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To support ongoing marine spatial planning in New Zealand, a numerical environmental
classification using Gradient Forest models was developed using a broad suite of
biotic and high-resolution environmental predictor variables. Gradient Forest modeling
uses species distribution data to control the selection, weighting and transformation
of environmental predictors to maximise their correlation with species compositional
turnover. A total of 630,997 records (39,766 unique locations) of 1,716 taxa living
on or near the seafloor were used to inform the transformation of 20 gridded
environmental variables to represent spatial patterns of compositional turnover in
four biotic groups and the overall seafloor community. Compositional turnover of the
overall community was classified using a hierarchical procedure to define groups at
different levels of classification detail. The 75-group level classification was assessed
as representing the highest number of groups that captured the majority of the
variation across the New Zealand marine environment. We refer to this classification
as the New Zealand “Seafloor Community Classification” (SCC). Associated uncertainty
estimates of compositional turnover for each of the biotic groups and overall community
were also produced, and an added measure of uncertainty – coverage of the
environmental space – was developed to further highlight geographic areas where
predictions may be less certain owing to low sampling effort. Environmental differences
among the deep-water New Zealand SCC groups were relatively muted, but greater
environmental differences were evident among groups at intermediate depths in line with
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well-defined oceanographic patterns observed in New Zealand’s oceans. Environmental
differences became even more pronounced at shallow depths, where variation in more
localised environmental conditions such as productivity, seafloor topography, seabed
disturbance and tidal currents were important differentiating factors. Environmental
similarities in New Zealand SCC groups were mirrored by their biological compositions.
The New Zealand SCC is a significant advance on previous numerical classifications and
includes a substantially wider range of biological and environmental data than has been
attempted previously. The classification is critically appraised and considerations for use
in spatial management are discussed.

Keywords: species distributions, spatial management, biodiversity, coastal, deep-sea, macroalgae, demersal
fish, benthic invertebrates

INTRODUCTION

Robust identification of priority areas for marine spatial planning
is often hampered by a lack of comprehensive knowledge of
biodiversity patterns (Ferrier et al., 2007; Arponen et al., 2008;
Hortal et al., 2015). Species distribution models (SDMs) are
correlative models that predict the occurrence of species in
relation to environmental variables and can provide estimates of
biodiversity patterns across broad spatial scales where data are
often sparse. SDMs have become an important tool for resource
management and conservation biology (Moilanen et al., 2011).
However, species’ distribution estimates using SDMs are often
only available for more common species, i.e., there are often large
numbers of species that are either poorly described or for which
there are not enough records to generate robust distribution
estimates (Ellingsen et al., 2007; Anderson et al., 2016). As a
consequence, the full complement of biodiversity is typically not
represented in marine spatial planning, despite the important
roles that biodiversity and rare species can play in the stability
and functioning of marine ecosystems (Ellingsen et al., 2007).

In marine spatial planning, there is interest in understanding
how communities as a whole respond to environmental
gradients, and in identifying the environmental variables that best
predict patterns of biodiversity (rather than individual species’
distributions). Multivariate or community-based modelling
methods, which account for multiple species, can be used to
summarize biodiversity patterns by classifying readily available
environmental data into groups that are likely to have similar
biological characteristics (e.g., Gregr and Bodtker, 2007; Dunstan
et al., 2012; Leathwick et al., 2012). One such method, Gradient
Forests (GF; Ellis et al., 2012; Pitcher et al., 2012), uses
species distribution data to control the selection, weighting
and transformation of environmental predictors to maximise
their correlation with species compositional turnover and
establish where along the range of environmental gradients
important compositional changes occur (Ellis et al., 2012).
These transformed environmental layers (representing species
compositional turnover) can then be classified to define spatial
groups that capture variation in species composition and
turnover. A GF-based classification was recently used to describe
spatial patterns of demersal fish species turnover in New Zealand
using an extensive demersal fish dataset (>27,000 research

trawls) and high-resolution environmental data layers (1 km2

grid resolution) (Stephenson et al., 2018b, 2020a). Using a
large set of independent data for evaluation, this 30-group
classification was found to be highly effective at summarising
spatial variation in both the composition of demersal fish
assemblages and species turnover (Stephenson et al., 2018b).

Such classifications have several key features that make them
particularly useful for resource management and marine spatial
planning. Firstly, they can be created at various hierarchical levels
of group-detail [e.g., 30 groups as presented in Stephenson et al.
(2018b), to 500+], a feature that makes them particularly useful
when they need to be applied at differing spatial scales (national
to regional to local scales) (Stephenson et al., 2020a). Secondly,
because the classification is based on GF (tree-based) models of
species turnover across environmental gradients, it can readily
describe non-linear changes in species composition in relation
to the environment, such as decreases in species turnover at
depths >1,500 m (Stephenson et al., 2018b). Together, these two
attributes mean that a single classification can reflect dynamic
inshore environments with a greater number of groups compared
to fewer groups in the relatively less dynamic environments in
deeper offshore areas. Thirdly, because classifications contain
spatial information on inter-group similarities (i.e., estimate
of species compositional turnover), it is possible to locate
and therefore implement appropriate management of areas
that contain relatively unusual environments that are likely to
support unique species assemblages (i.e., groups with low inter-
group similarity). Finally, a GF-based classification condenses
large numbers of individual species distribution layers down
to a relatively small number of groups (e.g., <100 groups
compared to several hundreds of species), which is generally
more comprehensible and useful for managers, stakeholders and
the general public.

One challenge with these classifications is the communication
of a statistically complex product in a way that facilitates their
use by management agencies and others involved in marine
planning (Rowden et al., 2018; Stephenson et al., 2020a). This
challenge can be overcome, at least in part, through the provision
of maps and descriptions of the habitats and biotic assemblages
associated with each classification group. A detailed description
for a 30-group demersal fish classification was produced by
Stephenson et al. (2020a), which aimed to bridge the gap
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between the typical output from numerical classifications and the
readily understandable habitat and fish assemblage descriptions
that result from thematic (non-numerical) classifications. The
descriptions of Stephenson et al. (2020a) included geographic
locations, environmental characteristics, and demersal fish
assemblages in a hierarchy based on the dominant environmental
variables identified in the analysis (e.g., depth, tidal current,
and productivity).

Here, a numerical environmental classification and associated
spatially explicit estimates of uncertainty was developed for
the New Zealand marine environment with the future goal of
supporting ongoing marine spatial planning at regional and
national scales. This classification used a broad suite of biotic
groups [benthic invertebrates, macroalgae, reef fish, as well as
demersal fish data as used in Stephenson et al. (2020a)] and high-
resolution environmental predictor variables. The classification –
termed the New Zealand Seafloor Community Classification
(New Zealand SCC) – extends from the coastal marine area to
the full extent of New Zealand’s Exclusive Economic Zone (EEZ).
Here we describe the development of the New Zealand SCC, and
present key results including classification group descriptions.

MATERIALS AND METHODS

Study Area and Environmental Data
The study area extended over 4.2 million km2 of the South Pacific
Ocean within the New Zealand Territorial Sea (TS) and Exclusive
Economic Zone (EEZ), herein referred to as the New Zealand
marine environment (≈25–57◦S; 162◦E–172◦W; Figure 1).

New Zealand’s marine environment was described using
36 gridded environmental variables (Supplementary Table 1),
collated at two resolutions: a 250 m resolution grid from the
coastline to the edge of the TS (12 NM from shore), and a
1 km resolution grid from the edge of the TS to the edge of the
EEZ (Figure 1). Spatial layers were projected using an Albers
Equal Area projection centred at 175◦E and 40◦S (EPSG:9191).
The 36 environmental variables were thought to influence
the distribution of benthic and demersal taxa, and therefore
distribution of species composition, richness, and turnover (e.g.,
see Leathwick et al., 2006; Compton et al., 2013; Smith et al., 2013;
Anderson et al., 2016; Rowden et al., 2017; Stephenson et al.,
2018b; Georgian et al., 2019). Several environmental variables
showed some co-linearity within records for biotic groups but
all levels of co-linearity were considered acceptable (Pearson
correlation < 0.9) for tree-based machine learning methods
(Elith et al., 2010; Dormann et al., 2013) and more specifically
GF modelling (Ellis et al., 2012).

A subset of twenty environmental variables were selected for
GF modelling for all biotic groups (grey rows, Supplementary
Table 1) through a model-tuning process which aimed to
maximise model fit (see section “Estimating Compositional
Turnover”). These were: bathymetry, benthic sediment
disturbance, bottom nitrate, dissolved oxygen at depth,
bottom phosphate, salinity at depth, bottom silicate, temperature
at depth, broadscale Bathymetric Position Index, fine-scale
Bathymetric Position Index, chlorophyll-a concentration

spatial gradient, detrital absorption, seabed incident irradiance,
downward vertical flux of particulate organic matter at the
seabed, turbidity, annual amplitude of sea floor temperature,
sediment classification, slope, sea surface temperature gradient,
and tidal current speed.

In most cases, conventional modelling approaches seek to fit
the most parsimonious model and the inclusion of many variables
generally only provide minimal improvement in predictive
accuracy and complicate interpretation of model outcomes
(Leathwick et al., 2006). However, here, the interpretation
of model outcomes (i.e., the drivers of distribution) was of
secondary interest, the primary focus being on maximising the
predictive accuracy of the model.

Biological Data
Occurrence records of four biotic groups (demersal fish, benthic
invertebrates, macroalgae, and reef fish) were collated from
various sources (Supplementary Table 2). All records were
groomed: records located on land, outside the New Zealand
marine environment and/or duplicated within and between
databases were removed. Taxonomy was standardised across
datasets and years to the most recent nomenclature. Demersal
fish, reef fish and macroalgae were identified to species level,
whereas benthic invertebrates were identified to genera. Further
information on the data treatment and assumptions and
distributions of taxa records are provided for each biotic group
in Supplementary Materials 1.

Records for each of the biotic groups were separately
aggregated to unique locations of different spatial resolutions:
demersal fish and benthic invertebrates were aggregated to
1 km grid resolution, whereas macroalgae and reef fish taxa
(coastal taxa) were aggregated to a 250 m grid resolution.
Taxa with ≥10 unique sample locations were retained for
the analysis (e.g., Stephenson et al., 2018b) because this
ensured that there were sufficient samples to run GF models.
Following quality control and spatial aggregation, a total
of 630,997 records across the four biotic groups occurring
at 39,766 unique locations were retained for final analysis.
Values for environmental variables were derived for each taxa
record location by overlaying them onto the environmental
predictor layers using the “raster” package in R (Hijmans and
van Etten, 2012). For demersal fish and benthic invertebrate
records this procedure was undertaken using 1 km grid
resolution environmental variables (including in areas where
information was available at a 250 m grid resolution in order
to match the spatial scale at which these were sampled),
whereas environmental values for reef fish and macroalgae
records were extracted from the 250 m grid resolution
environmental variables.

Demersal fish, macroalgae, and reef fish were collected using
consistent methods for each of the biotic groups (e.g., demersal
fish were collected by research trawls). In contrast, benthic
invertebrate records were collected using a variety of sampling
methods (208 different gear types). Many of the gear types
used were name variants of commonly used sampling gear
types, but for most records, the specific sampling parameters
(e.g., mesh size, tow length, etc.) were not recorded. In
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FIGURE 1 | Map of the study region. New Zealand Exclusive Economic Zone (EEZ, black dashed line), Territorial Sea (TS, solid black line), water depth and feature
names used throughout the text are displayed.

order to account for both the large number of gear types
recorded and the differences in sampling parameters, gear
types were grouped into “catchability categories.” Catchability
was assumed to be influenced by gear size, deployment area
and selectivity (Supplementary Table 3; Stephenson et al.,
2018a). Sampling gear types were assigned codes for each of
the catchability categories (Supplementary Table 4). Out of
18 possible catchability categories, the available invertebrate
samples occurred in six categories: LLG – Large gear types,
deployed over large areas, which were not selective (e.g., otter
trawls); LMG – Large gear types, deployed over medium-
sized areas, which were not selective (e.g., beam trawls);

MMG – Medium sized gear types, sampling medium sized
areas, which were not selective (e.g., benthic sled); SMG –
Small gear types, sampling medium sized areas, which were
not selective (e.g., Devonport dredge); SMHS – Small gear
types, sampling medium sized areas, which were highly selective
(e.g., collected by hand, bottom longline); SSG – Small gear
types, sampling small areas, which were not selective (e.g., box
corer). Records of LLG and LMG were combined as these
catchability categories represent commercial fishing practices
with similar catches of invertebrates likely to be more demersal
in nature (i.e., some squid species). All records collected from
highly selective gear catchability category (e.g., SMHS) were
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excluded from the analysis, because methods classified within
this category were considered too variable to provide reliable
records of absence (20,010 records were excluded across 412
genera and 2,097 unique locations, including 190 genera unique
to selective methods).

Estimating Compositional Turnover
For the demersal fish, macroalgae, and reef fish biotic
groups, and for the four benthic invertebrate catchability
categories (LLG.LMG, MMG, SMG, and SSG), GF models
were fitted using the “extendedForest” (Liaw and Wiener,
2002) and “gradientForest” (Ellis et al., 2012) R packages.
GF model aggregates results from a collection of Random
Forest (RF) models (Breiman, 2001), each of which describes
the environmental relationships of an individual species.
Information from the individual Random Forest models about
the relative importance of each environmental predictor, and
information on where changes in the presence (or abundance)
of the modelled species occur along their environmental ranges
is aggregated to generate a transformed set of environmental
predictors that represent species turnover (Pitcher et al., 2012).

GF models were fitted with 500 trees and default settings
for the correlation threshold used in the conditional importance
calculation of environmental variables. For each of the 7 GF
models, we extracted information on the predictive power of
the individual RF models (R2

f for each taxon measured as
the proportion of out-of-bag variance explained) (Ellis et al.,
2012) and the importance of each environmental variable (R2

assessed by quantifying the degradation in performance when
each environmental variable was randomly permuted1 (Pitcher
et al., 2012). The environmental variables used in each GF
model were selected to maximise the number of taxa effectively
modelled (i.e., taxa with R2

f > 0) and increase model fits for the
most poorly modelled taxa (i.e., taxa with low R2

f).
Gradient forest aggregates the values of the tree-splits from

the RF models for all taxon models with positive fits (R2
f > 0) to

develop empirical distributions that represent taxa compositional
turnover along each environmental gradient (Ellis et al., 2012;
Pitcher et al., 2012). The turnover function is measured in
dimensionless R2 units, where taxa with highly predictive
random forest models (high R2

f values) have greater influence
on the turnover functions than those with low predictive
power (lower R2

f). The shapes of these monotonic turnover

1Note that R2 described by Ellis et al. (2012) and Pitcher et al. (2012) refers to a
unitless measure of cumulative importance and should not be confused with the
more commonly used R-squared (R2) denoting coefficient of determination.

curves describe the rate of compositional change along each
environmental predictor; steep parts of the curve indicate fast
assemblage turnover, and flatter parts of the curve indicate more
homogenous regions (Ellis et al., 2012; Pitcher et al., 2012;
Compton et al., 2013).

The use of the dimensionless R2 to quantify compositional
turnover enables information from multiple taxa to be combined,
even if that information comes from different sampling devices,
surveys or regions (Ellis et al., 2012). In the first instance,
the compositional turnover functions from each of the benthic
invertebrate catchability category GF models were combined
using the “combinedGradientForest()” function to provide a
combined benthic invertebrate GF model (hereafter referred
to simply as “benthic invertebrate” GF model). In the second
instance, a final combined GF model was created using the
“combinedGradientForest()” function across all biotic groups
(demersal fish, reef fish, benthic invertebrates, and macroalgae),
which we hereafter refer to as the “community” model. Broadly,
this method of combining GF models accounts for the number of
taxa, the number of samples, and the taxa R2

f along the gradient
of each environmental variable from individual GF models to
provide a cumulative estimate of compositional turnover [for
further details see, Ellis et al. (2012) and Pitcher et al. (2012)].

The compositional turnover functions from each biotic
group and the community GF models (shapes of the turnover
curves) were used to transform the gridded environmental
layers (both 250 m and 1 km grid resolutions), creating a
“transformed environmental space” representing compositional
turnover. Variation within this transformed environmental space
was summarised using principal components analysis (PCA)
(Pitcher et al., 2011). The colours used in the PCA of each biotic
group/community model were based on the first three axes of
their respective PCA analysis so that similarities/differences in
colour corresponded broadly to pairwise similarities/differences
in the transformed environmental space and thus, by inference,
describe differences in taxa composition (Stephenson et al.,
2018b). Predicted taxa compositional turnover for each biotic
group and community model was plotted geographically using
the colour scheme derived from their respective PCA analyses.

GF models for each biotic group, as well as the community
GF model, were bootstrapped 100 times. That is, 100 community
GF models were fitted (as for the main model described above)
to separate randomly selected subsets of the full input dataset.
For biotic groups with≥5,000 samples (Supplementary Table 2),
a random selection of 5,000 samples was selected from the
full dataset. This number of samples was selected both to
ensure reasonable computational time for the analysis, and

TABLE 1 | Mean (±SD) model fit metrics of individual taxa (R2
f) from bootstrapped gradient forest (GF) models.

Model fit metric Demersal fish (317 taxa) Benthic invertebrates (958 taxa) Macroalgae (349 taxa) Reef fish (92 taxa)

Mean taxa effectively modelled (±SD) 313.76 (±1.57) 955.20 (±3.36) 335.99 (±0.11) 91.99 (±0.11)

Min Taxa R2
f (±SD) 0.36 (±0.04) 0.26 (±0.05) 0.19 (±0.08) 0.25 (±0.04)

Mean Taxa R2
f (±SD) 0.52 (<0.01) 0.48 (<0.01) 0.47 (<0.01) 0.53 (±0.01)

Max Taxa R2
f (±SD) 0.91 (±0.01) 0.84 (±0.05) 0.61 (±0.04) 0.94 (±0.04)

The number of taxa retained in biotic group datasets is provided in brackets in the group headings.
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because previous analysis using demersal fish data indicated
that this number of samples provided stable (consistent)
model outputs (Stephenson et al., 2018b). For biotic groups
with <5,000 samples (Supplementary Table 2), 75% of the
dataset was randomly selected for each bootstrap iteration. The
bootstrapping process was repeated 100 times, and at each
iteration, species compositional turnover functions were used
to transform the gridded environmental layers (both 250 m
and 1 km grid resolutions). Mean (±1 standard deviation of
the mean) estimates of taxa R2

f and environmental variable
importance (R2) were calculated for each GF model from the 100
bootstrapped iterations.

Spatial Predictions and Uncertainty
Spatial estimates of compositional turnover from each GF model
(i.e., for each biotic group and community model), were averaged
(mean). A spatially explicit measure of uncertainty [measured as
the standard deviation of the mean (SD) compositional turnover

averaged across each environmental variable] was calculated
for each grid cell using the 100 bootstrapped transformed
environmental layers.

As an added measure of model uncertainty, for each GF
model, we estimated “coverage of the environmental space”
(Smith et al., 2013; Stephenson et al., 2020c). The “environmental
space” is the multidimensional space produced by considering
each of the environmental variables as a dimension. Some parts
of this environmental space will contain many samples – meaning
we can be more confident of the relationships and the predictions
(Smith et al., 2013) – while other parts will contain few samples.
Predictions for the less sampled parts of the environmental
space are considered less reliable, and should be interpreted with
greater caution (Smith et al., 2013). We modelled variation in
sampling density within the environmental space by combining
our samples (assigned as “present”) with an equal number of
randomly sampled values from the environmental space (i.e.,
where we did not have any taxonomic samples – assigned as

FIGURE 2 | Mean predicted community compositional turnover in geographic and principal components analysis (PCA) space derived from combined bootstrapped
Gradient Forest models fitted using samples from all biotic groups. Colours are based on the first three axes of a PCA analysis so that similarities/differences in colour
correspond broadly to similarities/differences in predicted compositional turnover. Compositional turnover in PCA space, with vectors indicating correlations with the
six most important environmental predictors (A); Geographic distributions of community compositional turnover across the New Zealand marine environment
(dashed line) (B); Geographic distribution of community compositional turnover at finer scales, centred on Cook Strait (C). See Figure 1 for feature names.
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“absences”). A Boosted Regression Tree (BRT; Elith et al., 2006)
model was then used to model the relationship between these
“present” (true) samples and “absent” (random) samples for the
20 environmental variables used in the GF analyses. The “Dismo”
package (Hijmans et al., 2017) was used with BRT models fitted
using a Bernoulli error distribution, a learning rate that yielded
2,000 trees and an interaction depth of 2 (so that only pair-wise
combinations of the environmental variables were considered).
Predictions using this model yielded estimates of the probability
of a sample occurring in each part of the environmental space,
these estimates ranging between 0 and 1, where 0 indicated very
low sampling of the environmental space and 1 a very high level
of sampling (Stephenson et al., 2020c).

Defining the Classification
The mean spatial estimate of compositional turnover from the
community GF model (i.e., the bootstrapped GF model which
included samples from all biotic groups) was classified using a
two-stage approach (Leathwick et al., 2011; Stephenson et al.,
2018b) using the R package “cluster” (Maechler et al., 2017).
For the first stage, mean spatial estimates of compositional
turnover were clustered to form 500 initial groups using

non-hierarchical, k-medoids clustering. Average values for the
transformed environmental predictors were then computed for
each of these initial groups. For the second stage, a hierarchical
clustering approach – flexible unweighted pair group method
with arithmetic mean (UPGMA) – using the Manhattan metric,
and a value for beta of -0.1 (Belbin et al., 1992) was used to define
each group from the initial 500. This second classification step
was undertaken at various levels of classification detail ranging
from 5 to 150-group levels in increments of 5 representing
seafloor communities at various spatial scales.

Given the hierarchical nature of the GF-based classification,
the most appropriate level of classification detail for planning
purposes will vary depending on the spatial scale of the
application and the level of information required for
management. Using the biological data included in the GF
models, the discrimination across classification levels was
assessed [5–150 groups in increments of 5, e.g., as in Snelder
et al. (2007)] using an analysis of similarities test (ANOSIM)
analysis (Clarke and Warwick, 2001). The global R statistic
was calculated as the difference in ranked biological similarities
arising from all pairs of replicate sites between different groups,
and the average of all rank similarities within groups, adjusted by

FIGURE 3 | Spatially explicit estimate of uncertainty and environmental coverage from the combined bootstrapped Gradient Forest model fitted using samples from
all biotic groups. Uncertainty estimate (SD) of compositional turnover modelled using bootstrapped Gradient Forest model fitted with demersal fish, benthic
invertebrate, macroalgae and reef fish samples (A). Predicted environmental coverage depicting the confidence that can be placed in the predictions, ranging from
low (i.e., no samples in the dataset with those environmental conditions) to high (i.e., many samples with those environmental conditions) within the New Zealand
marine environment (B). See Figure 1 for feature names.
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the total number of sites. Global R is equal to 1 if all replicates
within groups are more like each other than any replicates
from different groups and is approximately 0 if there is no
group structure. Significance levels of the ANOSIM statistics
were tested with a randomisation procedure based on the
null hypothesis of no group structure. All ANOSIM analyses
were undertaken in R using the “Vegan” package (Oksanen
et al., 2013). We only analysed groups with adequate biological
data (≥5 unique occurrences). Group means for each of the
transformed environmental variables were calculated and plotted
in a PCA and geographical distributions were plotted for each
classification from 5 to 150 groups (Supplementary Materials 2).

Finally, we describe the 75-group level classification in greater
detail. We refer to this classification as the New Zealand “Seafloor
Community Classification” (NZ SCC). This classification level
represented the highest number of groups that captured the
majority of the variation across the New Zealand marine
environment, based on examining the ANOSIM global R statistic
for each classification group, and which contained an adequate
number of biological records (see “Results” below). Following
methods developed by Stephenson et al. (2020a), individual
classification group descriptions for the New Zealand SCC (75-
group classification) are provided in Supplementary Materials
3. This included: (1) The location of the New Zealand SCC group

within the New Zealand marine environment. (2) Descriptions
of a subset of each groups’ environmental characteristics, termed
“characterising environmental conditions.” (3) Descriptions
of each groups’ biological characteristics, calculated as mean
frequency occurrence of each taxon within classification
groups and investigating the contribution of individual taxa
to intra-group similarity (SIMPER analysis using Bray-Curtis
similarity, in PRIMER v7.0.13) (Stephenson et al., 2020a).
Characterising species were defined as those species contributing
more than 4% to the SIMPER intra-group similarity. (4)
A measure of model confidence, for each classification
group, represented by the mean, 25 and 75% quantile for
the uncertainty estimate of compositional turnover (SD of
the combined bootstrapped GF) and the overall predicted
environmental coverage.

RESULTS

Compositional Turnover and Uncertainty
Models were able to be fitted for most taxa across all biotic groups
(i.e., R2

f > 0, Table 1). However, individual taxon R2
f values

varied widely, ranging from 0.19 (macroalgae, Table 1) to 0.94
(reef fish, Table 1). On average, the GF models explained 47–53%

TABLE 2 | Results of the pair-wise analysis of similarities test (ANOSIM) analysis for the biotic groups at varying levels of classification detail.

Classification detail (number
of groups)

Proportion of groups ≥ 5
unique occurrences

Proportion of significant
inter-class differences

Mean significant ANOSIM
R-statistic

Demersal fish 5 1.00 1.00 0.57

25 0.84 1.00 0.65

50 0.82 1.00 0.70

75 0.76 0.99 0.72

100 0.73 1.00 0.73

125 0.74 0.99 0.73

150 0.73 0.99 0.74

Benthic invertebrates 5 1.00 1.00 0.22

25 0.92 0.94 0.21

50 0.96 0.93 0.23

75 0.91 0.93 0.25

100 0.91 0.93 0.27

125 0.90 0.92 0.26

150 0.87 0.92 0.26

Reef fish 5 0.60 1.00 0.20

25 0.40 0.98 0.32

50 0.32 0.92 0.41

75 0.24 0.92 0.41

100 0.23 0.91 0.49

125 0.18 0.94 0.49

150 0.15 0.92 0.49

Macroalgae 5 0.80 1.00 0.01

25 0.72 0.91 0.03

50 0.66 0.81 0.04

75 0.55 0.84 0.05

100 0.50 0.84 0.04

125 0.44 0.80 0.04

150 0.45 0.71 0.04
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of variation in occurrence across biotic groups (mean taxa R2
f:

0.47–0.53, Table 1).
Although all environmental variables contributed to

predicting compositional turnover for all models (positive
R2, Supplementary Table 5), their relative importance (in terms
of mean cumulative importance) varied across biotic groups.
The most consistently important variables in the biotic group
GF models were dissolved oxygen at depth and bottom salinity
(Supplementary Table 5). Tidal current speed was important
in GF models of demersal fish, benthic invertebrates and the
community GF model. Many of the environmental variables had
moderate cumulative importance across all biotic groups and
in the community GF model, e.g., dissolved oxygen at depth,
seabed incident irradiance, downward vertical flux of POC at
the seabed (R2: 0.0015–0.004, Supplementary Table 5). The
predicted cumulative changes in compositional turnover along
each environmental variable for each biotic group and the overall
community are presented in Supplementary Materials 1.

Spatial patterns in overall community compositional turnover
reflected broadscale patterns in environmental variables linked to
well-defined oceanographic patterns observed in New Zealand’s
waters. Briefly, compositional turnover was minimal in the
deepest water (>2,000 m), although with progression into
shallower waters (1,000–2,000 m) there appeared to be differences
in taxa occurring in the northwest of the study area compared

FIGURE 4 | Principal component analysis of the seafloor community
classification groups (75 groups) for the New Zealand marine environment.
Vectors indicate correlations with the nine most important environmental
predictors and symbol size indicates the relative spatial area represented by
the group. Colours are based on the first three axes of the PCA analysis
applied to the group means for each of the transformed predictor variables, so
that similarities/differences in colour correspond broadly to
similarities/differences in predicted compositional turnover. Environmental
predictors include: bathymetry (Bathy), benthic sediment disturbance
(BedDist), bottom nitrate (BotNi), dissolved oxygen at depth (BotOxy), salinity
at depth (BotSal), temperature at depth (BotTemp), broadscale Bathymetric
Position Index (BPI), downward vertical flux of particulate organic matter at the
seabed (POCFlux) and tidal current speed (TC).

to all other deep-water areas (Figure 2). With progression into
intermediate depths (70–1,000 m), there was a clear latitudinal
separation in taxa composition along the boundaries of the
Subtropical Front (STF), a highly productive zone of mixing
between high salinity, nutrient poor, warm, northern waters, and
low salinity, nutrient rich, cold, and southern waters (Bradford-
Grieve et al., 2006; Leathwick et al., 2006, 2012; Stephenson
et al., 2018b; Figure 2). In shallow water (0–70 m), patterns in
community compositional turnover were more closely associated
both with latitude and with more localised environmental
conditions. Namely, turbidity, tidal currents, and broadscale and
fine-scale Bathymetric Position Index (Figure 2).

The SD for all GF models was low compared to the mean
compositional turnover, i.e., the uncertainty in the compositional
turnover was low even for the most variable areas. The SD of
mean compositional turnover for the community GF model was
highest close to shore in areas of high compositional turnover,
for example, in Cook Strait and the Marlborough Sounds
(Figure 3A). Much of the continental shelf (areas shallower
than 200 m) and the Chatham Rise displayed moderate to
high variability in mean compositional turnover (Figure 3A).
Deep water areas (>2,000 m) displayed the lowest variability
in mean compositional turnover, in part reflecting the relative
environmental homogeneity associated with these abyssal waters,
but also likely reflecting, at least in part, the relative lack of
sampling in these areas as environmental coverage was low for
most areas deeper than 2,000 m (Figures 3A,B). Environmental
coverage was high in areas close to shore and along the Chatham
Rise (Figure 3B) and moderate for parts of the Challenger and
Campbell plateaus (Figure 3B).

Seafloor Community Classification
Assessment of Classification Strength
There was adequate unique occurrences of benthic invertebrate
and demersal fish (i.e., ≥5 unique occurrences in a given
group) for more than 70% of all groups (up to 150 groups,
Table 2), however, for the more coastally restricted taxa from the
macroalgae and reef fish biotic groups, there were fewer groups
with adequate occurrences (Table 2). All the global ANOSIM
R values were significant at the 1% level. The global R values
generally increased for all data sets as the classification detail
was increased, indicating that finer levels of classification detail
defined more biologically distinctive environments (Table 2).
The ANOSIM R values were higher for demersal and reef fish
classifications than those for the benthic invertebrates and the
macroalgae. However, the classification strength became more
gradual for all biotic groups, once the number of classification
groups exceeded 55–75 groups (Table 2). Furthermore, pairwise
differences between groups (with adequate sample number)
declined with increasing classification detail (Table 2).

The New Zealand Seafloor Community Classification
The 75-group classification – termed the New Zealand SCC –
was used because it was the highest number of groups that
captured the majority of the variation across the New Zealand
marine environment (as assessed by global ANOSIM R values)
and contained an adequate number of biological records.
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The New Zealand SCC exhibited clear differences in terms
of environmental conditions (summarised in Figure 4) and
geographic distributions (Figures 5, 6). Not surprisingly,
geographic and environmental patterns of the New Zealand
SCC closely reflect the patterns of the community compositional
turnover on which the New Zealand SCC was based. At broad
scales, New Zealand SCC groups were differentiated primarily
according to oceanographic conditions such as depth (along
PC1 in Figure 4) and bottom temperature (co-linear with
bottom salinity and bottom oxygen, along PC2 in Figure 4).
Environmental differences among New Zealand SCC groups in
deep water (groups 1–19, mean depths between 4,156 and 537 m)
were relatively muted, but greater environmental differences were
evident among New Zealand SCC groups at intermediate depths
(group 20–48, primarily mean depths between 537 and 52 m),
particularly with respect to bottom temperature, bottom oxygen
concentration and bottom salinity. These more pronounced
environmental differences among groups at intermediate depths
were aligned with well-defined oceanographic patterns observed
in New Zealand’s oceans, with a clear latitudinal separation along

the boundaries of the Subtropical Front (STF). Intermediate
depth groups to the north of the STF included groups 27–35; 41–
43 and south of the STF included 20–23; 36–40; 46–48 (Figure 5).
Environmental differences became even more pronounced at
shallow depths (groups 49–75, primarily mean depths between
54 and 1 m), where variation in more localised environmental
conditions such as productivity (downward vertical flux of
particulate organic matter at the seabed), seafloor topography
(broadscale Bathymetric Position Index and slope), seabed
disturbance (benthic sediment disturbance) and tidal currents
(Figure 4) were important differentiating factors (Figure 5).

Environmental differences between New Zealand SCC groups
were mirrored by differences in biological composition. For
example, the New Zealand SCC groups varied in their
characterising taxa with many taxa occurring in several groups
sharing similar environmental characteristics [e.g., orange
roughy (Hoplostethus atlanticus), and smooth oreo (Pseudocyttus
maculatus) were most frequently observed in deep cold-water
groups], whereas a large number of species occurred infrequently
or in a small number of groups. A detailed description

FIGURE 5 | Geographic distribution of the Seafloor Community Classification (75 groups) derived from combined bootstrapped Gradient Forest model. Colours are
based on the first three axes of the PCA analysis applied to the group means for each of the transformed predictor variables, so that similarities/differences in colour
correspond broadly to similarities/differences in predicted compositional turnover.
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FIGURE 6 | Closeup views of parts of the geographic distribution of the Seafloor Community Classification (75 groups, panels A–E) derived from combined
bootstrapped Gradient Forest model. Colours are based on the first three axes of the PCA analysis applied to the group means for each of the transformed predictor
variables, so that similarities/differences in colour correspond broadly to similarities/differences in predicted compositional turnover.

of the characterising demersal fish, benthic invertebrate,
macroalgae, and reef fish characterising taxa is provided in
Supplementary Materials 3.

In addition, mean values for the two spatially explicit
estimates of uncertainty differed between New Zealand SCC
groups (summarised in Supplementary Materials 3). Broadly,

with decreasing depth, the mean environmental coverage
increased, although some small localised New Zealand SCC
groups with few biological samples had low environmental
coverage (e.g., group 26). Several New Zealand SCC groups
had low or variable number of samples across biotic groups,
but moderate to high combined environmental coverage (e.g.,
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shallow coastal groups 58–60, 66, 72), suggesting sampling in
similar environmental conditions had occurred for these taxa in
other New Zealand SCC groups.

DISCUSSION

The New Zealand SCC developed here is a significant advance
on previous numerical classifications, in New Zealand and
globally. Firstly, it combined a larger number of taxonomic
records (630,997 records of 1,716 taxa occurring at 39,766
unique locations) from multiple biotic groups, across a large
area (>4.2 million km2), with a comprehensive and high-
resolution set of environmental predictor variables compared
to previous studies (e.g., Snelder et al., 2007; Stephenson et al.,
2020a). Secondly, because flexible machine learning modelling
methods were used, non-linear relationships between taxa and
environment were incorporated (Pitcher et al., 2012). For the
first time globally, spatial estimates of confidence were provided
for the predicted compositional turnover through the use of
bootstrapping techniques, which can in turn be used to partially
assess the confidence that can be placed in the individual
New Zealand SCC groups.

Critical Appraisal of the New Zealand
Seafloor Community Classification
The methods and data used to develop the New Zealand
SCC build on those used in previous classifications of
New Zealand’s marine environment: the New Zealand Marine
Environment Classification (MEC, Snelder et al., 2007) and
the Benthic Optimised Marine Environment Classification
(BOMEC, Leathwick et al., 2012). Although the classification
is environment-based, in broad terms the classification can
be understood as a spatial summary of variation in seafloor
community composition and turnover in the New Zealand
marine environment (Stephenson et al., 2020a). Overall, the
spatial distribution of the New Zealand SCC is consistent with the
MEC and BOMEC which identified depth, and to a lesser extent,
water temperature and water mass, and major oceanographic
features as important drivers of taxa composition. However,
the New Zealand SCC also identified finer-scale environmental
differences for community groups at shallow depths, where
variation in more localised environmental conditions such as
productivity, seafloor topography, seabed disturbance, and tidal
currents were important differentiating factors.

The New Zealand SCC groups represent taxa that share the
same suite of environmental preferences, and therefore inhabit
the same locations. These groups can be considered communities
as they describe groups of spatially and temporally co-occurring
taxa, which may interact to some extent with one another (Morin,
2009). Some species in a community will interact either directly
(e.g., through predator-prey interactions) or indirectly (e.g., by
feeding on the same organisms), while other taxa may not
necessarily interact with each other and may only be “associated”
because they inhabit the same physical space (Francis et al., 2002).
There is still a paucity of information with regards to species
interactions at the spatial scales of the communities identified by

the New Zealand SCC. Nevertheless, the inferred communities
from the New Zealand SCC provide useful descriptions of habitat
and biotic assemblages for spatial resource management and
conservation planning, particularly when considered alongside
the estimates of confidence for each of the groups.

Management Application
Describing spatial variation in species compositional turnover
and richness is central both to our understanding of the scaling of
diversity, and for identification of priority sites for marine spatial
planning and conservation (McKnight et al., 2007). New Zealand
SCC groups are based on estimated taxa compositional turnover,
which allows spatially explicit measures of within-group and
between-group similarity in taxonomic composition to be
produced (Stephenson et al., 2021a). In turn, these similarity
metrics can allow identification of environments that are likely
to host rare or unusual communities as well as identifying
geographic areas (which may consist of multiple New Zealand
SCC groups) that are most representative of New Zealand
seafloor communities as a whole, for example, in a spatial
conservation prioritisation analysis (Leathwick et al., 2011).

Given the hierarchical nature of the New Zealand SCC
classification, consideration will be required as to what
constitutes the most appropriate level of classification detail
for planning purposes. At the scale of the New Zealand
marine environment, the 75-group New Zealand SCC may be
appropriate. Using a higher number of classification groups
(100–200 groups) is likely to be more appropriate for regional
scale management planning, particularly for inshore areas where
there is greater heterogeneity in environmental conditions and
biological communities (Stephenson et al., 2018b). As part of
any spatial planning process, information from the New Zealand
SCC could be supplemented with the inclusion of other spatial
layers to facilitate selection of areas of particular importance
[e.g., see Stephenson et al., 2018a; Lundquist et al., 2020) for
a comprehensive list and description of spatial layers available
in New Zealand to inform the identification of Key Ecological
Areas]. The New Zealand SCC aims to represent seafloor
communities; however, to achieve comprehensive representation
for marine spatial planning, information on other species,
including pelagic species, will likely need to be included. By itself,
the New Zealand SCC is unlikely to be an appropriate proxy for
pelagic species distributions (Hewitt et al., 2015). Spatial layers
relating to other values and uses, such as social, cultural and
economic value, would also need to be factored in as part of a
marine planning process.

A spatial planning analysis using the 75-group New Zealand
SCC would need to include the classification uncertainty
measures developed here because failure to acknowledge
sources of uncertainty can lead to poor management decisions
(Regan et al., 2005; Link et al., 2012). Here we provide two
spatially explicit measures of uncertainty: model variability and
environmental coverage, which provide two complementary
measures to be considered by managers (Stephenson et al.,
2021b). The environmental coverage provides an indication of
the parts of the environmental space that, for example, contain
many samples – meaning we can be more confident of the
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relationships and the predictions for compositional turnover and
SSC groupings in such areas (Smith et al., 2013). The uncertainty
estimates of community compositional turnover (i.e., standard
deviation of the mean (SD) compositional turnover averaged
across each environmental variable) provide an important
indication of the variability in the modelling estimates. Given that
uncertainty estimates of compositional turnover will only vary in
areas where samples are present, we suggest that the uncertainty
associated with individual SCC groups first be assessed by
examining the number of samples and environmental coverage
values. Where these values are adequate [e.g., environmental
coverage > 0.05 as in Stephenson et al. (2020c) or another suitable
cut-off], the uncertainty estimates of compositional turnover will
provide further insight into the variability (and therefore the
confidence) of the underlying models used for the classification.
However, it should be noted that both of these uncertainty
estimates are not propagated through the model to include any
uncertainty in the classification. That is, we only quantify parts of
the model uncertainty (albeit arguably the most important parts)
and there are no estimates of classification uncertainty per se
(Hill et al., 2020). This means that for parts of the environmental
space our estimate of model uncertainty will be an under-estimate
(i.e., particularly for those parts of the environmental space that
could be classified as either in one group or another similar
group). However, spatial predictions of inter- and intra-group
(biological) similarity can be generated from the classification
and be used to highlight those areas in the classification groups
that may be classified in one group or another and therefore may
represent less certain classifications [e.g., see methods and use of
these layers in Stephenson et al. (2021a)].

One challenge with numerical classifications, such as the
New Zealand SCC, is the communication of results from a
statistically complex product in a way that facilitates their use
by management agencies and others involved in spatial planning
processes (Rowden et al., 2018). Individual group descriptions
for the New Zealand SCC are provided in Supplementary
Materials 3. These descriptions are provided to facilitate use
of the classification by both managers and stakeholders and, at
least in part, help bridge the gap between the typical output
from numerical classifications and the readily understandable
habitat and assemblage descriptions that result from thematic
classifications. As new data become available, the underlying
numerical methodology underpinning the classification can be
updated allowing the New Zealand SCC to be continually
improved over time.

Improving the Classification
Despite the large datasets collated for the development of the
New Zealand SCC, there remain limitations associated with the
classification, which at least in part, can be attributed to the
available biological and environmental data. The long temporal
span over which taxa samples were collected means that there is
a mismatch between the temporal window of biological data and
that of the environmental variables which were mostly compiled
from data collected in the last few decades. This mismatch
means that the compositional turnover presented here should be
interpreted as a spatially and temporally smoothed representation

(Stephenson et al., 2018b). Furthermore, it is worth noting
that data were collected over a time span that includes the
establishment of widespread commercial fishing in the region
(Baird and Wood, 2018), and the impact of this disturbance
on seafloor communities has not been incorporated into the
modelling methodology.

Although the species occurrence data we used mostly provided
adequate spatial coverage of our study area close to shore
and further offshore on the Chatham Rise and the Challenger
and Campbell Plateaus (as assessed by the coverage of the
environmental space), several large, outlying sections had few
or no biological samples, notably the vast majority of waters
deeper than 2,500 m. For deeper waters where few samples are
available, lower confidence can be placed in the predictions of
compositional turnover that underpin the New Zealand SCC.

The “quality” of the available biological data varied by biotic
group based on differences in sampling gear and method.
Records for demersal fish and reef fish were collected using
(relatively) consistent sampling gears and methods (Smith
et al., 2013; NIWA, 2014, 2018). Abundance estimates were
available for both these biotic groups, and few assumptions
were required to use these data as presence/absence in GF
models to make them consistent with benthic invertebrate
and macroalgae group data. In contrast, multiple sampling
gears and methods were used to sample benthic invertebrates,
which required division of these data into gear catchability
categories. However, it should be noted, that there was a
high proportion of unique taxa associated with each gear type
and therefore it was deemed important to include each of
these because they sampled different parts of the community.
Information on sampling methods for macroalgae was not
easily available but given their localised nature (collected on
or close to shore), this was not deemed to be critical. Neither
the benthic invertebrate nor the macroalgal data here can be
considered true presence/absence (because of variations in the
survey designs used to collect these data), and therefore the
classification results from these biotic groups should be used
with greater caution [although care was taken to account for
differences in the biases associated with sampling method as
per Phillips et al. (2009)]. Future iterations of the New Zealand
SCC may benefit from being tuned using abundance estimates
and, for benthic invertebrates, records at the species level [e.g.,
using data from comprehensive surveys as in Bowden et al.
(2019)]. Despite these limitations, the taxa data used here form
a valuable dataset that will have uses outside the development
of the New Zealand SCC (e.g., see Lundquist et al., 2020) and
represents the best available compiled biotic information at
present for the New Zealand marine environment. The ability
of the classification to represent variation in taxa composition at
different scales using independent or newly collected data [e.g., as
in Bowden et al. (2011) or as in Stephenson et al. (2018b)] would
be of interest in order to independently validate the accuracy of
the New Zealand SCC.

The lack of consistent spatially explicit abundance
information, means that despite the comprehensive SCC group
descriptions of the environmental and biotic characteristics, SCC
groups may still lack some of the key features that stakeholders
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may more readily associate with, or understand as habitats and
communities. For example, the lack of abundance information
means there is no spatial information about the locations of
biogenic habitats, despite biogenic habitat forming taxa being
present (and identified as characterising taxa) in several groups
(e.g., bivalves, stony corals – see Supplementary Materials 3).

CONCLUSION

The New Zealand SCC and associated spatially explicit
uncertainty layers are particularly well suited as inputs for
marine spatial planning, and more specifically, marine protection
planning and reporting at regional and national scales. Firstly,
spatially explicit estimates of within and between group
similarity of the New Zealand SCC make it particularly well
suited to support developing an effective network of marine
protected areas and other tools [goal 10.6.3 of Te Mana o
te Taiao – The Aotearoa New Zealand Biodiversity strategy,
Department of Conservation (2020)] and complement work
currently underway to map Key Ecological Areas within
New Zealand’s marine environment. Secondly, the development
of two spatially explicit measures of uncertainty allow for
the nuanced use of the New Zealand SCC in a marine
spatial planning context. Thirdly, the New Zealand SCC
summarises a large and complex dataset spanning four sea-
floor biotic groups in a single community classification layer
that could greatly facilitate communication of complex spatial
biodiversity patterns during participatory stakeholder processes.
Despite the advances and utility of the New Zealand SCC
for conservation planning, there remain several limitations,
including a lack of abundance data, and the identification
of the key features that some stakeholders may more readily
associate with, or understand as, habitats and communities.
These limitations can, at least in part, be overcome through
the use of other spatial layers to complement the New Zealand
SCC (e.g., as collated for the identification of Key Ecological
Areas, Stephenson et al., 2018a; Lundquist et al., 2020)
such as spatial estimates of fish spawning grounds and
biogenic habitats.
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