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ksmt is a CDCL-style calculus for solving non-linear constraints over the real numbers 
involving polynomials and transcendental functions. In this article we investigate properties 
of the ksmt calculus and show that it is a δ-complete decision procedure for bounded 
problems. For that purpose we provide concrete algorithms computing linearisations 
based on either uniform or local moduli of continuity of non-linear functions. The latter 
method is called local linearisation and is shown to have desirable properties sufficient for 
termination and which also allow for more efficient treatment of non-linear constraints. 
Our methods for constructing linearisations are based on computable analysis, in particular 
we introduce the Cauchy-compatible compact representation of reals and prove its names 
to be locally compact, allowing for more efficient computation of local linearisations while 
maintaining δ-completeness.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the 
CC BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

Solving non-linear constraints is important in many applications, including verification of cyber-physical systems, soft-
ware verification, proof assistants for mathematics [31,25,2,1,16,7]. Hence there has been a number of approaches for solving 
non-linear constraints, involving symbolic methods [17,28,34,22] as well as numerically inspired ones, in particular for deal-
ing with transcendental functions [14,35], and combinations of symbolic and numeric methods [8,12,13].

In [8] we introduced the ksmt calculus for solving non-linear constraints over a large class of functions including poly-
nomial, exponential and trigonometric functions. The ksmt calculus1 combines conflict driven constraint learning (CDCL) 
[26,27,4] over the reals based on conflict resolution [23] with linearisations of non-linear functions using methods from 
computable analysis [37,30]. An axiom-based form of linearisations for solving non-linear constraints was introduced in [12], 
tailored specifically to multiplication x · y and Taylor approximations of some analytic functions. Our approach to linearisa-
tions is based on computable analysis which is applicable to the larger class of computable functions and allows for more 
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flexibility in constructing concrete linearisations of non-linear functions. It naturally supports exact real arithmetic which 
avoids limitations of double precision computations caused by rounding errors and instabilities in numerical methods. In 
particular, satisfiable and unsatisfiable results returned by ksmt are exact as required in many applications. This approach 
also supports implicit representations of functions such as solutions of ordinary and partial differential equations (ODEs and 
PDEs) [32,9].

It is well known that in the presence of transcendental functions the constraint satisfiability problem is undecidable [33]. 
However if we only require solutions up to some specified precision δ, then the problem can be solved algorithmically on 
bounded instances and that is the motivation behind δ-completeness, which was introduced in [14]. In essence a δ-complete 
procedure decides if a formula is unsatisfiable or a δ-weakening of the formula is satisfiable.

In this paper we investigate theoretical properties of the ksmt calculus, and its δ-complete extension δ-ksmt. Our main 
results are as follows:

1. We introduce a notion of ε-full linearisations and prove that all ε-full runs of ksmt are terminating on bounded instances.
2. We extend the ksmt calculus to the δ-satisfiability setting and prove that δ-ksmt is a δ-complete decision procedure for 

bounded instances.
3. We provide an algorithm for computing ε-full local linearisations and integrate it into δ-ksmt. Local linearisations can 

be used to considerably narrow the search space by taking into account local behaviour of non-linear functions avoiding 
computationally expensive global analysis.

4. We prove δ-ksmt with local linearisations to be δ-complete. For this purpose we introduce the Cauchy-compatible 
compact (CCC) representation of the reals and prove local compactness of its domain via Tychonoff’s theorem as one of 
the key properties.

In Section 3, we give an overview about the ksmt calculus and introduce the notion of ε-full linearisation used through-
out the rest of the paper. We also show completeness in case of ε-full linearisations. Section 4 introduces δ-completeness 
and the slightly more refined notion of [δ]-completeness together with related concepts. In Section 5 we introduce the 
δ-ksmt adaptation, prove it is correct and δ-complete, and give concrete effective linearisations based on a uniform modulus 
of continuity. Finally in Section 6, we introduce local linearisations and show that termination is independent of computing 
uniform moduli of continuity. We prove this using the Cauchy-compatible compact representation of real numbers that we 
introduce in this section. We conclude in Section 7.

2. Preliminaries

The following conventions are used throughout this paper. By ‖ · ‖ we denote the maximum-norm ‖(x1, x2, . . . , xn)‖ =
max{|xi | : 1 ≤ i ≤ n}. When it helps clarity, we write finite and infinite sequences �x = (x1, . . . , xn) and �y = (yi)i with an 
arrow above. We use open balls B(�c, ε) = {�x : ‖�x −�c‖ < ε} ⊆Rn for �c ∈Rn and ε > 0 and sA to denote the closure of the set 
A ⊆Rn in the standard topology induced by the norm. By Q>0 we denote the set {q ∈Q : q > 0}. For sets X, Y , a function 
f from X to Y , total or partial, is written as f : X � Y and in case f is total we write f : X → Y . We use the notion of 
compactness: a set A is compact iff every open cover of A has a finite subcover. In Euclidean spaces this is equivalent to 
A being bounded and closed [38]. As is common when considering formulas F in conjunctive normal form (CNF), we will 
consider F as a set of conjunctively connected clauses, each of which is represented by a set of disjunctively connected 
atomic constraints.

2.1. Basic notions of computable analysis

Let us recall the notion of computability of functions over real numbers used throughout this paper. A rational number 
q is an approximation accurate up to 2−n of a real number x if ‖q − x‖ ≤ 2−n . Informally, a function f is computed by a 
function-oracle Turing machine M?

f , where ? is a placeholder for the oracle representing the argument of the function, 
in the following way. The real argument x is represented by an oracle function ϕ : N → Q, for each n returning an n-
approximation ϕn of x. For simplicity, we refer to ϕ by the sequence (ϕn)n . When run with an argument p ∈ N , Mϕ

f (p)

computes a rational approximation accurate up to 2−p of f (x) by querying its oracle ϕ for approximations of x. Let us note 
that the definition of the oracle machine does not depend on the concrete oracle, i.e., the oracle can be seen as a parameter. 
In the case only the machine without a concrete oracle is of interest, we write M?

f . We refer to [19] for a precise definition 
of the model of computation by function-oracle Turing machines which is standard in computable analysis.

Definition 2.1 ([19]). Consider �x ∈Rn . A (Cauchy) name for �x is a rational sequence �ϕ = ( �ϕk)k such that ∀k : ‖ �ϕk −�x‖ ≤ 2−k . A 
function f :Rn �R is computable iff there is a function-oracle Turing machine M?

f such that for all �x ∈ dom f and names 

�ϕ for �x, |M �ϕ
f (p) − f (�x)| ≤ 2−p holds for all p ∈N . Such a Turing machine is called a realiser of f .

These concepts can be generalised using so-called representations of topological spaces [37], here we only mention 
notions relevant for this article. A representation � of such a space A is a surjective partial map to A. Given x ∈ A, the 
2
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separated linear form

lin.
check

choice A B

∃z R

nlin.
check

L

α = nil

p.lin.cons.
p.lin.incons.

∃q
¬∃q

p.nlin.cons.

p.nlin.incons.

Fig. 1. Core of ksmt calculus. Derivations terminate either in node B or ∃z.

preimage �−1(x) denotes the set of �-names of x. In this article, a name of x ∈ R is an infinite sequence of rational 
approximations to x. When ‘name’ is used without prefix specifying the concrete representation, throughout this article it 
is assumed to refer to a Cauchy-name, as defined above. Note that there can be multiple representations of A that differ in 
the properties they provide. In Section 6 we introduce the Cauchy-compatible compact representation of R which provides 
desirable compactness properties.

The above Definition 2.1 is closely related to interval arithmetic with unrestricted precision, but enhanced with the 
guarantee of convergence and it is equivalent to the notion of computability used in [37]. The class of computable functions 
contains polynomials and transcendental functions like sin, cos, exp, among others. It is well known [19,37] that this class is 
closed under composition and that computable functions are continuous. By continuity, a computable function f :Rn �R
total on a compact D ⊂Rn has a computable uniform modulus of continuity μ f ,D :N →N on D [37, Theorem 6.2.7], that is,

∀k ∈N ∀�y, �z ∈ D : ‖�y − �z‖ ≤ 2−μ f ,D (k) =⇒ | f (�y) − f (�z)| ≤ 2−k. (2.1)

When the compact set D is clear from the context, we will just write μ f instead. A uniform modulus of continuity of f
expresses how changes in the value of f depend on changes of the arguments in a uniform way.

3. The ksmt calculus

We first describe the ksmt calculus for solving linear and non-linear constraints [8] informally, and subsequently recall 
the main definitions which we use in this paper. The ksmt calculus consists of transition rules, which, for any formula 
in linear separated form, allow deriving lemmas implied by the formula and, in case of termination, produce a satisfying 
assignment for the formula or show that it is unsatisfiable by deriving a trivial contradiction. A quantifier-free formula is in 
separated linear form L ∪N if L is a set of clauses over linear constraints and N is a set of non-linear atomic constraints; 
this notion is rigorously defined below.

In the ksmt calculus there are four transition rules applied to its states: Assignment refinement (A), Conflict resolution 
(R), Backjumping (B) and Linearisation (L). The final ksmt states are sat and unsat. A non-final ksmt state is a triple 
(α, L, N ) where α is a (partial) assignment of variables to rationals. A ksmt derivation starts with an initial state where 
α is empty and tries to extend this assignment to a solution of L ∪ N by repeatedly applying the Assignment refinement 
rule. When such assignment extension is not possible we either obtain a linear conflict which is resolved using the Conflict 
resolution rule, or a non-linear conflict which is resolved using the Linearisation rule. For an overview of this process of 
obtaining ksmt derivations see Fig. 1.

The main idea behind the Linearisation rule is to approximate the non-linear constraints around the conflict using linear 
constraints in such a way that the conflict will be shifted into the linear part where it will be resolved using conflict 
resolution. Application of either of these two rules results in a state containing a clause evaluating to false under the current 
assignment. This is followed by either application of the Backjumping rule, which undoes assignments or by termination, in 
which case the original formula is unsat. In this procedure, only the assignment and linear part of the state change and the 
non-linear part stays fixed.

3.1. Notations

Let Flin consist of rational constants, addition, and multiplication by rational constants; Fnl denotes an arbitrary col-
lection of non-linear computable functions including transcendental functions and polynomials over the reals. We consider 
the structure (R, 〈Flin ∪Fnl, P〉) where P = {<, ≤, >, ≥, =, �=} and a set of variables V = {x1, x2, . . . , xn, . . .}. We will use, 
possibly with indices, x for variables and q, c, e for rational constants. Define terms, predicates and formulas over V in the 
standard way. An atomic linear constraint is a formula of the form: c0 + c1x1 + . . . + cnxn � 0 where c0, . . . , cn ∈Q and � ∈P . 
A linear constraint is a disjunction of atomic linear constraints, also called (linear) clause. An atomic non-linear constraint is a 
3
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formula of the form f (�x) � 0, where � ∈P and f is a composition of linear functions from F lin and at least one computable 
non-linear function from Fnl over variables �x. Since the computable functions are closed under composition, in the following 
we will treat such a composition as a single computable function. Throughout this paper for every computable real function 
f we use M?

f to denote a function-oracle Turing machine computing f . We assume quantifier-free formulas in separated 
linear form [8, Definition 1], that is, L ∪ N where L is a set of linear constraints and N is a set of non-linear atomic 
constraints. Arbitrary quantifier-free formulas can be transformed equi-satisfiable into separated linear form in polynomial 
time [8, Lemma 1]. Note that negations of atomic constraints can be eliminated by rewriting the predicate symbol � in 
the standard way, hence we assume that all constraints occur positively in the formula in separated linear form. Since in 
separated linear form all non-linear constraints are atomic, we will call them just non-linear constraints.

Let α = (xi1 �→ α(xi1 ) :: · · · :: xin �→ α(xin )) be a partial variable assignment to rationals such that all assigned variables 
xi j are distinct. Then α can also be seen as a map α : V �Q. The interpretation ��x�α of a vector of variables �x under α
is defined in a standard way as component-wise application of α. Define the notation �t�α as evaluation of term t under 
assignment α, that can be partial, in which case �t�α is treated symbolically. We extend �·�α to predicates, clauses and CNF 
in the usual way and true, false denote the constants of the Boolean domain. The evaluation �t � 0�α for a predicate � and a 
term t results in true or false only if all variables in t are assigned by α.

3.2. Arithmetical resolution and linearisation

In order to formally restate the calculus, the notions of linear resolvent and linearisation are essential.

Definition 3.1. A (generalised) resolvent Rα,L,z on a variable z is a set of linear constraints that do not contain z, are implied 
by the formula L and which evaluate to false under the partial assignment α.

As with resolution in the propositional setting,

A ∨ p B ∨ ¬p
A ∨ B

two clauses over linear constraints can be resolved as well. This gives rise to the inference rule

A ∨ (az + b ≤ 0) B ∨ (−cz + d ≤ 0)

A ∨ B ∨ (cb + ad ≤ 0)

where a, c are positive rational constants and b, d are linear terms. We refer to this rule as arithmetical resolution [23,8].
Given a linear formula L and partial assignment α together with an unassigned variable z, a linear conflict (for z) refers to 

the situation that �L�α::z �→q = false for any q ∈Q. In ksmt resolvents are generally obtained through arithmetical resolution; 
note however, that a single application of this rule does not necessarily result in a resolvent as the clause can still contain 
the variable z. General methods to obtain resolvents of linear conflicts based on arithmetical resolution exist [8, Section 
3.3]. Here, we will just give an example.

Example 3.1. Consider the assignment α = (x �→ 5 :: y �→ 7) and L consisting of the three linear clauses C1 : (x − y >
4 ∨ x + 2z ≤ 0), C2 : (y < 0 ∨ z ≤ 0 ∨ y − z ≤ 0), and C3 : (1 − z ≤ 0). Under α there is a linear conflict for z in L. In this 
case the generalised resolvent can be obtained by first applying arithmetical resolution between C1 and C2 on z resulting 
in clause C4:

C1 C2

C4 : (x − y > 4 ∨ y < 0 ∨ z ≤ 0 ∨ x + 2y ≤ 0)

As this clause C4 still contains z, the second step is another arithmetical resolution of C4 with C3 on z resulting in clause 
C5:

C4 C3

C5 : (x − y > 4 ∨ y < 0 ∨ x + 2y ≤ 0 ∨ 1 ≤ 0)

As C5 does not contain z anymore, and it evaluates to false under α, {C5} satisfies the conditions of the generalised resolvent 
Rα,L,z . Note that Rα,L,z is not necessarily unique as neither the set of clauses chosen for arithmetical resolution nor the 
sequence of resolutions are fixed.

Definition 3.2. Let P be a non-linear constraint and let α be an assignment with �P�α = false. A linearisation of P at α is a 
linear clause C with the properties:

1. ∀β : �P�β = true =⇒ �C�β = true, and
2. �C�α = false.
4
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Without loss of generality we can assume that the variables of C are a subset of the variables of P . Let us note that any 
linear clause C represents the complement of a rational polytope R and we will use both interchangeably. Thus for a rational 
polytope R , �x /∈ R also stands for a linear clause. In particular, any linearisation excludes a rational polytope containing the 
conflicting assignment from the search space.

3.3. Transition rules of ksmt

For a formula L0 ∪N in separated linear form, the initial ksmt state is (nil, L0, N ). The ksmt calculus consists of the 
following transition rules from a state S = (α, L, N ) to S ′:

(A) Assignment. S ′ = (α :: z �→ q, L, N ) iff �L�α �= false and there is a variable z unassigned in α and q ∈ Q with 
�L�α::z �→q �= false.

(R) Resolution. S ′ = (α, L ∪ Rα,L,z, N ) iff �L�α �= false and there is a variable z unassigned in α with ∀q ∈Q : �L�α::z �→q =
false and Rα,L,z is a resolvent.

(B) Backjump. S ′ = (γ , L, N ) iff �L�α = false and there is a maximal prefix γ of α such that �L�γ �= false.
(L) Linearisation. S ′ = (α, L ∪ {Lα,P }, N ) iff �L�α �= false, there is P in N with �P�α = false and Lα,P is a linearisation of P

at α.
(F sat

)
Final sat. S ′ = sat if all variables are assigned in α, �L�α = true and rule (L) is not applicable.

(F unsat) Final unsat. S ′ = unsat if �L�nil = false. In other words a trivial contradiction, e.g., 0 > 1 is in L.

A path (or a run) is a derivation in the ksmt calculus, that is, given an initial state S0, a derivation denotes a sequence 
S0, S1, . . . , Sn, . . . of states where each Si+1 is obtained from Si by application of one of the ksmt rules. A ksmt procedure 
is an effective (possibly non-deterministic) way to construct a path.

If no transition rule is applicable, the derivation terminates. For clarity, we added the explicit rules (F sat) and (F unsat)

which lead to the final states.
The ksmt calculus defined by these rules is sound [8, Lemma 2]: if the final transition is (F sat), then α is a solution to 

the original formula, or it is (F unsat), in which case a trivial contradiction (e.g., 0 > 1) was derived and the original formula 
is unsatisfiable. The calculus also makes progress by reducing the search space [8, Corollary 1]. For clarity, we restate the 
corresponding lemmas.

Lemma 3.1 (Soundness). For n ∈ N let (Si)i≤n be a sequence of ksmt states such that Si+1 is derived from Si = (αi, Li, N ) by 
application of one of the ksmt rules for all i < n. The following hold.

1. For all 0 < i < n and total assignments α: �Li−1 ∧N �α = �Li ∧N �α .
2. If no rule is applicable to Sn and S0 is the initial ksmt state, the following are equivalent:

• L0 ∧N is satisfiable.
• αn−1 is a solution to L0 ∧N .
• Sn = sat.
• A trivial contradiction is not in Ln−1.

Lemma 3.2 (Progress). Let S = (α, L, N ) be a ksmt state and let n ∈ N be the number of variables in L ∧ N . Then in any ksmt 
derivation from S of length greater than n + 1 the search space is reduced.

Example 3.2. An example run of the ksmt calculus is presented in Fig. 2. We start in a state with a non-linear part N = {P }, 
which defines the red area (1) and the linear part L = {(x/4 + 1 ≤ y), (y ≤ 4 · (x − 1))}, shaded and printed in green (2). 
In this example, the first two assignments are performed consecutively as there are no conflicts yet and result in point 
(3a). After that, a non-linear conflict appears since 8

3 ≤ 1/2 does not hold. The linearisation procedure in this example is 
given at the top right and invoked, producing the lemma printed in pink. This lemma excludes the pink region (3b) in 
the graph, which contains the conflicting assignment. This step is followed by an invocation of the backjumping rule and 
a new assignment to y (4a). Then we continue to successively apply ksmt rules excluding the blue region (4b) around 
the candidate solution by another linearisation, until we completely separate the red from the green area. This is done by 
generalised resolutions, first between blue and green lemmas producing the next two clauses printed in black, and then by 
a resolution between those, thus deriving the final contradiction.

Remark 3.1. In general a derivation may not terminate. The only cause of non-termination is the linearisation rule which 
adds new linear constraints and can be applied infinitely many times. To see this, observe that ksmt with only the rules 
(A), (R), (B) corresponds to the conflict resolution calculus which is known to be terminating [23,24]. Thus, in infinite ksmt
runs the linearisation rule (L) is applied infinitely often. This argument is used in the proof of Theorem 3.3 below. Let us 
note that during a run the ksmt calculus neither conflicts nor lemmas (new constraints produced by rules (R) and (L)) can 
5
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Fig. 2. An example of an unsat run of ksmt on initial state (α, L, N ) using interval linearisation [8]. Here, the constraints L are shaded in green and N
in red. See Example 3.2 for details.

be generated more than once. In fact, any generated linearisation is not implied by the linear part restricted to constraints 
over variables in α, prior to adding this linearisation.

3.4. Sufficient termination conditions

In this section we will assume that (α, L, N ) is a ksmt state obtained by applying ksmt inference rules to an initial 
state. As in [14] we only consider bounded instances. In many applications this is a natural assumption as variables usually 
range within some (possibly large) bounds. We can assume that these bounds are made explicit as linear constraints in the 
system.

Definition 3.3. Let F be the formula L0 ∧N in separated linear form over variables x1, . . . , xn and let Bi be the set defined 
by the conjunction of all clauses in L0 univariate in xi , for i = 1, . . . , n; in particular, if there are no univariate linear 
constraints over xi then Bi =R. We call F a bounded instance if:

• D F :=×n
i=1 Bi is bounded, and

• for each non-linear constraint P : f (xi1 , . . . , xik ) � 0 in N with i j ∈ {1, . . . , n} for j ∈ {1, . . . , k} it holds that ĘD P ,F ⊆ dom f

where D P ,F :=×k
j=1 Bi j .

When the formula F is clear from the context, we will drop the index F from D P ,F .

By this definition, already the linear part of bounded instances explicitly defines a bounded set by univariate constraints. 
Consequently, the set of solutions of F is bounded as well.

In Theorem 3.3 we show that when we consider bounded instances and restrict linearisations to so-called ε-full lin-
earisations, then the procedure terminates. We use this to show that the ksmt-based decision procedure we introduce in 
Section 5 is δ-complete.

Definition 3.4. Let ε > 0, P be a non-linear constraint over variables �x and let α be an assignment of �x. A linearisation C of 
P at α is called ε-full iff for all assignments β of �x with ��x�β ∈ B(��x�α, ε), �C�β = false.

A ksmt run is called ε-full for some ε > 0, if all but finitely many linearisations in this run are ε-full.

The next theorem provides a basis for termination of ksmt-based decision procedures for satisfiability.

Theorem 3.3. Let ε > 0. On bounded instances, ε-full ksmt runs are terminating.

Proof. Let F :L0 ∧N be a bounded instance and ε > 0. Towards a contradiction assume there is an infinite ε-full derivation 
(α0, L0, N ), . . . , (αn, Ln, N ), . . . in the ksmt calculus. Then, by definition of the transition rules, Lk ⊆ Ll for all k, l with 
0 ≤ k ≤ l. According to Remark 3.1 in any infinite derivation the linearisation rule must be applied infinitely many times. 
During any run of ksmt the set of non-linear constraints N is fixed and therefore there is a non-linear constraint P in N
over variables �x to which linearisation is applied infinitely often. Let (αi1 , Li1 , N ), . . . , (αin , Lin , N ), . . . be a corresponding 
6
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f (x)
0 δ

δ-sat ]
( unsat

Fig. 3. The overlapping cases in the δ-SMT problem f (x) ≤ 0.

subsequence in the derivation such that Ci1 ∈Li1+1, . . . , Cin ∈Lin+1, . . . are ε-full linearisations of P . Consider two different 
linearisation steps k, 	 ∈ {i j : j ∈ N} in the derivation where k < 	. By the precondition of rule (L) applied in step 	 we 
have �L	�

α	 �= false. In particular the linearisation Ck ∈ Lk+1 ⊆ L	 of P constructed in step k does not evaluate to false
under α	 . Since the set of variables in Ck is a subset of those in P , �Ck�

α	 �= false implies �Ck�
α	 = true. By assumption, the 

linearisation Ck is ε-full, thus from Definition 3.4 it follows that ��x�α	 /∈ B(��x�αk , ε). Therefore the distance between ��x�αk

and ��x�α	 is at least ε . However, every conflict satisfies the variable bounds defining D F , so there could be only finitely 
many conflicts with pairwise distance at least ε . This contradicts the above. �

Concrete algorithms to compute ε-full linearisations are presented in Sections 5 and 6.

4. δ-decidability

In the last section, we proved termination of the ksmt calculus on bounded instances when linearisations are ε-full. Let 
us now investigate how ε-full linearisations of constraints involving non-linear computable functions can be constructed. 
To that end, we assume that all non-linear functions are defined on the closure of the bounded space D F defined by the 
bounded instance F .

So far we described an approach which gives exact results but at the same time is necessarily incomplete due to unde-
cidability of non-linear constraints in general. On the other hand, non-linear constraints usually can be approximated using 
numerical methods allowing to obtain approximate solutions to the problem. This gives rise to the bounded δ-SMT prob-
lem [14] which allows an overlap between the properties δ-sat and unsat of formulas as illustrated by Fig. 3. It is precisely 
this overlap that enables δ-decidability of bounded instances.

Let us recall the notion of δ-decidability, adapted from [14].

Definition 4.1. Let F be a formula in separated linear form and let δ ∈Q>0. We inductively define the δ-weakening Fδ of F .

• If F is linear, let Fδ := F .
• If F is a non-linear constraint f (�x) � 0, let

Fδ :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f (�x) − δ � 0, if � ∈ {<,≤}
f (�x) + δ � 0, if � ∈ {>,≥}
| f (�x)| − δ ≤ 0, if � ∈ {=}
( f (�x) < 0 ∨ f (�x) > 0)δ, if � ∈ {�=}.

• Otherwise, F is A ◦ B with ◦ ∈ {∧, ∨}. Let Fδ := (Aδ ◦ Bδ).

δ-deciding F designates computing{
unsat, if �F �α = false for all α

δ-sat, if �Fδ�
α = true for some α.

In cases when both answers are valid, the algorithm may output any.
An assignment α with �Fδ�

α = true we call a δ-satisfying assignment for F .

For non-linear constraints P this definition of the δ-weakening Pδ corresponds exactly to the notion of δ-weakening P−δ

used in the introduction of δ-decidability [15, Definition 4.1].

Remark 4.1. The δ-weakening of a non-linear constraint f (�x) �= 0 is a tautology.

We now consider the problem of δ-deciding quantifier-free formulas in separated linear form. The notion of δ-decidability 
is slightly stronger than in [14] in the sense that we do not weaken linear constraints. Consider a formula F in separated 
linear form. As before, we assume variables �x to be bounded by linear constraints �x ∈ D F . We additionally assume that for 
all non-linear constraints P : f (�x) � 0 in N , f is defined on ĎD P and, in order to simplify the presentation, throughout the 
rest of paper we will assume only the predicates � ∈ {>, ≥} are part of formulas, since the remaining ones <, ≤, = can 
7
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f (x)
−δ 0 δ

[δ]-sat [ ]
sat ]

( unsat

Fig. 4. The overlapping cases in the [δ]-decision problem f (x) ≤ 0.

F F−δ [δ]-decision of F
unsat unsat unsat

δ-sat α unsat [δ]-sat α
— δ-sat β sat β

Fig. 5. [δ]-decision of F obtained by combining results of δ-deciding both, formula F and its δ-strengthening F−δ . Here, α, β are final assignments. Note 
that in case F−δ is δ-sat with assignment β , Lemma 4.1 shows that β also satisfies F .

easily be expressed by the former using simple arithmetic transformations, and by Remark 4.1 predicates �= are irrelevant 
for δ-deciding formulas.

An algorithm is δ-complete, if it δ-decides bounded instances [14].

4.1. The [δ]-decision problem

The notion of δ-deciding a formula F introduced above is asymmetrical in the sense that δ-sat enlarges the set of 
satisfiable formulas while the unsatisfiable ones remain the same. The δ-sat result also is weaker than a sat result. However, 
in this section we show how the asymmetry can be avoided and a large part of the stronger sat result can be obtained given 
any δ-complete decision procedure. The problem solved in this way we call the [δ]-decision problem and is summarised in 
Fig. 4.

In order to define this problem, we recall the notion of a δ-strengthening of a formula F adapted to our setting [15, 
Definition 4.1].

Definition 4.2. Let δ > 0. The δ-strengthening F−δ of a formula F in separated linear form is a obtained by the substitution 
of −δ for δ in Definition 4.1.

Remark 4.2. Similar to the δ-weakening of non-linear disequality constraints, the δ-strengthening of non-linear equalities is 
trivially a contradiction.

Now we can state the [δ]-decision problem: Compute one of⎧⎪⎨
⎪⎩

sat, if F is satisfiable

[δ]-sat, if Fδ is satisfiable and F−δ is not

unsat, if F is unsatisfiable

The below properties follow directly from the definition.

Lemma 4.1. Let F be formula and let δ > 0. The following hold:

1. F is equivalent to (F−δ)δ .
2. F−δ implies F .

Given a δ-complete decision procedure for some δ > 0, we can approach the [δ]-decision problem as follows. First, δ-
decide F and in case it is unsat, return unsat as the result. Otherwise F is δ-sat with assignment α. Then, secondly, δ-decide 
the δ-strengthening of F . If F−δ is δ-sat with assignment β , return sat with assignment β , otherwise return [δ]-sat with 
assignment α. Fig. 5 provides a summary of this construction and additionally mentions the contradictory combination of 
F being unsat and F−δ being δ-sat, which in turn implies that F is sat.

Corollary 4.2. Let δ > 0 and F be a formula in separated linear form. The [δ]-decision problem can be solved by δ-deciding both, F
and F−δ , separately.

5. δ-ksmt

Since δ-decidability as introduced above adapts the condition when a formula is considered to be satisfied to δ-sat, this 
condition has to be reflected in the calculus, which in this section we show solves the bounded δ-SMT problem. Adding the 
8
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Rules (α, L, N ) ⇒ ∗
where ∗ is:

applicability conditions

(A) assign (α :: z �→
q, L, N )

z unassigned, q ∈Q and no linear conflict

(R) resolve (α, L ∪ R, N ) resolvent R excludes the linear conflict
(B) backjump (γ , L, N ) to γ maximal conflict-free prefix of α
(L) linearise (α, L ∪ L, N ) linearisation L excludes the non-linear con-

flict
(F sat) sat all variables are assigned and neither a lin-

ear nor non-linear conflict exists
(F unsat) unsat �L�nil = false
(F sat

δ ) δ-sat all variables are assigned and �L ∧ Nδ�
α =

true

Fig. 6. Summary of the rules of the δ-ksmt calculus.

following rule (F sat
δ ) together with the new final state δ-sat to ksmt relaxes the termination conditions and turns it into 

the extended calculus we call δ-ksmt. A summary of its rules is provided in Fig. 6.

(F sat
δ ) Final δ-sat. If (α, L, N ) is a δ-ksmt state where α is a total assignment and �L ∧Nδ�

α = true, transition to the δ-sat
state.

The applicability conditions on the rules (L) and (F sat
δ ) individually are not decidable [33,6], however, when we compute 

them simultaneously, we can effectively apply one of these rules, as we will show in Lemma 5.4. In combination with 
ε-fullness of the computed linearisations (Lemma 5.5), this leads to Theorem 5.6, showing that δ-ksmt is a δ-complete 
decision procedure.

Let us note that if we assume δ = 0 then δ-ksmt would just reduce to ksmt as (F sat) and (F sat
δ ) become indistinguish-

able, but in the following we always assume δ > 0.
In the following sub-section, we prove that terminating derivations of the δ-ksmt calculus lead to correct results. Then, 

in Section 5.2, we present a concrete algorithm for applying rules (L) and (F sat
δ ) and show its linearisations to be ε-

full, which is sufficient to ensure termination, as shown in Theorem 3.3. These properties lead to a δ-complete decision 
procedure. In Section 6 we develop a more practical algorithm for ε-full linearisations that does not require computing a 
uniform modulus of continuity.

5.1. Soundness

In this section we show soundness of the δ-ksmt calculus, that is, validity of its derivations. In particular, this implies 
that derivability of the final states unsat, δ-sat and sat directly corresponds to unsatisfiability, δ-satisfiability and satisfiability 
of the original formula, respectively.

Lemma 5.1. For all δ-ksmt derivations of S ′ = (α′, L′, N ) from a state S = (α, L, N ) and for all total assignments β , �L ∧N �β =
�L′ ∧N �β .

Proof. Let β be a total assignment of the variables in L ∧ N . Since the set of variables remains unchanged by δ-ksmt
derivations, β is a total assignment for L′ ∧ N as well. Let S ′ = (α′, L′, N ) be derived from S = (α, L, N ) by a single 
application of one of δ-ksmt rules. By the structure of S ′ , its derivation was not caused by neither (F unsat), (F sat) or 
(F sat

δ ). For rules (A) and (B) there is nothing to show since L = L′ . If (R) caused S �→ S ′ , the claim holds by soundness 
of arithmetical resolution. Otherwise (L) caused S �→ S ′ in which case the direction ⇒ follows from the definition of a 
linearisation (condition 1 in Definition 3.2) while the other direction trivially holds since L ⊆ L′ .

The condition on derivations of arbitrary lengths then follows by induction. �
Lemma 5.2. Let δ ∈Q>0 . Consider a formula G =L0 ∧N in separated linear form and let S = (α, L, N ) be a δ-ksmt state derivable 
from the initial state S0 = (nil, L0, N ). The following hold.

• If rule (F unsat) is applicable to S then G is unsatisfiable.
• If rule (F sat

δ ) is applicable to S then α is a δ-satisfying assignment for G, hence G is δ-satisfiable.
• If rule (F sat) is applicable to S then α is a satisfying assignment for G, hence G is satisfiable.

Proof. Let formula G and states S0, S be as in the premise. As S is not final in δ-ksmt, only ksmt rules have been applied 
in deriving it. The statements for rules (F unsat) and (F sat) thus hold by soundness of ksmt [8, Lemma 2].

Assume (F sat
δ ) is applicable to S , that is, �L ∧Nδ�

α is true. Since L contains all constraints from L0, α also satisfies L0. 
Hence, α satisfies L0 ∧Nδ , which, according to Definition 4.1, equals Gδ . Therefore α is a δ-satisfying assignment for G . �
9



F. Brauße, K. Korovin, M.V. Korovina et al. Theoretical Computer Science 975 (2023) 114125
Since the only way to derive one of the final states unsat, δ-sat and sat from the initial state in δ-ksmt is by application 
of the rule (F unsat), (F sat

δ ) and (F sat), respectively, as corollary of Lemmas 5.1 and 5.2 we obtain validity of the δ-ksmt
derivations, thus soundness of the calculus.

Theorem 5.3 (Soundness). Let δ ∈Q>0 . The δ-ksmt calculus is sound.

5.2. δ-completeness

We proceed by introducing Algorithm 1 computing linearisations and deciding which of the rules (F sat
δ ) and (L) to apply. 

These linearisations are then shown to be ε-full for some ε > 0 depending on the bounded instance. By Theorem 3.3, this 
property implies termination, showing that δ-ksmt is a δ-complete decision procedure.

Given a non-final δ-ksmt state, the function nlinStepδ in Algorithm 1 computes a δ-ksmt state derivable from it by 
application of (F sat

δ ) or (L). This is done by evaluating the non-linear functions and adding a linearisation C based on their 
uniform moduli of continuity as needed. To simplify the algorithm, it assumes total assignments as input. It is possible to 
relax this requirement to partial assignments, e.g., by returning a state obtained by invoking rules (A) or (R) instead of 
returning δ-sat.

Algorithm 1 (nlinStepδ) Algorithm computing a δ-ksmt derivation according to either rule (L) or (F sat
δ ) from a state 

(α, L, N ) where α is total. The function f in non-linear constraint P ∈N is assumed to be computed by machine M?
f and 

μ f = μ f ,ĘD P ,F
to be a computable uniform modulus of continuity of f .

function lineariseδ ( f , �x, �, α)
pick p ∈N with 2−p ≤ δ/4
ϕ ← (n �→ ��x�α)

ε ← 2−μ f (p)

y ← Mϕ
f (p)

if y � −δ/2 then
return None

end if
C ← (�x /∈ B(��x�α, ε))

return C � linearisation at α
end function

function nlinStepδ (α, L, N )
for each ( f (�x) � 0) in N do

C ← lineariseδ ( f , �x, �, α)
if C �= None then � (L)

return (α, L ∪ {C}, N )

end if
end for
return δ-sat � (F sat

δ )

end function

Lemma 5.4. Let δ ∈Q>0 , L ∧N be a bounded instance and let S = (α, L, N ) be a δ-ksmt state where α is total and �L�α = true. 
Then nlinStepδ(α, L, N ) computes a state derivable by application of either (L) or (F sat

δ ) to S.

Proof. In the proof we will use notions from computable analysis, as defined in Section 2.1. Let (α, L, N ) be a state as in 
the premise, F = L ∧ N , and let P : f (�x) � 0 be a non-linear constraint in N . Let M?

f compute f as in Algorithm 1. The 

algorithm computes a rational approximation y = M
(��x�α)i
f (p) of f (��x�α) where p ∈N with 2−p ≤ δ/4. �L�α = true implies 

��x�α ∈ D P ,F ⊆ dom f , thus the computation of y terminates. Since M?
f computes f , y is accurate up to 2−p ≤ δ/4, that is, 

y ∈ [ f (��x�α) ± δ/4]. By assumption � ∈ {>, ≥}, thus

1. y � −δ/2 implies f (��x�α) � −δ, which is equivalent to �Pδ�
α = true, and

2. ¬(y � −δ/2) implies ¬( f (��x�α) � −δ/2 + δ/4), which in turn implies �P�α = false and the applicability of rule (L).

For Item 1 no linearisation is necessary and indeed the algorithm does not linearise P . Otherwise (Item 2), it adds the 
linearisation C : (�x /∈ B(��x�α, ε)) to the linear clauses. Since ��x�α ∈ D P ,F by Eq. (2.1) we obtain that 0 /∈ B( f (�z), δ/4) holds, 
implying ¬( f (�z) � 0), for all �z ∈ B(��x�α, ε) ∩ ĘD P ,F . Hence, the formula C is a linearisation of P at α.

In case nlinStepδ(α, L, N ) returns δ-sat, the premise of Item 1 holds for every non-linear constraint in N , that is, 
�Nδ�

α = true. By assumption �L�α = true, hence the application of the (F sat
δ ) rule deriving δ-sat is possible in δ-ksmt. �

Lemma 5.5. For any bounded instance L0 ∧ N there is a computable ε ∈ Q>0 such that any δ-ksmt run starting in (nil, L0, N ), 
where applications of (L) and (F sat

δ ) are performed by nlinStepδ , is ε-full.

Proof. Let P : f (�x) �0 be a non-linear constraint in N . Since F =L0 ∧N is a bounded instance, D P ,F ⊆Rn is also bounded. 
Let εP := 2−μ f (p) where p ∈N with 2−p ≤ δ/4 as in Algorithm 1. As μ f is a uniform modulus of continuity of f valid on 
ĘD P ,F , the inequalities in the following construction hold on the whole domain ĘD P ,F of f and do not depend on the 
concrete assignment α where the linearisation is performed. Since log2 and μ f are computable, so are p and εP . There are 
10
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finitely many non-linear constraints P in N , therefore the linearisations the algorithm nlinStepδ computes are ε-full with 
ε = min{εP : P in N } > 0. �

We call δ-ksmt derivations when linearisations are computed using Algorithm 1 δ-ksmt with full-box linearisations, or 
δ-ksmt-fb for short. As the runs computed by it are ε-full for ε > 0, by Theorem 3.3 they terminate.

Theorem 5.6. δ-ksmt-fb is a δ-complete decision procedure.

Proof. δ-ksmt-fb is sound (Theorem 5.3) and terminates on bounded instances (Theorem 3.3 and Lemma 5.5). �
Remark 5.1. The properties function lineariseδ( f , �x, �, α) in Algorithm 1 needs to satisfy can be summed up as follows. 
Given δ > 0, a non-linear constraint P : f (�x) � 0 and α with ��x�α ∈ dom f , lineariseδ( f , �x, �, α) computes one of

• None, if �Pδ�
α = true, or

• a linearisation C of P at α, if �P�α = false.

In case there is ε > 0 such that all computed linearisations are ε-full, so are the corresponding δ-ksmt runs and thus they 
terminate on bounded instances.

In the following section, we will introduce another kind of linearisation procedure based on effective local moduli of 
continuity satisfying these conditions and prove existence of a lower bound ε > 0 on the ε-fullness for bounded instances.

6. Local ε-full linearisations

In practice, when the algorithm computing ε-full linearisations described in the previous section is going to be imple-
mented, the question arises of how to get a good uniform modulus of continuity μ f for a computable function f . Depending 
on how f is given, there may be several ways of computing it. Implementations of exact real arithmetic, e.g., iRRAM [30],
AERN2 [20], Ariadne [2], CDAR [3], are usually based on the formalism of function-oracle Turing machines (see Defini-
tion 2.1) which allow to compute with representations of computable functions [11] including implicit representations of 
functions as solutions of ODEs/PDEs [32,9]. If f is only available as a function-oracle Turing machine M?

f computing it, a 
modulus μ f valid on a compact domain can be computed, however, in general this is not possible without exploring the 
behaviour of the function on the whole domain, which in many cases is computationally expensive. Moreover, since μ f is 
uniform, μ f (n) is constant on the entire domain, independent of the actual assignment α determining where f is evaluated. 
Yet, computable functions admit local moduli of continuity that additionally depend on the concrete point in their domain. 
In most cases these would provide linearisations with ε larger than that determined by μ f leading to larger regions being 
excluded, ultimately resulting in fewer linearisation steps and general speed-up. In many cases local moduli of continuity 
can be obtained, e.g., from an explicit representation of the function or the concrete approximation as a term. In that case, 
this local modulus of f can be used directly instead of μ f in Algorithm 1.

However, even if there is no knowledge about the function except its computability by a machine, a local modulus 
of continuity can still be obtained. In fact, most of the prominent implementations of computable analysis evaluate user-
defined functions by searching for a local modulus of continuity at the point of evaluation. This method has been formalised 
as a representation of continuous functions [11] in the second-order complexity framework of Kawamura and Cook [18]. 
Though unlike the representation they suggest for C([0, 1]), implementations typically choose to not provide polynomial-
time access to a uniform modulus of continuity. This is due to the fact that no representation of C([0, 1]) allows for both, 
polynomial-time computability of a uniform modulus and fast computation of the evaluation operator [11, Theorem 2.4]. 
Nonetheless, as shown in this section, even from algorithms adhering to the Cauchy representation (as implemented in 
most systems for exact real arithmetic) ε-full linearisations can be obtained, with two benefits: (a) local moduli and thus 
ε can be bounded globally, which allows us to prove termination of δ-ksmt even when no additional knowledge about the 
function is available, and (b) only a single run of the machine is needed per linearisation.Indeed, machines producing finite 
approximations of f (x) from finite approximations of x internally have to compute some form of local modulus to guarantee 
correctness. In this section, we explore this approach of obtaining local linearisations covering a larger part of the function’s 
domain.

In order to guarantee a positive bound on the local modulus of continuity extracted directly from the run of the machine 
M?

f computing f , it is necessary to employ a restriction on the names of real numbers M?
f computes on. The set of names 

should in a very precise sense be “small”, i.e., it has to be compact. The very general notion of names used in Definition 2.1 is 
too broad to satisfy this criterion since the space of rational approximations is not even locally compact. Here, we present an 
approach using practical names of real numbers as sequences of dyadic rationals of lengths restricted by accuracy. For that 
purpose, we introduce another representation of R, that is, the surjective mapping ξ : Dω �R called Cauchy-compatible 
compact representation. This terminology is motivated by Lemma 6.1 and Theorem 6.4 stated later. Here, Dω denotes the 
set of infinite sequences (ϕk)k of dyadic rationals where for each k the denominator of ϕk is bounded by 2−(k+1) , see 
11
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Definition 6.1. If ϕ has a limit (in R), we write limϕ . Algorithms operating on such sequences of approximations can be 
implemented using interval arithmetic or generalisations thereof [30,10,21]. The Cauchy-compatible compact representation 
is also close to implementations as for efficiency reasons they tend to cut unnecessary precision from approximations.

Definition 6.1. We introduce a representation of reals based on sequences of dyadics of restricted lengths, which we call 
Cauchy-compatible compact representation, or CCC for short, as follows.

• For k ∈ ω let Dk := Z · 2−(k+1) = {m/2k+1 : m ∈ Z} ⊂ Q and let Dω :=×k∈ω Dk be the set of all sequences (ϕk)k with 
ϕk ∈ Dk for all k ∈ ω. By default, Dω is endowed with the Baire space topology, which corresponds to that induced by 
the metric

d : (ϕ,ψ) �→
{

0 if ϕ = ψ

2−n if ϕn �= ψn with n ∈ ω minimal

• Define ξ : Dω �R as the partial function mapping ϕ ∈ Dω to limϕ iff ∀i, j : |ϕi − ϕi+ j | ≤ 2−(i+1) . Any ϕ ∈ ξ−1(x) is 
called a ξ -name of x ∈R. We also refer to ξ as the Cauchy-compatible compact representation.

• The representation ρ : (xk)k �→ x mapping names (xk)k of x ∈R to x as per Definition 2.1 is called Cauchy representation.

Using a standard product construction we can easily generalise the notion of ξ -names to ξn-names of Rn . When clear 
from the context, we will drop n and just write ξ to denote the corresponding generalised representation Dn

ω �Rn . Note 
that in the definition of Dk the denominators are set to 2k+1 in order to align ξ -names with Cauchy-names, see Lemma 6.1.

Computable equivalence between two representations not only implies that there are continuous maps between them 
but also that names can computably be transformed [37]. Since the Cauchy representation itself is continuous [5] we derive 
continuity of ξ , which is used below to show compactness of preimages ξ−1(X) of compact sets X ⊆R under ξ .

Lemma 6.1. The following properties hold for the Cauchy-compatible compact representation ξ .

1. ξ is a representation of Rn.
2. Any ξ -name of �x ∈Rn is a Cauchy-name of �x.
3. ξ is computably equivalent to the Cauchy representation.
4. ξ is continuous.
5. The domain of ξ is closed.

Proof. 1. We only need to show that ξ : Dω �Rn is surjective. This property is implied by (computable) equivalence to 
the Cauchy representation, see Item 3.

2. We prove that for any �x ∈ Rn and ξ -name ϕ of �x, ∀k : |ϕk − �x| ≤ 2−k holds. For simplicity we assume a dimension of 
n = 1. The general case can be proved similarly.

Let x ∈R and ϕ be a ξ -name of x and let k ∈ ω. By construction x = limϕ , hence there is n0 ∈ ω such that for every 
n ≥ n0 the bound |ϕn − x| < 2−(k+1) holds. If n0 ≤ k, the previous bound already gives the required property. Otherwise, 
n0 > k, and |ϕk − x| ≤ |ϕk − ϕn0 | + |ϕn0 − x| holds. Since ϕ ∈ dom ξ , the first summand is bounded by 2−(min(k,n0)+1) =
2−(k+1) . By the property above, so is the second. Ergo |ϕk − x| ≤ 2−k .

3. For simplicity we consider the case of dimension 1. The general case can be proved similarly.

⇒) Let ψ be a ξ -name of x ∈R. By Item 2, ψ is a Cauchy-name of x.
⇐) Given ϕ ∈ domρ and n ∈ ω. Compute ψn := �ϕn+4 · 2n+1�/2n+1 ∈ Dn where �·� : Q → Z is a computable rounding 

operation with |�q� − q| ≤ 1/2 for all q ∈Q.
Then with x := limϕ:

|ψn − x| = |�ϕn+4 · 2n+1�/2n+1 − x|
≤ |�ϕn+4 · 2n+1� − ϕn+4 · 2n+1|/2n+1 + |ϕn+4 − x|
≤ 2−(n+2) + 2−(n+4)

We show ψ := (ψn)n is a ξ -name of x. Let n, k ∈ ω with k > 0.

|ψn − ψn+k| ≤ |ψn − x| + |ψn+k − x|
≤ 2−(n+2) + 2−(n+4) + 2−(n+k+2) + 2−(n+k+4)

≤ 2−(n+2) + 2−(n+4) + 2−(n+3) + 2−(n+5)

≤ 2−(n+1)

Thus, ψ ∈ dom ξ and therefore ψ is a ξ -name of lim ψ = x.
12
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4. Computable equivalence between two representations implies there are continuous maps between them. Since the 
Cauchy representation is continuous itself [5], so is ξ .

5. We prove that dom ξ ⊆Dω is closed. For that we show that Dω \dom ξ is open. Let ϕ ∈Dω with ϕ /∈ dom ξ . By definition 
of ξ , there are i, j such that |ϕi − ϕi+ j | > 2−(i+1) . Let ψ ∈Dω with ∀k ≤ i + j : ϕk = ψk . Then ψ /∈ dom ξ . Thus the open 
ball with prefix (ϕk)

i+ j
k=0 is outside of dom ξ . �

The converse of Item 2 does not hold. An example for a Cauchy-name of 0 ∈ R is the sequence (xn)n with xn = (−2)−n

for all n ∈ ω, which does not satisfy ∀i, j : |xi − xi+ j | ≤ 2−(i+1) . However, given a name of a real number, we can compute a 
corresponding ξ -name, this is one direction of the property in Item 3.

As a consequence of Item 2 a function-oracle machine M? computing f : Rn �R according to Definition 2.1 can be 
run on ξ -names of �x ∈ Rn leading to valid Cauchy-names of f (�x). Note that this proposition does not require M?

f to 
compute a ξ -name of f (�x). Any rational sequence rapidly converging to f (�x) is a valid output. This means, that the model 
of computation remains unchanged with respect to the earlier parts of this paper. It is the set of names the machines are 
operated on, which is restricted. This is reflected in Algorithm 2 by computing dyadic rational approximations ϕm of ��x�α
such that ϕm ∈Dn

m instead of keeping the name of ��x�α constant as has been done in Algorithm 1.

Algorithm 2 (Local linearisation) Algorithm δ-deciding P : f (�x) � 0 and – in case unsat – computing a linearisation at α or 
returning “None”, and in this case α satisfies Pδ . The function f is computed by machine M?

f .

function LineariseLocalδ ( f , �x, �, α)
ϕ ← (m �→ approx(��x�α, m)) � then ϕ is a ξ -name of ��x�α

pick p ∈N with 2−p ≤ δ/4
run Mϕ

f (p + 2), record its output y and its maximum query k ∈ ω to ϕ
if y � −δ/2 then

return None
else

return (�x /∈ B(��x�α, 2−k))

end if
end function

In particular, in Theorem 6.5 we show that linearisations for the (L) rule can be computed by Algorithm 2, which – 
in contrast to lineariseδ in Algorithm 1 – does not require access to a procedure computing an upper bound μ f on the 
uniform modulus of continuity of the non-linear function f ∈ Fnl valid on the entire bounded domain. It not just runs 
the machine M?

f , but also observes the queries Mϕ
f poses to its oracle in order to obtain a local modulus of continuity of 

f at the point of evaluation. The function approx(�x, m) := ��x · 2m+1�/2m+1 used to define Algorithm 2 computes a dyadic 
approximation of �x, with �·� :Qn →Zn denoting a rounding operation (computable by a classical Turing machine), that is, 
it satisfies ∀�q : ‖��q� − �q‖ ≤ 1

2 .

Definition 6.2 ([37, Definition 6.2.6]). Let f : Rn � R and �x ∈ dom f . A function γ : N → N is called a (local) modulus of 
continuity of f at �x if for all p ∈N and �y ∈ dom f , ‖�x − �y‖ ≤ 2−γ (p) =⇒ | f (�x) − f (�y)| ≤ 2−p holds.

We note that in most cases a local modulus of continuity of f at �x is smaller than the best uniform modulus of f on 
its domain, since it only depends on the local behaviour of f around x. One way of computing a local modulus of f at �x is 
using the function-oracle machine M?

f as defined next.

Definition 6.3. Let M?
f compute f : Rn �R and let �x ∈ dom f have Cauchy-name ϕ . The function γM?

f ,ϕ
: p �→ max{0, k :

Mϕ
f (p + 2) queries index k of ϕ} is called the effective local modulus of continuity induced by M?

f at ϕ .

The effective local modulus of continuity of f at a name ϕ of �x ∈ dom f indeed is a local modulus of continuity of f at 
�x [19, Theorem 2.13]. Algorithm 2 computes ε-full linearisations by means of the effective local modulus as stated next.

Lemma 6.2. Let P : f (�x) � 0 be a non-linear constraint in N and α be an assignment of �x to rationals in dom f . Whenever C =
LineariseLocalδ( f , �x, �, α) and C �= None, C is an ε-full linearisation of P at α, with ε corresponding to the effective local modulus 
of continuity induced by M?

f at a ξ -name of ��x�α .

Proof. Let P : f (�x) � 0, α and C �= None be as in the premise and let p, y and ϕ as in Algorithm 2. Since C �= None by 
construction C = (�x /∈ B(��x�α, 2−k)) where k = γM?

f ,ϕ
(p) is the maximum query Mϕ

f (p + 2) poses to its oracle. Thus, by 

definition, C is ε-full with ε = 2−k . In order to show that C indeed is a linearisation of P at α, let β be a total assignment 
with �z := ��x�β ∈ B(��x�α, 2−k). If �z /∈ dom f there is nothing to show since � f (�x) �0�β �= true. Otherwise, since γM? ,ϕ is a local 
f

13
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modulus of continuity of f at ��x�α [19, Theorem 2.13], f (�z) is within distance 2−p ≤ δ/4 of f (��x�α), which, by definition 
of M?

f , is at most 2−(p+2) < δ/4 away from y. By construction of C in Algorithm 2 the property ¬(y � −δ/2) holds. As in 
case 2 in the proof of Lemma 5.4, this property implies ¬( f (�z) � 0). Therefore, according to Definition 3.4, C is an ε-full 
linearisation of P at α. �

Thus, the function lineariseLocalδ in Algorithm 2 is a drop-in replacement for lineariseδ in Algorithm 1 since the 
condition on returning a linearisation of P versus accepting Pδ is identical. The linearisations however differ in the radius 
ε , which now, according to Lemma 6.2, corresponds to the effective local modulus of continuity. The resulting procedure we 
call nlinStepLocalδ . One of its advantages over nlinStepδ is running M?

f on ξ -names instead of Cauchy-names. ξ -names 
form a compact set for bounded instances, unlike the Cauchy-names. This allows us to globally bound ε > 0 for all computed 
ε-full local linearisations, see Theorem 6.5.

The following example shows that for some realisers of a computable function f no bound on the effective local modulus 
can be obtained that is valid for all Cauchy-names of x ∈ dom f . In particular, there are realisers M̂? of f such that the 
effective local modulus of continuity induced by M̂? is unbounded on ρ−1({x}) for any precision n. More formally, the 
following holds.

∀ f computable, x ∈ dom f , precision n ∈ N :
∃M̂? realising f : sup{γM̂?,ϕ(n) : ϕ ∈ ρ−1({x})} = ∞

Indeed, consider a realiser M? of a computable function f : R � R.Then construct another realiser M̂? of f that, upon 
input of a name ϕ ∈Qω of x ∈R and n ∈N , performs the following steps.

1. Query ϕ0 = p
q .

2. Query ϕq and discard the result.
3. Execute Mϕ(n).

Obviously, M̂? computes the same function as M? but with potentially different queries to its oracle. By using the denom-
inator of the (reduced) fraction p

q as index, the query is unbounded on the set ρ−1({x}) of names of any x ∈ dom f , since 
this set contains names that start with arbitrarily large denominators. Consequently, one can only obtain the bound ε ≥ 0
but not the required ε > 0.

However, by removing such redundant names ϕ from the representation, (a) we obtain a way to bound ε > 0 for 
the computed ε-full local linearisations of otherwise arbitrary δ-ksmt runs, and (b) we are not required to change the 
implementation of realisers of non-linear functions. The compatibility of ξ with the Cauchy-representation facilitates inter-
operability with different implementations of realisers, as long as they accept dyadic ξ -names. Prominent examples of such 
implementations include iRRAM [30], AERN2 [20], Ariadne [2], CDAR [3]. This property of ξ is crucial to the feasibility of 
local linearisations and can be characterised as compactness of the set of names of a compact set, as shown in the following 
Lemma and Theorem. In a nutshell, the argument can be summarised as showing that the set {ϕp : ϕ ∈ ξ−1(X)} is com-
pact, for any p ∈ N and any compact X ⊂ Rn . A similar result has been shown to hold for the signed-digit representation 
ρsd [29], though it is important to note that ρsd operates on Cantor space which, unlike Baire space, already is compact. By 
virtue of Lemma 6.1, Item 2 the Cauchy-compatible compact representation ξ also matches implementations more closely 
than the signed-digit representation.

We prove compactness of preimages ξ−1(X) of compact sets X by first showing that they are closed.

Lemma 6.3. Let X ⊂Rn be closed. Then the set ξ−1(X) of ξ -names of elements in X is closed in Dn
ω .

Proof. By definition, the complement Rn \ X is open in Rn . By Lemma 6.1 Item 4 ξ is continuous, hence the preimage 
ξ−1(Rn \ X) is an open subset of dom ξ as well. Therefore dom ξ \ ξ−1(Rn \ X) = ξ−1(X) is closed in dom ξ which by 
Lemma 6.1 Item 5 is closed in Dn

ω as well. Thus, ξ−1(X) is a closed subset of Dn
ω . �

Now, compactness of preimages ξ−1(X) follows from Tychonoff’s theorem, which states that arbitrary products of non-
empty compact spaces again are compact [36].

Theorem 6.4. Let X ⊂Rn be compact and let ξ denote the Cauchy-compatible compact representation of Rn. Then the set ξ−1(X) ⊂
Dn

ω of ξ -names of elements in X is compact as well.

Proof. By Item 2 in Lemma 6.1 ξ−1(X) is a subset of the product of the finite and therefore compact spaces

{�y ∈Dn
k : ‖�x − �y‖ ≤ 2−k, �x ∈ X}

over k ∈ ω. As a closed (Lemma 6.3) subset of a compact space, ξ−1(X) is compact as well. �
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This proof relies on the fact that for each component ϕk of ξ -names (ϕk)k of �x ∈ X there are just finitely many choices 
from Dn

k due to the restriction of the length of the dyadics. This is not the case for the Cauchy representation used in 
Definition 2.1 and it is the key for deriving existence of a strictly positive lower bound ε on the ε-fullness of linearisations 
in the following Theorem.

Theorem 6.5. Let δ ∈Q>0 . For any bounded instance L0 ∧N there is ε > 0 such that any δ-ksmt run starting in (nil, L0, N ), where 
applications of (L) and (F sat

δ ) are performed according to nlinStepLocalδ , is ε-full.

Proof. Assume F =L0 ∧N is a bounded instance. Set ε := min{εP : P ∈N }, where εP is defined as follows. Let P : f (�x) � 0
in N . Then the closure ĘD P ,F of the bounded set D P ,F is compact. Let E be the set of ξ -names of elements of ĘD P ,F ⊆ dom f
(see Definition 6.1) and for any ϕ ∈ E let kϕ be defined as γM?

f ,ϕ
(p) (see Definition 6.3) where p is computed from δ as 

in Algorithm 2 and is independent of ϕ . In order to find εP , consider the function ϕ �→ kϕ mapping ξ -names ϕ ∈ E to the 
effective local modulus of continuity induced by M?

f at ϕ evaluated at the precision p required for an accuracy of at least δ. 
For any i ∈ ω, the preimage of {i} under this function from Dn

ω to ω is the set of all names ϕ ∈ E where Mϕ
f (p + 2) queries 

its oracle ϕ exactly up to i. This set is open in Dn
ω as it corresponds to the union of basic open sets Dn

ω[w] over all finite 
sequences w ∈ ωi such that wϕ ∈ E for some ϕ ∈ ωω and kwϕ = i, where Dn

ω[w] ⊂ Dn
ω corresponds to ‘the ball’ around 

w as in the proof of Lemma 6.3. Therefore, ϕ �→ kϕ is continuous on E , as is the composition ϕ �→ 2−kϕ . By Theorem 6.4
the set E is compact, thus, there is ψ ∈ E such that 2−kψ = inf{2−kϕ : ϕ ∈ E}. Set εP := 2−kψ . The claim then follows by 
Lemma 6.2. �

Thus we can conclude.

Corollary 6.6. δ-ksmt with local linearisations is a δ-complete decision procedure.

Remark 6.1. As a consequence of Theorem 6.5, for each δ and P : f (x) � 0 there is a corresponding bound ε(δ) > 0 on ε
for the ε-full linearisations. Though in our setting δ is fixed when considering δ-ksmt, these bounds implicitly define a 
uniform modulus of continuity of f on ĎD P , as the following holds:

∀p ∈N ∀x, x′ ∈ ĎD P : ‖x − x′‖ ≤ ε(2−p) =⇒ | f (x) − f (x′)| ≤ 2−p

Hence, μ f can be defined as p �→ μ f (p) where 2−μ f (p) ≤ ε(2−p).
However, the benefit of local linearisations is that the lower bound ε(δ) valid on ĎD P does not need to be computed 

(an exponential-time problem) and that most cases ε(δ) is worse than the local ε obtained by local linearisations, which is 
valid at a particular point in ĎD P . If fast access to both, uniform and local, moduli of continuity is available, their minimum 
can be used.

7. Conclusion

In this paper we extended the ksmt calculus to the δ-satisfiability setting and proved that the resulting δ-ksmt calculus 
is a δ-complete decision procedure for solving non-linear constraints over computable functions which include polynomi-
als, exponentials, logarithms, trigonometric and many other functions used in applications. We presented algorithms for 
constructing ε-full linearisations ensuring termination of δ-ksmt. Based on methods from computable analysis we also pre-
sented an algorithm for constructing local linearisations. Local linearisations exclude larger regions from the search space 
and can be used to avoid computationally expensive global analyses of non-linear functions.

For future work we plan on implementing the δ-ksmt calculus in the existing ksmt solver by leveraging libraries for 
exact real computations. Its new rule requires examining all non-linear constraints at once in contrast to the more local 
linearisation rule, which is likely to pose challenges with respect to efficiency. We also plan to compare its performance 
using global and local linearisations to that of other δ-complete decision procedures.
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