
The University of Manchester Research

Quickest Detection Problems for Ornstein–Uhlenbeck
Processes
DOI:
10.1287/moor.2021.0186

Document Version
Accepted author manuscript

Link to publication record in Manchester Research Explorer

Citation for published version (APA):
Glover, K., & Peskir, G. (2023). Quickest Detection Problems for Ornstein–Uhlenbeck Processes. Mathematics of
Operations Research. https://doi.org/10.1287/moor.2021.0186

Published in:
Mathematics of Operations Research

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript
or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the
publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the
authors and/or other copyright owners and it is a condition of accessing publications that users recognise and
abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown
Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing
relevant details, so we can investigate your claim.

Download date:27. Nov. 2023

https://doi.org/10.1287/moor.2021.0186
https://research.manchester.ac.uk/en/publications/c0072e85-bc5b-4267-b065-3bfbd758b069
https://doi.org/10.1287/moor.2021.0186


Quickest Detection Problems for
Ornstein-Uhlenbeck Processes

Kristoffer Glover & Goran Peskir

To appear in Math. Oper. Res.

Consider an Ornstein-Uhlenbeck process that initially reverts to zero at a known
mean-reversion rate β0 and then after some random/unobservable time this mean-
reversion rate is changed to β1 . Assuming that the process is observed in real time,
the problem is to detect when exactly this change occurs as accurately as possible.
We solve this problem in the most uncertain scenario when the random/unobservable
time is (i) exponentially distributed and (ii) independent from the process prior to the
change of its mean-reversion rate. The solution is expressed in terms of a stopping
time that minimises the probability of a false early detection and the expected delay of
a missed late detection. Allowing for both positive and negative values of β0 and β1

(including zero), the problem and its solution embed many intuitive and practically
interesting cases. For example, the detection of a mean-reverting process changing to
a simple Brownian motion (β0 >0 and β1 =0) and vice versa (β0 =0 and β1 >0)
finds a natural application to pairs trading in finance. The formulation also allows for
the detection of a transient process becoming recurrent (β0 <0 and β1≥0) as well
as a recurrent process becoming transient (β0≥0 and β1 <0). The resulting optimal
stopping problem is inherently two-dimensional (due to a state-dependent signal-to-
noise ratio) and various properties of its solution are established. In particular, we
find the somewhat surprising fact that the optimal stopping boundary is an increasing
function of the modulus of the observed process for all values of β0 and β1 .

1. Introduction

The Ornstein-Uhlenbeck (OU) process (cf. [43]) is one of the fundamental building blocks of
modern stochastic modelling, due in part to its ability to incorporate mean-reverting and sta-
tionary effects into underlying uncertainty processes. In each application, such mean reversion
is often caused by some underlying physical or economic force and so detecting the existence
(or absence) of mean-reverting dynamics is of great importance in detecting the existence (or
absence) of these underlying forces.

Imagine an OU process that initially reverts to zero at a known mean-reversion rate β0 and
then after some random/unobservable time θ , the underlying (unobservable) mean-reverting
force is removed, resulting in simple Brownian kinematics. The problem is to detect the time
θ at which the force is removed as accurately as possible (neither too early nor too late). The
main objective of the present paper is to derive the solution to this problem when θ is assumed
to be (i) exponentially distributed and (ii) independent from the initial dynamics of the OU
process. Our motivating application for this problem is described in Section 2 below.

Mathematics Subject Classification 2020. Primary 60G40, 60J60, 60H30. Secondary 35K67, 45G10, 62C10.
Key words and phrases: Quickest detection, Brownian motion, Ornstein-Uhlenbeck process, optimal stop-

ping, signal-to-noise ratio, Bernoulli equation, parabolic partial differential equation, free-boundary problem,
smooth fit, nonlinear Fredholm integral equation, pairs trading, risk management.

1



Denoting the position of the OU process by X we study the problem above by embedding
it into the more general setting where an OU process X changes its initial mean-reversion
rate β0 ∈ IR to a new mean-reversion rate β1 ∈ IR at a random/unobservable time θ . The
error to be minimised over all stopping times τ of X is expressed as the linear combination
of the probability of the false alarm Pπ(τ < θ) and the expected detection delay Eπ(τ−θ)+

where π ∈ [0, 1] denotes the probability that θ has already occurred at time 0 . This problem
formulation of quickest detection dates back to [36] and has been extensively studied to date (see
[39] for financial applications of interest for the present paper and [40] for a general overview).
The linear combination represents the Lagrangian and once the optimal stopping problem has
been solved in this form it will also lead to the solution of the constrained problems where an
upper bound is imposed on either the probability of the false alarm or the expected detection
delay respectively.

A canonical example is the standard Brownian motion in one dimension with one constant
drift changing to another. This problem has also been solved in finite horizon (see [16] and the
references therein). Books [37, Section 4.4] and [32, Section 22] contain expositions of these
results and provide further details and references. The signal-to-noise ratio (defined as the
difference between the new drift and the old drift divided by the diffusion coefficient) in all these
problems is constant so that the resulting optimal stopping problem for the posterior probability
ratio process Φ of θ given X is one-dimensional. A more general problem formulation for
diffusion processes X in one dimension when one non-constant drift changes to another has
been considered in [17]. A specific problem of this kind when X is a Bessel process has been
solved in [20]. The signal-to-noise ratio in these problems is not constant and the resulting
optimal stopping problem for Φ coupled with X (to make it Markovian) is two-dimensional.
The infinitesimal generator of the Markov/diffusion process (Φ,X) in these problems is of
parabolic type. The problem studied in the present paper belongs to the latter class of problems
and we build our exposition on findings from [17] and [20]. A plain comparison with previous
results and arguments indicates the following differences/novelties.

Firstly, the paper [20] studies only a change from a recurrent to a transient process. For a
long time it has been recognised in the statistical community however that the converse is also
of considerable interest. In the present paper we allow for both positive and negative values
of β0 and β1 (including zero) and thus allow for the detection of both a transient process
becoming recurrent (β0 <0≤β1 ) and a recurrent process becoming transient (β0≥0>β1 ). The
problem and its solution embed many intuitive and practically interesting cases. For example,
the detection of a mean-reverting process changing to a simple Brownian motion (β0 >0 and
β1 = 0) and vice versa (β0 = 0 and β1 > 0) finds a natural application to pairs trading in
finance. Secondly, the resulting optimal stopping problem is inherently two-dimensional (due
to a state-dependent signal-to-noise ratio) and various properties of its solution are established.
In particular, we find the somewhat surprising fact that the optimal stopping boundary is
an increasing function of the modulus of the observed process for all values of β0 and β1 .
The concluding arguments used in the proof differ from the arguments for monotonicity of the
optimal stopping boundary used in [1] and [20]. Moreover, the proof of monotonicity verifies
the conjecture in this particular case stated in [17, Lemma 4.1] that the optimal stopping
boundary is increasing whenever the (square of) the signal-to-noise ratio is increasing. Thirdly,
the infinitesimal generator ILΦ,X of the Markov/diffusion process (Φ,X) is of parabolic type.
It is therefore possible to reduce ILΦ,X and (Φ,X) to their canonical forms ILU,Φ and (U,Φ)
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where the process U is of bounded variation (see [20, Section 6] for details). Focusing on
(U,X) in this paper instead we show that the exponential of U solves the Bernoulli equation
and hence U can be expressed in closed form as a path-dependent functional of X . This
fact holds not only for the OU process but for any diffusion process X in one dimension when
one drift changes to another. The appearance of the Bernoulli equation in this context and
deriving a closed-form expression for U are both novel in the literature to our knowledge.
Fourthly, solutions in the case of Brownian motion and Bessel processes are known, however,
to our knowledge this paper is the first to solve the quickest detection problem for the OU
process.

The exposition of the material is organised as follows. In Section 2 we discuss our mo-
tivating application to pairs trading and also provide hints on broader financial applications
(detection of the birth and bursting of price bubbles). In Section 3 we formulate the optimal
stopping problem and list ten canonical cases of interest for mean-reversion rates and levels
(the zero-th case of equal mean-reversion rates is one-dimensional and its solution is known).
In the present paper we focus on the ten canonical cases and leave the other cases (including
their ramifications) for future studies. In Section 4 we recall that a change of measure simplifies
the setting that makes the subsequent analysis possible. In Section 5 we reduce the underlying
stochastic process to its canonical form and show that the resulting bounded variation process
solves the Bernoulli equation and thus can be determined explicitly. The optimal stopping
problem is formulated in Lagrange form and in Section 6 we disclose its Mayer formulation
(see [32, Section 5] for the terminology). We could determine the Mayer function explicitly
only when β0 6= −λ/2 and β1 = 0 and it appears that simple/explicit forms are not available
in the remaining cases. This stands in contrast with the results from [20, Section 5] where
the Mayer function is available explicitly in all cases. The absence of explicit Mayer functions
introduces difficulties in arguments at places and in the remaining sections we show how to
overcome them (e.g. the existence of an optimal stopping time in the following section is es-
tablished by enlarging the state space from dimension two to dimension four). In Section 7 we
establish the existence of an optimal stopping time and derive basic properties of the optimal
stopping boundary. In Section 8 we disclose the free-boundary problem which stands in one-
to-one correspondence with the optimal stopping problem and show that the value function
and the optimal stopping boundary solve the free-boundary problem uniquely. In Section 9
we show that the optimal stopping boundary can be characterised as the unique solution to a
nonlinear Fredholm equation. This equation can be used to find the optimal stopping boundary
numerically (using Picard iteration).

2. Motivating application

Our motivating application for the problem studied is drawn from the field of statistical ar-
bitrage in finance, and in particular from the risk management of so-called pairs trading strate-
gies. Pairs trading is a popular (and historically very profitable) trading strategy commonly
employed by hedge funds and investment banks. These strategies were reportedly pioneered at
Morgan Stanley in the 1980s and they have been extremely popular ever since (see [44]). In such
trades, a trader can construct profitable strategies based on the assumption that two tradeable
assets are co-integrated, meaning that an (appropriately scaled) price difference/spread is as-
sumed to be stationary and will revert to zero (and hence can be modelled as an OU process).
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When the prices of the two co-integrated securities temporarily diverge, a pairs trader would
short the outperforming stock and long the underperforming one, betting that the spread be-
tween the two would eventually converge. (Such a strategy can be considered market neutral,
allowing traders to profit from almost any market condition, contributing to its popularity.
For example, in a severe market downtown, the strategy would experience a loss on the long
position, but an offsetting gain on the short position, resulting in a loss close to zero in spite of
the large market move.) However, should the assumed convergence never happen, a large loss
will usually be realized upon liquidation, resulting in a significant negative skew in the trader’s
profit distribution, with frequent small gains but infrequent large losses. A notable pairs trader
was Long-Term Capital Management, a hedge fund management firm that collapsed in the late
1990s with losses in excess of US$4.6 billion, due, in no small part, to the unraveling of their
highly leveraged long/short sovereign bond positions (see [26]).

In this paper, we assume that a change in the underlying OU spread process can be modelled
as a ‘disorder’ and the role of quickest detection in this setting is as a risk management tool
to detect when the spread process (with a prior belief of mean reversion) becomes uncoupled
and changes from OU to Brownian motion (BM), a nonstationary process. This risk may be
interpreted as model risk and it should be quantified and managed the same as other risks that
an investor/trader faces. The current standard practice to account for such risk is to adopt
a stop-loss approach (see, for example, [10], [25], [23] and [24]) in which the mean-reverting
model is believed up to a predetermined loss level, at which time a trader should abandon
the model and liquidate their positions at a loss. However, to our knowledge, there exists
no theory as to where to place such stop-loss limits. Further, the commonly used threshold
strategies are perhaps too naive, since a large deviation in the spread may simply be a very good
trading opportunity and not a sign of a model breakdown. This paper provides a more rigorous
approach to model-risk management in which the entire spread dynamics (not just excursions)
are considered to detect potential structural changes. Naturally, the quickest detection of any
change in the underlying price dynamics would no doubt help the trader to mitigate such model
risk, allowing them to cut their losses sooner and ultimately to improve their risk-adjusted
trading performance.

Despite its popularity in practice, the academic literature on pairs trading has been sur-
prisingly scarce, with the majority of the existing papers focusing solely on the statistical
performance of various pairs trading strategies. For example, [5], [7], [18] and [19], all find
a significant abnormal return from simple pairs trading strategies. There are also a number
of books considering the applied aspects of pairs trading, for example, see [9], [44], and [45].
Of the limited theoretical work in the area, the most notable are [11], who were the first to
propose that the spread be modelled as a mean-reverting process, and [10] who modelled the
spread as an OU process and formulated various optimal stopping problems associated with
pairs trading. More recently, [2], [3], [21], [23], [41] and [42] have also modelled the spread as an
OU process, however none of these papers have considered the problem of detecting a change
in the underlying OU process. Finally, we refer the reader to the recent article [22] for a much
more comprehensive review of the current pairs trading literature.

To solve the specific problem described above we embed it into a more general setting of a
changing OU process, where we allow the mean-reversion rate (and level) to change from one
specified value to another (not necessarily zero) value. As such, the analysis in the present
paper may find applications in other areas outside of our motivating application. For example,
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the detection of a change from a negative to a positive (or zero) mean-reversion rate could
help detect the bursting of an asset price bubble, since the OU process with a negative mean-
reversion rate may be used to model bubble-like behaviour in asset price dynamics (see [33]
and [34]). The converse problem (detecting a change from positive to negative rate) could also
be applied to the detection of the birth of such bubbles.

3. Formulation of the problem

In this section we formulate the quickest detection problem under consideration.

1. We consider the Bayesian formulation of the problem where it is assumed that one
observes a sample path of an Ornstein-Uhlenbeck process X whose rate of mean reversion
β0 ∈ IR changes to β1 ∈ IR (along with a change of the mean-reverting level x0 ∈ IR to
x1 ∈ IR ) at some random/unobservable time θ taking value 0 with probability π ∈ [0, 1] and
being exponentially distributed with parameter λ > 0 given that θ > 0 . The problem is to
detect the unknown time θ as accurately as possible (neither too early nor too late).

2. Standard arguments imply that the previous setting can be realised on a probability space
(Ω,F , Pπ) with the probability measure Pπ decomposed as follows

(3.1) Pπ = πP0 + (1−π)

∫ ∞

0

λe−λt Pt dt

for π ∈ [0, 1] where Pt is the probability measure under which the observed process X
undergoes the change at time t ∈ [0,∞) . The unobservable time θ is a non-negative random
variable satisfying Pπ(θ = 0) = π and Pπ(θ > t | θ > 0) = e−λt for t > 0 . Thus Pt(X ∈ · )
= Pπ(X ∈ · | θ = t) is the probability law of an Ornstein-Uhlenbeck process whose rate of
mean reversion β0 changes to β1 (and whose mean-reverting level x0 changes to x1 ) at
time t > 0 . To remain consistent with this notation we also denote by P∞ the probability
measure under which the observed process X undergoes no change in its dynamics. Thus
P∞(X ∈ · ) = Pπ(X ∈ · | θ =∞) is the probability law of an Ornstein-Uhlenbeck process with
mean-reversion rate β0 and mean-reverting level x0 at all times.

3. The observed process X solves the stochastic differential equation

(3.2) dXt =
[
µ0(Xt)+I(t ≥ θ)

(
µ1(Xt)−µ0(Xt)

)]
dt + σ(Xt) dBt

driven by a standard Brownian motion B under Pπ where we set

(3.3) µ0(x) = β0(x0 − x) & µ1(x) = β1(x1 − x) & σ(x) = σ > 0

for x ∈ IR . The unobservable time θ and the driving Brownian motion B are assumed to
be independent under Pπ for π ∈ [0, 1] .

4. Embedded within this formulation are multiple cases that may find application in different
contexts (both within pairs trading and beyond). We now list and briefly discuss these cases
upon noting that our primary interest will be in Cases 1-10 below.

Case 0: β0 = β1 6= 0 (along with x0 6= x1 ). This corresponds to a mean-reverting process
(OU) changing to another mean-reverting process (OU) with the same mean-reversion rate
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but with a different mean-reverting level at time θ . Note that ρ from (3.7) below equals
the constant β0(x1−x0)/σ in this case so that the problem is reducible to a one-dimensional
optimal stopping problem which can be solved explicitly (cf. [32, Subsection 22.1]).

Case 1: β0 > 0 and β1 = 0 (along with x0 = x1 = 0 without loss of generality). This
corresponds to a stationary process (OU) becoming non-stationary (BM) at time θ .

Case 2: β0 = 0 and β1 > 0 (along with x0 = x1 = 0 without loss of generality). This
corresponds to a non-stationary process (BM) becoming stationary (OU) at time θ .

Case 3: β0 < 0 and β1 = 0 (along with x0 = x1 = 0 without loss of generality). This
corresponds to a transient process (OU with negative mean-reversion rate) becoming recurrent
(BM) at time θ .

Case 4: β0 = 0 and β1 < 0 (along with x0 = x1 = 0 without loss of generality). This
corresponds to a recurrent process (BM) becoming transient (OU with negative mean-reversion
rate) at time θ .

Case 5: 0 < β0 < β1 (along with x0 = x1 = 0 ). This corresponds to a stationary
process (OU) becoming ‘more’ stationary (OU with a larger mean-reversion rate but to the
same mean-reverting level) at time θ .

Case 6: 0 < β1 < β0 (along with x0 = x1 = 0 ). This corresponds to a stationary
process (OU) becoming ‘less’ stationary (OU with a smaller mean-reversion rate but to the
same mean-reverting level) at time θ .

Case 7: β1 < 0 < β0 (along with x0 = x1 = 0 ). This corresponds to a stationary process
(OU) becoming transient (OU with negative mean-reversion rate) at time θ .

Case 8: β1 < β0 < 0 (along with x0 = x1 = 0 ). This corresponds to a transient process
(OU with negative mean-reversion rate) becoming ‘more’ transient (OU with a more negative
mean-reversion rate but to the same mean-reverting level) at time θ .

Case 9: β0 < β1 < 0 (along with x0 = x1 = 0 ). This corresponds to a transient process
(OU with negative mean-reversion rate) becoming ‘less’ transient (OU with a less negative
mean-reversion rate but to the same mean-reverting level) at time θ .

Case 10: β0 < 0 < β1 (along with x0 = x1 = 0 ). This corresponds to a transient
process (OU with negative mean-reversion rate) becoming stationary (OU but to the same
mean-reverting level) at time θ .

In Cases 1-4 we can set x0 = x1 = 0 without loss of generality since if either β0 or
β1 is zero, then there exists only one mean-reverting level and this can be set to zero by an
appropriate translation of X without loss of generality. In Cases 5-10 however, when both β0

and β1 are non-zero, there are two mean-reverting levels and the possibility for a change in
either of them. In all these cases an appropriate translation in X would allow us to set x0 = 0
(with x1 6= 0 ) without loss of generality.

5. Being based upon continuous observations of X , the problem is to find a stopping time
τ∗ of X (i.e. a stopping time with respect to the natural filtration FX

t = σ(Xs | 0 ≤ s ≤ t)
of X for t ≥ 0 ) that is ‘as close as possible’ to the unknown time θ . More precisely, the
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problem consists of computing the value function

(3.4) V (π) = inf
τ

[
Pπ(τ <θ) + cEπ(τ−θ)+

]

and finding the optimal stopping time τ∗ at which the infimum in (3.4) is attained for π ∈ [0, 1]
and c > 0 given and fixed. Note in (3.4) that Pπ(τ <θ) is the probability of the false alarm
and Eπ(τ−θ)+ is the expected detection delay associated with a stopping time τ of X for
π ∈ [0, 1] .

6. To tackle the optimal stopping problem (3.4) we consider the posterior probability distri-
bution process Π = (Πt)t≥0 of θ given X that is defined by

(3.5) Πt = Pπ(θ ≤ t | FX
t )

for t ≥ 0 . The right-hand side of (3.4) can thus be rewritten to read

(3.6) V (π) = inf
τ

Eπ

(
1−Πτ + c

∫ τ

0

Πt dt

)

for π ∈ [0, 1] . If the signal-to-noise ratio defined by

(3.7) ρ(x) =
µ1(x)−µ0(x)

σ(x)

is constant for x ∈ IR , then Π is known to be a one-dimensional Markov (diffusion) process
so that the optimal stopping problem (3.6) can be tackled using established techniques both
in infinite and finite horizon (see [32, Section 22]). Note that this is no longer the case in the
setting of the present problem since from (3.3) we see that

(3.8) ρ(x) = δx + γ 6= constant

for x ∈ IR where we have set δ = (β0−β1)/σ and γ = (β1x1−β0x0)/σ .

7. To connect the process Π to the observed process X we consider the likelihood ratio
process L = (Lt)t≥0 defined by

(3.9) Lt =
dP0

t

dP∞t

where P0
t and P∞t denote the restrictions of the probability measures P0 and P∞ to FX

t

for t ≥ 0 . By the Girsanov theorem one finds that

(3.10) Lt = exp

(∫ t

0

µ1(Xs)−µ0(Xs)

σ2(Xs)
dXs − 1

2

∫ t

0

µ2
1(Xs)−µ2

0(Xs)

σ2(Xs)
ds

)

for t ≥ 0 . A direct calculation based on (3.1) shows that the posterior probability ratio process
Φ = (Φt)t≥0 of θ given X that is defined by

(3.11) Φt =
Πt

1−Πt
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can be expressed in terms of L (and hence X as well) as follows

(3.12) Φt = eλtLt

(
Φ0 + λ

∫ t

0

ds

eλsLs

)

for t ≥ 0 where Φ0 = π/(1−π) .

8. To derive stochastic differential equations for the posterior processes Π and Φ one may
apply Itô’s formula in (3.10) to find that

(3.13) dLt =
µ1(Xt)−µ0(Xt)

σ2(Xt)
Lt [dXt−µ0(Xt)dt]

with L0 = 1 . Further applications of Itô’s formula in (3.11) and (3.12) then show that

dΠt = λ(1−Πt) dt + ρ(Xt)Πt(1−Πt) dB̄t(3.14)

dΦt =

[
λ(1+Φt) + ρ2(Xt)

Φ2
t

1+Φt

]
dt + ρ(Xt)Φt dB̄t(3.15)

upon noting that X solves

(3.16) dXt =
[
µ0(Xt) + Πt

(
µ1(Xt)−µ0(Xt)

)]
dt + σ(Xt) dB̄t

where B̄ = (B̄t)t≥0 is the innovation process defined by

(3.17) B̄t =

∫ t

0

dXs

σ(Xs)
−

∫ t

0

[
µ0(Xs)

σ(Xs)
+ Πs

µ1(Xs)−µ0(Xs)

σ(Xs)

]
ds

for t ≥ 0 from where we see by Lévy’s characterisation theorem that B̄ is a standard Brownian
motion with respect to (FX

t )t≥0 under Pπ for π ∈ [0, 1] .

4. Measure change

In this section we recall that changing the measure Pπ for π ∈ [0, 1] to P∞ in the optimal
stopping problems (3.4) and (3.6) above provides crucial simplifications of the setting which
makes the subsequent analysis possible.

1. The result of Lemma 1 in [20] identifies the Radon-Nikodym derivative corresponding to
the measure change from Pπ to P∞ to be

(4.1)
dPπ,τ

dP∞τ
= e−λτ 1−π

1−Πτ

for all stopping times τ of X and all π ∈ [0, 1) , where P∞τ and Pπ,τ denote the restrictions
of measures P∞ and Pπ to FX

τ for π ∈ [0, 1) respectively. From (3.15) and (3.17) we see
that the stochastic differential equations for (Φ,X) under the measure P∞ simplify as follows

dΦt = λ(1+Φt) dt + ρ(Xt)Φt dBt(4.2)

dXt = µ0(Xt) dt + σ(Xt) dBt(4.3)
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where (4.3) follows directly from (3.2) upon recalling that θ formally equals ∞ under P∞ .
Further, note from (3.13) that the stochastic differential equation for L under P∞ reads

(4.4) dLt = ρ(Xt)Lt dBt

from where we see that

(4.5) Lt = exp

(∫ t

0

ρ(Xs) dBs − 1

2

∫ t

0

ρ2(Xs) ds

)

for t ≥ 0 . Finally, the following general facts are helpful in the subsequent analysis of the
optimal stopping problems (3.4) and (3.6) above.

Proposition 1. The process (eλt(1−Πt))t≥0 is a continuous martingale under Pπ such
that eλt(1−Πt) → 0 with Pπ-probability one as t → ∞ for π ∈ [0, 1] given and fixed. The
process (e−λt(1+Φt))t≥0 is a continuous martingale under P∞ such that e−λt(1+Φt) → 0 with
P∞-probability one as t →∞ .

Proof. Using (4.1) we recognise eλt(1−Πt) and e−λt(1+Φt) as constant multiples of
the Radon-Nikodym derivatives dP∞t /dPπ,t and dPπ,t/dP∞t and hence the two processes are
martingales under Pπ and P∞ respectively for t ≥ 0 whenever π ∈ [0, 1] is given and fixed.
The two convergence relations follow from the fact that the probability measures Pπ and P∞

are singular for π ∈ [0, 1] (cf. Theorem 2 in [38, p. 527]). This completes the proof. ¤

2. The optimal stopping problem (3.6) admits a transparent reformulation under the measure
P∞ in terms of the process Φ solving (4.2)+(4.3). Indeed, recalling that Φ starts at Φ0 =
π/(1−π) and indicating this dependence on the initial point by a superscript to Φ , Proposition
2 in [20] shows that the value function V from (3.6) satisfies the identity

(4.6) V (π) = (1−π)
[
1 + c V̂ (π)

]

where the value function V̂ is given by

(4.7) V̂ (π) = inf
τ

E∞
[∫ τ

0

e−λt

(
Φ

π/(1−π)
t − λ

c

)
dt

]

for π ∈ [0, 1) and the infimum in (4.7) is taken over all stopping times τ of X .

3. Since ρ in (3.7) is not constant, then to tackle the resulting optimal stopping problem
(4.7) for the Markov process (Φ,X) solving (4.2)+(4.3), we will enable (Φ,X) to start at any
point (ϕ, x) in [0,∞)×IR under the probability measure P∞ϕ,x so that the optimal stopping
problem (4.7) extends as follows

(4.8) V̂ (ϕ, x) = inf
τ

E∞ϕ,x

[∫ τ

0

e−λt
(
Φt − λ

c

)
dt

]

for (ϕ, x) ∈ [0,∞)×IR with P∞ϕ,x

(
(Φ0, X0)= (ϕ, x)

)
= 1 where the infimum in (4.8) is taken

over all stopping times τ of (Φ,X) . In this way we have reduced the initial quickest detection
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problem (3.4) to the optimal stopping problem (4.8) for the strong Markov process (Φ, X)
solving the system of stochastic differential equations

dΦt = λ(1+Φt) dt + (δXt+γ)Φt dBt(4.9)

dXt = β0(x0−Xt)dt + σdBt(4.10)

under the measure P∞ϕ,x with (ϕ, x) ∈ [0,∞)×IR . Note that this optimal stopping problem is
inherently/fully two-dimensional.

5. Reduction to the canonical process

Recall that we have reduced the initial quickest detection problem (3.4) to the optimal
stopping problem (4.8) for the strong Markov process (Φ,X) solving (4.9)+(4.10). In the
sequel we study Cases 1-10 in detail (stated following (3.3) above) where x0 = x1 = 0 and
hence γ = 0 so that the equations (4.9)+(4.10) read as follows

dΦt = λ(1+Φt) dt + δXtΦt dBt(5.1)

dXt = −β0Xt dt + dBt(5.2)

under the measure P∞ϕ,x with (ϕ, x) ∈ [0,∞)×IR where we have also set σ = 1 without loss
of generality (as one can replace X by X/σ otherwise). A key difficulty with this system
is that X enters the diffusion coefficient of the stochastic differential equation (5.1). This
makes the applicability of available comparison theorems for (Φ,X) more challenging. To
tackle the issue, note that since the stochastic differential equations (5.1)+(5.2) are driven
by the same Brownian motion, we know that the resulting infinitesimal generator equation
must be of parabolic type. It follows therefore that reducing this equation to its canonical
form by means of a diffeomorphic transformation (to be found) replaces the process (Φ, X)
by the process (U,X) where U is a process of bounded variation. We refer to (U,X) as
the canonical process in this setting. A similar reduction from (Φ,X) to (U,Φ) has been
carried out in [20, Section 5] and we will see below that the choice of (U,X) has certain
advantages in comparison with (U,Φ) since the stochastic differential equation for X remains
fully decoupled from the stochastic differential equation for U in the system. Moreover, we will
see that, quite remarkably, the stochastic/ordinary differential equation for U can be identified
with a Bernoulli differential equation which is known to be solvable in a closed form. Passing
finally to the process (V, Z) := (e−U , X2) will enable us to exploit the symmetry of X around
zero by shrinking the state space IR×IR of (U,X) to its essential component (0,∞)×[0,∞)
forming the state space of (V, Z) . Interestingly, in this context we also observe that Z is a
Feller branching diffusion process (see [13] and [29]). The resulting canonical optimal stopping
problem (5.31) corresponding to (4.8) will be used in Sections 7-9 below.

1. Reduction from (Φ, X) to (U,X) . From (5.1)+(5.2) we see that the infinitesimal gen-
erator of the strong Markov process (Φ, X) is given by

(5.3) ILΦ,X = λ(1+ϕ)∂ϕ − β0x∂x + δϕx∂ϕx +
1

2
δ2ϕ2x2∂ϕϕ +

1

2
∂xx.

To reduce this equation to its canonical form let us name the coefficients in (5.3) by setting

(5.4) a(ϕ, x) =
1

2
δ2ϕ2x2 & 2b(ϕ, x) = δϕx & c(ϕ, x) =

1

2
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for (ϕ, x) ∈ [0,∞)×IR given and fixed. Then

(5.5) b2(ϕ, x)− a(ϕ, x)c(ϕ, x) =
1

4
δ2ϕ2x2 − 1

4
δ2ϕ2x2 = 0

showing that the equation for ILΦ,X in (5.3) is parabolic. Moreover, its unique family of
characteristic curves (obtained by letting u below be constant) is given by

(5.6)
dx

dϕ
=

b(ϕ, x)

a(ϕ, x)
=

1

δϕx
⇔ δxdx =

dϕ

ϕ
⇔ δ

2
x2 = log ϕ + u.

Setting ξ(ϕ, x) = u = δx2/2− log ϕ and η(ϕ, x) = x we see that the Jacobian J =
∂(ξ, η)/∂(ϕ, x) = ξϕηx−ξxηϕ = ξϕ = −1/ϕ /∈ {0,∞} when ϕ 6= 0 as needed (for the in-
verse function theorem). It follows that the coefficients A(u, x) and B(u, x) associated with
∂uu and ∂ux in the resulting equation are zero and the coefficient C(u, x) associated with
∂xx remains the same as in (5.3). To find the coefficients associated with ∂u and ∂x we may
note that the contributing terms are calculated as follows

∂ϕ = ξϕ∂ξ + ηϕ∂η = − 1
ϕ
∂ξ & ∂x = ξx∂ξ + ηx∂η = δx∂ξ + ∂η(5.7)

∂ϕϕ = ξϕϕ∂ξ + ηϕϕ∂η + ξ2
ϕ∂ξξ + 2ξϕηϕ∂ξη + η2

ϕ∂ηη = 1
ϕ2 ∂ξ + 1

ϕ2 ∂ξξ(5.8)

∂xx = ξxx∂ξ + ηxx∂η + ξ2
x∂ξξ + 2ξxηx∂ξη + η2

x∂ηη = δ∂ξ + δ2x2∂ξξ + 2δx∂ξη + ∂ηη(5.9)

∂ϕx = ξϕx∂ξ + ηϕx∂η + ξϕξx∂ξξ + (ξxηϕ + ξϕηx) ∂ξη + ηϕηx∂ηη = − δx
ϕ

∂ξξ − 1
ϕ
∂ξη.(5.10)

Inserting these expressions into the equation (5.3) we find that its canonical form is given by

(5.11) ILU,X =
[δ

2

(
1−κx2

)−λ
(
1+eu− δ

2
x2)]

∂u − β0x∂x +
1

2
∂xx

where we set κ = β0+β1 upon recalling that δ = β0−β1 . Setting

(5.12) Ut =
δ

2
X2

t − log Φt

for t ≥ 0 it follows therefore that the canonical process (U,X) solves the following system of
stochastic differential equations

dUt =
[ δ

2

(
1−κX2

t

)−λ
(
1+eUt− δ

2
X2

t
)]

dt(5.13)

dXt = −β0Xt dt + dBt(5.14)

under P∞u,x with P∞u,x

(
(U0, X0) = (u, x)

)
= 1 for (u, x) ∈ IR×IR . Recalling known sufficient

conditions (see e.g. [35, pp. 166-173]) we see that the system (5.13)+(5.14) has a unique weak
solution and hence by the well-known result (see e.g. [35, pp. 158-163]) we can conclude that
(U,X) is a (time-homogeneous) strong Markov process under P∞u,x for (u, x) ∈ IR×IR having
the infinitesimal generator given by (5.11) above. From (5.12) we moreover see that (U,X) is a
strong solution to (5.13)+(5.14) that is pathwise unique (since strong existence plus uniqueness
in law imply pathwise uniqueness [see (3.24) in [12] and the references therein]).
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The arguments for reducing the process (Φ,X) to its canonical form (U,X) presented
above are analytic. Proposition 4 in [20] presents probabilistic arguments for the same reduction
and on closer inspection one can verify that the results are mutually consistent. It is now
possible to reformulate the optimal stopping problem (4.8) in terms of the process (U,X) and
perform its analysis upon noting that U is of bounded variation (with no diffusion part) and
hence known comparison theorems for the system (5.13)+(5.14) are available. In this context
it is also useful to recall that the OU equation (5.14) has a unique strong solution given by

(5.15) Xx
t = e−β0t

(
x +

∫ t

0

eβ0s dBs

)

for t ≥ 0 under P∞ where the initial point x ∈ IR is visible/explicit (and the expression
(5.15) defines a Markovian flow). We now disclose the remarkable fact that equation (5.13) is
also solvable in a closed form.

2. Bernoulli equation. Note that equation (5.13) can be written as

(5.16)
dUt

dt
= f(Xt)− g(Xt)e

Ut

where the functions f and g are defined as

(5.17) f(x) =
δ

2
(1−κx2)−λ & g(x) = λe−

δ
2
x2

for x ∈ IR . Setting Rt := eUt we see that (5.16) transforms into the Bernoulli equation

(5.18)
dRt

dt
= f(Xt)Rt − g(Xt)R

2
t

having a quadratic nonlinearity in the final term. The well-known substitution St := 1/Rt

transforms (5.18) into a first-order linear equation which after being solved in a closed form
yields the expression

(5.19) Ut =

∫ t

0

f(Xs) ds− log

(∫ t

0

e
∫ s
0 f(Xr)drg(Xs) ds + e−U0

)

as the general solution to the equation (5.16) for t ≥ 0 .

Remark 2. Note that the appearance of the Bernoulli equation in this setting is not unique
to the OU process (4.10). For general diffusions X of the form (3.2) (with differentiable µ0

and µ1 ) we observe that U = (Ut)t≥0 defined by

(5.20) Ut =

∫ Xt

0

µ1(y)−µ0(y)

σ2(y)
dy − log Φt

for t ≥ 0 also solves (5.16) and thus has the same structure as (5.19) but with

f(x) =
σ2(x)

2

(
µ1−µ0

σ

)′
(x) +

(
µ2

1−µ2
0

2σ

)
(x)− λ(5.21)
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g(x) = λ exp

(
−

∫ x

0

µ1(y)−µ0(y)

σ2(y)
dy

)
(5.22)

for x ∈ IR (cf. [20, Proposition 4]).

3. Passage from (U,X) to (V, Z) . Setting

(5.23) Vt = e−Ut & Zt = X2
t

we see that (5.19) can be rewritten in a more familiar form as follows

(5.24) Vt = e−
∫ t
0 f(

√
Zs) ds

[
V0 +

∫ t

0

e
∫ s
0 f(

√
Zr)drg(

√
Zs) ds

]

for t ≥ 0 . By Itô’s formula we find that

(5.25) Zt = Z0 +

∫ t

0

(1−2β0Zs)ds + 2

∫ t

0

√
Zs dB̂s

where B̂t =
∫ t

0
sign(Xs) dBs for t ≥ 0 is a standard Brownian motion by Lévy’s characteri-

sation theorem. From (5.25) we see that Z is a Feller branching diffusion process with values
in [0,∞) having 0 as an instantaneously reflecting boundary point (cf. [13] and [29]). From
(5.15) we find that

(5.26) Zz
t = e−2β0t

(√
z +

∫ t

0

e−β0s dBs

)2

under P∞ where the initial point z ∈ [0,∞) is visible/explicit (and the expression (5.26)
defines a Markovian flow). From (5.13) and (5.25) we find that the process (V, Z) solves the
following system of stochastic differential equations

dVt =
[
λ− δ

2

(
1−κZt

)
Vt + λe−

δ
2
Zt

]
dt(5.27)

dZt = (1−2β0Zt) dt + 2
√

Zt dB̂t(5.28)

under P∞v,z with P∞v,z

(
(V0, Z0)=(v, z)

)
=1 for (v, z) ∈ (0,∞)×[0,∞) . For the same reasons as

following (5.13)+(5.14) we can conclude that (V, Z) is a (time-homogeneous) strong Markov
process under P∞v,z for (v, z) ∈ (0,∞)×[0,∞) having the infinitesimal generator given by

(5.29) ILV,Z =
[
λ− δ

2

(
1−κz

)
v + λe−

δ
2
z
]
∂v + (1−2β0z)∂z + 2z∂zz

where we recall that δ = β0−β1 and κ = β0+β1 . Moreover, since the system (5.27)+(5.28)
has a unique weak solution (meaning that the martingale problem is well posed) we know that
the explicit solutions (5.24)+(5.26) define a Markovian flow of the initial point (V0, Z0) = (v, z)
in (0,∞)× [0,∞) (i.e. the coordinate process on the canonical space is strong Markov with
respect to the law of (V v, Zz) under P∞ for (v, z) ∈ (0,∞)×[0,∞) ). This is an important
fact which makes some parts of the subsequent analysis possible.
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Proposition 3. The value function V̂ from (4.8) satisfies the identity

(5.30) V̂ (ϕ, x) = V̌
(
ϕe−

δ
2
x2

, x2
)

for (ϕ, x) ∈ [0,∞)×IR where the value function V̌ is defined by

(5.31) V̌ (v, z) = inf
τ

E∞v,z

[∫ τ

0

e−λt

(
Vt e

δ
2
Zt − λ

c

)
dt

]

for (v, z) ∈ (0,∞)×[0,∞) and the infimum is taken over all stopping times τ of the strong
Markov process (V, Z) solving (5.27)+(5.28) and being explicitly given by (5.24)+(5.26) above.

Proof. Combining (5.12) and (5.23) we see that v = e−u = ϕe−(δ/2)x2
and z = x2 so that

the claims follow from the facts derived following (5.23) above. ¤

6. Mayer formulation

The optimal stopping problem (4.8) is Lagrange formulated. In this section we derive its
Mayer reformulation when β0 6= −λ/2 and β1 = 0 . Such an explicit reformulation does not
appear to be possible in the remaining cases.

Proposition 4. If we have β0 6= −λ/2 and β1 = 0 , then the value function V̂ from
(4.8) can be expressed as

(6.1) V̂ (ϕ, x) = inf
τ

E∞ϕ,x

[
e−λτM̂(Φτ , Xτ )

]
− M̂(ϕ, x)

for (ϕ, x) ∈ [0,∞)×IR , where the function M̂ is given by

(6.2) M̂(ϕ, x) = ϕx2 +
(
x2+ 1

λ

)
/
(
1+ 2β0

λ

)
+ 1

c

for (ϕ, x) ∈ [0,∞)×IR and the infimum in (6.1) is taken over all stopping times τ of (Φ,X) .

Proof. Recalling that the infinitesimal generator ILΦ,X of (Φ,X) is given by (5.3) above,
it is easily verified that we have

(6.3)
(
ILΦ,XM̂ − λM̂

)
(ϕ, x) = ϕ− λ

c

for (ϕ, x) ∈ [0,∞)×IR when β0 6= −λ/2 and β1 = 0 as assumed throughout. Hence by Itô’s
formula and the optional sampling theorem we find that

E∞ϕ,x

[
e−λτM̂(Φτ , Xτ )

]
= M̂(ϕ, x) + E∞ϕ,x

[∫ τ

0

e−λt
(
ILΦ,XM̂−λM̂

)
(Φs, Xs) ds

]
(6.4)

= M̂(ϕ, x) + E∞ϕ,x

[∫ τ

0

e−λt
(
Φt − λ

c

)
dt

]

for (ϕ, x) ∈ [0,∞)×IR and all (bounded) stopping times τ of (Φ,X) . Taking the infimum
over all such stopping times on both sides of (6.4) we see that (6.1) holds as claimed. ¤

The optimal stopping problem (5.31) can be Mayer reformulated similarly and we will omit
further details. The absence of explicit Mayer reformulations in the remaining cases forces us
to analyse the optimal stopping problem (4.8) in its Lagrange form in what follows.
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7. Properties of the optimal stopping boundary

In this section we establish the existence of an optimal stopping time in (4.8) and derive
basic properties of the optimal stopping boundary.

1. Looking at (4.8) we may conclude that the (candidate) continuation and stopping sets in
this problem need to be defined as follows

C = { (ϕ, x) ∈ [0,∞)×IR | V̂ (ϕ, x) < 0 }(7.1)

D = { (ϕ, x) ∈ [0,∞)×IR | V̂ (ϕ, x) = 0 }(7.2)

respectively. In the absence of a Mayer reformulation of the Lagrange formulated problem (4.8)
as discussed in Section 6 above, we embed the two-dimensional Markov process (Φ,X) into
the four-dimensional Markov process (T, Φ, X, I) where Tt = t and It =

∫ t

0
e−λTs(Φs−λ/c) ds

for t ≥ 0 . Recalling (5.15) and the fact that the right-hand side in (3.12) defines a Markovian
functional of the initial point, we see that (T, Φ, X, I) can be realised as a Markovian flow (t+
s, Φϕ,x

s , Xx
s , i+I t,ϕ,x

s ) for s ≥ t with (t, ϕ, x, i) ∈ [0,∞)2×IR2 (superscripts throughout indicate
the initial points of Markov processes). From this Markovian flow representation we see that
the expectation in (4.8) defines a continuous function of the initial point for every (bounded)
stopping time τ given and fixed. It follows therefore that the value function V̄ associated
with (T, Φ, X, I) by setting V̄ (t, ϕ, x, i) = infτ E∞[i+I t,ϕ,x

τ ] for (t, ϕ, x, i) ∈ [0,∞)2×IR2 is
upper semicontinuous. Noting that the optimal stopping problem of V̄ is Mayer formulated,
and its loss function M̄(t, ϕ, x, i) = i for (t, ϕ, x, i) ∈ [0,∞)2×IR2 is continuous and hence
lower semicontinuous, it follows by [32, Corollary 2.9] that the first entry time of (T, Φ, X, I)
into the closed set D̄ = { V̄ = M̄ } is optimal whenever finite almost surely. Noting that
V̄ (t, ϕ, x, i) = i+e−λtV̂ (ϕ, x) for (t, ϕ, x, i) ∈ [0,∞)2×IR2 this shows that the first entry time
of the process (Φ,X) into the closed set D defined by

(7.3) τD = inf { t ≥ 0 | (Φt, Xt) ∈ D }
is optimal in (4.8) whenever P∞ϕ,x(τD < ∞) = 1 for all (ϕ, x) ∈ [0,∞)×IR . In the sequel we
will establish this and other properties of τD by analysing the boundary of D .

2. Since the integrand in (4.8) is strictly negative for ϕ < λ/c it is clear that this region is
contained in C (otherwise the first exit times of (Φ,X) from sufficiently small neighbourhoods
would violate stopping at once). When the process (Φ,X) belongs to the set where ϕ ≥ λ/c
then the incentive to continue (as opposed to stop) is measured by the ability of (Φ,X) to
return to the favourable region where ϕ < λ/c without too much loss. We now show that this
incentive is not endless.

Proposition 5. The stopping set D is non-empty.

Proof. Suppose that D is empty. Then

(7.4) V̂ (ϕ, x) = E∞ϕ,x

[∫ ∞

0

e−λt
(
Φt − λ

c

)
dt

]
=

[∫ ∞

0

e−λt
(
E∞ϕ,x(Φt)− λ

c

)
dt

]

for (ϕ, x) ∈ [0,∞)×IR given and fixed. From (5.1) we find that

(7.5) E∞ϕ,x(Φt) = ϕ + λ

∫ t

0

(
1+E∞ϕ,x(Φs)

)
ds
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for t ≥ 0 . Setting m(t) = E∞ϕ,x(Φt) this shows that m′(t) = λ(1+m(t)) for t ≥ 0 with
m(0) = ϕ . Solving this initial value problem we get

(7.6) E∞ϕ,x(Φt) = (1+ϕ)eλt − 1

for t ≥ 0 . Inserting (7.6) into (7.4) we obtain V̂ (ϕ, x) = ∞ . This contradicts the fact that
V̂ is non-positive and hence we can conclude that D is non-empty as claimed. ¤

3. The previous proof shows that P∞ϕ,x(τD <∞) > 0 for all (ϕ, x) ∈ [0,∞)×IR . We can
strengthen this conclusion to P∞ϕ,x(τD <∞) = 1 for all (ϕ, x) ∈ [0,∞)×IR by recalling from
(4.6) that the optimal stopping problem (4.8) is equivalent to the optimal stopping problem
(3.6) so that τD from (7.3) redefined by means of (3.11) above is optimal in (3.6). Noting from
Proposition 1 that Πt → 1 with Pπ -probability one as t →∞ , it follows from the structure
of (3.6) (i.e. its integral term) that Pπ(τD <∞) = 1 for π ∈ [0, 1] . Since the set {τD <∞}
belongs to FX

τD
and by (4.1) above the probability measures Pπ and P∞ restricted to FX

τD

are equivalent (i.e. Pπ(F ) = 0 if and only if P∞(F ) = 0 for F ∈ FX
τD

) for π ∈ [0, 1) , it
follows that P∞ϕ,x(τD < ∞) = 1 for all (ϕ, x) ∈ [0,∞)×IR as claimed.

4. In view of the previous facts define the (least) boundary between C and D by setting

(7.7) b(x) = inf {ϕ ≥ 0 | (ϕ, x) ∈ D }

for every x ∈ IR given and fixed. Clearly b(x) ≥ λ/c and the infimum in (7.7) is attained for
every x ∈ IR since D is closed. From (7.14) below we see that

(7.8) b(x) = b(−x)

for all x ∈ IR . For this reason we can often focus our attention to b restricted on [0,∞) in
what follows. Moreover, from (3.12) we see that ϕ 7→ Φϕ,x is increasing on [0,∞) and hence
from the structure of (4.8) it is clear that

(7.9) ϕ 7→ V̂ (ϕ, x) is increasing on [0,∞)

for every x ∈ IR given and fixed. Hence if (ϕ1, x) ∈ D and ϕ2 ≥ ϕ1 then (ϕ2, x) ∈ D
because 0 = V̂ (ϕ1, x) ≤ V̂ (ϕ2, x) ≤ 0 so that V̂ (ϕ2, x) = 0 implying the claim. From this
implication we see that b from (7.7) defines the (entire) boundary between C and D so that

C = { (ϕ, x) ∈ [0,∞)×IR | ϕ < b(x) }(7.10)

D = { (ϕ, x) ∈ [0,∞)×IR | ϕ ≥ b(x) }(7.11)

where the function b is finite valued as it will be formally verified below. Finally, from (3.12)
we also see that ϕ 7→ Φϕ,x is a linear function of ϕ ∈ [0,∞) and hence from the structure of
(4.8) it is easily seen that

(7.12) ϕ 7→ V̂ (ϕ, x) is concave on [0,∞)

for every x ∈ IR given and fixed. This fact will now enable us to derive a counterpart of (7.9)
in the other variable.
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Proposition 6. We have

(7.13) x 7→ V̂ (ϕ, x) is increasing on (−∞, 0] and decreasing on [0,∞)

for every ϕ ∈ [0,∞) given and fixed.

Proof. By symmetry of X in (5.2) around zero combined with its placement in (5.1) it is
evident that the mapping x 7→ V̂ (ϕ, x) is even on IR , i.e. we have

(7.14) V̂ (ϕ, x) = V̂ (ϕ,−x)

for all x ∈ IR . This is because (Φ, X) & (Φ,−X) are equally distributed as is seen by rewrit-
ing the system (5.1)+(5.2) with −X & −B in place of X & B and using the uniqueness in
law for the system. The values in (7.14) coincide because they are equivalently taken in (4.8)
as the infima over the first entry times of (Φ,X) & (Φ,−X) into closed sets, and for each
entry time into a closed set, the two integrals appearing in (4.8) are equally distributed because
(Φ,X) & (Φ,−X) are so. It follows from (7.14) that it is enough to show that x 7→ V̂ (ϕ, x)
is decreasing on [0,∞) for every ϕ ∈ [0,∞) given and fixed. We will divide the proof of this
fact into five parts.

1. Recalling that Z = X2 we see from (5.1) and (5.28) that

dΦt = λ(1+Φt)dt + δ
√

Zt Φt dB̂t(7.15)

dZt = (1−2β0Zt)dt + 2
√

Zt dB̂t(7.16)

where B̂t =
∫ t

0
sign(Xs) dBs for t ≥ 0 is a standard Brownian motion. By symmetry of X

in (5.2) around zero combined with its placement in (5.1) and the structure of the integrand
in (4.8) it is clear that we can consider (4.8) as an optimal stopping problem for the strong
Markov process (Φ,Z) solving (7.15)+(7.16) with the value function Ṽ satisfying

(7.17) Ṽ (ϕ, z) = V̂ (ϕ,
√

z)

for (ϕ, z) ∈ [0,∞)× [0,∞) . Thus to show that x 7→ V̂ (ϕ, x) is decreasing on [0,∞) it is
enough to show that

(7.18) z 7→ Ṽ (ϕ, z) is decreasing on [0,∞)

for every ϕ ∈ [0,∞) given and fixed.

2. Let C̃ and D̃ denote the continuation and stopping sets for Ṽ . Setting

(7.19) b̃(z) = b(
√

z)

for z ∈ [0,∞) we see from (7.10)+(7.11) combined with (7.8) that

C̃ = { (ϕ, z) ∈ [0,∞)×[0,∞) | ϕ < b̃(z) }(7.20)

D̃ = { (ϕ, z) ∈ [0,∞)×[0,∞) | ϕ ≥ b̃(z) } .(7.21)
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Setting L(ϕ) = ϕ−λ/c for ϕ ∈ [0,∞) standard Markovian results of optimal stopping (cf.
[32, Subsection 7.2]) imply that Ṽ and b̃ solve the free-boundary problem

ILΦ,Z Ṽ −λṼ = −L in C̃(7.22)

Ṽ = 0 at ∂C̃ (instantaneous stopping)(7.23)

Ṽϕ = Ṽz = 0 at ∂rD̃ (smooth fit)(7.24)

where ILΦ,Z is the infinitesimal generator of (Φ,Z) given by

(7.25) ILΦ,Z = λ(1+ϕ)∂ϕ + (1−2β0z)∂z + 2δϕz∂ϕz +
1

2
δ2ϕ2z∂ϕϕ + 2z∂zz

and ∂rD̃ denotes the set of boundary points of C̃ that are (probabilistically) regular for D̃
(see [6, Subsection 2.3] for more details). It is a matter of routine to verify that ILU,X from
(5.11) satisfies Hörmander’s condition (4.41) in [31]. Indeed, in the notation of that paper,
we see that ILU,X = D0 +D2

1 with D0 = a∂u−β0x∂x ∼ [a;−β0 x] and D1 = (1/
√

2)∂x

∼ [0; 1/
√

2] where the function a = a(u, x) can be read off explicitly from (5.11) above.
A direct calculation shows that [D1, D0] = (∂xa/

√
2)∂u− (β0/

√
2)∂x ∼ [∂xa/

√
2;−β0/

√
2]

and [D1, [D1, D0]] = (∂2
xa/(

√
2)2)∂u ∼ [∂2

xa/(
√

2)2; 0] . Continuing by induction we find that
[D1, [D1, . . . , [D1, D0] . . . ]] = (∂n

xa/(
√

2)n)∂u ∼ [∂n
xa/(

√
2)n; 0] for all n ≥ 2 . Hence we see

that Hörmander’s condition dim Lie(D0, D1) = 2 holds if ∂n
xa 6= 0 for some n ≥ 0 (with

∂0
xa := a ) both at any given point, which is the case since otherwise (by Taylor expansion

since a is analytic) we would be able to derive the false conclusion that a(u0, x) = 0 for all
x belonging to an open interval containing x0 ∈ IR with u0 ∈ IR given and fixed. Recalling
(5.12) it follows therefore by Corollary 8 in [31] that V̂ from (4.8) belongs to C∞ on C .
From (7.17) we thus see that Ṽ belongs to C∞ on C̃ off the boundary z = 0 (at which the
process (Φ,Z) spends zero time relative to Lebesgue measure with probability one). Note that
the smooth fit condition (7.24) can be derived using the results and methods of [6, Section 4]
since the initial point of the Markovian flow (3.12)+(5.26) for (Φ,Z) is explicitly visible (see
the proofs of Propositions 13 and 14 in [20] for more details).

3. By (7.25) we see that (7.22) reads

(7.26) λ(1+ϕ)Ṽϕ + (1−2β0z)Ṽz + 2δϕzṼϕz +
1

2
δ2ϕ2zṼϕϕ + 2zṼzz − λṼ = −L

in C̃ . Differentiating both sides of (7.26) with respect to z and setting

(7.27) Ũ := Ṽz

we find that Ũ solves

(7.28) (λ+(λ+2δ)ϕ)Ũϕ+(3−2β0z)Ũz+2δϕzŨϕz+
1

2
δ2ϕ2zŨϕϕ+2zŨzz−(2β0+λ)Ũ = −1

2
δ2ϕ2Ṽϕϕ

in C̃ . Setting

(7.29) ILΦ̃,Z̃ = (λ+(λ+2δ)ϕ)∂ϕ + (3−2β0z)∂z + 2δϕz∂ϕz +
1

2
δ2ϕ2z∂ϕϕ + 2z∂zz
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we see that (7.28) can be rewritten as follows

(7.30) ILΦ̃,Z̃Ũ−rŨ = −H in C̃

where we set r = 2β0+λ and

(7.31) H =
1

2
δ2ϕ2Ṽϕϕ ≤ 0

in C̃ by (7.12) and (7.17). Standard arguments (see e.g. [35, pp 158-163 & 166-173]) show
that ILΦ̃,Z̃ is the infinitesimal generator of the strong Markov process (Φ̃, Z̃) which can be
characterised as a unique weak solution to the system of stochastic differential equations

dΦ̃t = (λ+(λ+2δ)Φ̃t)dt + δ
√

Z̃t Φ̃t dB̃t(7.32)

dZ̃t = (3−2β0Z̃t)dt + 2
√

Z̃t dB̃t(7.33)

under a probability measure P̃ϕ,z such that P̃ϕ,z

(
(Φ̃0, Z̃0)= (ϕ, z)

)
= 1 for (ϕ, z) ∈ [0,∞)×

[0,∞) where B̃ is a standard Brownian motion. Note that Z̃ is a Feller branching diffusion
process with values in [0,∞) having 0 as an entrance boundary point (cf. [13] and [29]).

4. The previous conclusions suggest to consider the stopping time

(7.34) σD̃0 = inf { t ≥ 0 | (Φ̃t, Z̃t) ∈ D̃0 }

where D̃0 denotes the interior of D̃ . Then it is well known (cf. [4, Theorem 11.4, p. 62]) that
(Φ̃σD̃0 , Z̃σD̃0 ) belongs to the set ∂rD̃

0 of boundary points of C̃ that are (probabilistically)
regular for D̃0 . Since ∂rD̃

0 is contained in the set ∂rD̃ of boundary points of C̃ that are
(probabilistically) regular for D̃ it follows that (Φ̃σD̃0 , Z̃σD̃0 ) belongs to the set ∂rD̃ and hence
by the second part of (7.24) upon recalling (7.27) we can conclude that

(7.35) Ũ(Φ̃σD̃0 , Z̃σD̃0 ) = 0

with P̃ϕ,z -probability one for any (ϕ, z) ∈ [0,∞)× [0,∞) given and fixed. Suppose that
Ũ(ϕ, z) > 0 for some (ϕ, z) ∈ C̃ and consider the stopping time

(7.36) ν = inf { t ≥ 0 | (Φ̃t, Z̃t) ∈ N }

where N denotes the set of all points in the closure of C̃ at which Ũ equals zero. Then
ν ≤ σD̃0 and by Itô’s formula and the optional sampling theorem we find that

(7.37) Ũ(ϕ, z) = Ẽϕ,z

[
e−r(ν∧τn)Ũ(Φ̃ν∧τn , Z̃ν∧τn)

]
+ Ẽϕ,z

[∫ ν∧τn

0

e−rtH(Φ̃t, Z̃t) dt

]

for n ≥ 1 where we use (7.30) above and (τn)n≥1 is a localising sequence of stopping times
for the continuous local martingale arising from Itô’s formula. Since Ũ(Φ̃ν , Z̃ν) = 0 with
Ũ(Φ̃t, Z̃t) ≥ 0 for t ∈ [0, ν] we see by Fatou’s lemma that

(7.38) 0 = Ẽϕ,z

[
e−rνŨ(Φ̃ν , Z̃ν)

]
≥ lim sup

n→∞
Ẽϕ,z

[
e−r(ν∧τn)Ũ(Φ̃ν∧τn , Z̃ν∧τn)

]
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at least when Ũ is bounded on C̃ \N and r > 0 i.e. β0 > −λ/2 . Letting n →∞ in (7.37)
and using (7.38) we find by the monotone convergence theorem that

(7.39) Ũ(ϕ, z) ≤ Ẽϕ,z

[∫ ν

0

e−rtH(Φ̃t, Z̃t) dt

]
≤ 0

where in the final inequality we use (7.31) above. Since Ũ(ϕ, x) > 0 this is a contradiction
and hence Ũ(ϕ, x) ≤ 0 for all (ϕ, z) ∈ C̃ . Recalling (7.27) this shows that (7.18) is satisfied
as claimed and the proof is complete in this case.

5. The general case can be reduced to the case of bounded Ũ by approximating the optimal
stopping problem (4.8) with a sequence of optimal stopping problems having bounded continu-
ation sets Cn which approximate the continuation set C alongside the pointwise convergence
of the approximating value functions V̂ n to the value function V̂ as n →∞ . For instance,
this can be achieved using the same arguments as above by reflecting Z = X2 downwards at
a given level n ≥ 1 while keeping the remaining probabilistic characteristics of (Φ,X) un-
changed. Indeed, recalling (7.17) and approximating Ṽ n and Ṽ by taking their infima over
all stopping times τ ≤ τn instead, where τn denotes the first entry time of Z into [n,∞) ,
we see that the resulting/approximating function Ṽn is the same for both Ṽ n and Ṽ because
(Φ,Z) remains unchanged on [0, τn] for n ≥ 1 . Moreover, noting that the ‘negative’ integrand
e−λt(λ/c) in Ṽ n and Ṽ integrates to a finite value 1/c over all t ∈ [0,∞) , it is easily verified
using the monotone convergence theorem with τn ↑ ∞ as n → ∞ that Ṽn−Rn ≤ Ṽ n ≤ Ṽn

with Ṽn → Ṽ and Rn → 0 pointwise as n → ∞ . Letting n → ∞ in the previous two
inequalities we thus see that Ṽ n → Ṽ pointwise as claimed. Applying then the first part of
the proof above when β0 > −λ/2 i.e. r > 0 to the approximating value function Ṽ n of Ṽ
from (7.17) upon using that C̃n and therefore Ũn as well are bounded (because the vertical
component [0, n] of the state space is bounded while the ‘negative’ integrand in Ṽ n globally
integrates to a finite value as pointed out above), we can conclude that each z 7→ Ṽ n(ϕ, z)
is decreasing for n ≥ 1 and ϕ ∈ [0,∞) . Hence passing to the pointwise limit as n → ∞
we obtain that z 7→ Ṽ (ϕ, z) is decreasing as claimed for ϕ ∈ [0,∞) . The case β0 ≤ −λ/2
can be reduced to the case r > 0 by replacing X with X̃ := F (X) where F is a strictly
increasing C∞ solution to ILXF = 0 . This has the effect of setting the initial drift β̃0 of
the observed diffusion process X̃ equal to 0 , so that r = 2β̃0+λ = λ > 0 , which makes the
arguments above applicable to X̃ in place of X . This completes the proof. ¤

5. We can now derive the following important consequence of Proposition 6 about the
boundary b between the sets C and D .

Corollary 7. The mapping x 7→ b(x) is decreasing on (−∞, 0] and increasing on [0,∞) .

Proof. If (ϕ, x) ∈ D then by (7.13) we have 0 = V̂ (ϕ, x) ≤ V̂ (ϕ, y) ≤ 0 whenever
x ≤ y ≤ 0 or 0 ≤ y ≤ x so that (ϕ, y) ∈ D in both cases. These two conclusions combined
with (7.7) above imply the two claims on b and the proof is complete. ¤

Despite being finite at one point at least, and hence at all larger points in (−∞, 0] or
smaller points in [0,∞) as well, the boundary b could in principle still take infinite values.
We now show that this is not the case.
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Proposition 8. We have b(x) < ∞ for all x ∈ IR .

Proof. Since b is even it is enough to show that b(x) < ∞ for all x ∈ [0,∞) . Note that
b(0) < ∞ since otherwise by Corollary 7 the stopping set D would be empty contradicting
the conclusion of Proposition 5 above. Suppose that b(x0) = ∞ for some x0 > 0 . Pick two
arbitrary points x1 < x2 in (x0,∞) . Note that b(x) = ∞ for all x ≥ x0 by Corollary 7 so
that [0,∞)×(x0, x2) ⊆ C . Hence considering the stopping time

(7.40) σ = inf { t ≥ 0 | Xt /∈ (x0, x2) }

we can conclude that σ ≤ τD almost surely with respect to Pϕ,x1 for every ϕ ∈ [0,∞) . It
follows therefore that

V̂ (ϕ, x1) = E∞ϕ,x1

[∫ τD

0

e−λt
(
Φt − λ

c

)
dt

]
≥ E∞ϕ,x1

[∫ τD

0

e−λtΦt dt

]
− 1

c
(7.41)

≥ E∞ϕ,x1

[∫ σ

0

e−λtΦt dt

]
− 1

c
= E∞

[∫ σ(x1)

0

e−λtΦϕ,x1
t dt

]
− 1

c

≥ ϕ E∞
[∫ σ(x1)

0

L
(x1)
t dt

]
− 1

c

for all ϕ ∈ [0,∞) where in the final inequality we use (3.12). We write σ(x1) and L
(x1)
t in

(7.41) to indicate that both σ from (7.40) and Lt from (4.5) depend on x1 noting also that

neither of them depends on ϕ ∈ [0,∞) . Since σ(x1) > 0 and L
(x1)
t > 0 for all t ≥ 0 we

see that the final expectation in (7.41) is strictly positive. Choosing ϕ ∈ [0,∞) sufficiently
large we can therefore make V̂ (ϕ, x1) strictly positive which contradicts the fact that V̂ is
non-negative. This shows that b(x0) cannot be infinite and the proof is complete. ¤

Monotonicity of b implies its (probabilistic) regularity for D , which in turn provides a
smooth fit of V̂ at b , yielding continuity of b . This can be formalised as follows.

Proposition 9. The mapping x 7→ b(x) is continuous on IR .

Proof. To establish that

(7.42) V̂ is continuous on [0,∞)×IR

we see from (7.14) that it is enough to show that V̂ is continuous on [0,∞)×[0,∞) . For this,
recall from (5.14) that each starting point x of X in (0,∞) is (probabilistically) regular for
both [0, x) and (x,∞) . Since the sample path t 7→ Ut satisfying (5.13) is C1 we see from
(5.12) that each starting point ϕ of Φ in (0,∞) is (probabilistically) regular for both [0, ϕ)
and (ϕ,∞) . Moreover, to account for a correlation between Φ and X via the same B , we
see from (5.12) when δ < 0 that each starting point (ϕ, x) of (Φ,X) in (0,∞)×(0,∞) is
(probabilistically) regular for the quadrant [ϕ,∞)×[0, x] . If δ > 0 then passing to −δ < 0
and −X in (5.1)+(5.2) we see that the same arguments (with a modified U in (5.12) obtained
by replacing δ by −δ in (5.13) above) imply the same regularity conclusion for the quadrant.
Finally, invoking (5.25) and using the same arguments as above we see that the same regularity
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conclusion extends to the starting points (0, x) and (ϕ, 0) with x ≥ 0 and ϕ ≥ 0 as well.
Recalling then the result of Corollary 7 that x 7→ b(x) is increasing on [0,∞) this shows that
each starting point of (Φ,X) belonging to ∂C is (probabilistically) regular for D . Since
the initial points of the Markovian flows (3.12) and (5.15) for Φ and X are explicitly visible,
the latter regularity fact enables us to verify that (either or) both sections of V̂ are locally
(uniformly) continuous on [0,∞) . This implies that (7.42) holds as claimed. Making use of
these facts we can conclude by Theorem 8 and Remark 9 in [6] that

(7.43) V̂ϕ & V̂x are continuous on [0,∞)×IR

(see the proofs of Propositions 13 and 14 in [20] for similar arguments). In particular, this
shows that V̂ satisfies the smooth fit condition (in the perpendicular direction) at ∂C and
hence we can conclude by the result of Theorem 3 in [30] that x 7→ b(x) is continuous on IR
as claimed. ¤

8. Free-boundary problem

In this section we derive a free-boundary problem that stands in one-to-one correspondence
with the optimal stopping problem (4.8). Using the results derived in the previous sections
we show that the value function V̂ from (4.8) and the optimal stopping boundary b from
(7.10)+(7.11) solve the free-boundary problem. This establishes the existence of a solution to
the free-boundary problem. Its uniqueness in a natural class of functions will follow from a
more general uniqueness result that will be established in Section 9 below. This will also yield
an explicit integral representation of the value function V̂ expressed in terms of the optimal
stopping boundary b .

1. Consider the optimal stopping problem (4.8) where the Markov process (Φ,X) solves the
system of stochastic differential equations (5.1)+(5.2) driven by a standard Brownian motion
B under the probability measure P∞ . Recall that the infinitesimal generator of (Φ,X) is
the second-order parabolic differential operator ILΦ,X given in (5.3) above. Recalling the

arguments leading to (7.22)-(7.24) and relying on other properties of V̂ and b derived above,
we are naturally led to formulate the following free-boundary problem for finding V̂ and b :

ILΦ,X V̂ −λV̂ = −L in C(8.1)

V̂ = 0 on D (instantaneous stopping)(8.2)

V̂ϕ = V̂x = 0 at ∂C (smooth fit)(8.3)

where L(ϕ) = ϕ−λ/c for ϕ ∈ [0,∞) , C is the (continuation) set from (7.10) above, D
is the (stopping) set from (7.11) above, and ∂C = { (ϕ, x) ∈ [0,∞)×IR | ϕ = b(x) } is the
(optimal stopping) boundary between the sets C and D .

2. To formulate the existence and uniqueness result for the free-boundary problem (8.1)-
(8.3), we let C denote the class of functions (U, a) such that

U belongs to C1(C̄a) ∩ C2(Ca) and is continuous & bounded on [0,∞)×IR(8.4)

a is continuous on IR, decreasing on (−∞, 0], increasing on [0,∞) and satisfies(8.5)
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a(x) ≥ λ/c for x ∈ IR

where we set Ca = { (ϕ, x)∈ [0,∞)×IR | ϕ<a(x) } and C̄a = { (ϕ, x)∈ [0,∞)×IR | ϕ≤a(x) }
denotes the closure of Ca .

Theorem 10. The free-boundary problem (8.1)-(8.3) has a unique solution (V̂ , b) in the
class C where V̂ is given in (4.8) and b is given in (7.10)+(7.11) above.

Proof. We first show that the pair (V̂ , b) belongs to the class C and solves the free-
boundary problem (8.1)-(8.3). For this, note that the optimal stopping problem (4.8) is La-
grange formulated so that standard arguments (see e.g. the final paragraph of Section 2 in [6]
and recall the regularity facts on V̂ stated following (7.25) above) imply that V̂ belongs to
C2(C) and satisfies (8.1). From (7.42) we know that V̂ is continuous on [0,∞)×IR and from
(4.8) we readily find that

(8.6) −1

c
≤ V̂ (ϕ, x) ≤ 0

for all (ϕ, x) ∈ [0,∞)×IR . Clearly V̂ satisfies (8.2) and from (7.43) above we see that V̂
satisfies (8.3) and belongs to C1(C̄) as required in (8.4) above. The fact that b satisfies (8.5)
was established in Corollary 7 and Proposition 9 above. This shows that (V̂ , b) belongs to C
and solves (8.1)-(8.3) as claimed. To derive uniqueness of the solution we will first see in the
next section that any solution (U, a) to (8.1)-(8.3) from the class C admits an explicit integral
representation for U expressed in terms of a , which in turn solves a nonlinear Fredholm
integral equation, and we will see that this equation cannot have other solutions satisfying
the required properties. From these facts we can conclude that the free-boundary problem
(8.1)-(8.3) cannot have other solutions in the class C as claimed. ¤

9. Nonlinear integral equation

In this section we show that the optimal stopping boundary b from (7.10)+(7.11) can be
characterised as the unique solution to a nonlinear Fredholm integral equation. This also yields
an explicit integral representation of the value function V̂ from (4.8) expressed in terms of
the optimal stopping boundary b . As a consequence of the existence and uniqueness result
for the nonlinear Fredholm integral equation we also obtain uniqueness of the solution to the
free-boundary problem (8.1)-(8.3) as explained in the proof of Theorem 10 above. Finally,
collecting the results derived throughout the paper we conclude our exposition by disclosing
the solution to the initial problem.

1. To formulate the theorem below, let p denote the transition density function of the
(time-homogeneous) Markov process (Φ,X) under P∞ in the sense that

(9.1) P∞ϕ,x(Φt ≤ ψ, Xt ≤ y) =

∫ ψ

0

∫ y

−∞
p(t; ϕ, x; η, z) dη dz

for t > 0 with (ϕ, x) and (ψ, y) in [0,∞)×IR . The function p is characterised as the
unique non-negative solution to the Kolmogorov backward equation

pt(t; ϕ, x; η, z) = ILΦ,X(p)(t; ϕ, x; η, z)(9.2)
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p(0+; ϕ, x; η, z) = δ(ϕ,x)(η, z) (weakly)(9.3)

satisfying
∫∞
0

∫∞
−∞ p(t; ϕ, x; η, z) dη dz = 1 for t > 0 with (ϕ, x) and (η, z) in [0,∞)×IR (cf.

[14]) where we recall that ILΦ,X is given in (5.3) above and δ(ϕ,x) denotes the Dirac measure
at (ϕ, x) . The initial value problem (9.2)+(9.3) can be used to determine p .

Having p we can then evaluate the expression of interest appearing in the statement of the
theorem below as follows

(9.4)

∫ ∞

0

e−λt E∞ϕ,x

[
L(Φt)I(Φt <b(Xt))

]
dt =

∫ ∞

0

∫ ∞

−∞

∫ b(y)

0

e−λtL(ψ) p(t; ϕ, x; ψ, y) dψ dy dt

for (ϕ, x) in [0,∞)×IR where we recall that L(ϕ) = ϕ−λ/c for ϕ ∈ [0,∞) and b is given
in (7.10)+(7.11) above. Recall that we assume throughout that γ = 0 (due to x0 = x1 = 0 )
and σ = 1 so that (Φ,X) from (4.8) solves (5.1)+(5.2) above.

Theorem 11 (Existence and uniqueness). The optimal stopping boundary b in the
problem (4.8) can be characterised as the unique solution to the nonlinear integral equation

(9.5)

∫ ∞

0

∫ ∞

−∞

∫ b(y)

0

e−λt
(
ψ− λ

c

)
p(t; b(x), x; ψ, y) dψ dy dt = 0

in the class of continuous functions b : IR → IR which are decreasing on (−∞, 0] , increasing
on [0,∞) and satisfy b(x) ≥ λ/c for x ∈ IR . The value function V̂ in the problem (4.8)
admits the following representation

(9.6) V̂ (ϕ, x) =

∫ ∞

0

∫ ∞

−∞

∫ b(y)

0

e−λt
(
ψ− λ

c

)
p(t; ϕ, x; ψ, y) dψ dy dt

for (ϕ, x) in [0,∞)×IR . The optimal stopping time in the problem (4.8) is given by

(9.7) τb = inf { t ≥ 0 | Φt ≥ b(Xt) }
under P∞ϕ,x with (ϕ, x) in [0,∞)×IR given and fixed (see Figures 1 and 2).

Proof. 1. Existence. We first show that the optimal stopping boundary b in problem (4.8)
solves the nonlinear integral equation (9.5). Recalling that b satisfies (8.5), as established in
Theorem 10 above, this will prove the existence of a solution to (9.5).

For this, we first show that Itô’s formula is applicable to V̂ composed with (Φ,X) . In view
of the bijective C2 transformation (5.12) combined with (7.14) above, for this it is enough to
show that Itô’s formula is applicable to V̌ composed with (V, Z) . The arguments developed
in the first part of the proof of Theorem 19 in [20] show that the local time-space formula from
[28, Theorem 2.1] is applicable to V̌ composed with (V, Z) , and because of the smooth fit
conditions V̌v = V̌z = 0 at the optimal stopping boundary for V̌ , this formula reduces to
classic Itô’s formula. It follows therefore that Itô’s formula is applicable to V̂ composed with
(Φ,X) as claimed.

Integrating by parts first and then applying Itô’s formula we get

e−λtV̂ (Φt, Xt) = V̂ (ϕ, x) +

∫ t

0

e−λs
(
ILΦ,X V̂ −λV̂ )(Φs, Xs) I(Φs 6= b(Xs)) ds(9.8)
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Figure 1. Simulated sample path of the Ornstein-Uhlenbeck process X solving
(3.2)+(3.3) with λ = 1 , β0 = 1 , β1 = 0 , x0 = 0 , x1 = 0 and σ = 1 .

+

∫ t

0

e−λs
(
δXsΦs V̂ϕ(Φs, Xs)−V̂x(Φs, Xs)

)
dBs

= V̂ (ϕ, x)−
∫ t

0

e−λsL(Φs) I(Φs < b(Xs)) ds + Mt

under P∞ϕ,x with (ϕ, x) ∈ [0,∞)×IR given and fixed, where in the second equality we make

use of (8.1) and (8.2), and Mt =
∫ t

0
e−λs(δXsΦs V̂ϕ(Φs, Xs)− V̂x(Φs, Xs)) dBs is a continuous

local martingale for t ≥ 0 . Choosing a localisation sequence (τn)n≥1 of stopping times for M
and taking E∞ϕ,x on both sides of (9.8) with τn in place of t we find by the optional sampling
theorem that

(9.9) E∞ϕ,x

[
e−λτnV̂ (Φτn , Xτn)

]
= V̂ (ϕ, x)− E∞ϕ,x

[ ∫ τn

0

e−λsL(Φs) I(Φs < b(Xs)) ds

]

for n ≥ 1 . From (8.6) we see that the left-hand side in (9.9) tends to zero as n → ∞ .
Moreover, recalling that L(ϕ) = ϕ−λ/c for ϕ ∈ [0,∞) we see that the integral in (9.9)
equals the difference of two integrals with positive integrands where the expected value of the
second integral converges to a finite value. Letting n → ∞ in (9.9) and using the monotone
convergence theorem we can therefore conclude that

(9.10) V̂ (ϕ, x) =

∫ ∞

0

e−λs E∞ϕ,x

[
L(Φs) I(Φs <b(Xs))

]
ds

for (ϕ, x) ∈ [0,∞)×IR . Combining this expression with (9.4) we see that (9.6) holds as claimed.
Setting ϕ = b(x) in (9.6) for x ∈ IR given and fixed, and using that V̂ (b(x), x) = 0 , we see
that b solves (9.5) and this completes the proof of existence.

2. Uniqueness. To show that b is a unique solution to the equation (9.5) in the specified
class of functions, one can adopt the four-step procedure from the proof of uniqueness given
in [8, Theorem 4.1] extending and further refining the original uniqueness arguments from [27,
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Figure 2. Kinematics of the process (Φ,X) associated with the sample path from
Figure 1 and location of the optimal stopping boundary b when λ = 1 and c = 1/2 .

Theorem 3.1]. Given that the present setting creates no additional difficulties we will omit
further details of this verification (for fuller details see the uniqueness proof of Theorem 19 in
[20]). This completes the proof. ¤

The nonlinear Fredholm integral equation (9.5) can be used to find the optimal stopping
boundary b numerically (using Picard iteration). Note that the integral over the entire real
line in (9.4)-(9.6) equals twice the integral over the positive real line thanks to symmetry.

2. Collecting the results derived throughout the paper we now disclose the solution to the
initial problem when x0 = x1 = 0 and σ = 1 as it can be assumed in Cases 1-10 (Section 3)
above without loss of generality.

Corollary 12. For any initial point x ∈ IR of the process X solving (3.2)+(3.3) with
x0 = x1 = 0 and σ = 1 , the value function of the initial problem (3.4) is given by

(9.11) V (π) = (1−π)
[
1+cV̂

(
π

1−π
, x)

]

for π ∈ [0, 1] where the function V̂ is given by (9.6) above. The optimal stopping time in the
initial problem (3.4) is given by

τ∗ = inf
{

t ≥ 0
∣∣∣ e(λ− δ

2
)t+ δ

2
(X2

t−x2+κ
∫ t
0 X2

s ds)(9.12)

×
(

π

1−π
+ λ

∫ t

0

e−(λ− δ
2
)s− δ

2
(X2

s−x2+κ
∫ s
0 X2

r dr)

)
≥ b(Xt)

}

where δ = β0−β1 , κ = β0+β1 and b is a unique solution to the integral equation (9.5) in
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the class of continuous functions b : IR → IR which are decreasing on (−∞, 0] , increasing on
[0,∞) and satisfy b(x) ≥ λ/c for x ∈ IR .

Proof. The identity (9.11) follows by combining (4.6)+(4.7) with the result of Theorem
11 above. The explicit form (9.12) follows from (9.7) in Theorem 11 combined with (3.12) and
(4.5) where the stochastic integral can be expressed by means of a deterministic integral using
Itô’s formula as in (5.25) above. This completes the proof. ¤
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