise is obtained.

In order to generalize the BER expression for MPAM
with Gray coding, the constellation diagram is divided
into M decision regions, where the magnitude of
the signal is independently selected from the set of
{±APAM,±3APAM, . . . ,±(M − 1)APAM}. Therefore, by
following the steps similar to those followed for 4PAM, and
using [34, Eq. (9), Eq. (10)] and [36, Eq. (5)], the exact BER
for MPAM in pure AWGGN is written as

PMPAM
e =

1

log2M

M−1∑
m=1

CPAM
m Γ

(
1
η ,
[
(2m−1)ϑ0APAM

√
N0

]η)
Γ
(

1
η

) , (11)

where CPAM
m ∀m = 1, . . . , (M − 1) are modulation related

coefficients, which are determined based on the constellation
size. Moreover, the values of the coefficients for different
orders of MPAM in Gray coding are given in [36, TABLE I].

Furthermore, by exploiting [24, Eq. (A.4)] and (4), the exact
BER for MPAM in terms of the generalized Gaussian Q-
function can be written as

PMPAM
e =

2

log2M

M−1∑
m=1

CPAM
m Qη

(
BPAM
m

√
Eb

N0

)
, (12)

where BPAM
m = (2m− 1)

√
3 log2 M
M2−1 .
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Since the BER expression given in (12) is based on the
assumption of pure AWGGN, Eb/N0 represents the received
SNR per bit in the absence of path-loss and fading channels.
Therefore, in order to take into consideration the large-scale
path-loss and IRS fading channels, by exploiting the received
signal given in (2), the total received SNR is expressed as

γ=
Eb

N0
ζ

∣∣∣∣∣
N∑
i=1

hiejθigi

∣∣∣∣∣
2

≜
Eb

N0
ζz2, (13)

where the total received SNR in different IRS transmission
schemes is discussed in Section IV.

Finally, the BER for MPAM in the presence of AWGGN
and fading channels is obtained as

PMPAM
e =

2

log2M

M−1∑
m=1

CPAM
m E

[
Qη

(
BPAM
m

√
Ebζ

N0
z

)]
.

(14)

B. M-ary Quadrature Amplitude Modulation (MQAM)

Now let’s consider the square MQAM modulation scheme
with Gray coding, where the equiprobable data symbols in
square MQAM consist of two independent components, the in-
phase and quadrature components. The magnitude of the signal
in both components is independently selected from the set of
{±AQAM,±3AQAM, . . . ,±(

√
M − 1)AQAM}, where AQAM is

expressed as [34, Eq. (12)]

AQAM =

√
3Eb log2M

2(M − 1)
. (15)

The authors in [34] have derived an exact expression for the
BER analysis of square MQAM in the well-known AWGN.
Therefore, by exploiting [34, Eq. (14)] and [34, Eq. (16)], the
exact BER for square MQAM in pure AWGN is written as

PMQAM
e =

√
M−2∑
m=0

CQAM
m erfc

(
(2m+ 1)AQAM

√
N0

)

=

√
M−2∑
m=0

CQAM
m Γ

(
1
2 ,
(

(2m+1)AQAM
√
N0

)2)
Γ
(
1
2

) , (16)

where
∑√

M−2
m=0 CQAM

m = 1
2 and CQAM

m ∀m = 0, 1, . . . , (
√
M −

2) are modulation related coefficients, which are determined
based on the constellation size. For example, for 4QAM,
16QAM and 64QAM, the modulation related coefficients
are CQAM

m ∈ {1
2}, CQAM

m ∈ {3
8 ,

2
8 ,

−1
8 } and CQAM

m ∈
{ 7
24 ,

6
24 ,

−1
24 , 0,

1
24 , 0,

−1
24 }, respectively [37, pp. (631-632)].

It is well known that the error rates in AWGN are
computed through the complementary error function or
Gaussian Q-function, e.g. [34], [37]–[39]. Based on the
relationship between the BER in AWGN and BER in AWGGN
shown for (10), and taking into consideration the same
symmetry properties of the generalized Gaussian distribution
and Gaussian distribution, the error rates in AWGGN are
computed by using the generalized Gaussian Q-function [19],

[23]–[25]. Therefore, using [24, Eq. (A.4)] and (15), for the
case of pure AWGGN, the BER expression given in (16) takes
the following form.

PMQAM
e =

√
M−2∑
m=0

CQAM
m

Γ
(

1
η

)Γ(1

η
,

(
(2m+ 1)ϑ0AQAM

√
N0

)η)

=

√
M−2∑
m=0

2CQAM
m Qη

(
BQAM
m

√
Eb

N0

)
, (17)

where BQAM
m = (2m+ 1)

√
3 log2 M
2(M−1) .

Finally, similar to MPAM, using the total received SNR
given in (13), the exact BER for square MQAM in the presence
of AWGGN and fading channels is written as

PMQAM
e =

√
M−2∑
m=0

2CQAM
m E

[
Qη

(
BQAM
m

√
Ebζ

N0
z

)]
. (18)

C. M-ary Phase Shift Keying Modulation (MPSK)

First, let’s consider the BPSK modulation scheme, by
exploiting [39, Eq. (6.6)], the exact BER in the presence
of AWGN and fading channels is written as PBPSK

e =

1
2E
[
erfc

(√
Ebζ
N0

z
)]

= 1

2Γ( 1
2 )
E
[
Γ

(
1
2 ,
(√

Ebζ
N0

z
)2)]

.

Therefore, similar to MPAM and square MQAM, the BER
of BPSK modulation in the presence of AWGGN and fading
channels can be written as

PBPSK
e = E

[
Qη

(√
Ebζ

N0
z

)]
. (19)

It is to note that the exact BER for quadrature phase shift
keying (QPSK) modulation is equivalent to that of 4QAM
[37]. In addition, the authors in [40] have shown that the BER
of coherent MPSK modulation scheme in pure AWGN can be
accurately approximated as [40, Eq. (12)]

PMPSK
e =

max(M
4 ,1)∑

m=1

1

max (log2M, 2)
erfc

(
BPSK
m

√
Eb

N0

)
,

(20)

where BPSK
m =

√
log2M sin

(
(2m−1)π

M

)
.

Therefore, similar to MPAM and square MQAM, by
exploiting (13) and the identity given in [24, Eq. (A.4)], and by
considering the relationship between the BER in AWGGN and
BER in AWGN shown for (10), the BER of MPSK modulation
in the presence of AWGGN and fading channels in terms of
the generalized Gaussian Q-function can be written as

PMPSK
e =

max(M
4 ,1)∑

m=1

2E
[
Qη

(
BPSK
m

√
Ebζ
N0

z
)]

max (log2M, 2)
. (21)

In order to compute the average BER in AWGGN and
general fading channels given in (14), (18), (19) and (21),
we need to derive the average of the generalized Gaussian
Q-function, i.e. E ≜ E

[
Qη

(
B
√

Ebζ
N0

z
)]

, where B ∈
{BPAM

m ,BQAM
m ,BPSK

m , 1} for MPAM, MQAM, MPSK and
BPSK modulations, respectively.
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E =

√
ℓ2

1−k
2 k

2−η
2η

Γ(1/η)π
k
2

∫ ∞

0

ReΦz (ω)

ω
G2k,ℓ

k+2ℓ,2k

 1

kk

2ℓB
ω

√
ϑ20Ebζ

N0

2ℓ ∣∣∣∣∣ 1
2ℓ , . . . ,

ℓ− 1
2

ℓ , 1k , . . . ,
1+k−1

k , 0, . . . , ℓ−1
ℓ

0, . . . , k−1
k ,

1
η

k , . . . ,
1
η+k−1

k

 dω, (22)

Proof: Please refer to Appendix A.

E =

√
ℓ2

3−k
2 k

2−η
2η

Γ(1/η)π
k
2

∫ π
2

0

ReΦz (tan ξ)

sin 2ξ
G2k,ℓ

k+2ℓ,2k

 1

kk

 2ℓB
tan ξ

√
ϑ20Ebζ

N0

2ℓ ∣∣∣∣∣ 1
2ℓ , . . . ,

ℓ− 1
2

ℓ , 1k , . . . ,
1+k−1

k , 0, . . . , ℓ−1
ℓ

0, . . . , k−1
k ,

1
η

k , . . . ,
1
η+k−1

k

 dξ.

(23)

Lemma 1. By exploiting the convolution theorem for the
Fourier cosine transform, the average of the generalized
Gaussian Q-function is obtained as (22) given at the top of
this page. The parameters of (22) are η = 2ℓ

k , ℓ ∈ Z+,
k ∈ Z+, and gcd (k, ℓ) = 1, where gcd stands for the greatest
common divisor. Moreover, ReΦz (ω) =

Φz(ω)+Φz(−ω)
2 is the

real part of the CHF for the end-to-end channel amplitude, i.e.
z =

∣∣∣∑N
i=1 hie

jθigi

∣∣∣, where the CHF expressions for different
transmission schemes and channels are derived in Section IV.

Furthermore, for the sake of an efficient numerical analysis
and integration, by interchange of ω = tan ξ, and after some
algebraic manipulations, an alternative expression for (22)
is obtained as (23) given at the top of this page. Finally,
by substituting (22)/(23) into (14), (18), (19) and (21), the
precise average BER of IRS-assisted systems with different
modulation schemes and an arbitrary number of REs in the
presence of AWGGN and general fading channels is obtained.
In addition, as the special cases of AWGGN, we present the
average of the generalized Gaussian Q-function, E , in the well-
known AWGN and Laplacian noise as follows.

Corollary 1. When η = 2, n in (2) becomes a Gaussian
distributed noise or AWGN. Therefore, using η = 2ℓ

k , we can
write that ℓ = k = 1, and by substituting them into (22) and
after some algebraic manipulations, E is obtained as

E =

∫ ∞

0

ReΦz (ω)

πω
G2,1

3,2

[
4B2ζ

ω2

Eb

N0

∣∣∣∣ 1
2 , 1, 0
0, 12

]
dω. (24)

By applying [41, Eq. (07.34.03.0002.01)], (25) is further
simplified as

E =

∫ ∞

0

ReΦz (ω)

πω
G1,1

2,1

[
4B2ζ

ω2

Eb

N0

∣∣∣∣ 1
2 , 1
1
2

]
dω. (25)

Moreover, by applying [41, Eq. (07.34.03.0309.01)], and
after some algebraic manipulations, (25) can be explicitly
expressed as

E =
1√
π3H

∫ ∞

0

ReΦz (ω) 1F1

[
1;

3

2
;− ω2

4H

]
dω, (26)

where H ≜ B2ζ Eb

N0
.

By interchange of ω = tan ξ in (26), a more suitable
expression for the numerical integration is obtained as

E =

∫ π
2

0

ReΦz (tan ξ)√
π3H cos2 ξ

1F1

[
1;

3

2
;
− tan2 ξ

4H

]
dξ. (27)

It is noteworthy that (26) and (27) are easily evaluated
by numerical integration. Moreover, by exploiting [35,
Eq. (25.4.45)], (26) can be written in terms of the weight
factors and samples points of the Laguerre orthogonal
polynomial as

E =

L∑
ȷ=1

αȷ ReΦz (βȷ)√
π3He−βȷ

1F1

[
1;

3

2
;−

β2
ȷ

4H

]
+RL, (28)

where αȷ and βȷ are respectively the weights factors and
sample points of the Laguerre orthogonal polynomial tabulated
in [35, Table (25.9)]. Moreover, RL is a remainder defined in
[35, Eq. (25.4.45)], where for a large L, it approaches zero,
and thus it can be neglected.

Corollary 2. When η = 1, n in (2) becomes a Laplacian
distributed noise, and thus by exploiting η = 2ℓ

k , we can write
that ℓ = 1 and k = 2. By substituting them into (22), and after
some algebraic manipulations, the average of the generalized
Gaussian Q-function, E , is obtained as

E =
1

π

∫ ∞

0

ReΦz (ω)

ω
G4,1

4,4

[
4B2ζ

ω2

Eb

N0

∣∣∣∣ 1
2 ,

1
2 , 1, 0

0, 12 ,
1
2 , 1

]
dω.

(29)

It is noteworthy that (29) is evaluated through numerical
integration. Alternatively, a further simplified expression for
(29) is presented as

E =
2B
π

√
ζEb

N0

∫ ∞

0

ReΦz (ω)

ω2 + 4B2ζ Eb

N0

dω. (30)

Proof: Please refer to Appendix B.
The integral of (30) is easily evaluated through numerical

integration. Furthermore, using [35, Eq. (25.4.45)], it can be
expressed in closed-form as

E =
2B
π

√
ζEb

N0

L∑
ȷ=1

αȷ ReΦz (βȷ)

e−βȷ
(
β2
ȷ + 4B2ζ Eb

N0

) +RL, (31)

where RL is a remainder, βȷ are sample points, and αȷ are
the weights factors tabulated in [35, Table (25.9)].

Finally, by substituting (26)/(27) and (30)/(31) into (14),
(18), (19) and (21), the average BER of IRS-assisted wireless
communication systems with different modulation schemes in
the presence of AWGN and Laplacian noise over generalized
fading channels are obtained, respectively.
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IV. CHARACTERISTIC FUNCTIONS FOR IRS FADING
CHANNELS IN DIFFERENT TRANSMISSION SCHEMES

In this section, we present CHF expressions for the end-to-
end channel amplitude, Φz (ω), in different IRS transmission
schemes and fading channels to facilitate a precise BER
analysis of IRS-assisted wireless communication systems.

A. Intelligent Transmission Scheme

In intelligent transmission, the phases of hi and gi are
assumed to be fully known at the IRS, and the IRS REs
adjust and apply continuous phase shifts to reflect the incident
signals with concentrated beams towards R. Let’s express the
IRS fading channel coefficients in terms of their corresponding
amplitudes and phases as hi = |hi| exp (j arg(hi)) and gi =
|gi| exp (j arg(gi)), where {|hi|, |gi|} and {arg(hi), arg(gi)}
represent the IRS channel amplitudes and phases, respectively.
Therefore, in order to fully compensate for the phases and
maximize the received SNR, the adjustable continuous phase
shifts are set as θi = − (arg(hi) + arg(gi)) ∀i = 1, . . . , N [4]–
[7]. As a result, the total received SNR given in (13) takes the
following form.

γ =
Eb

N0
ζ

∣∣∣∣∣
N∑
i=1

|hi||gi|

∣∣∣∣∣
2

. (32)

From (13) and (32), we can write that z =
∣∣∣∑N

i=1 |hi||gi|
∣∣∣ ≜∣∣∣∑N

i=1 zi

∣∣∣, where |hi| and |gi| are assumed to follow any
arbitrary distribution. Moreover, by assuming that z is the sum
of mutually independent RVs, it can be written that

Φz (ω) =

N∏
i=1

Φzi (ω) , (33)

where Φzi (ω) is the CHF of the channel amplitude for a single
RE.

If we assume that zi ∀i = 1, . . . , N are mutually
independent and identically distributed, (33) takes the
following form.

Φz (ω) = [Φzi (ω)]
N
. (34)

In order to derive Φzi (ω) for different types of fading
channels, we provide the following lemmas.

Lemma 2. We assume that zi ≜ |hi||gi| is the product of two
independent non-identically distributed (i.n.id) Rayleigh RVs,
and thus its exact CHF is expressed as

Φzi (ω) = 2F1

[
1, 1;

1

2
;−

σ2
hi
σ2
giω

2

4

]

+j
2πω

σ2
hi
σ2
gi

(
ω2 +

4

σ2
hi
σ2
gi

)− 3
2

, (35)

where σ2
hi

and σ2
gi are the variances of the complex Gaussian

RVs, hi and gi, respectively.
Proof: Please refer to Appendix C.

Lemma 3. We assume that |hi| and |gi| are two i.n.id α− µ
RVs, and thus zi ≜ |hi||gi| is a double α − µ RV, where its
exact CHF is expressed as

Φzi (ω)

= KH2,1
2,2

 2µ
1

αhi

hi
µ

1
αgi
gi

Ω
1

αhi

hi
Ω

1
αgi
gi ω

∣∣∣∣∣∣∣
(
1, 12

)
,
(
1
2 ,

1
2

)
(
µhi

, 1
αhi

)
,
(
µgi ,

1
αgi

)


+ jKH2,1
2,2

 2µ
1

αhi

hi
µ

1
αgi
gi

Ω
1

αhi

hi
Ω

1
αgi
gi ω

∣∣∣∣∣∣∣
(
1
2 ,

1
2

)
,
(
1, 12

)
(
µhi

, 1
αhi

)
,
(
µgi ,

1
αgi

)
 ,
(36)

where K =
√
π

2Γ(µhi
)Γ(µgi

) , αhi and αgi are arbitrary fading
parameters, µhi

and µgi are the shape parameters, and Ωhi
and

Ωgi are the scaling parameters of |hi| and |gi|, respectively.
Proof: Please refer to Appendix D.

It is noteworthy that the α− µ distribution is a generalized
fading distribution, where by varying its parameters, different
types of fading distributions such as double Nakagami-m,
double Gamma and double Weibull distributions can be
modeled. More specifically, by setting αhi

= αgi = 2,
µhi

= mhi
and µgi = mgi , it reduces to double Nakagami-

m distribution. Moreover, by setting αhi = αgi = 1 and the
fading parameters as µhi and µgi , it reduces to double Gamma
distribution. In addition, by setting µhi

= µgi = 1 and the
fading parameters as αhi

/2 and αgi/2, it reduces to double
Weibull distribution [42]–[44].

Corollary 3. By setting αhi
= αgi = 2, µhi

= mhi
and

µgi = mgi in (36), and by applying the identities given in
[27, Eq. (1.58)] and [27, Eq. (1.59)], the CHF of a double
Nakagami-m RV is obtained as

Φzi (ω) =GH2,1
2,2

χω2

4

∣∣∣∣∣∣
(1−mhi

, 1) , (1−mgi , 1)

(0, 1) ,
(
1
2 , 1
)


+jGH2,1

2,2

χω2

4

∣∣∣∣∣∣
(1−mhi , 1) , (1−mgi , 1)(

1
2 , 1
)
, (0, 1)

 ,
(37)

where G =
√
π

Γ(mhi)Γ(mgi)
, χ =

Ωhi
Ωgi

mhi
mgi

, Ωhi
= E

[
|hi|2

]
and

Ωgi = E
[
|gi|2

]
.

In addition, by applying [27, Eq. (1.60)] and [27,
Eq. (1.132)], and after some algebraic manipulations, a further
simplified expression for (37) is obtained as

Φzi (ω) = 2F1

[
mhi ,mgi ;

1

2
;−χω

2

4

]
+ jI

√
χω2

× 2F1

[
2mhi + 1

2
,
2mgi + 1

2
;
3

2
;−χω

2

4

]
, (38)

where I =
Γ

(
2mhi

+1

2

)
Γ
(

2mgi
+1

2

)
Γ(mhi)Γ(mgi)

.
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E
[
z2
]
= N

(
E
[
|hi|2

]
E
[
|gi|2

]
+ (N − 1)E2 [|hi|]E2 [|gi|]F2

1

)
, (39)

E
[
z4
]
=N

{
E
[
|hi|4

]
E
[
|gi|4

]
+ (N − 1)E2

[
|hi|2

]
E2
[
|gi|2

]
+ (N − 1)

[
2 (N − 2)E

[
|hi|2

]
E
[
|gi|2

]
E2 [|hi|]E2 [|gi|]F2

1

× (1 + F2) + E2
[
|hi|2

]
E2
[
|gi|2

] (
1 + F2

2

)
+ (N − 2) (N − 3)E4 [|hi|]E4 [|gi|]F4

1

]
+ 4 (N − 1)E

[
|hi|3

]
E
[
|gi|3

]
× E [|hi|]E [|gi|]F2

1 + 2 (N − 1) (N − 2)E
[
|hi|2

]
E
[
|gi|2

]
E2 [|hi|]E2 [|gi|]F2

1

}
, (40)

where F1 = 2q

π sin
(

π
2q

)
and F2 = 2q

2π sin
(
2π
2q

)
[45].

B. Transmission With Imperfect Phase Shifts

We assume that the phases of the IRS fading channels
are partially known at the IRS and/or the IRS is able to
apply a quantized or discrete set of phase shifts. Taking into
consideration the practical IRSs with discrete phase shifters,
it is assumed that the interval of the phase shift at each RE is
equally spaced (i.e. uniformly quantized) into 2q levels, where
q represents the number of quantization bits [12], [13], [45]–
[48]. Therefore, the phase shift applied by the i-th RE, θi, takes
a finite number of discrete values from an equally spaced set of
S ≜

{
0, 2π2q , . . . ,

2π(2q−1)
2q

}
, where this transmission scheme

is referred to as transmission with imperfect phase shifts. In
this case, the IRS REs cannot precisely estimate the phases,
and reflect the incident signals with imperfect phase shifts,
i.e. θi ̸= − (arg(hi) + arg(gi)). Therefore, the received SNR
is improved but cannot be maximized, and thus the system
suffers from phase shift quantization errors, which are denoted
by ϕi = θi − arg(hi)− arg(gi) [11]–[13], [45]–[48].

It should be noted that the authors in [13] have
mathematically demonstrated that the applied phase shifts
and the phase errors follow the same distribution, where
it has been confirmed through numerical and simulation
results, specifically for the case of uniformly quantized phase
shifts. Therefore, as the interval of phase shifts are uniformly
quantized into 2q levels, it follows that the phase shift
quantization errors are uniformly distributed in the interval
of [− π

2q ,
π
2q ] [12], [13], [45]–[48]. As a result, the received

SNR given in (13), takes the following form.

γ =
Eb

N0
ζ

∣∣∣∣∣
N∑
i=1

|hi||gi|ejϕi

∣∣∣∣∣
2

. (41)

In the case of imperfect phase shifts, from (13) and
(41), the end-to-end channel amplitude is expressed as z =∣∣∣∑N

i=1 |hi||gi|ejϕi

∣∣∣. Since z is a non-negative RV, according
to [49, Sec. (2.2.2)], it can be tightly approximated by the
first branch of the Laguerre expansion which is equivalent
to gamma distribution. The accuracy of this approximation
has been verified for different numbers of REs under various
fading channels in [12], [33], [45], [50] and [51]. More
specifically, its accuracy has been confirmed for IRS-assisted
systems under Rayleigh fading channels in [12], Rician fading
channels in [33], [45], Nakagami-m fading channels in [50],
and Weibull fading channels in [51]. Therefore, by exploiting

[38, Table 2.3-3], the CHF of z is expressed as

Φz (ω) =

(
1

1− jωαz

)βz

, (42)

where by exploiting [12], the parameters αz and βz are
respectively expressed as

αz =

√
E [z2]

βz (βz + 1)
, (43)

βz =
5
(
E
[
z2
])2 − E

[
z4
]
+ δ

2E [z4]− 2 (E [z2])
2 , (44)

where δ ≜
√

(E [z4])
2
+ 14 (E [z2])

2 E [z4] + (E [z2])
4.

In order to calculate αz and βz , we need to derive the
second the fourth moments of z in different fading channels.
Therefore, by exploiting [12, Appendix A] and [52, Appendix
C], we can express E

[
z2
]

and E
[
z4
]

respectively as (39) and
(40), which are provided at the top of this page. Furthermore,
to obtain (39) and (40), the moments of |hi| and |gi| in
different fading channels are required. Therefore, by exploiting
[38, Eq. (2.3-45)], [38, Eq. (2.3-59)], [38, Eq. (2.3-70)]
and [53, Eq. (4)], the n-th moment of |hi| and |gi| in
Rayleigh, Rician, Nakagami-m, and Weibull fading channels
are expressed as (45), (46), (47), and (48), respectively.

E [|x|n] = σn
x Γ

(
1 +

n

2

)
, x ∈ {hi, gi}. (45)

E [|x|n] = σn
x Γ

(
1 +

n

2

)
Ln

2

(
−µ

2
x

σ2
x

)
, x ∈ {hi, gi}. (46)

E [|x|n] =
(
Ωx

mx

)n
2 Γ

(
mx + n

2

)
Γ (mx)

, x ∈ {hi, gi}. (47)

E [|x|n] = Ωn
x Γ

(
1 +

n

αx

)
, x ∈ {hi, gi}. (48)

C. Blind Transmission Scheme

Assuming the phases of hi and gi are not known at the
IRS, and thus the IRS REs do not apply phase shifts but
blindly reflect the incident signals, i.e. θi = 0 ∀i = 1, . . . , N ,
which is referred to as blind transmission [15]–[18]. In this
transmission scheme, one may assume that T exploits an
ambient IRS to convey the intended information to R. This
can be particularly a promising candidate for cost-constrained
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and low-power communications, such as IoT and wireless-
powered communications, as it eliminates the need for the
channel estimation overhead and reduces the computational
complexity. As a result, the received SNR in the blind
transmission scheme takes the following form.

γ =
Eb

N0
ζ

∣∣∣∣∣
N∑
i=1

higi

∣∣∣∣∣
2

. (49)

where by comparing (13) and (49), it can be written that z ≜∣∣∣∑N
i=1 higi

∣∣∣.
We initially assume that the T-IRS and IRS-R fading

channel coefficients are zero mean complex Gaussian RVs, i.e.
hi ∼ CN (0, σ2

hi
) and gi ∼ CN (0, σ2

gi). Therefore, considering
an arbitrary number of REs, the following lemma presents the
CHF of z.

Lemma 4. The exact CHF for the end-to-end channel
amplitude, z, in zero mean double complex Gaussian RVs is
expressed as

Φz (ω) =2F1

[
N, 1;

1

2
;
−ω2σ2

hi
σ2
gi

4

]
+ j

√
πσhiσgiω

2Γ(N)

× Γ

(
2N + 1

2

)
2F1

[
2N + 1

2
,
3

2
;
3

2
;
−ω2σ2

hi
σ2
gi

4

]
.

(50)

Proof: Please refer to Appendix E.
Now let’s assume that the T-IRS and IRS-R fading channel

coefficients are non-zero mean complex Gaussian RVs, i.e.
hi ∼ CN (µhi

, σ2
hi
) and gi ∼ CN (µgi , σ

2
gi). Moreover, hi

and gi can be expressed in terms of their corresponding real
and imaginary parts as hi = hRi + jhIi and gi = gRi + jgIi ,
where hRi ∼ N

(
µR
hi
, σ2

hi
/2
)
, hIi ∼ N

(
µI
hi
, σ2

hi
/2
)
, gRi ∼

N
(
µR
gi , σ

2
gi/2

)
and gIi ∼ N

(
µI
gi , σ

2
gi/2

)
. Therefore, the

following lemma tightly approximates the PDF and CHF of the
end-to-end channel amplitude, z =

∣∣∣∑N
i=1 higi

∣∣∣, considering
any arbitrary number of REs.

Lemma 5. The PDF and CHF of the end-to-end channel
amplitude, z, in non-zero mean complex Gaussian RVs can
be respectively expressed as

fZ (z) =
2Ψz

Γ (φ)
G1,0

0,1

[
Ψz2

∣∣∣∣ −
φ− 1

]
, (51)

and

Φz (ω) =

√
π

Γ (φ)

(
G1,1

2,1

[
4Ψ

ω2

∣∣∣ 1, 12
φ

]
+ jG1,1

2,1

[
4Ψ

ω2

∣∣∣ 1
2 , 1
φ

])
,

(52)

with

Ψ =
E
[
z2
]

E [z4]− E2 [z2]
, (53)

φ =
E2
[
z2
]

E [z4]− E2 [z2]
, (54)

where E
[
z2
]

is given in (87), and E
[
z4
]

is given in (88).
Proof: Please refer to Appendix F.

In order to validate the accuracy of the PDF given in (51),
we compare it with its exact simulated PDF, as illustrated in
Fig. 2. We obtain the theoretical and Monte-Carlo simulation
results by setting N = {2, 5, 10, 20, 30}, σ2

hi
= σ2

gi = 1,
µR
hi

= µR
gi = 2 and µI

hi
= µI

gi = 1. The figure clearly
demonstrates a perfect alignment between the theoretical and
Monte-Carlo simulation results for different values of N .
Consequently, this observation verifies the preciseness of (51)
for any arbitrary number of REs.

Fig. 2 Comparison of exact and approximated PDFs of z.

V. IRS-ASSISTED MULTI-ANTENNA SYSTEMS

In this section, our aim is to evaluate the BER
performance of IRS-assisted wireless communication systems
that utilize multiple antennas under AWGGN, and different
IRS transmission schemes and fading channels. To accomplish
this, we extend the analytical BER expressions derived in
Section III to incorporate the scenarios of multi-antenna
transceiver employing various reception and transmission
diversity schemes, including EGC, MRC, EGT and MRT.

A. Multi-antenna Receiver

We first consider an IRS-assisted single-input multiple-
output (SIMO) wireless communication system, where the
number of receive antennas is denoted by Mr. Let gi,r
∀i = 1, . . . , N ∀r = 1, . . . ,Mr represent the IRS-R fading
channel coefficients, and similar to Section II, hi represent
the T-IRS fading channel coefficients. Moreover, two distinct
cases are taken into account: (i) R employs the EGC reception
diversity scheme, and (ii) R employs the MRC reception
diversity scheme. For brevity, by exploiting [54] and [55], the
received SNR expressions under different IRS transmission
schemes given in (32), (41) and (49), can be expressed for
both reception diversity schemes as

γEGC =
Eb

N0
ζ

(
1√
Mr

Mr∑
r=1

zr

)2

. (55)

γMRC =
Eb

N0
ζ

Mr∑
r=1

z2r . (56)

It should be noted that, similar to (32), (41), and (49), the
following can be written for different transmission schemes:
zr ≜

∣∣∣∑N
i=1 |hi||gi,r|

∣∣∣ for the intelligent transmission
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scheme, zr ≜
∣∣∣∑N

i=1 |hi||gi,r|ejϕi

∣∣∣ for transmission with

imperfect phase shifts, and zr ≜
∣∣∣∑N

i=1 higi,r

∣∣∣ for the blind
transmission scheme. Moreover, by exploiting the Cauchy-
Schwarz inequality for the sum of squared positive variables, it

can be written that 1
L

(∑L
l=1 xl

)2
≤
∑L

l=1 x
2
l ≤

(∑L
l=1 xl

)2
[56], [57]. Therefore, similar to [57, Eq. (11)], the received
SNR in the MRC diversity scheme can be upper-bounded as

γMRC ≤ Eb

N0
ζ

(
Mr∑
r=1

zr

)2

. (57)

In addition, using (55) and assuming mutually independent
and identically distributed channels, the end-to-end CHF in
the EGC diversity scheme is expressed as

ΦEGC (ω)= E
[
e
jω 1√

Mr

∑Mr
r=1 zr

]
=

[
Φz

(
ω√
Mr

)]Mr

, (58)

where Φz

(
ω√
Mr

)
is the CHF for the case of a single-antenna

system, which is provided for different IRS transmission
schemes and fading channels in Section IV.

Similarly, for mutually independent and identically
distributed channels, using (57), the end-to-end CHF in the
MRC diversity scheme can be expressed as

ΦMRC (ω)= E
[
ejω

∑Mr
r=1 zr

]
= [Φz (ω)]

Mr . (59)

B. Multi-antenna Transmitter

Now let’s consider an IRS-assisted multiple-input single-
output (MISO) wireless communication system, where T
is equipped with Mt antennas that may employ EGT or
MRT diversity schemes. Let ht,i ∀t = 1, . . . ,Mt ∀i =
1, . . . , N represent the T-IRS fading channel coefficients,
and similar to Section II, gi represent the IRS-R fading
channel coefficients. Therefore, for both transmission diversity
schemes, by exploiting [11] and [55], the received SNR
expressions under different IRS transmission schemes given
in (32), (41) and (49), can be expressed as

γEGT =
Eb

N0
ζ

(
1√
Mt

Mt∑
t=1

zt

)2

, (60)

γMRT =
Eb

N0
ζ

Mt∑
t=1

z2t ≤ Eb

N0
ζ

(
Mt∑
t=1

zt

)2

, (61)

where zt ≜
∑N

i=1 |ht,i||gi| for intelligent transmission, zt ≜∣∣∣∑N
i=1 |ht,i||gi|ejϕi

∣∣∣ for transmission with imperfect phase

shifts, and zt ≜
∣∣∣∑N

i=1 ht,igi

∣∣∣ for blind transmission.
Therefore, similar to the EGC and MRC diversity schemes,

the end-to-end CHFs for the EGT and MRT diversity schemes
are respectively expressed as

ΦEGT (ω) =

[
Φz

(
ω√
Mt

)]Mt

. (62)

ΦMRT (ω) = [Φz (ω)]
Mt . (63)

Finally, by substituting (58), (59), (62), and (63) into
(22), and then by substituting (22) into (14), (18) and (21),
the average BER of IRS-assisted multi-antenna systems in
AWGGN and various modulation schemes under different
reception and transmission diversity schemes is obtained.

VI. NUMERICAL AND SIMULATION RESULTS

In order to numerically assess the BER performance of
IRS-assisted communication systems in AWGGN and different
transmission schemes and fading channels, as well as to verify
the accuracy of the unified BER and CHF expressions, we
provide numerical and simulation results. The simulation setup
for the IRS deployment is shown in Fig. 3. In this setup, the
horizontal distance between T and R is set as D = 50 m, the
IRS-R horizontal distance is set as d = 40 m, the height of T is
set as HT = 3 m, the height of R is set as HR = 2 m, and the
IRS is deployed above T and R at a height of HI = 5 m, where
we assume that the location of IRS can be moved horizontally
towards T and R. Therefore, the angle of incidence at the
IRS, and the distances for the T-IRS and IRS-R links are
ψ = arctan

(
D−d

HI−HT

)
, dT =

√
(D − d)

2
+ (HI −HT )

2 and

dR =

√
d2 + (HI −HR)

2, respectively. Furthermore, unless
otherwise stated, the remaining required parameters are set as
GT = GR = 20 dBi, W = 1 m, L = 2 m, η = {1, 2},
N = {10, 25, 30, 50}, and Mt =Mr = {1, 3}.

Fig. 3 Simulation setup for IRS deployment.

Fig. 4 (a) and Fig. 4 (b) show the BER performance
against Eb/N0 in intelligent transmission for BPSK, 4PAM
and 64QAM modulation formats, N = {10, 50}, and double
Rayleigh fading channels with σ2

hi
= σ2

gi = 1 under AWGN
and Laplacian noise, respectively. Similarly, Fig. 5 (a) and Fig.
5 (b) show the BER in intelligent transmission for double α-
µ fading channels with αhi = αgi = 1, Ωhi = Ωgi = 1,
and µhi = µgi = 4 under AWGN and Laplacian noise,
respectively. Moreover, Fig. 6 (a) and Fig. 6 (b) respectively
depict the BER under transmission with imperfect phase shifts
in AWGN and Laplacian noise for BPSK and 4PAM, q = 1
bit, N = {10, 50}, and different fading channels. These
include double Rayleigh channels with σ2

hi
= σ2

gi = 1, double
Rician channels with µhi = µgi = 1 and σ2

hi
= σ2

gi = 1,
and double Nakagami-m channels with Ωhi

= Ωgi = 1
and mhi

= mgi = 2. In addition, Fig. 7 (a) shows the
BER performance of the system with blind transmission for
BPSK, 4PAM, and 64QAM modulation formats, zero-mean
and non-zero mean complex Gaussian fading channels, i.e.
µR
hi

= µR
gi = {0, 1}, µI

hi
= µI

gi = 0 and σ2
hi

= σ2
gi = 1,

and N = {10, 50} under AWGN, while Fig. 7 (b) depicts the
corresponding performance under Laplacian noise.
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(a) (b)

Fig. 4 BER of BPSK, 4PAM and 64QAM modulation schemes in
intelligent transmission under Rayleigh fading channels for Mt =
Mr = 1 and N = {10, 50} (a) AWGN (b) Laplacian noise.

(a) (b)

Fig. 5 BER of BPSK, 4PAM and 64QAM modulation schemes in
intelligent transmission under α-µ fading channels for Mt = Mr = 1
and N = {10, 50} (a) AWGN (b) Laplacian noise.

As shown in the figures, the numerical results exactly
match those of the Monte-Carlo simulations, which verifies
the preciseness of the BER expressions derived in Section
III, for an arbitrary number of REs, different transmission
schemes, different types of noise, and general fading channels.
Moreover, the figures confirm the preciseness of the CHF
expressions under different transmission schemes given in
(35), (36), (42), (50) and (52). It can be seen from the figures
that in different transmission schemes and fading channels,
the system in the presence of AWGN (i.e. η = 2) achieves
better BER performance compared to that of the Laplacian
noise (i.e. η = 1). This observation shows that the adverse
effects of noise on the received signal are more severe with
lower values of the shape parameter of AWGGN. It should
be noted that lower values of the shape parameter of the
generalized Gaussian distributed RV or noise models that
follow distributions with heavier tails imply that, in addition
to the thermal noise, different sources of noise such as non-
Gaussian noise arising in various practical scenarios are also
taken into account, which adversely affect the BER.

(a) (b)

Fig. 6 BER in transmission with imperfect phase shifts under
Rayleigh, Rician and Nakagami-m fading channels for q = 1 bit,
Mt = Mr = 1 and N = {10, 50} (a) AWGN (b) Laplacian noise.

(a) (b)

Fig. 7 BER of BPSK, 4PAM and 64QAM in blind transmission under
zero/non-zero mean complex Gaussian fading channels for Mt =
Mr = 1 and N = {10, 50} (a) AWGN (b) Laplacian noise.

In addition, in various transmission schemes, noise models
and fading channels, higher orders of modulations lead
to a higher BER which can be significantly improved by
increasing the number of REs. For instance, as illustrated in the
aforementioned figures, the BER of 4PAM and 64QAM with
N = 50 is considerably lower compared to that of BPSK with
N = 10. This improvement stems from each RE providing an
additional indirect transmission path, resulting in significant
enhancements in the received signal power.

Fig. 8 (a) compares the BER performance of an IRS-
assisted multi-antenna system employing 4PAM modulation
and the EGC/EGT diversity schemes under different types
of IRS transmission in AWGN and Laplacian noise. The
system assumes zero-mean complex Gaussian (Rayleigh)
fading channels with {σ2

hi
, σ2

ht,i
, σ2

gi , σ
2
gi,r} = 1, and sets

the number of antennas as {Mr,Mt} = 3, the number of
REs as N = 50, and the number of quantization bits as
q = 1 bit. Meanwhile, Fig. 8 (b) compares the BER of an
IRS-assisted multi-antenna system employing the MRC/MRT
diversity schemes under the same system parameters. Both
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(a) (b)

Fig. 8 Comparison of different transmission schemes for a multi-
antenna IRS-assisted system under AWGN and Laplacian noise with
Rayleigh fading channels, 4PAM modulation, Mr/Mt = 3, N = 50
and q = 1 bit (a) EGC/EGT (b) MRC/MRT.

figures demonstrate a perfect match between the numerical
and Monte-Carlo simulation results, verifying the applicability
and preciseness of the unified BER expressions derived in
Section III, for IRS-assisted multi-antenna systems employing
different reception and transmission diversity schemes.

As shown in Fig. 8 (a) and Fig. 8 (b), the lowest BER
is achieved with the intelligent transmission scheme. This is
attributed to the fact that the phases of the IRS fading channels
are assumed to be known at the IRS, and the REs apply phase
shifts to align the T-IRS and IRS-R phases, forming strong
beams towards R that result in significant improvements in
the received signal. Furthermore, it is shown that the BER
performance in transmission with imperfect phase shifts is
better compared to that of the blind transmission scheme. This
is because the phase information is partially known at the IRS
and/or the IRS applies discrete quantized phase shifts with
quantization errors. These imperfect phase shifts cause the IRS
to partially direct the incident signals towards R, and while not
maximizing the signal power, they improve the received signal.

On the other hand, under different types of noise and
diversity schemes, the system with blind transmission achieves
a higher BER compared to other transmission schemes as
the IRS does not apply phase shifts to form beams but
blindly reflects the incident signals. Moreover, under different
types of IRS transmission, the system with multiple antennas
employing MRC/MRT achieves an improved BER compared
to that of the single-antenna and multi-antenna with EGC/EGT.
However, increasing the number of active antenna elements
and employing MRC/MRT increase the cost and signal
processing complexity. Additionally, in the blind transmission
scheme, one may assume that T can communicate with R by
utilizing an ambient IRS, which can be a promising candidate
for low-cost and low-data rate communications such as IoT,
as it does not require excessive channel estimation overhead
and computational complexity.

Fig. 9 (a) depicts the impacts of the IRS location and
angle of incidence on the BER under different transmission
schemes in AWGN. The system parameters considered are

(a) (b)

Fig. 9 BER of the system with 64QAM (a) Impacts of IRS location
and angle of incidence in intelligent transmission and transmission
with imperfect phase shifts in AWGN (b) Impacts of quantization
bits in AWGN/Laplacian noise and different fading channels.

as follows: the number of REs is N = 25, the modulation
format is 64QAM, Eb/N0 = 20 dB, the number of phase
shift quantization bits is q = 1, and the IRS fading channel
coefficients are modeled as zero-mean complex Gaussian RVs
with σ2

hi
= σ2

gi = 1. As shown in the figure, regardless of the
transmission scheme and IRS-R horizontal distance, d, a better
BER performance is achieved by placing the IRS in direct
sight of T, where the angle of incidence becomes ψ = 0. This
is because cos(0) = 1, and thus, according to (1), the large-
scale path gain is improved, leading to improvements in the
received signal power and system performance.

It is also shown that for ψ = 0, the BER performance is
further improved by deploying the IRS close to either T or
R. For example, when ψ = 0, the highest BER is achieved
at d = D

2 = 25 m, which means that the IRS is deployed
between T and R with equal T-IRS and IRS-R horizontal
distances, whereas it is minimized by deploying the IRS at
either d << D m or d ≈ D m. On the other hand, when the
angle of incidence is ψ = arctan

(
D−d

HI−HT

)
̸= 0, the best BER

performance is achieved when the IRS is deployed close to T.
For example, as shown in the figure, for ψ ̸= 0 and different
transmission schemes, the BER is significantly improved by
placing the IRS at d ≈ D ≈ 50 m. As a result, regardless of
the angle of incidence, by placing the IRS close to T, the BER
is significantly improved.

Fig. 9 (b) illustrates the impacts of the number of
quantization bits on the BER of 64QAM modulation in AWGN
and Laplacian noise under different fading channels with
Mt = Mr = 1 and Eb/N0 = 25 dB. The system parameters
for different fading channels are set as follows: for Rayleigh
fading channels, we set N = 10, σ2

hi
= σ2

gi = 1, and η = 2;
for Rician fading channels, we set N = 10, µhi

= µgi = 1,
σ2
hi

= σ2
gi = 1, and η = 1; for Nakagami-m fading channels,

we set N = 30, Ωhi
= Ωgi = 1, mhi

= mgi = 2, and
η = 2; and for Weibull fading channels, we set N = 50,
Ωhi = Ωgi = 1, αhi = αgi = 2, and η = 1. From
the figure, it is evident that under different fading channels
and noise models, setting the number of quantization bits to
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q ≥ 4 significantly improves the BER. This improvement
can be attributed to the fact that increasing the number of
quantization bits leads to a higher number of phase shift
quantization levels. As a result, the precision of the applied
phase shifts increases, leading to further enhancements in the
received SNR. However, this comes at the expense of increased
hardware complexity and cost.

VII. CONCLUSION

This paper studied the BER performance of IRS-assisted
systems over generalized Gaussian noise and fading channels
in different transmission schemes. New expressions for the
BER analysis of various modulation formats were derived.
Moreover, accurate expressions for the characteristic functions
of different channels such as double Rayleigh, double Rician,
double Nakagami-m, double α−µ, and the sum of zero/non-
zero mean double complex Gaussian random variables were
extracted. It was shown that the BER expressions are readily
applicable to multi-antenna systems employing different
reception and transmission diversity schemes. Moreover, it was
observed that the IRS with full phase information achieves the
lowest BER compared to the cases when the IRS has no phase
information and partial phase information with discrete phase
shifts. However, it was demonstrated that setting the number
of phase shift quantization bits to 4 or more significantly
improves the BER in transmission with imperfect phase shifts.
Finally, it was shown that by deploying the IRS in front of
the transmitter and close to either the transmitter or receiver,
the BER is significantly improved.

APPENDIX A
PROOF OF LEMMA 1

According to the convolution theorem for the Fourier cosine
transform, the average of an absolutely integrable function,
g(x), with a PDF of fX(x) can be obtained as [54, Eq. (3)]

E [g(x)] =
2

π

∫ ∞

0

Fc(ω)ReΦx (ω) dω, (64)

where Fc(ω) is the Fourier cosine transform of g(x), and
ReΦx (ω) is the real part of the CHF of x.

Therefore, in order to derive the average of the generalized
Gaussian Q-function, by exploiting (64), it can be written that

E = E

[
Qη

(
B
√
Ebζ

N0
z

)]

=
2

π

∫ ∞

0

Fc(ω)ReΦz (ω) dω, (65)

where Fc(ω) is the Fourier cosine transform of the generalized
Gaussian Q-function, and Φz (ω) is the CHF of the sum of
RVs, z ≜

∣∣∣∑N
i=1 hie

jθigi

∣∣∣. Furthermore, Fc(ω) and Φz (ω)

are respectively expressed as

Fc(ω) =

∫ ∞

0

cos(ωz)Qη

(
B
√
Ebζ

N0
z

)
dz. (66)

Φz(ω) =

∫ ∞

0

ejωzfZ(z)dz. (67)

In order to derive Fc(ω), by exploiting (9) and [24,
Eq. (A.4)], the generalized Gaussian Q-function can be written
in terms of the upper incomplete gamma function as

Qη

(
B
√
Ebζ

N0
z

)
=

1

2Γ
(

1
η

)Γ
1

η
,

B

√
ϑ20Ebζ

N0
z

η .

(68)
Furthermore, by exploiting [41, Eq. (07.34.03.0613.01)],

(68) can be written in a more convenient form as

Qη

(
B
√
Ebζ

N0
z

)
=

G2,0
1,2

[(
B
√

ϑ2
0Ebζ
N0

z

)η ∣∣∣∣ 1
0, 1η

]
2Γ(1/η)

. (69)

Using (66) and (69), Fc(ω) in AWGGN is derived as

Fc(ω) =

∫ ∞

0

cos(ωz)

2Γ(1/η)
G2,0

1,2

B

√
ϑ20Ebζ

N0
z

η ∣∣∣∣ 1
0, 1η

 dz.

(70)
By applying [41, Eq. (07.34.21.0090.01)], the integral of

(70) is evaluated. Finally, by substituting (70) into (65),
and after some algebraic manipulations, the average of the
generalized Gaussian Q-function given in (22) is obtained. ■

APPENDIX B
PROOF OF COROLLARY 2

In order to derive a further simplified expression for the
exact BER analysis in Laplacian noise, by setting η = 1 in
(69), it can be written that

Q1

(
B
√
Ebζ

N0
z

)
=

1

2
G2,0

1,2

[
2B
√
Ebζ

N0
z

∣∣∣∣ 1
0, 1

]
. (71)

By applying [41, Eq. (07.34.03.0613.01)] and [26,
Eq. (8.356.2)], (71) can be explicitly written as

Q1

(
B
√
Ebζ

N0
z

)
=

1

2
Γ

(
1, 2B

√
Ebζ

N0
z

)

=
1

2
exp

(
−2B

√
Ebζ

N0
z

)
. (72)

By exploiting (66), the Fourier cosine transform of (72) is
written as

Fc(ω) =
1

2

∫ ∞

0

cos(ωz) exp

(
−B
√

2Ebζ

N0
z

)
dz. (73)

By applying [26, Eq. (3.944.6)], the integral of (73) is
evaluated as

Fc(ω) =
1

2

√(
ω2 + 2B2Ebζ

N0

) cos

arctan

 ω

B
√

2Ebζ
N0



=

√
B2ζ Eb

N0

ω2 + 4B2ζ Eb

N0

, (74)

where the last step is obtained by applying the identity
cos (arctan(α)) = 1√

1+α2
.

Finally, by substituting (74) into (65), the expression given
in (30) is obtained. ■
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APPENDIX C
PROOF OF LEMMA 2

Let’s assume that zi = |hi||gi| is a double Rayleigh RV,
where |hi| and |gi| can be non-identical, and thus by exploiting
[58, Eq. (8)], its exact PDF is written as

fZi(zi) =
2

σhiσgi
G2,0

0,2

[
z2i

σ2
hi
σ2
gi

∣∣∣∣ −
1
2 ,

1
2

]
. (75)

By applying the identity provided in [41,
Eq. (07.34.03.0605.01)], we can express (75) in an equivalent
form as follows.

fZi
(zi) =

4zi
σ2
hi
σ2
gi

K0

(
2zi

σhi
σgi

)
. (76)

Therefore, the CHF of zi is derived as

Φzi (ω) =
4

σ2
hi
σ2
gi

(∫ ∞

0

cos(ωzi)ziK0

(
2zi

σhiσgi

)
dzi

+j

∫ ∞

0

sin(ωzi)ziK0

(
2zi

σhi
σgi

)
dzi

)
. (77)

By applying [26, Eq. (6.699.4)] and [26, Eq. (6.691)], the
integrals of (77) are respectively evaluated, and after some
algebraic manipulations, the CHF expression given in (35) is
obtained. ■

APPENDIX D
PROOF OF LEMMA 3

We assume that zi = |hi||gi| is the product of two i.n.id
α− µ RVs, where its exact PDF is written as [42, Eq. (11)]

fZi
(zi) =

z−1
i

Γ(µhi
)Γ(µgi)

×H2,0
0,2

µ
1

αhi

hi
µ

1
αgi
gi zi

Ω
1

αhi

hi
Ω

1
αgi
gi

∣∣∣∣∣ −(
µhi

, 1
αhi

)
,
(
µgi ,

1
αgi

)  .
(78)

By leveraging (78), the CHF of double α − µ distribution
is derived as

Φzi (ω) = I1 + jI2, (79)

where

I1 =
1

Γ(µhi
)Γ(µgi)

∫ ∞

0

z−1
i cos(ωzi)

×H2,0
0,2

µ
1

αhi

hi
µ

1
αgi
gi zi

Ω
1

αhi

hi
Ω

1
αgi
gi

∣∣∣∣∣ −(
µhi

, 1
αhi

)
,
(
µgi ,

1
αgi

)  dzi.

(80)

I2 =
1

Γ(µhi
)Γ(µgi)

∫ ∞

0

z−1
i sin(ωzi)

×H2,0
0,2

µ
1

αhi

hi
µ

1
αgi
gi zi

Ω
1

αhi

hi
Ω

1
αgi
gi

∣∣∣∣∣ −(
µhi

, 1
αhi

)
,
(
µgi ,

1
αgi

)  dzi.

(81)

The integrals of I1 and I2 are evaluated by [27, Eq. (2.50)]
and [27, Eq. (2.49)], respectively. By substituting them into
(79), the CHF expression given in (36) is obtained. ■

APPENDIX E
PROOF OF LEMMA 4

We assume that zi = higi is a zero-mean double
complex Gaussian RV, where hi and gi can be non-identically
distributed RVs. Therefore, using [59, Eq. (17)], the exact PDF
of z =

∣∣∣∑N
i=1 zi

∣∣∣ is written as

fZ(z) =
4zN

Γ(N) (σhi
σgi)

N+1
KN−1

(
2z

σhi
σgi

)
. (82)

Using (82), the CHF of z is derived as

Φz (ω) =
4

Γ(N) (σhiσgi)
N+1

×

[∫ ∞

0

zN cos (ωz)KN−1

(
2z

σhi
σgi

)
dz︸ ︷︷ ︸

K1

+ j

∫ ∞

0

zN sin (ωz)KN−1

(
2z

σhiσgi

)
dz︸ ︷︷ ︸

K2

]
. (83)

The integrals K1 and K2 are respectively evaluated through
[26, Eq. (6.699.4)] and [26, Eq. (6.699.3)], and after some
algebraic manipulations, (50) is obtained. ■

APPENDIX F
PROOF OF LEMMA 5

In order to derive (51) and (52), we can rewrite that hi =
hRi + jhIi and gi = gRi + jgIi , where hRi ∼ N

(
µR
hi
, σ2

hi
/2
)
,

hIi ∼ N
(
µI
hi
, σ2

hi
/2
)
, gRi ∼ N

(
µR
gi , σ

2
gi/2

)
and gIi ∼

N
(
µI
gi , σ

2
gi/2

)
. Therefore, z2 can be written as

z2 =

∣∣∣∣∣
N∑
i=1

(
hRi + jhIi

) (
gRi + jgIi

)∣∣∣∣∣
2

=

(
N∑
i=1

(
hRi g

R
i − hIi g

I
i

))2

+

(
N∑
i=1

(
hRi g

I
i + hIi g

R
i

))2

≜ z2R + z2I . (84)

From (84), z2 = z2R + z2I is the sum of positive RVs, and
thus by virtue of [49, Sec. (2.2.2)], zR and zI can be tightly
approximated by the first branch of the Laguerre expansion
which is equivalent to gamma distribution. Therefore, z2R and
z2I are modelled by the generalized gamma distribution [60]. In
addition, z2 is the sum of two generalized gamma distributed
RVs, where its PDF is expressed as [60, Eq. (12)]

fz2 (x) =
Ψ

Γ (φ)
H1,0

0,1

[
Ψx

∣∣∣∣ −
(φ− 1, 1)

]
, (85)

where Ψ and φ are written as (53) and (54), respectively.
In order to derive the CHF of z, we first need to derive its

PDF, and thus by exploiting [27, Eq. (1.2) and Eq. (1.112)],
and by applying fZ (z) = 2zfz2

(
z2
)
, the PDF expression
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given in (51) is obtained. Furthermore, by leveraging (51), the
CHF of z is derived as

Φz (ω) =
2Ψ

Γ (φ)

∫ ∞

0

z cos (ωz)G1,0
0,1

[
Ψz2

∣∣∣∣ −
φ− 1

]
dz

+j
2Ψ

Γ (φ)

∫ ∞

0

z sin (ωz)G1,0
0,1

[
Ψz2

∣∣∣∣ −
φ− 1

]
dz.

(86)

The integrals of (86) are respectively evaluated through [41,
Eq. (07.34.21.0090.01)] and [41, Eq. (07.34.21.0089.01)], and
by applying [26, Eq. (9.31.5)], the CHF expression given in
(52) is obtained. In addition, to obtain Ψ and φ given (53) and
(54), we need to derive E

[
z2
]

and E
[
z4
]

as

E
[
z2
]
= E

[
z2R
]
+ E

[
z2I
]
, (87)

E
[
z4
]
= E

[(
z2R + z2I

)2]
= E

[
z4R
]
+ E

[
z4I
]
+ 2E

[
z2R
]
E
[
z2I
]
, (88)

where E
[
z2R
]
= V [zR] + E2 [zR], E

[
z2I
]
= V [zI ] + E2 [zI ],

E
[
z4R
]
= E4 [zR] + 6E2 [zR]V [zR] + 3V2 [zR] and E

[
z4I
]
=

E4 [zI ] + 6E2 [zI ]V [zI ] + 3V2 [zI ].
Furthermore, assuming identically distributed channels, the

mean and variance of zR and zI are derived as follows.

E [zR]= E

[
N∑
i=1

(
hRi g

R
i − hIi g

I
i

)]
= N

(
µR
hi
µR
gi − µI

hi
µI
gi

)
. (89)

E [zI ]= E

[
N∑
i=1

(
hRi g

I
i + hIi g

R
i

)]
= N

(
µR
hi
µI
gi + µI

hi
µR
gi

)
. (90)

V [zR]= V [zI ]

= N

{
σ2
hi
σ2
gi

2
+
σ2
hi

2

[(
µR
gi

)2
+
(
µI
gi

)2]
+
σ2
gi

2

[(
µR
hi

)2
+
(
µI
hi

)2]}
. (91)

Finally, we substitute the corresponding mean and variance
terms into (87) and (88). We then substitute them into (53)
and (54) to obtain Ψ and φ, which concludes the proof. ■
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