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Abstract
We consider the action of a semisimple Hopf algebra H on an m-Koszul Artin–Schelter
regular algebra A. Such an algebra A is a derivation-quotient algebra for some twisted
superpotential w, and we show that the homological determinant of the action of H on A

can be easily calculated using w. Using this, we show that the smash product A#H is also a
derivation-quotient algebra, and use this to explicitly determine a quiver algebra � to which
A#H is Morita equivalent, generalising a result of Bocklandt–Schedler–Wemyss. We also
show how � can be used to determine whether the Auslander map is an isomorphism. We
compute a number of examples, and show how several results for the quantum Kleinian
singularities studied by Chan–Kirkman–Walton–Zhang follow using our techniques.

Keywords Artin-Schelter regular algebras · Hopf algebra action · McKay quiver ·
Homological determinant · Auslander map · Twisted superpotential

Mathematics Subject Classification (2010) 16S35 · 16T05 · 16W22

1 Introduction

In representation theory, it is a common technique to express a k-algebra A as (the path
algebra of) a quiver with relations in order to study properties of A. This approach has
proved most fruitful in the study of finite-dimensional algebras since, from the point of view
of representation theory, every finite-dimensional k-algebra can be expressed in this way.
Moreover, there has been considerable success in the past few decades in expressing many
interesting families of infinite-dimensional algebras as quivers with relations, and using
these descriptions to deduce representation-theoretic or geometric properties of associated
algebras.

As an example, if G is a finite subgroup of SL(2,k) acting naturally on a polynomial
ring R := k[u, v], then the invariant ring RG is called a Kleinian singularity, and these
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rings are of considerable interest in ring theory, representation theory, and geometry. In
[30], it was shown that a closely-related algebra called the skew group algebra, denoted
R#G, is Morita equivalent to a certain quiver with relations, the preprojective algebra�(Q)

of an extended Dynkin quiver. This result forms a component of the Auslander–McKay
correspondence, and can be used to deduce representation-theoretic properties of RG and
R#G, and geometric properties of the singular variety SpecRG and its minimal resolution.
For example, the maximal Cohen-Macaulay RG-modules can be studied using �(Q), and it
is possible to construct the minimal resolution of SpecRG by applying quiver GIT to �(Q).
This result of Reiten–Van den Bergh was later extended by Bocklandt–Schedler–Wemyss
in [8], where it was shown that if G is a finite subgroup of GL(n,k) acting on a polynomial
ring R := k[x1, . . . , xn], then the skew group algebra R#G is Morita equivalent to a quiver
with relations.

In recent years, there has been a strong interest in generalising results from commuta-
tive invariant theory, such as those comprising the Auslander–McKay correspondence, to a
noncommutative setting; see [21] for a survey of recent results. A common approach in non-
commutative invariant theory is to replace the polynomial ring R by an Artin–Schelter (AS)
regular algebra A, and the finite group G � GL(n, k) by a semisimple Hopf algebra H . It
is then possible to define an invariant ring AH , as well as an analogue of the skew group
algebra, called the smash product, denoted A#H . One can then study properties of AH and
A#H , with AH playing the role of the coordinate ring of a noncommutative (often singu-
lar) variety. Seeking to better understand the invariant rings that arise in this way, the main
goal of this paper is to prove a generalisation of the result of Bocklandt–Schedler–Wemyss
to this setting.

Our first result provides a key stepping stone in this direction. We recall that, in the com-
mutative setting, the determinant of the elements of G often controls properties of RG and
R#G. For example, Watanabe’s Theorem says that if G is a finite subgroup of SL(n,k) (i.e.
every element of G has trivial determinant) then the invariant ring RG is Gorenstein. The
determinant has a noncommutative analogue, called the homological determinant, which
has been shown to control similar properties of AH and A#H ; see [12, 20, 22], for exam-
ple. Despite its ubiquity in noncommutative invariant theory, the homological determinant
is notoriously difficult to compute. Our first result gives a method to compute the homolog-
ical determinant for the action of a Hopf algebra on a large family of AS regular algebras,
which extends [29, Theorem 3.3] and [11, Theorem 2.1].

Theorem 1.1 (Theorem 3.2) Suppose that A is an m-Koszul AS regular algebra, gener-
ated in degree 1, and that H is a semisimple Hopf algebra acting inner-faithfully and
homogeneously on A, so that A is a left H -module algebra. Associated to A is a twisted
superpotential w ∈ V ⊗� for some �, where V = A1. The homological determinant
hdetA : H → k of the action of H on A satisfies

h · w = hdetA(h)w,

for all h ∈ H .

In [11], Chan–Kirkman–Walton–Zhang studied actions of semisimple Hopf algebras H

on 2-dimensional AS regular algebras such that the H -action on A had trivial homological
determinant, and provided a complete classification of such actions. This condition on the
homological determinant is analogous to the fact that, for Kleinian singularities, we require
G to be a subgroup of SL(2,k) rather than GL(2,k). In light of this, in the sequel [12], the
authors called the resulting invariant rings AH quantum Kleinian singularities, and showed
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that they had many properties in common with (commutative) Kleinian singularities. In par-
ticular, they began to develop aspects of the Auslander–McKay correspondence for quantum
Kleinian singularities.

It would therefore be desirable to have a version of the result of Reiten–Van den Bergh
for quantum Kleinian singularities; better still, a generalisation of the result of Bocklandt–
Schedler–Wemyss to the setting of Hopf algebra actions would aid our understanding of
noncommutative invariant rings in higher dimensions, which is currently relatively unex-
plored. The first of these goals was achieved in the author’s PhD thesis, [14, Theorem 7.2.1],
provided that H = kG was a group algebra. The main result of this paper achieves the
second of these goals, which also deals with the cases that were omitted from [14].

Theorem 1.2 (Theorem 5.2) Assume that A and H satisfy the hypotheses of Theorem 1.1.
Then A#H is Morita equivalent to an algebra �, which is the path algebra of a quiver
with relations. Moreover, there is a vertex 0 such that AH ∼= e0�e0, where e0 is the ver-
tex idempotent corresponding to vertex 0. The relations in � are obtained from a twisted
superpotential and can be written down explicitly, and the twist depends on the homological
determinant of the action of H on A.

We remark that the fact that one is able to express A#H as a quiver with relations is
not new; this follows by combining [32, Theorem 4.1] with [31, Lemma 3.4]. However, this
approach is very inexplicit; it is nontrivial to determine both the quiver and the relations in
this way. On the other hand, the proof of Theorem 1.2 shows that both the underlying quiver
of � and the defining relations can be easily calculated from the H -action on A.

As a precursor to Theorem 1.2, we first need show that the smash product A#H is a
derivation-quotient algebra, a technical notion which is defined in Section 2. The major-
ity of the effort in this paper is expended in proving the following result, from which
Theorem 1.2 follows relatively quickly:

Theorem 1.3 (Theorem 4.8) Assume that A and H satisfy the hypotheses of Theorem 1.1.
ThenA#H is a derivation-quotient algebra for some twisted superpotential, where the twist
depends on the homological determinant of the action of H on A.

A version of this result was established in [34, Theorem 4.12], with the additional restric-
tions that H is a group algebra and that the homological determinant of the H -action on A is
trivial. Removing their assumption on the homological determinant is relatively straightfor-
ward; on the other hand, replacing the group algebra kG by an arbitrary semisimple Hopf
algebra H required new techniques.

The remainder of the paper is devoted to applications of Theorem 1.2 and examples. We
outline one such application now. In noncommutative invariant theory, the Auslander map,
defined in Section 2, plays an important role in the representation theory of AH . If this map
is an isomorphism, then [13, Theorems A and C] shows, in particular, that there is a bijection
between irreducible representations of H and maximal Cohen-Macaulay AH -modules, up
to a degree shift. For this reason, it is important to know when this map is an isomorphism;
a result of Bao–He–Zhang [3, Theorem 0.3] provides a computationally useful criterion to
determine when this is the case. Using Theorem 1.2, their result can be reformulated as a
statement in terms of �, as follows:

Theorem 1.4 (Corollary 5.7) Assume that A and H satisfy the hypotheses of Theo-
rem 1.1, and additionally assume that A is GK-Cohen-Macaulay. Let � be the algebra from
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Theorem 1.2. Then the Auslander map is an isomorphism if and only if GKdim�/〈e0〉 �
GKdimA − 2.

Theorem 1.2 also has applications to the study of maximal Cohen-Macaulay modules
over the invariant rings AH ; see Section 5.4. These results will be used in forthcoming work
to study the Auslander–Reiten theory of two-dimensional noncommutative singularities.

In the final section, we compute a number of examples, with a particular emphasis on
the quantum Kleinian singularities of Chan–Kirkman–Walton–Zhang. In [12], the authors
expended a great deal of effort showing that the Auslander map corresponding to a quantum
Kleinian singularityAH is an isomorphism and that, in a number of cases,AH is isomorphic
to a commutative Kleinian singularity. Using our techniques, we are able to deduce both of
these results quickly; our proof also provides a conceptual reason as to why these results
should be true.

Theorem 1.5 Assume that AH is a quantum Kleinian singularity, in the sense of [12] (see
Table 1 in Section 6 for the classification). Then the following hold:

(1) The Auslander map corresponding to AH is an isomorphism.
(2) In cases (d) (n even), (e), and (f), the invariant ring AH is a commutative Kleinian

singularity.

2 Preliminaries

2.1 Notations and Conventions

Throughout k will denote an algebraically closed field of characteristic 0. Let R be an
N-graded ring. We write R-GrMod (respectively, GrMod-R) for the category of Z-graded
left (respectively, right) R-modules with graded (i.e. degree-preserving) morphisms, and
R-grmod (respectively, grmod-R) for the full subcategory of finitely generated objects. We
will usually work with left modules, and most definitions will be stated using this conven-
tion. Given M ∈ R-GrMod, we define M[i] to be the graded module which is isomorphic
to M as an ungraded module, but which satisfies M[i]n = Mi+n.

If M, N ∈ R-GrMod, then we write HomR-GrMod(M,N) for the space of graded
morphisms, and use analogous notation when M and N are finitely generated. If
M and N are finitely generated, we can make an identification HomR(M,N) =⊕

i∈Z HomR-grmod(M,N [i]), which gives HomR(M,N) a natural grading. Elements of
the graded vector space HomR(M,N) will be referred to as homomorphisms. From this,
ExtiR(M,N) inherits a natural grading for all i � 0. We write M∗ := Homk(M,k). If M

and N are (R,R)-bimodules, then we write Hom(RM, RN) (respectively, Hom(MR,NR))
for the space of left (respectively, right) R-module homomorphisms between M and N ; we
may also use this notation in other cases where Hom spaces may be ambiguous. Morphisms
will be composed right-to-left, unless otherwise stated.

We write i.dimM for the injective dimension of a module, and gl.dimR for the global
dimension of a ring, tacitly assuming that the left and right global dimensions coincide
(this will always be the case for us, as all rings under consideration will be left and right
noetherian). Unadorned tensors of objects will be over the field k, i.e. ⊗ = ⊗k. In general,
tensors of elements will be unadorned.
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2.2 AS Regular Algebras andm-Koszul Algebras

Suppose that A is a k-algebra. We say that A is connected graded if it is N-graded with
A0 = k. We say that M ∈ A-GrMod is locally finite if dimk Mi < ∞ for all i ∈ Z.

If A is a connected graded k-algebra which is locally finite, then we may define the
Gelfand-Kirillov (GK) dimension of M ∈ A-grmod (which also allows M = AA) as

GKdimM := lim sup
n→∞

logn(dimk Mn).

The GK dimension can be defined in more general settings but, under our assumptions, the
above definition is equivalent to the usual one by [24, Proposition 6.6]. The GK dimension
serves as a sensible dimension function for noncommutative rings; for example, if A is
commutative, then it agrees with the Krull dimension of A.

We now define the algebras which will serve as noncommutative analogues of commu-
tative polynomial rings:

Definition 2.1 Let A be a connected graded k-algebra, and also write k = A/A�1 for the
trivial module. We say that A is Artin–Schelter Gorenstein (or AS Gorenstein) of dimension
d if:

(1) i.dim AA = i.dimAA = d < ∞, and

(2) Exti (Ak, AA) ∼=
{

0 if i 
= d

k[�]A if i = d
as graded right A-modules, for some integer �, and

a symmetric condition holds for Exti (kA, AA), with the same integer �. We call � the
Gorenstein parameter of A.

If, moreover

(3) gl.dimA = d , and
(4) A has finite GK dimension,

then we say that A is Artin–Schelter regular (or AS regular) of dimension d .

Unless otherwise stated, if A is an AS regular algebra then we will assume that it is gen-
erated in degree 1. AS regular algebras are often thought of as noncommutative analogues
of polynomial rings, and they have good ring-theoretic properties; in particular, all known
examples are noetherian domains, and it is conjectured that this is always the case. In par-
ticular, if A is a commutative AS regular algebra, then it is a polynomial ring [9, Exercise
2.2.25]. In all known examples the GK dimension and global dimension of an AS regular
algebra coincide [4, p. 31].

When A is AS regular of dimension 2 and generated in degree 1 then, up to isomorphism,
it is one of the following algebras [4, Theorem 2.2.1]:

kq [u, v] := k〈u, v〉
〈vu − quv〉 (q ∈ k

×), kJ [u, v] := k〈u, v〉
〈vu − uv − u2〉 .

These are called the quantum plane and Jordan plane, respectively. We will also work with
the algebras

k〈u, v〉
〈v2 − u2〉 ,

k〈u, v〉
〈v2 + u2〉 ,

which are both isomorphic to k−1[u, v].
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It is straightforward to show that we can always write an AS regular algebra A in the
form

A = Tk(V )

〈R〉 , (2.1)

where V = A1 is a finite-dimensional vector space, and R is a set of relations in V ⊗m for
some m. An algebra with a presentation of the form (2.1) is said to be m-homogeneous.

Since V is finite-dimensional, we have an identification

ϕ :(V ∗)⊗k →(V ⊗k)∗, ϕ(f1 ⊗ · · · ⊗ fk)(v1 ⊗ · · · ⊗ vk)

= fk(v1)fk−1(v2) . . . f1(vk). (2.2)

We will usually suppress the map ϕ. We remark that there are competing conventions (see,
for example, [29, Footnote 3]) when identifying (V ∗)⊗k with (V ⊗k)∗. However, for our
purposes the above identification is most natural, since if V is a left H -module for some
Hopf algebra H , it ensures that the evaluation map (V ∗)⊗k ⊗ V ⊗k → k is a morphism of
H -modules. With this identification, we set

R⊥ = {f ∈ (V ∗)⊗k | f (R) = 0},
and then define the m-homogeneous dual of A to be

A! := Tk(V
∗)

〈R⊥〉 .

This algebra is also connected graded.
Now fix a basis {v1, . . . , vr } of V = A1, and let {φ1, . . . , φr } be the corresponding dual

basis of V ∗ = A!
1. Define e = ∑n

i=1 vi ⊗ φi , which is independent of our choice of basis.
Let Pj = A ⊗ (A!

j )
∗, which is a free left A-module. Then “right multiplication by e” gives

a map

·e : Pj →Pj−1, a ⊗ f �→
n∑

i=1

avi ⊗ f φi, where f φi : A!
j−1→k, f φi(x) = f (φix).

Since A is m-homogeneous, (·e)m : Pj → Pj−m is the zero map. Therefore, there is a
complex of left A-modules

P• : . . .
(·e)m−1

−−−−→ P2m+1
·e−→ P2m

(·e)m−1

−−−−→ Pm+1
·e−→ Pm

(·e)m−1

−−−−→ P1
·e−→ P0 → k → 0,

called the m-Koszul complex for A. It will be convenient to define a map ρ as follows:

ρ : N0 → N0, ρ(i) =
{

mi
2 if i is even,

m(i−1)
2 + 1 if i is odd.

More explicitly, ρ maps the sequence of integers 0, 1, 2, 3, 4, 5, . . . to 0, 1, m, m +
1, 2m, 2m+1, . . . . In particular, the ith projective module appearing in the Koszul complex
P• is Pρ(i).

Definition 2.2 [6] If P• is exact, then we call A an m-Koszul algebra. If this is the case,
then P• is a minimal projective resolution of Ak.

When m = 2, this recovers the usual notion of a Koszul algebra. We remark that, in
[6], the author defines an m-Koszul algebra to be an m-homogeneous algebra for which
TorAi (k, k) is concentrated in a single degree for i � 3, and then showed that this is
equivalent to the above definition in [6, Theorem 2.11].
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If we further assume that A is AS regular, then we can write down P• more precisely.
Suppose that A has global dimension d and Gorenstein parameter �. In this case, we have
ρ(d) = �, and the left-hand part of the m-Koszul complex has the following form [29,
Proposition 2.9]:

P• : 0 → P�
·e−→ P�−1

(·e)m−1

−−−−→ . . .

2.3 Superpotentials and Derivation-Quotient Algebras

By a result of Dubois-Violette, every m-Koszul AS regular algebra is a derivation-quotient
algebra. We recall some definitions before stating this result precisely.

Throughout this subsection, let V be a finite-dimensional k-vector space, with basis
{v1, . . . , vr }. For any positive integer �, there is a linear map

θ : V ⊗� → V ⊗�, θ(u1 ⊗ u2 ⊗ · · · ⊗ u�−1 ⊗ u�) = u2 ⊗ · · · ⊗ u� ⊗ u1.

Definition 2.3 Let w ∈ V ⊗�.

(1) We say that w is a superpotential if θ(w) = w.
(2) Let σ ∈ GL(V ). We say that w is a σ -twisted superpotential if (id⊗(�−1)⊗σ)θ(w) = w.

Moreover, we say that w is a twisted superpotential if it is a σ -twisted superpotential
for some σ ∈ GL(V ).

Remark 2.4 Our terminology differs from both [8] and [29]; the former includes a coeffi-
cient of (−1)�+1 in the definition of a (twisted) superpotential, while [29] would call the
above a σ−1-twisted superpotential.

Definition 2.5 Let w ∈ V ⊗�. We define

∂iw := {
ψ1 ⊗ ψ2 ⊗ . . . ψi ⊗ id�−i (w)

∣
∣ψ1, . . . , ψi ∈ V ∗}.

We then define the derivation-quotient algebra of w of order i to be

D(w, i) := Tk(V )

〈∂iw〉 .

In practice, the relations in D(w, i) are obtained from w by formal differentiation on
the left with respect to all length i expressions in the vj . This terminology appears to be
standard, but a more accurate term might be “formal left deletion”.

The following result establishes the connection between m-Koszul AS regular algebras
and derivation-quotient algebras:

Theorem 2.6 [17, Theorem 11] Suppose that A = Tk(V )/〈R〉 is an m-Koszul AS regular
algebra of Gorenstein parameter �. Then there exists a superpotential w ∈ V ⊗� such that

A ∼= D(w, � − m).

Example 2.7 Consider the noetherian graded down-up algebras of Benkart-Roby, [5]:

A(α, β) = k〈u, v〉
〈
v2u = αvuv + βuv2

vu2 = αuvu + βu2v

〉 , where α ∈ k, β ∈ k
×.
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By [23, 4.4], these algebras are AS regular of global dimension 3, have Gorenstein param-
eter 4, and are 3-Koszul. Therefore, if we set V = span{u, v}, then there exists a (twisted)
superpotential w ∈ V ⊗4 such that A(α, β) = D(w, 1). Indeed, if we set (where here we
omit the tensors)

w = uv2u − αuvuv − βu2v2 − β−1v2u2 + αβ−1vuvu + vu2v,

σ : V → V, u �→ −β−1u, v �→ −βv

then it is straightforward to check that w is a σ -twisted superpotential and that A(α, β) =
D(w, 1).

In [8], the authors generalised the above constructions to the setting of bimodules over a
semisimple algebra H . We now recall some material from [8, Section 2].

Throughout this subsection, let H be a finite-dimensional semisimple k-algebra and let
M be an (H,H)-bimodule. We will be concerned with three different possible duals of M:

• M∗ := Homk(M,k), the space of k-linear morphisms from M to k, which is an
(H, H)-bimodule via (hψ k)(m) = ψ(kmh);

• M∗R := Hom(MH ,HH ), the space of rightH -module morphisms from M to H , which
is an (H,H)-bimodule via (hψ k)(m) = hψ(km); and

• M∗L := Hom(H M, H H), the space of left H -module morphisms from M to H , which
is an (H,H)-bimodule via (hψ k)(m) = ψ(mh)k.

These duals give rise to three contravariant functors, (−)∗, (−)∗R and (−)∗L, from the
category of (H,H)-bimodules to itself. These functors are not canonically isomorphic, but
can be identified by specifying a trace function Tr : H → k which is nondegenerate in the
sense that the associated form H ⊗ H → k defined by h ⊗ k �→ Tr(hk) is bilinear and
nondegenerate. Using this, one can define natural isomorphisms R and L from the k-dual
to the other two duals by requiring

Tr((Rψ)(m)) = ψ(m) = Tr((Lψ)(m)) (2.3)

for all ψ ∈ M∗ and all m ∈ M . Henceforth we work with a fixed trace function Tr. We then
obtain H -bimodule morphisms

�−,−� : M∗ ⊗H M → H, �ψ,m� = (Rψ)(m),

�−,−� : M ⊗H M∗ → H, �m,ψ� = (Lψ)(m).

(The same notation is used for both pairings, but which we are using will be clear from
context.) For i � j , the first of these maps can be extended as follows:

�−, −� : (M∗)⊗H i ⊗H M⊗H j → M⊗H (j−i),

�ψ1 ⊗ · · · ⊗ ψi,m1 ⊗ . . . mj �

= �ψ1, �ψ2, . . . , �ψi−1, �ψi,m1�m2� . . . mi−1�mi�mi+1 ⊗ · · · ⊗ mj .

We can extend the second map in a similar fashion. In both cases, if i = j then the codomain
is H .

Let ν be a graded k-algebra automorphism of the tensor algebra TH (M) (so in particular
ν restricts to automorphisms of H and M) such that the trace is invariant under ν. This
gives rise to an automorphism ν∗ of M∗ by pulling back: ν∗(ψ) = ψ ◦ ν. Later, it will be
convenient to write ν∗(ψ) = ψν∗

, so henceforth we use this notation.
We are now able to define (twisted) superpotentials in this new setting.
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Definition 2.8 Let w ∈ M⊗H �.

(1) We say that w is a weak potential if it commutes with the action of H :

h · w = w · h for all h ∈ H .

A weak potential is called a superpotential if

�ψ, w� = �w, ψ� for all ψ ∈ M∗.
(2) We say that w is a (ν-)twisted weak potential if

h · w = w · ν(h) for all h ∈ H .

A twisted weak potential is called a (ν-)twisted superpotential if

�ψν∗
, w� = �w, ψ� for all ψ ∈ M∗.

If w ∈ M⊗H � is a ν-twisted weak potential, then for every non-negative integer i � �

there is a bimodule morphism

∂i
w : (M∗)⊗H i ⊗H νH → M⊗H (�−i), (ψ1 ⊗ · · · ⊗ ψi) ⊗ h = �ψ1 ⊗ · · · ⊗ ψi, wh�,

where νH denotes the (H,H)-bimodule with right action given by multiplication, and left
action given by h · k := ν(h)k.

Definition 2.9 Let w ∈ M⊗H � be a twisted weak potential. The derivation-quotient algebra
of w of order i is

D(w, i) := TH (M)

〈im ∂i
w〉 .

In the case when H = k, Definitions 2.8 and 2.9 are equivalent to Definitions 2.3 and
2.5, respectively.

Much of the above theory will be applied to path algebras of quivers, so we recall some
definitions. A quiver is a directed multigraph, and we will always assume that our quivers
are finite, in the sense that they have finitely many vertices and edges. We will usually
assume that our quivers have vertex set {0, 1, . . . , n}. We can equip Q with head and tail
maps, which map an arrow α : i → j to the vertex j and the vertex i, respectively. A
path (of length � in Q is a sequence of arrows p = α1 . . . α� such that h(αi) = t (αi+1) for
1 � i < � (in particular, we compose paths from left to right). We can extend the head and
tail maps to paths in the obvious way.

Given a finite quiver, we can form a k-algebra kQ called the path algebra of Q as
follows. As a vector space, kQ has a basis consisting of paths in the quiver (including the
stationary paths ei where we simply remain at vertex i), and multiplication of paths is given
by concatenation, where defined:

p · q :=
{

pq if h(p) = t (q),

0 otherwise,

and then extended linearly to all of kQ. The elements ei are pairwise orthogonal idempo-
tents, and the unit element in kQ is 1 = e0 + e1 + · · · + en. The path algebra has a natural
grading given by path length.

If kQ is a path algebra, a relation ρ in kQ is an element of (kQ)m for some m � 2,
where every path in ρ has the same head and tail, i.e. ρ ∈ ei(kQ)mej for some vertices
i and j . If I is a two-sided ideal of kQ generated by relations, then we call kQ/I a path
algebra with relations or a quiver with relations.
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A particularly important family of quivers with relations are preprojective algebras:

Definition 2.10 Let Q be a quiver without loops, and define the double of Q by adding an
arrow α : j → i if there is an arrow α : i → j in Q. The preprojective algebra of Q is then
the quiver with relations

�(Q) := kQ/
〈∑

α∈Q

αα − αα
〉
.

Observe that, by pre- and post-multiplying the defining relation by ei , for each vertex i there
is a relation

∑

α:t (α)=i

αα −
∑

α:h(α)=i

αα.

We remark that if � is a graph and Q and Q′ are quivers obtained from � by assigning
some orientation to the arrows, then �(Q) ∼= �(Q′).

Of particular importance are the extended Dynkin graphs, which are shown in Fig. 1.
These consist of two infinite families, Ãn (for n � 1) and D̃n (for n � 4), and three
exceptional examples, Ẽ6, Ẽ7, and Ẽ8. By removing the starred vertex, we obtain a Dynkin
graph; for example, removing the starred vertex from an Ãn extended Dynkin graph yields
an An Dynkin graph, and similarly for the other cases. Given an (extended) Dynkin graph,
we can turn it into a quiver Q by assigning some orientation to the edges, and then we can
form the preprojective algebra �(Q) as above.

Figure 1 also includes two other graphs, namely L̃n (for n � 1) and D̃Ln (for n � 2).
As before, we can remove the starred vertex to obtain a new graph, which is called an Ln

graph. These graphs can be turned into quivers Q by assigning some orientation to the
edges. With some care, one can then define the preprojective algebra �(Q) of Q; however,
Definition 2.10 requires Q to not have loops. For details on how to define the preprojective
algebra in these cases, see [14, 25].

Fig. 1 The extended Dynkin graphs, and two other Euclidean graphs. Each graph has n black vertices, and a
starred extending vertex
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2.4 Hopf Algebras and Noncommutative Invariant Theory

We now discuss Hopf algebras and their actions on rings, as well as some aspects of non-
commutative invariant theory. Given a Hopf algebra H , we write � for the coproduct, ε for
the counit, and S for the antipode. We write the coproduct in H using sumless Sweedler
notation so, for h ∈ H ,

�(h) = h(1) ⊗ h(2).

We will chiefly be concerned with semisimple Hopf algebras, which are necessarily finite-
dimensional and where the antipode satisfies S2 = idH . In particular, this last condition
implies (in fact, is equivalent to)

ε(h)1H = h(2)S(h(1)) = S(h(2))h(1)

for all h ∈ H . We will require this fact at numerous points.

Definition 2.11 Let H be a Hopf algebra and A a k-algebra. We say that A is an H -module
algebra if A is a left H -module which satisfies

h · (ab) = (h(1) · a)(h(2) · b) and h · 1A = ε(h)1A

for all h ∈ H and a, b ∈ A. In this case, the invariant ring of the action of H on A is

AH = {a ∈ A | h · a = ε(h)a for all h ∈ H }.
WhenA is anH -module algebra, we can form the smash product A#H which, as an abelian
group, is A ⊗ H , and where the multiplication is given by

(a#h)(b#k) = a(h(1) · b)#h(2)k,

and extended linearly. When H = kG is a group algebra, we write A#G instead of A#kG.
The algebra A#G is called a skew group algebra.

Using our current perspective, the classical setting can be described as follows: we are
interested in actions of the Hopf algebra H = kG, where G ⊆ Autgr(A), on the AS reg-
ular algebra A = k[x1, . . . , xn]. We observe that, in this case, H is finite-dimensional and
semisimple. Moreover, since G ⊆ Autgr(A), the action of H is degree-preserving and faith-
ful. We will be concerned with actions of arbitrary Hopf algebras on AS regular algebras
which satisfy these properties, although we replace the last condition with the following:

Definition 2.12 Let V be a left H -module. We say that the action of H on V is inner-
faithful if IV 
= 0 for every nonzero Hopf ideal I of H .

We remind the reader that a Hopf ideal is a two-sided ideal which is closed under the
antipode and which satisfies �(I) ⊆ H ⊗ I + I ⊗H . The condition in the above definition
ensures that the action of H does not factor through the action of one of its proper quotients.
If H = kG, then the action of H on a module V is inner-faithful if and only if it is faithful.

Hypothesis 2.13 Let A be an m-Koszul AS regular algebra of Gorenstein parameter �, of
global dimension and GK dimension d , and which is generated in degree 1. In particular,
A ∼= D(w, � − m) for some twisted superpotential w. Let H be a semisimple (hence finite
dimensional) Hopf algebra acting on A. Throughout, we assume the following hypotheses
on the pair (A,H):

(1) A is a left H -module algebra;
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(2) The action of H on A is degree-preserving, in the sense that each Ai is an H -module;
and

(3) The action of H on A is inner-faithful.

In classical invariant theory, many properties of the invariant ring k[x1, . . . , xn]G are
controlled by the determinant of the elements in G. For example, a result of Watanabe says
that, if every element of G has determinant 1, then this invariant ring is Gorenstein [33, The-
orem 1]. In [20], the authors defined the homological determinant of the action of a finite
group on an AS Gorenstein algebra A, and showed that it had a number of good proper-
ties. This construction was later generalised to actions of Hopf algebras on AS Gorenstein
algebras in [22]. We give a definition in the particular case where A is AS regular.

Definition 2.14 (cf. [22, Definition 3.3, Lemma 5.10]) Suppose that (A, H) satisfy Hypoth-
esis 2.13. If P• is a graded projective resolution of k viewed as a left A#H -module,
then P• may also be viewed as an H -equivariant graded projective resolution of k as a
left A-module. Using this, ExtdA(k,k) becomes a left H -module. Since A is AS regular,
ExtdA(k, k) is one-dimensional, so there is an algebra homomorphism η : H → k such that
h · x = η(h)x for all 0 
= x ∈ ExtdA(k,k). The composite map η ◦ S : H → k is called the
homological determinant of the action of H on A.

We write hdetA : H → k for the homological determinant map. We say that the
homological determinant is trivial if hdetA = ε, the counit of H . If A is a d-dimensional
polynomial ring and H = kG for a finite subgroup G � Autgr(A) = GL(d,k), then
hdetA(g) = det(g) for all g ∈ G. By [20, Theorem 3.3] (for the group case) and [22, The-
orem 3.6] (for the Hopf case), if the homological determinant of the H -action on an AS
regular algebra is trivial, then AH is AS Gorenstein.

A map that is of particular importance in noncommutative invariant theory is the
Auslander map, which we now define:

Definition 2.15 Suppose that A is a left H -module algebra. Then there is a natural map of
graded k-algebras

γ : A#H → End(AAH ), γ (a#h)(b) = a(h · b),

called the Auslander map.

In some situations the Auslander map is an isomorphism, and there is considerable inter-
est in determining when this is the case. In the classical setting of a finite group acting on
a polynomial ring, a complete answer is given in [1], where it is shown that this map is an
isomorphism if and only if G contains no non-trivial reflections. In [10, Theorem B], it is
shown that, after making suitable modifications to the Auslander map, a similar result holds
for reflection groups. In the noncommutative setting, it is known that if A is AS regular of
dimension 2 and the H -action on A has trivial homological determinant, then the Auslander
map is an isomorphism [12]. For other recent progress, see [2, 15, 19], for example.

The main tool that has been used to show that the Auslander map is an isomorphism is
the following result:

Theorem 2.16 [3, Theorem 0.3] Suppose that the pair (A,H) satisfies Hypothesis 2.13,
and that A is GK-Cohen-Macaulay in the sense of [3, Definition 1.4]. Let t ∈ H be a
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nonzero integral in H , i.e. t satisfies ht = th = ε(h)t for all h ∈ H . Then the Auslander
map is an isomorphism for the pair (A,H) if and only if

GKdim
A#H

〈1# t〉 � GKdimA − 2.

The above criterion is computationally useful, since it is usually much easier to determine
the GK dimension of (A#H)/〈1# t〉 rather than determine whether the Auslander map is an
isomorphism. We remark that all known AS regular algebras are GK-Cohen-Macaulay, and
it is conjectured that every AS regular algebra has this property [4, Question 2.1.8].

When the Auslander map is an isomorphism, we are able to deduce strong representation-
theoretic results relating the algebras H , A#H , and AH . In the following, a graded module
M is said to be initial if M<0 = 0 and M is generated in degree 0, and the definition of a
maximal Cohen-Macaulay module can be found in [13, Definition 3.5].

Theorem 2.17 [13, TheoremA, Theorem C] Suppose that the pair (A,H) satisfies Hypoth-
esis 2.13. Suppose also that the Auslander map γ : A#H → EndAH (A) is an isomorphism.
Then there exist bijections between isomorphism classes of:

(1) irreducible left H -modules;
(2) indecomposable direct summands of A, viewed as a left AH -module; and
(3) indecomposable finitely generated, projective, initial left A#H modules.

If A has GK dimension 2, then the above are also in bijection with:

(4) indecomposable maximal Cohen-Macaulay left AH -modules, up to a degree shift.

The correspondence (1) → (3) is given by V �→ A⊗V , and the correspondence (3) → (4)
is given by P �→ P H .

If H is a semisimple Hopf algebra, then the category of left H -modules is a fusion
category: a k-linear monoidal category which is rigid (in the sense that we can define duals
of objects) and semisimple with finitely many isoclasses of irreducible objects. In particular,
the tensor product of two modules decomposes uniquely as a direct sum of irreducible
modules, up to isomorphism, which allows us to make the following definition:

Definition 2.18 Let H be a semisimple Hopf algebra. Let {V0, V1, . . . , Vn} be a com-
plete list of representatives for isoclasses of irreducible H -modules, where V0 is the trivial
representation (i.e. V0 = kv where h · v = ε(h)v for all h ∈ H ). Fix a representation V of
H . The (left) McKay quiver associated to V is the quiver with vertex set {0, 1, . . . , n}, and
mij arrows from vertex i to vertex j , where

V ⊗ Vj
∼=

n⊕

i=0

V
mij

i .

Note that mij satisfies

mij = dimk HomH (Vi, V ⊗ Vj ).

One can define the right McKay quiver by replacing V ⊗ Vj with Vj ⊗ V . We will only
work with left McKay quivers, and will omit the word “left”.
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If H acts on an AS regular algebra A, then V := A1 is a representation of H , and we
refer to the McKay quiver of V as the McKay quiver of the action of H on A or of the pair
(A,H).

In the classical setting of group actions, one does not need to distinguish between the
“left” and “right” McKay quivers since the category of representations of a group is sym-
metric, i.e. V ⊗ W ∼= W ⊗ V for all representations V and W . In general, the category of
representations of a semisimple Hopf algebra is not symmetric; for example, when H is the
dual of a finite nonabelian group.

The following result provides another characterisation of the inner-faithful condition in
terms of the McKay quiver:

Lemma 2.19 Suppose that H is a semisimple Hopf algebra, and let V be a left H -module.
Then the following are equivalent:

(1) V is an inner-faithful H -module;
(2) Each irreducible module Vi appears as a direct summand of V ⊗ni for some ni � 1;

and
(3) The McKay quiver Q of V is strongly connected, in the sense that there is a path from

one vertex to any other.

Proof (1) ⇔ (2): This is shown in [18, Theorem 1.4].
Before establishing the equivalence of (2) and (3), we note that there is a path from vertex

i to vertex j in Q of length k if and only if Vi is a direct summand of V ⊗k ⊗ Vj .
(2) ⇒ (3): Fix vertices i and j in Q, and consider the irreducible H -module Vi ⊗ V ∗

j .

By assumption, there exists k � 1 such that V ⊗k ∼= (Vi ⊗ V ∗
j ) ⊕ U for some H -module U .

Tensoring with Vj , and noting that V ∗
j ⊗ Vj

∼= V0 ⊕ W for some H -module W , we obtain

V ⊗k ⊗ Vj
∼= (Vi ⊗ V ∗

j ⊗ Vj ) ⊕ (U ⊗ Vj )

∼= (Vi ⊗ (V0 ⊕ W)) ⊕ (U ⊗ Vj ) = Vi ⊕ (Vi ⊗ W) ⊕ (U ⊗ Vj ).

In particular, Vi is a summand of V ⊗k ⊗ Vj , so there is a path of length k from vertex i to
vertex j .

(3) ⇒ (2): Suppose that Q is strongly connected, and fix an irreducible module Vi . By
assumption, there is a path from vertex i to vertex 0 in Q, of length k, say. In particular,
V ⊗k ⊗ V0 ∼= Vi ⊕ U for some H -module U . However, V ⊗k ⊗ V0 ∼= V ⊗k , and so Vi is a
summand of V ⊗k .

Since our standing assumption is that the action of a Hopf algebra on an AS regular
algebra is inner-faithful, everyMcKay quiver that we will be concerned with will be strongly
connected.

Suppose now that A = k[u, v] and H = kG, where G is a finite subgroup of SL(2,k).
It is well-known that, up to conjugation, G belongs to one of two infinite families or
is one of three exceptional examples. A very brief overview of the classification is as
follows:
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Group G |G| McKay quiver

Cyclic, parametrised by n � 1 n + 1 Ãn

Binary dihedral, parametrised by n � 4 4(n − 2) D̃n

Binary tetrahedral 24 Ẽ6

Binary octahedral 48 Ẽ7

Binary icosahedral 120 Ẽ8

More precisely, the McKay quiver is the double of the listed extended Dynkin graph.
The invariant rings k[u, v]G are called Kleinian singularities. If G is cyclic, for example,
then we say that k[u, v]G is a Type A (Kleinian) singularity, and similarly for the other
cases.

3 The Homological Determinant of a Hopf Action on anm-Koszul AS
Regular Algebra

In this section, we give a simple formula for the homological determinant of the action
of a Hopf algebra on an m-Koszul AS regular algebra. The proof strategy mimics that of
[29, Theorem 3.3].

Throughout this section, let A be an m-Koszul AS regular algebra of global dimension
d and with Gorenstein parameter �. Therefore, writing V = A1, there exists a twisted
superpotential w ∈ V ⊗� such that, if we setR = ∂�−m(w), then

A ∼= D(w, � − m) = Tk(V )

〈R〉 .

Lemma 3.1 Suppose that H is a semisimple Hopf algebra acting homogeneously on A.
Then the natural action of H on Tk(V

∗) descends to an action on A!.

Proof It suffices to show that R⊥ is closed under the H -action. Let f ∈ R⊥, say f =∑
i αifi1 ⊗ · · · ⊗ fim . This means that R vanishes under f , where we remind that reader

that we identify (V ∗)⊗m with (V ⊗m)∗ as in Eq. 2.2. Then, if r = ∑
j βj vj1 ⊗ · · · ⊗ vjm is

any relation inR, we have

(h · f )(r) =
∑

i,j

αiβj

(
(h(1)fi1) ⊗ · · · ⊗ (h(m)fim)

)(
vj1 ⊗ · · · ⊗ vjm

)

=
∑

i,j

αiβj (h(m)fim)(vj1) . . . (h(1)fi1)(vjm)

=
∑

i,j

αiβjfim

(
S(h(m))vj1

)
. . . fi1

(
S(h(1))vjm

)

=
∑

i,j

αiβj

(
fi1 ⊗ · · · ⊗ fim

)(
(S(h(m))vj1) ⊗ · · · ⊗ (S(h(1))vjm)

)

=
∑

i,j

αiβj

(
fi1 ⊗ · · · ⊗ fim

)(
S(h) · (vj1 ⊗ · · · ⊗ vjm)

)

= f (S(h) · r)

= 0,
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where the last equality follows sinceR is closed under the action from H .

By definition, the Koszul complex P• is a projective resolution of the left trivial module
k = A/A�1. It is easy to see that each map in this resolution is H -equivariant, and therefore
ExtiA(k, k) is an H -module. In fact, the differential in the complex HomA(P•, k) is zero
[7, p. 77], so ExtiA(k,k) = HomA(Pρ(i),k). We then have a chain of equalities and H -
module isomorphisms:

ExtiA(k,k) = HomA(Pρ(i), k) = HomA(A ⊗ (A!
ρ(i))

∗,k)

∼= Homk((A
!
ρ(i))

∗,HomA(A,k)) ∼= Homk((A
!
ρ(i))

∗,k)

∼= A!
ρ(i).

In particular, ExtdA(k, k) ∼= A!
�. Now, by [29, Lemma 2.7], if we define

W =
⋂

s+m+t=�

V ⊗s ⊗ R ⊗ V ⊗t ,

then there is a natural identification A!
�

∼= W∗. Tracing through the isomorphism, we find
that the inducedH -action on W∗ is simply the usual action ofH on W∗ viewed as a subspace
(in fact, an H -submodule) of (V ⊗�)∗ ∼= (V ∗)⊗�. Moreover w ∈ W, and this space is one-
dimensional, i.e. W = kw [29, Proposition 2.12].

We now have all of the ingredients required to prove the main result of this section:

Theorem 3.2 Suppose that the pair (A,H) satisfies Hypothesis 2.13. Then W = kw is an
H -submodule of V ⊗�, and the homological determinant of the action of H on A satisfies

h · w = hdetA(h)w.

Proof Since W∗ is a one-dimensional representation of H , so too is its dual W∗∗ ∼= W,
establishing the first claim.

Now fix h ∈ H . Since W is one-dimensional representation of H , we have h · w = λw
for some λ ∈ k. Then, if f ∈ W ∗, we have

(S(h) · f )(w) = f (S2(h) · w) = f (h · w) = λf (w),

since S2 = idH , and so S(h) · f = λf . Let ψ : ExtdA(k, k) → W∗ be the H -module
isomorphism established before the statement of the theorem. By definition, the H -action
on ExtdA(k, k) satisfies h · x = η(h)x for all 0 
= x ∈ ExtdA(k,k), where η ◦ S = hdetA.
Now if 0 
= f ∈ W∗, then there exists 0 
= x ∈ ExtdA(k, k) with ψ(x) = f , and we have

λf = S(h) · f = S(h) · ψ(x) = ψ(S(h) · x)

= ψ
(
(η ◦ S

)
(h) · x) = (η ◦ S)(h)ψ(x) = hdetA(h)f .

Therefore λ = hdetA(h), i.e. h · w = hdetA(h)w.

If H = kG, then this result recovers [29, Theorem 3.3]. In the special case where H =
(kG)∗ is the dual of a group algebra (equivalently, A is G-graded by [27, Example 1.6.7])
it is particularly easy to calculate the homological determinant.

Corollary 3.3 Let A ∼= D(w, � − m) be as above, let G be a finite group, and suppose
that the Hopf algebra H = (kG)∗ acts homogeneously on A; equivalently, A is G-graded.
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Let {fg | g ∈ G} be the basis for H which is dual to the standard basis of kG. Then w is
G-homogeneous, and the homological determinant of the action of H on A satisfies

hdetA(fg) =
{
1 if degG(w) = g,

0 otherwise.

Proof Since H ∼= k
|G| as an algebra, and the basis consists of pairwise orthogonal

idempotents, the one-dimensional representations of H are of the form

χg : H → k, χg(fh) = δgh.

Since W = kw is a one-dimensional H -module, there exists g ∈ G with fg · w = w, and
fh · w = 0 for h 
= g. By the definition of the coproduct in (kG)∗, fg · w is simply the g-
component of w under the G-grading, but also fg · w = w, and so w is G-homogeneous of
G-degree g. It now follows that hdetA has the claimed form by Theorem 3.2.

4 Hopf Smash Products are Derivation-Quotient Algebras

In this section, we show that if the pair (A,H) satisfies Hypothesis 2.13 (so, in particular, A
is a derivation-quotient algebra), then the smash product A#H is also a derivation-quotient
algebra, and we give a precise description of the corresponding superpotential. A version
of this result for actions of finite groups on polynomial rings was established in [8, Theo-
rem 3.2]. This was later generalised to actions of finite groups on AS regular algebras in
[34, Theorem 4.16], with the additional restriction that the action has trivial homological
determinant. Our result strengthens this by removing the hypothesis on the homological
determinant, as well as by replacing the finite group by a semisimple Hopf algebra.

The main difficulty in generalising [34, Theorem 4.16] to the Hopf algebra setting is the
lack of control one has over the form of the coproduct. When H = kG is a group algebra, it
has a distinguished basis given by the elements of G, and the coproduct has a simple form.
As a result, in [34] the authors were able to perform explicit calculations to deduce their
result. On the other hand, an arbitrary semisimple Hopf algebra has no distinguished basis
in which the coproduct has a nice form. Our approach is to fix a basis of H by appealing
to its Artin–Wedderburn decomposition, which provides some control over the form of the
coproduct.

Since A is an m-Koszul AS regular algebra, we assume that A = Tk(V )/〈∂�−mw〉 =
D(w, � − m) where � is the Gorenstein parameter of A, V = A1 is a finite-dimensional
vector space V with basis {v1, . . . , vr }, and

w :=
∑

q

αqvq1 ⊗ · · · ⊗ vq�

is a σ -twisted superpotential; that is, there exists σ ∈ Aut(V ) such that

�φσ ∗
, w� = �w, φ�

for all φ ∈ V ∗. In particular, V is a left H -module, and we can turn V ⊗ H into an H -
bimodule where the left H -action is diagonal (via the coproduct) and the right H -action
acts only on the right hand component of the tensor product by right multiplication. Then
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the map

� : Tk(V )#H → TH (V ⊗ H),

�((u1 ⊗ · · · ⊗ un)#h) = (u1 ⊗ 1) ⊗H · · · ⊗H (un−1 ⊗ 1) ⊗H (un ⊗ h)

is an algebra isomorphism. Here, we have written ⊗H to help emphasise over which rings
some of these tensors are formed. We will not use this notation going forwards, and will
instead try to distinguish various tensors by bracketing terms in the same way as above. Our
claim is that �(w#1) is a twisted superpotential, for an appropriate twist ν ∈ Aut(V ⊗ H),
and that there is an isomorphism

A#H ∼= D(�(w#1), � − m),

where � and m are as above.
Suppose that H has finite-dimensional irreducible modules V0, . . . , Vn, where V0 is the

trivial module (that is, it corresponds to the counit ε), and fix an isomorphism with the
Artin–Wedderburn decomposition of H ,

H ∼=
n⊕

k=0

MatdimVk
(k). (4.1)

By transferring the Hopf algebra structure of H along this isomorphism, the right hand side
becomes a Hopf algebra; by an abuse of notation, we will think of H as being equal to this
Hopf algebra. We write e

(k)
ij for the (i, j)th matrix unit in the kth component of H .

To show that �(w#1) is a twisted superpotential, we need to show that it satisfies

h · �(w#1) = �(w#1) · ν(h)

for all h ∈ H and for a suitable twist ν, and that

�φν∗
, �(w#1)� = ��(w#1), φ�

for all φ ∈ (V ⊗ H)∗ (see Definition 2.8). For the latter of these, we will need to consider
the maps Rφν∗ ∈ Hom((V ⊗ H)H ,HH ) and Lφ ∈ Hom(H (V ⊗ H), H H) which satisfy
the identity (2.3). To define the natural isomorphisms R and L, we need to make a choice
of a nondegenerate trace function Tr for H . Since H is a semisimple Hopf algebra, it has
a one-dimensional space of (left and right) integrals for H , i.e. maps T ∈ H ∗ with the
property

φ ∗ T = φ(1H )T = T ∗ φ

for all φ ∈ H ∗, where ∗ is the convolution product in H ∗. By [27, 2.1.3 Theorem], provided
that T 
= 0, the associated bilinear form h ⊗ k �→ T (hk) is nondegenerate. Therefore we
can, and will, take our trace function to be the unique integral Tr for H ∗ with the property
that Tr(1H ) = 1. With this choice, we have the following result:

Lemma 4.1 The trace Tr defined above satisfies

Tr(e(k)
ij ) = dimVk

dimH
δij .

Proof This follows from [28, Proposition 2.13 (2)].
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If f : H → k is any algebra homomorphism, then we can define the left (respectively,
right) winding automorphism of H associated to f , denoted f �, (respectively, �f ) by

f � : H → H, f �(h) = f (h(1))h(2),

�f : H → H, �f (h) = h(1)f (h(2)).

It is straightforward to check that f ◦S� is inverse to f � and �f ◦S is inverse �f , where S

is the antipode of H , so both of these maps are algebra automorphisms of H . We record the
following key lemma.

Lemma 4.2 Let T be a (left and right) integral for H . Then, for all x, y ∈ H :

(1) x(1)T (x(2)) = T (x)1H = T (x(1))x(2);
(2) x(1)T (x(2)y) = T (xy(2))S(y(1));
(3) If f : H → k is any algebra homomorphism, then T (f �(x)) = T (x) = T (�f (x)).

Proof (1) This is [16, Remark 5.1.2].
(2) We recall the standard notation ⇀ for the left action of H on H ∗ given by (h ⇀

φ)(k) := φ(kh). To establish the result, it suffices to show that both sides of the
claimed equality are equal after applying an arbitrary φ ∈ H ∗:

φ
(
x(1)T (x(2)y)

)

= φ(x(1))T (x(2)y) = φ(x(1))T
(
x(2)ε(y(1))y(2)

) = φ
(
x(1)ε(y(1))

)
T (x(2)y(2))

= φ
(
x(1)y(2)S(y(1))

)
T (x(2)y(3)) = (S(y(1)) ⇀ φ)(x(1)y(2))T (x(2)y(3))

= ((S(y(1)) ⇀ φ) ∗ T )(xy(2)) = (S(y(1)) ⇀ φ)(1)T (xy(2)) = φ(S(y(1)))T (xy(2))

= φ
(
T (xy(2))S(y(1))

)
,

where the equality when moving from the second line to the third line requires the
semisimplicity of H .

(3) Direct calculation gives:

T (f �(x)) = T
(
f (x(1))x(2)

) = f (x(1))T (x(2)) = f
(
x(1)T (x(2))

)

= f (T (x)1H ) = T (x)f (1H ) = T (x),

using part (1). The other equality is similar.

To show that �(w#1) is a twisted superpotential, we first need to show that it is a twisted
weak potential for some twist ν. Henceforth, let� denote the the left winding automorphism
of H associated to the algebra morphism hdet : H → k, i.e.

�(h) = hdet(h(1))h(2).

Let ν be the graded k-algebra automorphism of TH (V ⊗ H) defined by

ν|H = �, ν(v ⊗ h) = σ(v) ⊗ �(h),

where we recall that w is a σ -twisted superpotential. By Lemma 4.2 (3), the trace Tr is
invariant under ν, as required.

Lemma 4.3 With the above setup, �(w#1) is a twisted weak potential, where the twist is
given by ν.
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Proof We need to show that

h�(w#1) = �(w#1)ν(h)

for all h ∈ H . As before, write w = ∑
q αqvq1 ⊗ · · · ⊗ vq�

. By Theorem 3.2, we have

hdet(h)w = h · w =
∑

q

αq(h(1) · vi1) ⊗ · · · ⊗ (h(�) · vi� ).

Therefore,

h�(w#1) = h
∑

q

αq(vq1 ⊗ 1) ⊗ (vq2 ⊗ 1) ⊗ · · · ⊗ (vq�
⊗ 1)

=
∑

q

αq

(
h · (vq1 ⊗ 1)

)⊗ (vq2 ⊗ 1) ⊗ · · · ⊗ (vq�
⊗ 1)

=
∑

q

αq(h(1) · vq1 ⊗ h(2)) ⊗ (vq2 ⊗ 1) ⊗ · · · ⊗ (vq�
⊗ 1)

=
∑

q

αq(h(1) · vq1 ⊗ 1) · h(2) ⊗ (vq2 ⊗ 1) ⊗ · · · ⊗ (vq�
⊗ 1)

=
∑

q

αq(h(1) · vq1 ⊗ 1) ⊗ h(2) · (vq2 ⊗ 1) ⊗ · · · ⊗ (vq�
⊗ 1)

...

=
∑

q

αq(h(1) · vq1 ⊗ 1) ⊗ (h(2) · vq2 ⊗ 1) ⊗ · · · ⊗ (h(�)vq�
⊗ 1) · h(�+1)

= �
(∑

q

αq(h(1) · vq1) ⊗ · · · ⊗ (h(�) · vq�
)#1

)
h(�+1)

= �
(
(h(1) · w)#1

)
h(2)

= �(w#1) hdet(h(1))h(2)

= �(w#1)ν(h).

The next step is to show that �(w#1) is a twisted superpotential; that is,

�φν∗
, �(w#1)� = ��(w#1), φ�

for all φ ∈ (V ⊗ H)∗. It suffices to show that this is true for all elements in a basis of
(V ⊗ H)∗. Recalling that V has basis {v1, . . . , vr } and that H , by Eq. 4.1, has a basis given
by

{e(k)
ij | 0 � k � n, 1 � i, j � dimVk},

we obtain a basis {vp ⊗e
(k)
ij } of V ⊗H . Taking {φ

vp⊗e
(k)
ij

} to be the corresponding dual basis
of (V ⊗ H)∗, it therefore suffices to show

�
φν∗

vp⊗e
(k)
ij

, �(w#1)
�

=
�
�(w#1), φ

vp⊗e
(k)
ij

�
,

for all p, i, j, k.
As a first step, we need to determine formulae for the maps Rφν∗

vp⊗e
(k)
ij

and Lφ
vp⊗e

(k)
ij

. For

the rest of this section, if {u1, . . . , ur } is a basis for a vector space U and {φu1 , . . . , φur } is
the corresponding dual basis, we will sometimes write [u]ui

:= φui
(u). (Roughly speaking,
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we use the φ notation when we are interested in properties of the maps, and the square
bracket notation when we want to perform explicit calculations.)

Proposition 4.4 With the setup as above, we have

(1) Rφν∗
vp⊗e

(k)
ij

(vq ⊗ 1) = dimH

dimVk

[σ(vq)]vp�−1(e
(k)
j i );

(2) Lφ
vp⊗e

(k)
ij

(vq ⊗ 1) = dimH

dimVk

[S((e
(k)
ji )(1))vq ]vp (e

(k)
j i )(2).

Remark 4.5 Observe that the right hand side of both expressions depends on e
(k)
ji , rather

than e
(k)
ij . We also note that the map �−1 is given by �−1(h) = hdet(S(h(1)))h(2).

Proof of Proposition 4.4 (1) Since Tr is non-degenerate, it suffices to show that we have
an equality

Tr
(
Rφν∗

vp⊗e
(k)
ij

(vq ⊗ 1)e(t)
rs

)
= Tr

(
dimH

dimVk

[σ(vq)]vp�−1(e
(k)
j i )e(t)

rs

)

(4.2)

for all r, s, t . The left hand side of Eq. 4.2 simplifies as

Tr
(
Rφν∗

vp⊗e
(k)
ij

(vq ⊗ 1)e(t)
rs

)
= Tr

(
Rφν∗

vp⊗e
(k)
ij

(vq ⊗ e(t)
rs )
)

= φν∗
vp⊗e

(k)
ij

(vq ⊗ e(t)
rs )

= φ
vp⊗e

(k)
ij

(σ (vq) ⊗ �(e(t)
rs ))

= [σ(vq)]vp [�(e(t)
rs )]

e
(k)
ij

.

If we instead consider the right hand side of Eq. 4.2, we obtain

Tr

(
dimH

dimVk

[σ(vq)]vp�−1(e
(k)
j i )e(t)

rs

)

= dimH

dimVk

[σ(vq)]vp Tr
(
�−1(e

(k)
j i )e(t)

rs

)

= dimH

dimVk

[σ(vq)]vp Tr
(
�−1(e

(k)
ji �(e(t)

rs )
))

= dimH

dimVk

[σ(vq)]vp Tr
(
e
(k)
ji �(e(t)

rs )
)

(4.3)

= dimH

dimVk

[σ(vq)]vp

dimVk

dimH
[�(e(t)

rs )]
e
(k)
ij

(4.4)

= [σ(vq)]vp [�(e(t)
rs )]

e
(k)
ij

,

where we use Lemma 4.2 (3) to establish Eq. 4.3, and Lemma 4.1 at Eq. 4.4. This
shows that Eq. 4.2 holds, and so the result follows.

(2) As with (1), it suffices to show that we have an equality

Tr
(
e(t)
rs Lφ

vp⊗e
(k)
ij

(vq ⊗ 1)
)

= Tr

(

e(t)
rs

dimH

dimVk

[S((e
(k)
ji )(1))vq ]vp (e

(k)
j i )(2)

)

(4.5)
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for all r, s, t . We first simplify the left hand side of this expression:

Tr
(
e(t)
rs Lφ

vp⊗e
(k)
ij

(vq ⊗ 1)
)

= Tr
(
Lφ

vp⊗e
(k)
ij

(
e(t)
rs (vq ⊗ 1)

))

= Tr
(
Lφ

vp⊗e
(k)
ij

(
(e(t)

rs )(1)vq ⊗ (e(t)
rs )(2)

))

= φ
vp⊗e

(k)
ij

(
(e(t)

rs )(1)vq ⊗ (e(t)
rs )(2)

)

= [(e(t)
rs )(1)vq ]vp [(e(t)

rs )(2)]e(k)
ij

.

On the other hand, if we set x = e
(t)
rs and y = e

(k)
ji , the right hand side of Eq. 4.5

becomes

Tr

(

e(t)
rs

dimH

dimVk

[S((e
(k)
ji )(1))vq ]vp (e

(k)
j i )(2)

)

= Tr

(

x
dimH

dimVk

[S(y(1))vq ]vpy(2)

)

= dimH

dimVk

[S(y(1))vq ]vp Tr(xy(2))

= dimH

dimVk

[Tr(xy(2))S(y(1))vq ]vp

= dimH

dimVk

[x(1) Tr(x(2)y)vq ]vp (4.6)

= dimH

dimVk

[x(1)vq ]vp Tr(x(2)y)

= dimH

dimVk

[(e(t)
rs )(1)vq ]vp Tr

(
(e(t)

rs )(2)e
(k)
j i

)

= dimH

dimVk

[(e(t)
rs )(1)vq ]vp

dimVk

dimH
[(e(t)

rs )(2)]e(k)
ij

(4.7)

= [(e(t)
rs )(1)vq ]vp [(e(t)

rs )(2)]e(k)
ij

,

where we use Lemma 4.2 (2) at Eq. 4.6, and Lemma 4.1 at Eq. 4.7. Therefore Eq. 4.5
holds, as required.

Before using the above result to show that �(w#1) is a twisted superpotential, we make
an observation regarding a calculation in TH (V ⊗ H). If h ∈ H and v ∈ V , then

h(2)(S(h(1))v ⊗ 1) = (h(2)S(h(1))v) ⊗ h(3) = ε(h(1))v ⊗ h(2)

= v ⊗ ε(h(1))h(2) = (v ⊗ 1)h, (4.8)

where the second equality crucially requires S2 = id, which is the case since we assume H

to be semisimple.
With this observation in hand, we are now in a position to show that �(w#1) is a twisted

superpotential.

Proposition 4.6 �(w#1) ∈ TH (V ⊗ H) is a ν-twisted superpotential, where the twist is
given by ν = σ ⊗ �; that is,

�φν∗
, �(w#1)� = ��(w#1), φ�

for all φ ∈ (V ⊗ H)∗.
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Proof Clearly it suffices to verify this equality as φ varies over elements in our chosen basis
for (V ⊗ H)∗. We write {φv1 , . . . , φvr } for the basis dual to our chosen basis for V . We
remind the reader that

w =
∑

q

αqvq1 ⊗ · · · ⊗ vq�
.

Now, for any p, i, j, k we have

�
φν∗

vp⊗e
(k)
ij

, �(w#1)
�

=
∑

q

αq

(
Rφν∗

vp⊗e
(k)
ij

)
(vq1 ⊗ 1) · (vq2 ⊗ 1) ⊗ · · · ⊗ (vq�

⊗ 1)

=
∑

q

αq

dimH

dimVk

[σ(vq1 )]vp �−1(e
(k)
ji ) · (vq2 ⊗ 1) ⊗ · · · ⊗ (vq�

⊗ 1)

= dimH

dimVk

�−1(e
(k)
ji )

∑

q

αq [σ(vq1 )]vp (vq2 ⊗ 1) ⊗ · · · ⊗ (vq�
⊗ 1)

= dimH

dimVk

�−1(e
(k)
ji )�

(∑

q

αq [σ(vq1 )]vp (vq2 ⊗ · · · ⊗ vq�
)#1

)

= dimH

dimVk

�−1(e
(k)
ji )�

(�φσ ∗
vp

, w�#1)

= dimH

dimVk

hdet
(
S((e

(k)
ji )(1))

)
(e

(k)
ji )(2)�

(�w, φvp �#1)

= dimH

dimVk

(e
(k)
ji )(2)�

(
� hdet (S((e

(k)
ji )(1))

)
w, φvp

�#1
)

= dimH

dimVk

(e
(k)
ji )(2)�

(
�S((e

(k)
ji )(1))w, φvp

�#1
)

(4.9)

= dimH

dimVk

(e
(k)
ji )(�+1)�

(�∑
q

αqS((e
(k)
ji )(�))vq1 ⊗ S((e

(k)
ji )(�−1))vq2 ⊗ · · · ⊗ S((e

(k)
ji )(1))vq�

, φvp

�
#1

)

= dimH

dimVk

(e
(k)
ji )(�+1)

∑

q

αq

(
S((e

(k)
ji )(�))vq1 ⊗ 1

)
⊗ · · · ⊗

(
S((e

(k)
ji )(2))vq�−1 ⊗ 1

)[
S((e

(k)
ji )(1))vq�

]
vp

= dimH

dimVk

∑

q

αq

(
(e

(k)
ji )(�+1)

(
S((e

(k)
ji )(�))vq1 ⊗ 1

))⊗ · · · ⊗
(
S((e

(k)
ji )(2))vq�−1 ⊗ 1

)[
S((e

(k)
ji )(1))vq�

]
vp

= dimH

dimVk

∑

q

αq

((
vq1 ⊗ 1

)
(e

(k)
ji )(�)

)
⊗ · · · ⊗

(
S((e

(k)
ji )(2))vq�−1 ⊗ 1

)[
S((e

(k)
ji )(1))vq�

]
vp

= dimH

dimVk

∑

q

αq

(
vq1 ⊗ 1

)⊗
((

vq2 ⊗ 1
)
(e

(k)
ji )(�−1)

)
⊗ · · · ⊗

(
S((e

(k)
ji )(2))vq�−1 ⊗ 1

)[
S((e

(k)
ji )(1))vq�

]
vp

...

= dimH

dimVk

∑

q

αq

(
vq1 ⊗ 1

)⊗ · · · ⊗ (
vq�−1 ⊗ 1

)
(e

(k)
ji )(2)

[
S((e

(k)
ji )(1))vq�

]
vp

=
∑

q

αq

(
vq1 ⊗ 1

)⊗ · · · ⊗ (
vq�−1 ⊗ 1

) · dimH

dimVk

[
S((e

(k)
ji )(1))vq�

]
vp

(e
(k)
ji )(2)

=
∑

q

αq

(
vq1 ⊗ 1

)⊗ · · · ⊗ (
vq�−1 ⊗ 1

) ·
(
Lφ

vp⊗e
(k)
ij

)
(vq�

⊗ 1)

= ��(w#1), φ
vp⊗e

(k)
ij

�,
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where wemake use of the formulae obtained in Proposition 4.4, where the equality at Eq. 4.9
follows from Theorem 3.2, and where we have made use of the observation (4.8) multiple
times. This establishes the claimed identity on a basis for (V ⊗ H)∗, and hence for all φ in
this space.

The last step is to show that the ideal of relations defining A#H is derived from the
superpotential �(w#1). To be more precise, first note that if I is an ideal in Tk(V ), then

I #H = 〈�(I ⊗ H)〉,
and therefore

A#H = Tk(V )

〈im ∂�−m
w 〉 #H ∼= Tk(V )#H

〈im ∂�−m
w 〉#H

∼= TH (V ⊗ H)

〈�(im ∂�−m
w #H)〉 .

So to show that we have an isomorphism A#H ∼= D(�(w#1), � − m), it remains to show
that we have an equality �(im ∂�−m

w #H) = im ∂�−m
�(w#1).

Lemma 4.7 There is an equality

�(im ∂�−m
w #H) = im ∂�−m

�(w#1).

Proof (⊇) Set s = � − m. Recall that V and H have respective k-bases {v1, . . . , vr } and
{e(k)

ij }, so that (V ⊗H)∗ has basis {φ
vp⊗e

(k)
ij

} dual to that of V ⊗H . To establish the claimed

inclusion, it suffices to show that any element of the form

∂s
�(w#1)

(
φ

vp1⊗e
(k1)

i1j1

⊗ · · · ⊗ φ
vps ⊗e

(ks )
is js

⊗ h
)

lies in �(im ∂s
w #H).

Using the same method as in the proof of Proposition 4.4, one can show that

(Rφ
vp⊗e

(k)
ij

)(vq ⊗ 1) = dimH

dimVk

[vq ]vp e
(k)
j i .

Therefore

∂s
�(w # 1)

(
φ

vp1⊗e
(k1)

i1j1

⊗ · · · ⊗ φ
vps ⊗e

(ks )
is js

⊗ h
)

=
∑

q

αq(Rφ
vps ⊗e

(ks )
is js

)(vq1 ⊗ 1) . . . (Rφ
vp1⊗e

(k1)

i1j1

)(vqs ⊗ 1)(vqs+1 ⊗ 1) ⊗ · · · ⊗ (vq�
⊗ 1)

= (dimH)s

dimVk1 . . . dimVks

∑

q

αq [vq1 ]vps
. . . [vqs ]vp1

e
ks

js is
. . . e

k1
j1i1︸ ︷︷ ︸

=:x∈H

(vqs+1 ⊗ 1) ⊗ · · · ⊗ (vq�
⊗ h)

= (dimH)s

dimVk1 . . . dimVks

∑

q

αq [vq1 ]vps
. . . [vqs ]vp1

(x(1)vqs+1 ⊗ 1) ⊗ · · · ⊗ (x(�−s)vq�
⊗ x(�−s+1)h)

= (dimH)s

dimVk1 . . . dimVks

�

(∑

q

αq [vq1 ]vps
. . . [vqs ]vp1

(x(1)vqs+1 ) ⊗ · · · ⊗ (x(�−s)vq�
)#x(�−s+1)h

)

= (dimH)s

dimVk1 . . . dimVks

�

(

x(1)

(∑

q

αq [vq1 ]vps
. . . [vqs ]vp1

vqs+1 ⊗ · · · ⊗ vq�

)

#x(2)h

)

= (dimH)s

dimVk1 . . . dimVks

�
(
x(1)∂

s
w

(
φvp1

⊗ · · · ⊗ φvps

)
#x(2)h

)
.
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Here, x(1)∂
s
w

(
φvp1

⊗· · ·⊗φvps
⊗x(2)h

)
lies in im ∂s

w since this set is closed under the action
from H , and hence the whole expression lies in �(im ∂s

w #H), as required.
(⊆) We use the same bases of V and V ∗ as above, but we choose a different basis for

H . Indeed, let h1 = 1 and extend this to a basis {h1, h2, . . . , hm} for H with the property
that Tr(hi) = 0 for i 
= 1; we can do this by first choosing any basis {h1 = 1, h′

2, . . . , h
′
m}

and then setting hi = h′
i − Tr(h′

i )

Tr(h1)
h1 for i � 2. We now determine the values of Rφvp⊗h1 =

Rφvp⊗1 on elements of the form vq ⊗1. So suppose (Rφvp⊗1)(vq ⊗1) = h for some h ∈ H .
Then, for 1 � i � m,

Tr(hhi) = Tr
(
(Rφvp⊗1)(vq ⊗ 1)hi

) = Tr
(
(Rφvp⊗1)(vq ⊗ hi)

) = φvp⊗1(vq ⊗ hi)

=
{ [vq ]vp if i = 1,
0 otherwise,

= Tr
([vq ]vphi

)
.

Since Tr is nondegenerate, it follows that h = [vq ]vp1H .
Now, to establish this desired inclusion, by linearity it suffices to show that any element

of the form �
(
∂s

w(φvp1
⊗ · · · ⊗ φvps

)#h
)
lies in im ∂s

�(w#1); that is, we must show that

∑

q

αq [vq1 ]vps
. . . [vqs ]vp1

(vqs+1 ⊗ 1) ⊗ · · · ⊗ (vq�−1 ⊗ 1) ⊗ (vq�
⊗ h) ∈ im ∂s

�(w # 1). (4.10)

Indeed, we have

im ∂s
�(w # 1) � ∂s

�(w # 1)

(
φvp1⊗1 ⊗ · · · ⊗ φvps ⊗1 ⊗ h

)

=
∑

q

αq(Rφvps ⊗1)(vq1 ⊗ 1) . . . (Rφvp1⊗1)(vqs ⊗ 1)(vqs+1 ⊗ 1)⊗ · · · ⊗ (vq�−1 ⊗ 1) ⊗ (vq�
⊗ h)

=
∑

q

αq [vq1 ]vps
. . . [vqs ]vp1

(vqs+1 ⊗ 1) ⊗ · · · ⊗ (vq�−1 ⊗ 1) ⊗ (vq�
⊗ h),

and so Eq. 4.10 holds.

To summarise, in this section we have shown the following:

Theorem 4.8 Suppose that the pair (A,H) satisfies Hypothesis 2.13, and write A =
D(w, � − m) for some σ -twisted superpotential w. Then

A#H ∼= D(�(w#1), � − m),

where �(w#1) is a twisted superpotential, where the twist ν is given by ν = σ ⊗ hdet�.

5 From Smash Products to Quivers

In the previous section, we showed that if H is a semisimple Hopf algebra acting homo-
geneously on an m-Koszul AS regular algebra, then A#H is a derivation-quotient algebra.
Moreover, we gave an explicit formula for the twisted superpotential defining A#H . We
now use this to write down a path algebra with relations, �, to which A#H is Morita equiv-
alent. As explained in the introduction, the fact that this is possible follows from general
results in the literature, but our result provides a much more explicit presentation; in partic-
ular, the relations in � are also obtained from a twisted superpotential. We will also deduce
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a number of corollaries; for example, we will give a criterion in terms of � which shows
when the Auslander map is an isomorphism.

In this section, it will sometimes be convenient to compose morphisms from left to right;
when this is the case, our notation for the application of a morphism f to an element a will
be af , and composition of a morphism f followed by g will be denoted f · g.

Assume that the pair (A,H) satisfies Hypothesis 2.13 as usual. As in Eq. 4.1, H has
some Artin–Wedderburn decomposition

H ∼=
n⊕

k=0

MatdimVk
(k),

where V0, . . . , Vn are the irreducible representations of H . Again, we fix such an isomor-
phism which allows us to give the right hand side the structure of a Hopf algebra. Using this,
we obtain n + 1 pairwise orthogonal idempotents e0, e1, . . . , en in H such that Vi

∼= Hei ;
more concretely, one could take ei := e

(i)
11 . Then e = ∑n

i=0 ei is a full idempotent of H , and
so eHe is Morita equivalent to H . In fact, if we interpret e as an element of A#H , then e

is still a full idempotent, and e(A#H)e is Morita equivalent to A#H . We now explain how
the results of the previous section allow us to show that e(A#H)e can be viewed as a quiver
with relations which are derived from a twisted superpotential.

To begin with, we need to ensure that the idempotent e is closed under the action of the
twist ν; in other words, recalling that ν|H = � is the left winding automorphism of H

associated to hdetA, we require �(e) = e. Below, we paraphrase an explanation of how to
achieve this from [8, p. 1506].

The goal is to find idempotents e0, e1, . . . , en ∈ H such that e = ∑n
i=0 ei is a full

idempotent, Hei
∼= Vi and, for each i, ei�(w#1) = �(w#1)ej for some j . By Lemma 4.3,

this is equivalent to requiring ej = �(ei). Now, kw is a one-dimensional representation of
H , so the functor kw ⊗ − induces a permutation of the Vi , and hence partitions the set of
irreducible representations into orbits.

Fix some irreducible representation U , and let r � 1 be minimal so that (kw)⊗r ⊗
U ∼= U . In particular, this means that the modules (kw)⊗i ⊗ U for 0 � i � r − 1 are
pairwise nonisomorphic. Fix an isomorphism ψ : U → (kw)⊗r ⊗ U , and let u ∈ U be an
eigenvector for ψ , in the sense that ψ(u) = λw⊗r ⊗ u for some λ ∈ k. Now let f1 ∈ H be
a primitive idempotent such that the map Hf1 → U, f1 �→ u is an isomorphism. There is
an isomorphism

HomH (Hf1, (kw)⊗r ⊗ Hf1) ∼= f1((kw)⊗r ⊗ H)f1,

and under this isomorphism, the map

ψ ′ : Hf1 → (kw)⊗r ⊗ Hf1, ψ ′(f1) = λw⊗r ⊗ f1

corresponds to the element f1. In particular, we find that f1(w⊗r #1) = (w⊗r #1)f1 in
Tk(V )#H .

Now let f2, f3, . . . , fr ∈ H ⊆ Tk(V )#H be the primitive idempotents satisfying
fi(w#1) = (w#1)fi+1 for 1 � i � r − 1. By construction, we also have fr(w#1) =
(w#1)f1. In particular, by Lemma 4.3, �(fi) = fi+1, where the subscripts are read mod-
ulo r if necessary. Therefore the set {f1, . . . , fr } is closed under the twist ν. (Of course,
we could have just picked f1 to be any idempotent in H with Hf1 ∼= U and then set
fi+1 = �(fi) for 1 � i � r − 1, but then there is no guarantee that �r(f1) = f1.)
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Repeating this procedure for each orbit of irreducible representations, we obtain n + 1
elements of H (which we may also view as elements of A#H ) which we label e0, . . . , en,
with the following properties:

• The ei are pairwise orthogonal idempotents;
• The set {e0, . . . , en} is closed under the twist ν;
• Hei

∼= Vi , and He0 is the trivial representation;
• The element e := e0 + · · · + en is a full idempotent of H , and the same is true if we

view e as an element of A#H .
• e0(A#H)e0 ∼= AH , by [27, 4.3.4 Lemma].

Finally, by combining [8, Lemma 2.2] with our Theorem 4.8, we deduce the following:

Proposition 5.1 Suppose that the pair (A,H) satisfies Hypothesis 2.13. Then A#H is
Morita equivalent to

e(A#H)e ∼= D(e�(w#1)e, � − m). (5.1)

In particular, AH ∼= e0D(e�(w#1)e, � − m)e0.

5.1 ViewingD (e�(w#1)e, � − m) as a Quiver with Relations

We now show how the algebra (5.1) can be viewed as the path algebra of a quiver with
relations, and that these relations are derived from the superpotential e�(w#1)e, which can
be interpreted as a linear combination of paths in the quiver.

We first show that we can view e(Tk(V ) ⊗ H)e(∼= eTH (V ⊗ H)e) as the path algebra
of a quiver. The vertices of Q correspond to the idempotents ei , and the arrows correspond
to elements of e(V ⊗ H)e. In particular, the number of arrows from vertex i to vertex j is
equal to the dimension of

ei(V ⊗ H)ej
∼= HomH (Hei, (V ⊗ H)ej ) = Hom(Vi, V ⊗ Vj ); (5.2)

that is, the number of arrows from i to j is equal to the multiplicity of the irreducible module
Vi in V ⊗ Vj . The set of arrows of Q is given by the union of bases for the vector spaces
ei(V ⊗ H)ej . It follows that Q is the left McKay quiver for the action of H on A, and that
e(Tk(V ) ⊗ H)e is isomorphic to the path algebra of Q.

Using Eq. 5.2, we will be able to identify arrows in Q (i.e. elements of e(V ⊗ H)e) with
morphisms of H -modules. Since our preference will be to compose arrows in quivers from
left to right, in this section it will be convenient to compose the corresponding morphisms
from left to right, using the notation at the start of this section.

By Eq. 5.2, we can identify every arrow α : i → j in Q (which is itself an element of
ei(V ⊗ H)ej ) with an H -module map φα : Vi → V ⊗ Vj . Extending this, to every path
p = α1 . . . αk ∈ ei(V

⊗k ⊗ H)ej ⊆ Tk(V )#H in Q we can associate an H -module map
φp := φα1 · (idV ⊗ φα2) · · · · · (id⊗k−1

V ⊗ φαk
). Abusing notation, we will simply write

φp = φα1 · · · · · φαk
∈ HomH (Vt(α1), V

⊗k ⊗ Vh(αk)). Conversely, it is straightforward to
show that every map in HomH (Vi, V

⊗k ⊗ Vj ) can be decomposed uniquely as a sum of
morphisms of this form.

We also wish to identify certain morphisms which are dual to those corresponding to
the arrows in Q. Recall that the number of arrows from vertex i to vertex j is equal to the
dimension of HomH (Vi, V ⊗ Vj ); call this number mij . In particular, the multiplicity of
Vi as an irreducible summand of V ⊗ Vj is mij , and hence we also have dimHomH (V ⊗
Vj , Vi) = mij . Therefore for each arrow α : i → j we can also choose an H -module map
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ψα : V ⊗ Vj → Vi . In particular, we can choose each map ψα so that it is dual to φα in the
sense that, for any arrow β : i → j , the composition of H -module maps

Vi
φα−→ V ⊗ Vj

ψβ−→ Vi (5.3)

is the identity on Vi if α = β, and the zero map otherwise. In turn, for every path
p = α1 . . . αk in Q, we obtain H -module maps ψp := ψαk

· · · · · ψα1 ∈ HomH (V ⊗k ⊗
Vh(αk), Vt(α1)) with the property that, by Eq. 5.3, if q is any other path between the same
vertices, the composition

Vt(p)

φp−→ V ⊗k ⊗ Vh(p)

ψq−→ Vt(p) (5.4)

is the identity on Vt(p) if p = q, and the zero map otherwise. Again, we abuse notation here
by writing ψαk

· ψαk−1 · · · · · ψα1 rather than (id⊗k−1
V ⊗ ψαk

) · (id⊗k−2
V ⊗ ψαk−1) · · · · · ψα1 .

We now use the above to write the element e(w#1)e ∈ e(Tk(V )#H)e in terms of paths
in the quiver. Write

e(w#1)e =
∑

p

λpp =: �

for some λp ∈ k, where the sum runs over all paths p and all but finitely many λp are zero.
Let τ be the permutation of the vertices satisfying

kw ⊗ Vi
∼= Vτ(i).

By our choice of idempotents, we can (and do) assume that this isomorphism is given by
the map

θi : Vτ(i) → kw ⊗ Vi, θi(eτ(i)) = w ⊗ ei .

In particular, in Tk(V )#H this means that eτ(i)(w ⊗ 1) = (w ⊗ 1)ei , and so ν(eτ(i)) = ei ,
i.e. the permutation of the vertices induced by ν is inverse to the permutation τ .

Fix a path p in Q of length � from vertex i to vertex j (where we recall that w ∈ V ⊗�),
and consider the composition

Vτ(j)

θτ(j)−−→ kw ⊗ Vj
ι

↪−→ V ⊗� ⊗ Vj

ψp−→ Vi . (5.5)

Since this composition is a map of H -modules and the domain and codomain are irre-
ducible, Schur’s Lemma implies that it is a scalar multiple of the identity, say μpidVi

. In
particular,

μp 
= 0 ⇔ i = τ(j) (5.6)

Applying this map to ei = eτ(j):

ei �→ w ⊗ ej = (e(w ⊗ 1)e)ej =
∑

q:h(q)=j

λqq =
∑

q:h(q)=j

λqe
φq

i �→
∑

q:h(q)=j

λqe
φq ·ψp

i = λpei . (5.7)

Therefore λp = μp . Since � : Tk(V ) ⊗ H → TH (V ⊗ H) is an isomorphism which
restricts to the identity on the vertices and arrows of Q, the same coefficients appear in the
terms of e�(w#1)e, which we also call �. In particular, we have a recipe for writing down
� in terms of paths in the quiver. We can now reformulate Proposition 5.1 as follows:

Theorem 5.2 Suppose that the pair (A,H) satisfies Hypothesis 2.13. Then A#H is Morita
equivalent to � := D(� − m, �), where Q is the left McKay quiver for the action of H on
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A, and � is a twisted superpotential in the path algebra of Q. Explicitly, � = e(A#H)e

so, in particular, AH ∼= e0�e0.

Example 5.3 As a first example, it is well-known that if k[u, v]G is a Kleinian singularity
with associated McKay quiver Q, then the algebra � from Theorem 5.2 is the preprojective
algebra �(Q); see [8, Corollary 4.2].

Remark 5.4 Suppose that H is commutative; that is, H is the dual of the group algebra of
a finite group (this includes the possibility that H = kG where G is a finite abelian group,
since in that case H ∼= H ∗). Then H ∼= k

n+1 as k-algebras, and so the full idempotent
e which gives rise to the Morita equivalence between � and A#H is simply the identity.
Therefore A#H = e(A#H)e ∼= �.

Remark 5.5 Given an arrow α : i → j in the quiver for A#H , in practice it is easier to
write down an explicit formula for the map φα : Vi → V ⊗ Vj than it is for the dual map
ψα : V ⊗ Vj → Vi . We now give an alternative description of the maps ψα which is more
amenable to computations, and explain how they can be used to obtain the coefficients as in
Eq. 5.7.

Given finite-dimensional H -modules U, V,W , it is straightforward to show that the map

η : HomH (U, V ∗ ⊗ W) → HomH (V ⊗ U, W),

η(φ)(v ⊗ u) =
∑

i

fi(v)wi, where φ(u) =
∑

i

fi ⊗ wi

is a vector space isomorphism (here, we require S2 = id). In particular, if α : i → j is an
arrow, then there is a map ξα : Vj → V ∗ ⊗ Vi such that η(ξα) = ψα . The duality condition
(5.3) then means that the composition

Vi
φα−→ V ⊗ Vj

ξβ−→ V ⊗ V ∗ ⊗ Vi
eval⊗id−−−−→ Vi (5.8)

is the identity when α = β, and the zero map otherwise. These maps can be extended to
paths in the same way as in Eq. 5.4 to obtain maps ξp. Finally, if p is a path of length � in
the quiver, then the composition

Vτ(j)

θτ(j)−−→ kw ⊗ Vj
ι

↪−→ V ⊗� ⊗ Vj

id⊗ξp−−−→ V ⊗� ⊗ (V ∗)⊗� ⊗ Vi
eval⊗id−−−−→ Vi (5.9)

is equal to λpidVi
, where λp is the coefficient of p in �. (Here, we emphasise that the eval-

uation map V ⊗� ⊗ (V ∗)⊗� → k is given by v1 ⊗ . . . v� ⊗f1 ⊗· · ·⊗f� �→ f1(v�) . . . f�(v1)

to ensure that it is an H -module morphism, as in Eq. 2.2.)

Remark 5.6 As noted in [8, p. 1508], the exact form of the twisted superpotential, and hence
the relations, depends highly on the choice of representatives in e(A#H)e for the arrows
in Q. There is an action of the graded automorphism group Autgr(kQ) on (kQ)�, and all
twisted superpotentials that give isomorphic derivation-quotient algebras lie in the same
orbit under this action.

We now discuss a number of corollaries and applications of Theorem 5.2.
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5.2 Applications to the Auslander Map

Let (A,H) be a pair satisfying Hypothesis 2.13. Recall that the Auslander map is

γ : A#H → End(AAH ), γ (a#h)(b) = a(h · b).

Theorem 2.16 provides a computationally useful criterion for establishing when the Aus-
lander map is an isomorphism. However, applying this result can still be quite involved;
for example, lengthy calculations are required in [12, 15, 19] before Theorem 2.16 can be
applied. The following result provides a similar criterion, but allows computations to be
performed in � rather than A#H .

Corollary 5.7 Suppose that the pair (A,H) satisfies Hypothesis 2.13, and that A is GK-
Cohen-Macaulay, as in Theorem 2.16. Let � be the algebra from Theorem 5.2. Then the
Auslander map is an isomorphism if and only if GKdim�/〈e0〉 � GKdimA − 2.

Proof Let T = A#H , and let e = e0+e1+· · ·+en be the sum of idempotents from before
Proposition 5.1, so that � = eT e. In particular, e0 = 1# t , where t is the integral from
Theorem 2.16. The (graded) Morita equivalence between � and T is induced by the mutu-
ally inverse equivalences eT ⊗T − : T -grmod → �-grmod and T e ⊗� − : �-grmod →
T -grmod. Now,

�

〈e0〉 = e�e

e�e0�e
∼= eT ⊗T T ⊗T T e

eT ⊗T T e0T ⊗T T e
∼= eT ⊗T

T

〈e0〉 ⊗T T e. (5.10)

By two applications of [26, Proposition 3.14], we find that GKdim�/〈e0〉 �
GKdim T/〈e0〉. Tensoring (5.10) on the left and right by T e and eT , respectively, we find
that

T

〈e0〉
∼= T e ⊗�

�

〈e0〉 ⊗� eT ,

and [26, Proposition 3.14] now shows that GKdim T/〈e0〉 � GKdim�/〈e0〉. Hence we
have an equality, and the claim now follows by Theorem 2.16.

One advantage of this result is that it is often easier to determine the GK dimension of
the algebra �/〈e0〉 than that of (A#H)/〈e0〉. For an example of this, see the last paragraph
of the proof of Theorem 6.8, and compare with [12, Lemma 4.6, Proposition 4.7].

It is possible for different pairs (A,H) and (B,K) satisfying Hypothesis 2.13 to give
rise to the same algebra �. In particular, given a pair (A,H) whose properties are unclear,
it may be possible to find another pair (B,K) = (B,kG) which is easier to understand, in
part because the invariant theory of finite groups is better understood than that of semisimple
Hopf algebras. In this case, the properties of AH and BK are closely related:

Theorem 5.8 Suppose that (A,H) and (B,K) both satisfy Hypothesis 2.13, and that A

and B are GK-Cohen-Macaulay, as in Theorem 2.16. Moreover assume that the algebras
obtained by Theorem 5.2 to (A,H) and (B,K) are equal, and call this common algebra �.
Necessarily, we must have GKdimA = GKdimB; call this common value d .

(1) The following are equivalent:

(i) The Auslander map for (A,H) is an isomorphism;
(ii) The Auslander map for (B,K) is an isomorphism; and
(iii) GKdim�/〈e0〉 � d − 2.
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(2) AH ∼= BK .

Proof (1) By Corollary 5.7, (i) and (iii) are equivalent, and (ii) and (iii) are equivalent by
the same reasoning.

(2) AH ∼= e0�e0 ∼= BK .

We will apply this result a number of times in Section 6.

5.3 � is a Mesh AlgebraWhen A is Two-Dimensional

Suppose the pair (A,H) satisfies Hypothesis 2.13, and moreover assume that A is a
two-dimensional AS regular algebra. Throughout, fix an algebra � obtained from Theo-
rem 5.2. We first recall a definition from [31], with some minor modifications for notational
consistency:

Definition 5.9 LetQ be a finite quiver with vertex set {0, . . . , n}. LetA be the set of arrows
of Q, which is therefore a basis for U := (kQ)1. Suppose there is a permutation τ of the
vertex set (and hence of the vertex idempotents) and a bijective linear map σ : U → U such
that σ(eiUej ) = eτ(j)Uei . Then

� :=
∑

α∈A
σ(α)α

is a τ−1-twisted weak potential in kQ. If we let �i = �ei = eτ(i)�ei , then the algebra

A2(Q, σ) := kQ/〈�〉 = kQ/〈�0, . . . , �n〉
is called a mesh algebra, and �i is called a mesh relation.

By Theorem [32, Theorem 4.1], the algebra A#H is twisted Calabi-Yau (called skew
Calabi-Yau in [loc. cit.]), and therefore the same is true of the Morita equivalent algebra
�. By [31, Proposition 7.1], it follows that � is a mesh algebra, and in our setting the
permutation τ satisfies kw ⊗ Vi

∼= Vτ(i).
When the permutation τ is the identity, under mild assumptions on the quiver Q, mesh

algebras are quite restricted:

Lemma 5.10 Assume that � is a mesh algebra, where the map τ is the identity. Assume
that the underlying quiver Q of � is the double of a quiver Q′, where the underlying graph
of Q′ is a tree. Then

� ∼= �(Q′),
where �(Q′) is the preprojective algebra of Q′ (see Definition 2.10).

Proof The hypotheses on� tell us that arrows come in opposed pairs; label them α : i → j ,
α : j → i in some order. In particular, if there is an arrow i → j , then there is exactly one
arrow j → i, so if we apply the map σ from Definition 5.9 to such a pair of arrows, then

σ(α) = λαα, σ (α) = μαα
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for some λα, μα ∈ k
×. Therefore the relation at vertex i is of the form

∑

α:t (α)=i

μααα +
∑

α:h(α)=i

λααα.

Since the underlying graph of Q is a tree, a simple adaptation of the proof of [14, Lemma
7.1.2] shows that we can scale the arrows so that μα = 1 and λα = −1 for all α. These are
precisely the relations in a preprojective algebra so � ∼= �(Q), as claimed.

The conditions of the above lemma are satisfied in a number of examples that we will
consider in Section 6. In particular, we only need to know the McKay quiver of the action
of H on A to find �, up to isomorphism. We note that the condition that the underlying
graph of Q is a tree is crucial; for example, the relations obtained in Example 6.5 cannot be
written as preprojective relations.

5.4 Maximal Cohen-Macaulay Modules in Dimension 2

Suppose that the pair (A,H) satisfies Hypothesis 2.13 with A two-dimensional, and assume
that the Auslander map for this pair is an isomorphism. Let � be an algebra from Theo-
rem 5.2. We now show how the maximal Cohen-Macaulay AH -modules can be constructed
using �.

By Theorem 2.17, if V is an irreducible H -module, then PV := A ⊗ V is a projective
A#H -module, and MV := (A ⊗ V )H is a maximal Cohen-Macaulay AH -module. If we
have enumerated the irreducible representations of H as V0, . . . , Vn, we then write Pi :
= PVi

and Mi := MVi
. It then follows that the modules Pi[j ] and Mi[j ], where 0 �

i � n and j ∈ Z, is a complete list of isomorphism classes of indecomposable graded
projective (A#H)-modules and indecomposable graded maximal Cohen-Macaulay AH -
modules, respectively.

Lemma 5.11 Assume the above setup.

(1) The maps

AH → e0(A#H)e0, b �→ e0(b#1)e0,

e0(A#H)e0 → AH , e0(a#h)e0 �→ ε(h)e0 · a

are mutually inverse isomorphisms of graded algebras.
(2) There is an isomorphism of left AH -modules Mi

∼= e0(A#H)ei .

Proof (1) This is [27, 4.3.4 Lemma].
(2) First note that, since Vi

∼= Hei , we can write Mi = (A ⊗ Hei)
H . Let

∑
a,h a ⊗ hei ∈

Mi . Then

e0(A#H)ei � e0

(∑

a,h

a ⊗ h

)

ei = e0
∑

a,h

a ⊗ hei = ε(e0)
∑

a,h

a ⊗ hei =
∑

a,h

a ⊗ hei .

Conversely, let a#h ∈ A#H . Then e0(a#h)ei = e0(a#hei) ∈ A ⊗ Vi and, for any
k ∈ H , we have

k · e0(a#hei) = (ke0)(a#hei) = ε(k)e0(a#hei),

so e0(a#h)ei ∈ (A ⊗ Vi)
H = Mi .



Superpotentials and Quiver Algebras for Semisimple Hopf Actions

Now consider the quiver algebra � = e(A#H)e, with its subalgebra e0�e0 ∼= AH .
By Lemma 5.11 (2), we can view the indecomposable MCM AH -modules as the modules
e0�ei . In terms of the quiver, this means that the indecomposable MCM e0�e0-module
Mi = e0�ei has a k-basis consisting of paths starting at the vertex 0 and ending at the
vertex i. In forthcoming work, we will use this perspective to study the Auslander–Reiten
theory of AH .

6 Examples

In this section, we compute some examples which illustrate how Theorem 5.2 can be
applied. The main difficulty in writing down a presentation for � is determining the twisted
superpotential � ∈ kQ. Fortunately, in many of the cases of interest to us, � can be
computed with very little effort.

We begin with an example where a nontrivial semisimple Hopf algebra acts on a two-
dimensional AS regular algebra.

Example 6.1 Let H be the Kac-Palyutkin Hopf algebra, which has presentation

H = k〈x, y, z〉
〈

x2 = 1 = y2, xy = yx,

zx = yz, zy = xz,

z2 = 1
2 (1 + x + y − xy)

〉 ,

where the comultiplication, counit, and antipode are defined as follows,

�(x) = x ⊗ x, ε(x) = 1, S(x) = x,

�(y) = y ⊗ y, ε(y) = 1, S(y) = y,

�(z) = 1
2 (1 ⊗ 1 + x ⊗ 1 + 1 ⊗ y − x ⊗ y)(z ⊗ z), ε(z) = 1, S(z) = z,

(note that S is not the identity, since S(xz) = S(z)S(x) = yz, for example). This is an 8-
dimensional semisimple Hopf algebra which is isomorphic to neither a group algebra nor
the dual of one. By [18, Section 2], H has four one-dimensional representations and one
two-dimensional representation which we now describe. Letting ω ∈ k be a primitive 4th
root of unity, the five irreducible representations have the following matrix representations:

ρα,β,γ : H → k, x �→ α, y �→ β, z �→ γ,

ρ : H → Mat2(k), x �→
(−1 0

0 1

)

, y �→
(
1 0
0 −1

)

, z �→
(
0 1
1 0

)

,

where (α, β, γ ) is one of (1, 1, 1) (the trivial representation), (1, 1,−1), (−1,−1, ω),
(−1,−1, −ω). In order, let V0, V1, V2, and V3 be H -modules such that the associated
matrix representation is the corresponding ρα,β,γ , and suppose Vi = span{ei}. Also let
V4 = span{e4, f4} be a two-dimensional H -module with associated matrix representation
ρ.

We now want to consider actions of H on two-dimensional AS regular algebras. Let
V = span{u, v} be a two-dimensional H -module whose associated matrix representation
is also ρ, and form the tensor algebra Tk(V ). By [18, Section 2], if we set w = u2 + v2

and w′ = u2 − v2, then the AS regular algebras A = D(w, 0) and B = D(w′, 0) become
H -module algebras which satisfy Hypothesis 2.13. We now determine the algebra � from
Theorem 5.2 in both of these cases.
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We first compute the McKay quivers. Since the McKay quiver only depends on the action
of H on A1 = B1, we obtain the same McKay quiver in each case. By [18, Theorem 3.5],
we have

V ⊗ V0 ∼= V4, V ⊗ V1 ∼= V4, V ⊗ V3 ∼= V4,

V ⊗ V3 ∼= V4, V ⊗ V4 ∼= V0 ⊕ V1 ⊕ V2 ⊕ V3,

and so the McKay quiver Q is as follows:

0

1 2

3

4
a

B c

D

A

b C

d

By the results of Section 4.8, Tk(V )#H is Morita equivalent to the path algebra of Q.
We follow the recipe from Remark 5.5 to determine the superpotential � so that A#H

and � := D(�, 0) are Morita equivalent. For each arrow α : i → j we need to write down
an H -module morphism ξα : Vj → V ∗ ⊗ Vi . Since the antipode is the identity, the action
of H on the dual basis {u∗, v∗} of V ∗ is the same as the action on the basis {u, v} of V . It is
then straightforward to verify that possible choices for the maps ξα are as follows:

ξa : V4 → V ∗ ⊗ V0, e4 �→ u∗ ⊗ e0, f4 �→ v∗ ⊗ e0,

ξA : V0 → V ∗ ⊗ V4, e0 �→ u∗ ⊗ e4 + v∗ ⊗ f4,

ξb : V4 → V ∗ ⊗ V1, e4 �→ u∗ ⊗ e1, f4 �→ −v∗ ⊗ e1,

ξB : V1 → V ∗ ⊗ V4, e1 �→ u∗ ⊗ e4 − v∗ ⊗ f4,

ξc : V4 → V ∗ ⊗ V2, e4 �→ v∗ ⊗ e2, f4 �→ ωu∗ ⊗ e2,

ξC : V2 → V ∗ ⊗ V4, e2 �→ v∗ ⊗ e4 − ωu∗ ⊗ f4,

ξd : V4 → V ∗ ⊗ V3, e4 �→ v∗ ⊗ e3, f4 �→ −ωu∗ ⊗ e3,

ξD : V3 → V ∗ ⊗ V4, e3 �→ v∗ ⊗ e4 + ωu∗ ⊗ f4.

It is easy to see that x · u2 = u2 and y · v2 = v2, and direct calculation using the coproduct
shows that

z · u2 = v2, z · v2 = u2. (6.1)

Therefore kw ∼= V0, so the H -action on A has trivial homological determinant. This means
that the permutation τ of the vertices, defined by kw ⊗ Vi

∼= Vτ(i), is the identity, so � is
a linear combination of paths of length � = 2 which start and end at the same vertex. To
determine the coefficients of the terms in �, we use Eq. 5.9; for example, the coefficient of
aA can be calculated from the following composition:

V0 →V ⊗2⊗V0
id⊗ξA−−−→ V ⊗2 ⊗ V ∗ ⊗ V4

id⊗ξa−−−→ V ⊗2 ⊗ (V ∗)⊗2 ⊗ V0
eval−−→ V0

e0 �→w ⊗ e0 �−−−→ w ⊗ (u∗ ⊗ e4 + v∗ ⊗ f4) �−−−→ w ⊗ (u∗ ⊗ u∗ + v∗ ⊗ v∗) ⊗ e0 �−−→ 2e0

so the coefficient of aA in � is 2. Similarly, to compute the coefficient of Aa, we consider
the following:

V4 →V ⊗2⊗V0
id⊗ξa−−−→ V ⊗2 ⊗ V ∗ ⊗ V0

id⊗ξA−−−→ V ⊗2 ⊗ (V ∗)⊗2 ⊗ V4
eval−−→ V4

e4 �→w ⊗ e4 �−−−→ w ⊗ u∗ ⊗ e0 �−−−→ w ⊗ u∗ ⊗ (u∗ ⊗ e4 + v∗ ⊗ f4) �−−→ e4

which tells us that the coefficient of Aa in � is 1. Repeating this process, we obtain

� = 2aA + 2bB + 2cC + 2dD + Aa + Bb + Cc + Dd.
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Since A = D(w, 0), the relations in � are obtained by formal left differentiation with
respect to paths of length 0, i.e. the vertices. This means that no differentiation is required,
and the relations are obtained by simply pre- and post-multiplying � by suitable vertex
idempotents. Therefore A#H is Morita equivalent to �, which is the path algebra of Q with
the relations (after rescaling)

aA = bB = cC = dD = Aa + Bb + Cc + Dd = 0.

In particular, � is a preprojective algebra of a D̃4 quiver. Using Theorem 5.8, it follows that
AH ∼= e0�e0 ∼= k[u, v]G where G is a binary dihedral group of order 8, which explains the
observation in [18, Theorem 2.1] that AH is a commutative hypersurface.

Now consider w′ = u2 − v2, and B = D(w′, 0); we wish to determine the twisted
superpotential �′ so that B #H and �′ = D(�′, 0) are Morita equivalent. Using Eq. 6.1
we see that kw′ ∼= V1, so the H -action on B has nontrivial homological determinant. It is
straightforward to check directly (or by using [18, Theorem 3.5]) that the functor kw′ ⊗ −
swaps V0 and V1, swaps V2 and V3, and fixes V4. Therefore, when applying Eq. 5.9, we only
need to consider paths between vertices 0 and 1, between vertices 2 and 3, and from vertex
4 to itself, all of length two. In particular, one can show in this case that

�′ = 2aB + 2bA − 2cD − 2dC + Aa + Bb − Cc − Dd,

and so B #H is Morita equivalent to the path algebra of Q modulo the relations

aB = bA = cD = dC = Aa + Bb − Cc − Dd = 0.

In particular, using Theorem 5.8 and [8, Example 5.1], BH ∼= e0�
′e0 ∼= k[u, v]G, where G

is a dihedral group of order 8. Since G is generated by reflections, k[u, v]G is a polynomial
ring, and hence the same is true of BH , which was observed in [18, Theorem 2.1].

6.1 Calculating�When H is the Dual of a Group Algebra

Suppose that H = (kG)∗ is the dual of a group algebra acting homogeneously on an m-
Koszul AS regular algebra A = D(w, i), where w ∈ V ⊗�. The action of H is equivalent to
A being G-graded. In this situation, it is relatively straightforward to describe the quiver Q

of �, as well as the superpotential �. We now describe this process.
We first fix some notation. Let {v1, . . . , vr } be a basis of V := A1 and let {fg | g ∈ G} be

the basis of H which is dual to the usual basis of kG. By assumption A (and hence Tk(V ))
is G-graded, and since the action of H is homogeneous, we may assume that degG vi = gi

for some gi ∈ G. The Artin–Wedderburn decomposition of H is simply H = ⊕
g∈G Hfg ,

so it follows that the full idempotent e is simply
∑

g∈G fg , which is just 1H . Therefore
this set of idempotents is automatically closed under the left winding automorphism hdet�.
The algebra H has |G| (one-dimensional) irreducible representations Vg := Hfg , and it
is straightforward to check that Vg ⊗ Vh

∼= Vgh. In particular, we can (and will) label the
vertices of the McKay quiver Q by the elements of G, in contrast with our usual notation
{0, 1, . . . , n} for the set of vertices of Q.

We now determine the arrows of the McKay quiver Q. We have V ∼= ⊕r
i=1 Vgi

, so if
h ∈ G, then we have V ⊗Vh

∼= ⊕r
i=1 Vgih. In particular, the McKay quiver has r|G| arrows,

which we denote αgi ,h : gih → h. In particular, to each arrow αgi ,h we can associate a
morphism in HomH (Vgih, V ⊗ Vh); we shall choose the map

φgi,h : Vgih → V ⊗ Vh, φgi ,h(fgih) = vi ⊗ fh,

which is easily checked to be an H -morphism. It will also be convenient to label the arrow
αgi ,h with the basis element vi ; we claim that these labels can be used to immediately write
down the twisted superpotential � defining �.
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First recall that, to each arrow αgi ,h, we can also associate an element of HomH (Vh, V
∗⊗

Vgih), and this map is dual to φgi,h in the sense of Eq. 5.8. Noting that V has dual basis
{v∗

1 , . . . , v
∗
r } which satisfies kv∗

i
∼= V

g−1
i
, it follows that we may choose this morphism to

be the element

ξgi ,h : Vh → V ⊗ Vgih, ξgi ,h(fh) = v∗
i ⊗ fgih.

Also recall that we have a permutation τ of the vertices induced by the functor kw ⊗−, and
by Corollary 3.3, we have kw ∼= VdegG w. By Eq. 5.6, we know that the only paths appearing
with a nonzero coefficient in � have length � and are of the form τ(i) → i. In the present
context, that means we only have to consider paths of length � starting at a vertex labelled
by (degG w)h and ending at a vertex labelled by h, where h is some group element. Suppose
that p = β1β2 . . . β� is such a path in Q, say

gi1gi2 . . . gi�h
β1−→ gi2 . . . gi�h

β2−→ . . .
β�−1−−→ gi�h

β�−→ h,

where gi1gi2 . . . gi� = degG w, and where the basis vector associated to βj is vij . We claim
that

[�]β1...β�
= [w]vi1 ...vi�

,

where we recycle the notation from before Proposition 4.4 to pick out components with
respect to a given basis. Indeed, by Eq. 5.9, the following composition is equal to
[�]β1...β�

id:

V(degG w)h→ V ⊗� ⊗ Vh

ξβ�−→ V ⊗� ⊗ V ∗ ⊗ Vg�h

ξβ�−1−−−→ V ⊗� ⊗ V ∗ ⊗ V ∗ ⊗ Vg�−1g�h

ξβ�−2−−−→
f(degG w)h �→ w ⊗ fh �−→ w ⊗ v∗

i�
⊗ fg�h �−−−→ w ⊗ v∗

i�
⊗ v∗

i�−1
⊗ fg�−1g�h �−−−→

. . .
ξβ1−−→ V ⊗� ⊗ (V ∗)⊗� eval−−→ V(degG w)h,

. . . �−→ w ⊗ (v∗
i�

⊗ · · · ⊗ v∗
i1
) ⊗ f(degG w)h �−−→ [w]vi1 ...vi�

f(degG w)h.

(Here, we have written ξβj
rather than id⊗�

V ⊗ id⊗�−j
V ∗ ⊗ ξβj

.) This establishes the claim. We
summarise this result as a theorem:

Theorem 6.2 Suppose that the pair (A,H) satisfies Hypothesis 2.13, where H = (kG)∗;
equivalently, A is G-graded. Let V = A1 have basis {v1, . . . , vr }, and suppose that
degG vi = gi for some gi ∈ G. Then A#H is isomorphic to � := D(�, � − m) for some
twisted superpotential � ∈ (kQ)�, where the McKay quiver Q and � are as follows:

• The vertices of Q are labelled by the elements of G, and there is an arrow of the form
gih → h for each 1 � i � r and each h ∈ G; adorn such an arrow with vi;

• The twisted superpotential � ∈ (kQ)� is a linear combination of paths from the vertex
labelled by (degG w)h to the vertex labelled by h, for each h ∈ G. In particular, if
λvi1vi2 . . . vi� is a monomial (with coefficient λ ∈ k

×) appearing in w then, for each
h ∈ G, there is a unique path p in Q from the vertex labelled by (degG w)h to the vertex
labelled by h which traverses arrows adorned with vi1 , vi2 , . . . , vi� (in order), and p

appears in � with coefficient λ.

Moreover, AH ∼= e1G
�e1G

.

While the method for obtainingQ and�was somewhat technical to describe, in practice,
the calculations are quite easy.
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Example 6.3 We consider case (e) from [12, Table 1]. Let A = k〈u, v〉/〈u2 − v2〉 =
D(w, 0), where V = A1 = span{u, v} and w = u2 − v2. Let G = Dn be a dihedral group
of order 2n, with presentation

Dn = 〈g, h | g2 = h2 = (gh)n = 1〉.
Then A and Tk(V ) are G-graded by setting degG u = g and degG v = h, which gives rise
to a left action of H = (kG)∗ on A and Tk(V ). In particular, by Corollary 3.3, the H -action
has trivial homological determinant since degG w = 1G.

We first calculate the McKay quiver Q of the action of H on A. By Theorem 6.2, the
vertices of Q are labelled by the group elements. The arrows are of the following form,
where here x is some arbitrary element of G:

x
u−−→ g−1x = gx, x

v−−→ h−1x = hx,

In the above, we have adorned the first arrow with u since degG u = g, and similarly for
the second arrow. To write these arrows more explicitly, it will be convenient to write the
2n elements of G in the following form:

G = {(hg)i | 0 � i � n − 1} ∪ {g(hg)i | 0 � i � n − 1}.
The arrows then take the following form:

(hg)i
u−−→ g · (hg)i = g(hg)i, (hg)i

v−−→ h · (hg)i = g(hg)i−1,

g(hg)i
u−−→ g · g(hg)i = (hg)i, g(hg)i

v−−→ h · g(hg)i = (hg)i+1.

For example, below we show the McKay quiver when n = 3, and on the right we provide a
relabelling of the vertices and arrows:

(hg)2

g(hg)2

1G g

hg

ghg
v

u

v

u

v

u

v

u

v

u

v

u

4

5

0 1

2

3
d

e

f

a

b

c

D

E

F

A

B

C

We now determine � using the recipe from Theorem 6.2. Since w ∈ V ⊗2, the paths in �

have length two, and since the homological determinant is trivial, the only ones appearing
with a nonzero coefficient are loops. Now, w = u2 − v2, so eτ(i)�ei = ei�ei consists of
those paths from vertex i to itself which correspond to the terms u2 and v2, with respective
coefficient +1 and −1. For example, e0�e0 = aA − Ff , since a and A both correspond to
the element u, while f and F both correspond to v. Continuing in this way, we find that

� = aA − Ff − bB + Aa + cC − Bb − dD + Cc + eE − Dd − f F + Ee,

which is a twisted superpotential where the twist is the identity. Therefore A#H is isomor-
phic to � = D(�, 0) by Theorem 6.2. The relations are obtained by formal differentiation
with respect to paths of length 0, i.e. the vertices. Therefore the relations in � are simply

aA = Ff, bB = Aa, cC = Bb, dD = Cc, eE = Dd, f F = Ee;
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that is, the loops of length two at a given vertex are equal. In particular,� is the preprojective
algebra of an Ã5 quiver.

By a similar argument, for n � 3, the McKay quiver of the pair (A,H) is the double of
a type Ã2n−1 quiver, and the relations in � say that the loops of length two at a given vertex
are equal. That is, � is the preprojective algebra of an Ã2n−1 quiver.

Example 6.4 As a second example, let

A = k〈u, v〉
〈u2v − vu2, v2u − uv2〉 ,

a down-up algebra. By Example 2.7, we know that A ∼= D(w, 1), where w = uv2u−u2v2+
vu2v − v2u2. If we let G = D4, the dihedral group of order 8, with presentation

G = 〈g, h | g4 = h2 = 1, hg = g3h〉,

then A can be G-graded by setting degG u = g and degG v = h. This gives a left action of
H = (kD4)

∗ on both A and k〈u, v〉 = Tk(V ), where V = span{u, v}. By Corollary 3.3, we
know that the action of H on A has nontrivial homological determinant since

degG w = degG uv2u = gh2g = g2 
= 1G.

To determine the McKay quiver Q of the action of H on A, we recall that the vertices
correspond to elements of G, and that the arrows are of the form

x
u−−→ g−1x = g3x, x

v−−→ h−1x = hx,

for all x ∈ G. It is then easy to check that the McKay quiver has the form given on the left,
and where we provide a relabelling on the right:

1G

g3

h

g

gh

g2

g3h

g2h
v

v

v

v

v

v

v

v

u u

u u

u u

uu

0
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4
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6b
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E
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f J

K �

F j

Lk

We now determine �. Since the homological determinant is nontrivial, the paths appear-
ing in � start and end at different vertices. We already saw that degG w = g2, which means
that such a path beginning at a vertex labelled by x ∈ G must end at the vertex labelled by
(g2)−1x = g2x. For example, this means that e0�e2 is nonzero. Now observe that the path
f DdF from vertex 0 to vertex 2 in the right hand quiver corresponds to the element uv2u

in the left hand quiver. Repeating this for the other terms in w, we can obtain e0�e2:

w = uv2u − u2v2 + vu2v − v2u2 � e0�e2 = f DdF − f FcC + bL�C − bBf F .
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Continuing in this way, we find that

� = f DdF − f FcC + bL�C − bBf F + KbBf − Kf Dd + E�Jd − EeKf

+kEeK − kKbB + cJjB − cCkK + FcCk − FkEe + DjLe − DdFk

+LeE� − L�Cc + Bf Fc − BbL� + jBbL − jLeE + dFkE − dDjL

+JdDj − JjBb + CkKb − CcJj + �CcJ − �JdD + eKf D − eE�J .

This is a twisted superpotential, where the twist τ acts on the arrows as follows:

b ←→ −c, B ←→ −C, d ←→ −e, D ←→ −E, f ←→ −k, F ←→ −K, j ←→ −�, J ←→ −L.

By Theorem 6.2, we find that A#H is isomorphic to � = D(�, 1). To obtain the relations
in �, we formally differentiate � on the left with respect to each of the paths of length 1,
i.e. the arrows. We therefore find that A#H is isomorphic to the path algebra of the above
quiver with the following sixteen relations:

bBf = f Dd, bLl = f Fc, BbL = LeE, Bf F = L�C, cCk = kEe, cJj = kKb,

CcJ = JdD, CkK = JjB, dDj = jBb, dFk = jLe, DdF = FcC, DjL = FkE,

eE� = �Cc, eKf = �Jd, EeK = KbB, E�J = Kf D.

6.2 Calculating�When H = kG and G is Abelian

Suppose that G � GL(r,k) is a finite abelian group of order n + 1 acting homogeneously
on A = D(w, � − m), where w ∈ V ⊗� and V = span{v1, . . . , vr }. In particular, we can
diagonalise G via a change of basis matrix P ∈ GL(r,k) to obtain G′ = P −1GP , although
this also affects w and A. In particular, the element w is sent to w′ = P −1w, and the algebra
A′ := D(w′, � − m) is isomorphic to A.

Therefore, we may as well assume that G � GL(r,k) is a finite abelian group where
every element of G is diagonal, and that G acts on A = D(w, � − m), where w ∈
V ⊗� and V = span{v1, . . . , vr }. Now, G has |G| = n + 1 irreducible representations
{V0, V1, . . . , Vn}, and for each j we have kvj

∼= Vij for some representation Vij . Since G

is abelian, the set of irreducible representations forms a group Ĝ under the tensor product,
and this group is isomorphic to G. Letting ϕ : Ĝ → G be an isomorphism, we can define a
G-grading of A and Tk(V ) by setting

degG vj = ϕ(Vij ).

This gives an action of H = (kG)∗ on A and Tk(V ), and there is an isomorphism A#G ∼=
A#H . We can therefore determine the algebra � for A#G using Theorem 6.2

Example 6.5 We consider cases (b) and (g) from [12, Table 1]. Fix q ∈ k
×, and let A =

kq [u, v] = k〈u, v〉/〈vu − quv〉 for some q ∈ k
×, which is 2-Koszul and AS regular.

Also let

G = Cn =
〈(

ω 0
0 ω−1

)

︸ ︷︷ ︸
=g

〉

be a faithful representation of the cyclic group of order n, where ω is a primitive nth root of
unity. HereA = D(w, 0), where V = span{u, v} and w = vu−quv ∈ V ⊗2. The irreducible
representations of G are
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Vi = span{vi}, where g · vi = ωivi,

for 0 � i < n; in particular, V ∼= V1 ⊕ Vn−1. There is an isomorphism

ϕ : Ĝ → G, Vi �→ gi,

so A is G-graded by setting degG u = g and degG v = g−1. This gives an action of H =
(kG)∗ on A, and A#G ∼= A#H .

The McKay quiver of the action of H on A has vertices labelled by the elements of G,
and the arrows are of the form

gi u−−→ g−1gi = gi−1, gi v−−→ (g−1)−1gi = gi+1,

for 0 � i < n. Therefore the McKay quiver is as shown, where we provide a relabelling on
the right:

gn−1

1G g

g2

v

v

v

v

v
u

u

u

u

u

n−1

0 1

2
αn−2

αn−1

α0

α1

α2

αn−1

α0

α1

α2αn−2

To determine �, first note that the homological determinant of the action of H on A is
trivial by [11], but this also follows from the fact that degG w = idG. Therefore � consists
of paths of length � = 2 which start and end at the same vertex. To determine ei�ei , we
note that αiαi corresponds to the element vu, while αi−1αi−1 corresponds to the element
uv, and since w = vu − quv, we must have ei�ei = αiαi − qαi−1αi−1. Therefore

� =
n−1∑

i=0

(
αiαi − qαi−1αi−1

)
,

where subscripts are read modulo n, if necessary. It follows that A#H is isomorphic to
� = D(�, 0), where the relations in � are simply

αiαi = qαi−1αi−1,

for 0 � i < n. In particular, when q = 1, � is the preprojective algebra of an Ãn−1 quiver.

Example 6.6 We consider case (c) from [12, Table 1]. LetA = k−1[u, v] = D(w, 0), where
w = uv + vu, and let the group

G = C2 =
〈(

0 1
1 0

)

︸ ︷︷ ︸
=g

〉

act on A naturally. If we set P = 1√
2

(
1 1
1 −1

)

then

P −1GP =
〈(

1 0
0 −1

)〉

, P −1w = u2 − v2,

and k〈u, v〉/〈u2 − v2〉 = D(P −1w, 0) ∼= A.
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Relabelling, we may as well assume A = k〈u, v〉/〈u2 − v2〉, w = u2 − v2, and that G is

generated by g =
(
1 0
0 −1

)

. Now, G has two representations V0 and V1, where V0 is trivial,

and we have V = span{u, v} ∼= V0 ⊕ V1. There is an isomorphism

ϕ : Ĝ → G, Vi �→ gi,

so A is G-graded by setting degG u = 1G and degG v = g, and there is an isomorphism
A#G ∼= A#(kG)∗. TheMcKay quiver ofA#(kG)∗ is then easily found using Theorem 6.2:

1G gv
v

u u 0 1b
B

a c

Noting that w = u2 − v2 and that the homological determinant is trivial, we can then
immediately read of the superpotential �:

� = a2 − bB + c2 − Bb.

It follows that the algebras A#G and � = D(�, 0) are isomorphic. The relations in � are

a2 = bB, c2 = Bb.

Example 6.7 As a final example, we consider case (h) from [12, Table 1]. LetA = kJ [u, v],
where w = vu − uv − u2, and let the group

G = C2 =
〈
( −1 0

0 −1
︸ ︷︷ ︸

=g

)
〉

act on A naturally. It is straightforward to see that this is equivalent to G-grading A by
setting degG u = g = degG v, giving an action of the Hopf algebra (kC2)

∗ on A. The
McKay quiver (and a relabelling) are as follows:

1G g
v
u

v
u

0 1

A
a

b
B

It then quickly follows that the twisted superpotential defining � is

� = aA − Bb − BA + bB − Aa − AB.

6.3 Quantum Kleinian Singularities

In [11], the authors classified all pairs (A,H) satisfying Hypothesis 2.13, where moreover
A is two-dimensional and the action of H on A has trivial homological determinant. These
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Table 1 The quantum Kleinian singularities

Case A H McKay quiver Invariant ring AH

(a) k[u, v] kG, G � SL(2,k) ÃD̃Ẽ Commutative Kleinian singularity

(b), (g) kq [u, v] kCn Ãn−1 q-deformed Type An−1 singularity

(c) k−1[u, v] kC2 L̃1 Noncommutative singularity

(d) k−1[u, v] kDn, n even D̃ n+4
2

Type D n+4
2

singularity

kDn, n odd D̃L n+1
2

Noncommutative singularity

(e) k〈u,v〉
〈u2−v2〉 (kDn)

∗
Ã2n−1 Type A2n−1 singularity

(f) k−1[u, v] D(G)∗ D̃n or Ẽn Type Dn or En singularity

(h) kJ [u, v] kC2 Ã1 Noncommutative singularity

were further studied in [12], where the invariant rings AH were called quantum Kleinian
singularities due to their similarities with Kleinian singularities. Table 1 gives some of the
details of the classification; full details can be found in [12]. We remark that cases (b) and
(g) were considered in Example 6.5, case (c) was considered in Example 6.6, case (e) was
considered in Example 6.3, and case (h) was considered in Example 6.7.

One of the main results of [12] showed that the Auslander map is an isomorphism for
every quantum Kleinian singularity. Additionally, presentations for the invariant rings AH

were given, and it was shown in a number of cases that AH was isomorphic to the invariant
ring of a commutative Kleinian singularity. We now show how these results follow for most
of the cases using the quiver perspective (case (a) is well-known and therefore omitted). In
what follows, given a pair (A,H), we let � denote an algebra obtained using Theorem 5.2.

Theorem 6.8 [12, Theorem 4.1, Theorem 5.2] If (A,H) is a pair from Table 1, then the
corresponding Auslander map is an isomorphism. Moreover, in cases (d) (n even), (e), and
(f), the invariant ring AH is a commutative Kleinian singularity of the type corresponding
to its McKay quiver.

Proof We treat cases (d), (e), and (f) by invoking Theorem 5.8. First consider case (e). By
Example 6.3, the corresponding algebra � is the preprojective algebra of an Ã2n−1 quiver
which, by Example 5.3, is the same as the algebra obtained for a Type A2n−1 Kleinian
singularity. Since, by [1], the Auslander map is known to be an isomorphism for Kleinian
singularities, it is also an isomorphism for case (e) by Theorem 5.8. Moreover, AH is a Type
A2n−1 Kleinian singularity, also by Theorem 5.8.

A similar argument applies to case (d) (when n is even) and case (f). By Lemma 5.10, in
each case the algebra � corresponding to the pair (A,H) is a preprojective algebra of an
extended Dynkin quiver. The result now follows for these cases by the same argument as
the previous paragraph.

For the remaining cases, we only need to show that the Auslander map is an isomorphism.
In each case A has GK dimension 2 so, by Corollary 5.7, it suffices to show that �/〈e0〉
has GK dimension 0 (i.e. is finite dimensional), where � is the algebra from Theorem 5.2
corresponding to that case.

We now consider cases (b) and (g). By Example 6.5, the algebra � is the preprojective
algebra of an Ã2n−1 quiver. By Example 6.5, we have a presentation for �, and the under-
lying quiver is of Type Ãn−1. The algebra �/〈e0〉 is obtained from � by deleting vertex
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0, and modifying the relations by deleting any path in a relation which passes through ver-
tex 0. In particular, �/〈e0〉 satisfies the hypotheses of Lemma 5.10, where Q a Type An−1
quiver, and so �/〈e0〉 ∼= �(Q). This algebra is finite-dimensional by [25, 2.4 Corollary],
so the Auslander map is an isomorphism by Corollary 5.7.

For cases (c) and (h), Examples 6.6 and 6.7 allow us to see that �/〈e0〉 are two-
dimensional and one-dimensional, respectively. Corollary 5.7 then shows that the Auslander
map is an isomorphism in these cases.

The only remaining case is case (d) when n is odd. By adapting the proof of Lemma 5.10,
one can show that � is isomorphic to the preprojective algebra of a Type D̃L n+1

2
quiver, in

the sense of [25, 1.2], in which these are called quivers of Type T . (A little care is required
here, since we have not defined the preprojective algebra when a quiver has loops. Alter-
natively, [14, Theorem 7.2.11] gives a complete proof of this isomorphism.) The algebra
�/〈e0〉 is then the preprojective algebra of an L n+1

2
quiver, which is finite-dimensional by

[25, 2.4 Corollary]. The claim now follows by Corollary 5.7.
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