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A B S T R A C T   

Robust design of Marine Protected Areas in ocean environments is often challenging due to inadequate 
knowledge of biodiversity patterns, reflecting difficulties in the prediction of species distributions from sampling 
data that are often sparse or inadequate. Models that combine species and environmental data, such as Gradient 
Forests (GF), provide one analytical approach to this problem, efficiently combining available information to 
produce spatial models of species turnover throughout an area of interest. Spatial estimates of species turnover 
can then be classified to estimate spatial patterns in species composition; however, the performance of GF-based 
classifications within a conservation planning context has not previously been evaluated. Here we assess the 
utility for conservation planning (using the software Zonation) of a GF-based hierarchical classification that 
summarises spatial patterns in demersal fish composition in the oceans around New Zealand. Progressively more 
complex Zonation analyses assessed the effects of (i) varying the number of classification groups, (ii) adding 
information describing species turnover, and (iii) adding information describing spatial variation in demersal fish 
species richness. The best-performing GF-based conservation ranking used layers describing the distributions of 
30 classification groups, demersal fish species turnover between these groups, and species richness. Conservation 
outcomes from this ranking were only marginally less efficient than those from a more conventional ranking that 
used 217 individual species distribution layers (7% less efficient). This indicates that GF-based classifications 
may provide a practical alternative for marine conservation planning. Additional advantages arise from the 
greater ease with which a single classification layer summarising complex biodiversity patterns can facilitate 
decision-making in participatory stakeholder processes.   

1. Introduction 

Robust identification of priority areas for conservation is often 
hampered by a lack of comprehensive knowledge of biodiversity pat
terns (Arponen et al., 2008; Ferrier et al., 2007; Hortal et al., 2015). The 
understanding of biodiversity in marine environments is challenging 
due to sampling logistics, particularly in deep water, and the large 
numbers of species that are either poorly described or for which there 
are too few records to generate robust species distribution models 
(SDMs) (Anderson et al., 2016; Ellingsen et al., 2007). Although 

sampling is often most comprehensive for fish species, given their 
commercial value, SDMs often work well only for more common species. 
As a consequence, the full complement of biodiversity is typically not 
represented in marine conservation planning, despite the important 
roles that less common species can play in the stability and functioning 
of marine ecosystems (Ellingsen et al., 2007). 

One approach used to overcome this difficulty is to summarise 
biodiversity patterns by classifying readily available environmental data 
into groups that are likely to have similar biological character (e.g., 
Dunstan et al. (2012); Gregr and Bodtker (2007); Leathwick et al. 
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(2012)). Early environmental classification approaches relied largely on 
subjective choice of environmental variables likely to drive species 
distributions (Snelder et al., 2006). However, more recent environ
mental classification models use species observations to weight and/or 
transform environmental variables to maximise the correspondence 
between classification groups and spatial variation in species composi
tion (e.g., Ferrier et al., 2007; Leathwick et al., 2011). These new ap
proaches provide significant improvements over environment-alone 
approaches (Pitcher et al., 2012) and are more likely to capture infor
mation across a full range of species, allowing for representation of both 
common and rare species when describing spatial variation in species 
composition and turnover (Stephenson et al., 2018; Sutcliffe et al., 
2015). 

Gradient Forests (GF – Ellis et al. (2012); Pitcher et al. (2012)) is one 
analytical approach that uses species distribution data to control the 
selection, weighting and transformation of environmental predictors to 
describe species turnover and composition at broad spatial scales. A GF 
model aggregates results from a collection of Random Forest models 
(Breiman, 2001), each of which describes the environmental relation
ships of an individual species. Information from the individual Random 
Forest models about the relative importance of each environmental 
predictor, and information on where changes in the presence (or 
abundance) of the modelled species occur along their ranges is aggre
gated to generate a transformed set of environmental predictors that 
have maximal correlation with species turnover. These transformed 
predictors (representing species compositional turnover) can then be 
classified to define groups summarising spatial patterns in species 
composition (Pitcher et al., 2011), including at sites lacking biological 
samples. For example, Stephenson et al. (2018) used GF models to 
analyse demersal fish data from an extensive research trawl dataset from 
New Zealand’s marine area to the outer limits of the Extended Conti
nental Shelf (ECS). The transformed predictors from this analysis were 
then classified and mapped geographically with a classification detail 
ranging from 10 to 100 groups. Subsequent analysis indicated that a 
30-group hierarchical classification was highly effective at summarising 
spatial patterns in demersal fish composition and turnover, although the 
hierarchical nature of the classification supports its use at varying levels 
of classification detail. 

GF-based classifications have several key features that could make 
them particularly useful for resource management and conservation 
planning. Firstly, they can be created at various hierarchical levels of 
group-detail, a feature that makes them particularly useful when they 
need to be applied at differing spatial scales (national to regional to 
local) (Stephenson et al., 2020). Secondly, because the classification is 
based on GF (tree-based) models of species turnover functions across 
environmental gradients, it can readily describe non-linear changes in 
species composition in relation to environment, e.g., decreases in species 
turnover at depths >1500 m (Stephenson et al., 2018). Together, these 
two attributes mean that a single classification can reflect the dynamic 
environments in inshore areas with a greater number of classes 
compared to fewer classes in the more homogenous offshore areas. 
Thirdly, such classifications contain information on inter-group simi
larities (i.e., estimate of species compositional turnover). Finally, a 
GF-based classification summarises complex multi-species data to a 
more manageable number of groups (e.g., <100 groups) which can be 
more user friendly for participatory processes compared to a greater 
number of individual species distribution layers (Gleason et al., 2010). 
However, the performance of using GF-based classifications within a 
conservation planning context has not yet been evaluated. 

Here, we test the utility for conservation planning of the GF-based 
classifications of demersal fish distributions developed by Stephenson 

et al. (2020) using the spatial planning software Zonation to develop 
conservation rankings (Moilanen et al., 2014). We first develop a con
ventional ‘baseline’ analysis identifying conservation rankings using 
input layers describing the predicted distributions of 217 individual 
demersal fish species. We then compare results of the baseline analysis 
against three separate suites of analyses using GF-based classifications of 
demersal fish species composition to evaluate: (i) the effect of varying 
the number of GF classification groups (i.e., 10, 20, 30, 50 or 100 
groups) on conservation priorities; (ii) the effect of using both species 
composition and species turnover layers at a 30-group level; and (iii) the 
effect of using species richness in addition to using species composition 
and species turnover at a 30-group level. With the successive addition of 
different facets of biodiversity represented in our three suites of analyses 
(demersal fish species compositions, turnover, and richness) we expect 
to observe an increase in the effectiveness of our spatial conservation 
planning measures to represent demersal fish biodiversity. 

2. Methods 

The study area for all analyses comprised New Zealand’s marine area 
to the outer limits of the ECS to depths of 2000 m. All analyses used a 
large set of data describing the distributions of demersal fish species 
collected from research bottom-trawl surveys in the study area between 
1979 and 2005; this database contained ≈207,000 records of catch for 
253 demersal fish species from research trawls at 27,440 unique loca
tions (aggregated to 1 km2). As changes in trawl sampling methods 
resulted in difficulties in providing comparable abundance estimates, all 
catch records were converted into presence/absence for our analyses. 
Environmental parameters for each trawl were derived by overlaying 
their location onto fifteen functionally-relevant environmental pre
dictors mapped across the study area on a 1 km resolution grid (for a full 
list of environment variables see Table 1 in Stephenson et al., 2020). 
These datasets were used to predict individual species distributions for 
217 demersal fish species, a GF-based classifications of species compo
sition and turnover for 253 species of demersal fish, and a spatial esti
mate of demersal fish species richness. 

2.1. Spatial biodiversity estimates 

2.1.1. Predicted species distributions 
Predicted distributions of species occurrence were produced for 217 

demersal fish species with at least 30 records in the dataset (Fig. 1). 
These predictions were derived from individual logistic BRT models 
using 15 environmental predictors, and fitted using ten-fold cross-vali
dation to maximise their predictive performance. Individual cross- 
validated AUC scores, a measure of predictive performance, were 
calculated during the BRT model fitting process for each species (see 
Elith et al. (2008)). An example predicted distribution (Allocyttus niger – 
black oreo) is provided in Suppl. Fig. 7. 

2.1.2. Gradient forest models of species composition and turnover 
Spatial variation in demersal fish species composition and turnover 

was derived from a GF-based classification using 253 demersal fish 
species with >10 records in the database (217 species for which SDMs 
were developed in section 2.1.1, and an additional 36 species with fewer 
records) (Stephenson et al., 2018). A subset of 13,917 of the research 
trawl locations (randomly selected from a possible 27,440) and the 15 
environmental predictors were analysed with the R package ‘gra
dientForest’ (Ellis et al., 2012) and the base package in the statistical 
computing software R (R Core Team, 2020). Not all research trawl 
samples were used in the GF model because repeated analyses with 
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subsamples of the training dataset indicated minimal changes in model 
stability with expansion of the data beyond ca. 5000–7000 samples 
(Stephenson et al., 2018). The inclusion of a larger sample number here 
(13,917 samples) ensured that information from all 253 demersal fish 
species contributed to the estimates of species compositional turnover. 
Results from the GF model were used to transform the environmental 
predictor layers creating a ‘transformed environmental space’ repre
senting turnover in species composition (Stephenson et al., 2018). A 
hierarchical numerical classification was then used to transform the 
environmental layers into varying levels of classification detail (10, 20, 
30, 50, and 100 groups; Suppl. Figs. 1–5). A detailed description of the 
methods for model fitting and evaluation is contained in Stephenson 
et al. (2018). 

2.1.3. Models of species richness 
A species richness layer (i.e., the total number of species predicted to 

occur in any given location) was predicted using an analysis of species 
count from the research-trawl dataset in a boosted regression tree (BRT) 
analysis with a Poisson error term (Elith et al., 2008), using the same 15 
environmental variables. A ten-fold cross-validation procedure was used 
to maximise its predictive performance (Suppl. Fig 6). 

2.2. Conservation rankings 

We used the raster-based spatial planning software, Zonation (Moi
lanen et al., 2005, 2014) to develop spatial conservation rankings 
(Moilanen 2007; Virtanen et al., 2018). Raster layers representing 

Fig. 1. Key steps in the preparation of spatial data layers and their use in spatial conservation planning analyses.  
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biodiversity are input into Zonation after which an algorithm is run to 
determine which areas are most valuable for conservation. Zonation 
initially assumes that all cells in a landscape (or seascape) of interest are 
protected, and then iteratively identifies and removes those cells that 
generate the smallest marginal losses in the representation of the 
biodiversity features included in the analysis (Moilanen et al., 2014). 
Iterative removal produces a nested hierarchical prioritisation of the 
landscape, allowing identification of relative priority of cells for 
different protection targets. Zonation outputs include maps of conser
vation ranking, along with tabular summaries of the proportional rep
resentation of biodiversity features as a function of landscape protection 
(Moilanen et al., 2009). 

We performed two suites of conservation rankings using gridded data 
layers with a spatial resolution of 1 km: (1) ‘baseline’ and ‘neutral’ an
alyses against which subsequent GF-based analyses could be evaluated; 
and (2) a GF-based analyses examining the effect of (i) varying the 
number of GF classification groups on conservation priorities; (ii) 
incorporating metrics of species turnover in conjunction with species 
composition; and (iii) incorporating species richness in addition to using 
species composition and species turnover at a 30-group level. For each 
analysis, we specified the additive benefit function as the cell removal 
rule, which considers all biodiversity features within a location and 
gives more weight to locations with greater numbers of biodiversity 
features, maximizing average performance over all biodiversity fea
tures. To maximise processing speed, Zonation’s default workflow uses 
an ‘Edge Removal’ option, which preferentially targets for removal cells 
at the edges of a landscape. In initial trial rankings, this penalised the 
rankings assigned to classification groups occurring around the pe
riphery of the study area (e.g., shallow- and deep-water groups), while 
those away from the study area margins (e.g., intermediate depth 
groups) received inflated rankings. To avoid this bias, we inserted ‘edge’ 
cells randomly on a regular 100 km grid throughout the study area, 
maintaining processing speed without unduly penalising groups located 
around the periphery of the study area. 

2.2.1. ‘Baseline’ and ‘neutral’ zonation analyses 
We initially developed ‘baseline’ and ‘neutral’ analyses against 

which the performance of all GF-based analyses could be assessed. 
Scenario 1 (representing a conventional ‘baseline’ analysis) used input 
layers describing predicted distributions of the 217 demersal fish spe
cies. Species layers were weighted using their individual cross-validated 
AUC scores. Given their relatively narrow range (0.75–0.99), AUC scores 
were squared to give greater weighting to well predicted species and less 
weight to less well predicted species (AUC scores used as weights varied 
between 0.56 and 0.99). Scenario 2 (a ‘neutral’ or unweighted analysis) 
used a cell removal rule in Zonation that removes cells at random, i.e., 
without any consideration of their contribution to conservation out
comes. This random analysis was repeated ten times, with rankings 
averaged to ensure that results were not affected by the random nature 
of a single iteration of the cell removal rule. 

2.2.2. GF-classification based zonation analyses 
Three sets of Zonation analyses of progressively increasing 

complexity were performed using data input layers derived predomi
nantly from the GF-based classification. Scenario 3 only considered 
spatial variation in demersal fish composition (as represented by the GF 
classification groups); Scenario 4 considered demersal fish composition 
and turnover (as represented by the by the GF classification groups and 
layers describing their inter-group similarities); and Scenario 5 consid
ered demersal fish composition, turnover and species richness. Analyses 

in Scenarios 4 and 5 extended the best-performing variant from the 
previous set. 

Scenario 3 tested the effect of variation in the number of GF classi
fication groups used as input layers (i.e., 10, 20, 30, 50 and 100 groups) 
on conservation rankings (upper right of Fig. 1). Each of these analyses 
used a set of spatial data layers comprising one layer for each of its 
classification groups (i.e., 10 layers representing the 10 classification 
groups were used in the first analysis, 20 layers for the 20 groups in the 
second analysis, etc). Occupied cells within each of these classification 
group layers were assigned a value indicating their similarity to their 
group centroid (1 – Manhattan distance) within the transformed envi
ronmental space; values typically ranged between 0.95 and one. This 
approach favoured the selection during ranking of those cells with the 
strongest similarities to the group centroid, preferring cells with highest 
within group similarity over cells that were transitional between two 
related classification groups. These sets of layers represent the distri
butions of groups that summarise spatial variation in demersal fish 
species composition (referred to herein as ‘species composition layers’). 
Given the hierarchical nature of the classification, we expect that a 
wider range of species will be represented in our spatial conservation 
rankings with increasing number of classification groups. However, in
creases in species representation may be minimal past a certain number 
of classification groups. 

Scenario 4 tested the effect of using both species composition and 
species turnover layers at a 30-group level of classification on conser
vation outcomes (Fig. 1). The 30-group level of classification was 
selected because it represented a moderate number of groups while 
carrying little penalty in conservation planning outcomes (see results). 
During these analyses, ranking favoured the selection of groups differing 
strongly in their composition from all other groups (i.e., accounting for 
intra-group similarity), indicating a likelihood of groups supporting 
distinct species not represented elsewhere. Five different weightings 
were applied to the species turnover layers (0.1, 0.25, 0.5, 1.0, 2.0) to 
vary their influence on ranking outcomes relative to that of the species 
composition layers, which were all set to a weight of 1. These layers 
represent intra-group similarity of demersal fish composition (i.e., 
demersal fish turnover) and are referred to herein as ‘turnover layers’). 
The addition of demersal fish turnover will favour the selection of 
groups differing strongly in their composition from all other groups. We 
expect that a wider range of species will be represented in our spatial 
conservation rankings with increasing weighting of this layer. However, 
similarly to the analysis using only species composition, increases in 
species representation may be minimal past a mid-range weighting of 
these layers. 

Scenario 5 tested the effect of adding a species richness layer to the 
analysis using equal weighting of species composition and turnover 
layers (Fig. 1). During analysis, ranking favoured the selection of cells 
with higher species richness indicating the likelihood of them support
ing more species. Five different weights were applied to the species 
richness layer (5, 10, 20, 50, 100) to vary its influence relative to the 
species composition and turnover layers. While the rate of species 
turnover between sites may determine the optimal spatial arrangement 
of a set of conservation areas (Scenarios 3 and 4), the total number of 
species (alpha diversity) contributes to the relative local importance of 
an area for conservation (Arponen et al., 2008). In scenario 5, we expect 
a further gain in the representation of a wider range of species with 
increasing weighting of the layer representing variation in species 
richness when combined with layers representing demersal fish species 
composition and turnover. 

F. Stephenson et al.                                                                                                                                                                                                                             



Ocean and Coastal Management 212 (2021) 105855

5

2.2.3. Assessing ranking performance 
We assessed the performance of all GF-based analyses using two 

measures of conservation performance, both of which were calculated 
using the predicted distributions of the 217 demersal fish species. The 
first measured the overall mean species representation throughout the 
removal process (herein referred to as “mean species representation”), 
providing an integrated measure of performance that is averaged both 
across all species and across a full range of protection options (i.e., 
0–100% of the landscape); this can be seen as broadly analogous to the 
commonly used Area Under the Curve (AUC) statistic. The second 
measured the number of species with more than 20% of their predicted 
distribution protected in the top-ranked 20% of cells (herein referred to 
as “highly protected species”). This measure assesses the proportion of 
species with high representation, providing a complementary metric to 
average representation, for which high values might conceal very low 
levels of representation for some species. 

3. Results 

3.1. Scenario 1 and 2: baseline and neutral ranking 

Scenario 1 (baseline Zonation analysis using the predicted distribu
tions of 217 individual demersal fish species) identified high-ranking 
cells throughout New Zealand’s marine area to the outer limits of the 
ECS (Fig. 2), with highest concentrations in shallower, inshore waters, 
often in northern regions. Overall mean species representation was 
0.667 when averaged across all species and throughout the ranking 
removal sequence (Table 1a). Protection of the top-ranked 20% of cells 
from this ranking would provide 20% or greater representation for 179 
of the 217 demersal fish species (82%) (Fig. 3). By contrast, Scenario 2 in 
which cells were randomly selected delivered overall average species 
representation of 0.437 (±0.001 across ten iterations). Only 64 of the 
217 demersal fish species were highly protected from this random 
ranking (Fig. 3). 

3.2. Scenario 3: GF-based groups 

The suite of Scenario 3 analyses (varying number of GF-based 
groups) delivered overall average species representation that ranged 
between 0.561 (10 groups) and 0.578 (100 groups) (Table 1b; Fig. 3; 
Suppl. Fig. 8). This was equivalent to 84.1–86.7% of the performance 
delivered by the baseline ranking. Numbers of highly protected species 
varied between 101 (30 groups) and 112 species (100 groups), equiva
lent to 56.4–62.6% of the value from the baseline ranking (Table 1b; 
Fig. 3). Examination of the characteristics of groups in the top-ranked 
20% of cells at a 30-group level of classification (Table 2) indicated a 
trend whereby spatially extensive groups generally received lower rep
resentation than those of more limited geographic extent. Given the 
relatively low sensitivity of our ranking outcomes to the number of 
classification groups, a classification with a moderate number of groups 
(30-group classification) was selected for further analyses. 

3.3. Scenario 4: inclusion of species turnover 

The suite of Scenario 4 analyses added species turnover layers (with 
varying weights) to the 30-group classification. Increases in conserva
tion performance varied depending on the relative weighting of the 
classification groups and turnover layers respectively (Table 1). Overall 
average species representation increased from 0.576 (no species turn
over layers – 30 groups in Table 1b) to 0.610 when species composition 
and species turnover layers were equally weighted (Suppl. Fig. 9, 
Table 1c; Fig. 3); this latter value corresponded to 91.4% of the 

Fig. 2. Conservation priority for 1 km grid cells in New Zealand’s marine area 
to the outer limits of the ECS to depths of 2000 m, based on a Zonation analysis 
of maps predicting the distributions of 217 demersal fish species. Prioritisation 
ranking values ranging from 0 to 1 where low values indicate low conservation 
priority and high values indicate high conservation priority. 

Table 1 
Performance of Scenarios using various combinations of input layers. Values 
indicate the overall average representation of 217 species throughout the 
ranking process, and the number of species with more than 20% of their pre
dicted distribution protected in the top-ranked 20% of cells. Numbers in brackets 
for all but the first line in (a) indicate the relative performance of each ranking 
compared to the performance achieved by the baseline ranking of species layers, 
expressed as a percentage.  

a) Scenarios 1 and 2: 217 species distribution layers  

Analysis option Representation No. species >20% 

Scenario 1: Baseline 0.667 179 
Scenario 2: Neutral 0.437 (65.5) 64 (35.8)  

b) Scenario suite 3: GF-classification using species composition layers. Bolded 
numbers are those used in subsequent scenarios. 

Number of groups Representation No. species >20% 

10 0.561 (84.1) 107 (59.8) 
20 0.565 (84.7) 103 (57.5) 
30 0.576 (86.5) 101 (56.4) 
50 0.577 (86.4) 107 (59.8) 
100 0.578 (86.7) 112 (62.6)  

c) Scenario suite 4: adding species turnover layers to 30-group GF-classification. 
Bolded numbers are those used in subsequent scenarios. 

Relative weight ofspecies turnover layers Representation No. species >20% 

0.10 0.595 (89.2) 104 (58.1) 
0.25 0.604 (90.6) 104 (58.1) 
0.50 0.609 (91.3) 105 (58.7) 
1.00 0.610 (91.4) 105 (58.7) 
2.00 0.605 (90.6) 107 (59.8)  

d) Scenario suite 5: Adding species richness layers to 30 group GF-classification and 
equal weighted species turnover layers. 

Weight of species richness layer Representation No. species >20% 

5 0.621 (93.2) 116 (64.8) 
10 0.623 (93.4) 125 (69.8) 
20 0.619 (92.8) 130 (72.6) 
30 0.616 (92.3) 139 (77.7) 
50 0.610 (91.4) 143 (79.9) 
100 0.600 (90.0) 146 (81.6)  
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performance delivered by the baseline ranking. Ranking performance 
declined slightly when weights for the turnover layers were increased 
beyond this point (Fig. 3). By contrast, there was only a small increase in 
numbers of highly protected species when turnover layers were added; 
this increase showed minimal variation as the relative weighting of the 
turnover layers was increased (Fig. 3). 

Including turnover layers changed the representation of individual 
classification groups in the top-ranked 20% of cells (Table 2; Suppl. Fig. 
9). Sixteen groups, mostly of limited spatial extent, showed no change, 
receiving 100% protection in both sets of analyses. Three extensive 
groups (1–3) with limited similarity to other groups (i.e., groups which 
strongly different to most other groups), received increased represen
tation, whereas several groups (4, 8–11, 13, 21, 22, 25 & 26) that were 
closely related to several other groups showed decreases in representa
tion. Consequently, there was a significant positive relationship between 
the change in representation of individual classification groups and their 
average dissimilarity to all other groups (correlation = 0.438, p =
0.022). 

3.4. Scenario 5: adding species richness 

Adding the species richness layer in Scenario 5 using equal weighted 
30-group species composition and turnover layers provided further 
improvements in ranking performance. The gain in overall average 
representation was greatest when the richness layer was given a rela
tively low weighting (10), with the average species representation 
increasing from 0.610 (no richness) to 0.623 (Table 1d; Fig. 3). This 
equated to 93.4% of the species representation delivered by the baseline 
ranking. Further increases in the weight of the species richness layer 
beyond a value of 10 gradually reduced the overall species representa
tion. By contrast, numbers of highly protected species increased steadily 

as increasing weight was applied to the species richness layer (Table 1d; 
Fig. 3), from 105 (without including richness) to 143 species (weight =
50), but only small further gains to 146 with a weighting of 100. This 
ranking equated to increases in performance from 58.7% (without 
including richness) to 81.6% (weight = 100) of that delivered by the 
baseline ranking. 

Adding the species richness layer changed in the proportion of 
classification groups that represented within the top-ranked 20% of grid 
cells. For example, when using a weight of 50 for the richness layer 
(Table 2) there was a strong positive relationship between the average 
species richness of a group and the proportion of a group that occurred 
within the top 20% of cells within the conservation ranking (correlation 
= 0.673, p-value = 0.0001). A number of groups with high average 
species richness had more of their spatial distribution protected within 
the top 20% of cells when species richness was included, including 
several that were spatially extensive (e.g., groups 3, 4, 6, 10 & 11, 
Table 2). By contrast, several groups that had below average species 
richness (groups 2, 9, 17, 21, 22, 24, 25, 26, Table 2) had less of their 
spatial distribution protected in the top 20% of cells when species 
richness was included in the analysis. 

Comparison of Scenario 5 (Fig. 4) with the baseline ranking (Fig. 1) 
indicated that, while they deliver similar levels of performance for 
biodiversity, they exhibited some marked differences in the spatial 
distribution of high ranked cells. In particular, a high proportion of high 
ranked cells from Scenario 1 occurred in northern areas, while a greater 
proportion of those for Scenario 5 occurred along the Chatham Rise and 
around the margins of the Campbell Plateau (east and south east of the 
study area). 

4. Discussion 

Description of spatial variation in community composition and spe
cies turnover is central both to our understanding of the scaling of di
versity, and the consequent robust identification of priority sites for 
conservation (McKnight et al., 2007). Here, a Gradient Forest based 
analysis that summarised a large and complex species distribution 
dataset into a single classification layer effectively captured the infor
mation required for robust spatial conservation planning for demersal 
fish. In our analyses, a classification consisting of as few as thirty groups 
provided an adequate summary of spatial variation in demersal fish 
composition across New Zealand’s marine area to the outer limits of the 
ECS to depths of 2000 m, an area encompassing nearly 2.5 million km2. 
The strongest conservation outcomes were delivered when Zonation 
analyses were conducted using layers describing species composition, 
species turnover, and species richness. 

At a more practical level, we were surprised by the relatively low 
sensitivity of our conservation ranking outcomes to the number of 
classification groups used as inputs in our first set of analyses. Given this 
initial result, we chose a 30-group level of classification for our subse
quent analyses, largely because of practical considerations. A classifi
cation containing a moderate number of groups may be more likely to be 
understood and used by broad groups of resource managers, stake
holders and scientists with varying technical expertise, while carrying 
little penalty in conservation planning outcomes. This ability to effec
tively summarise complex biodiversity patterns has strong relevance in 
conservation planning (e.g., defining networks of marine protected 
areas (MPA)) because the reduced number of groups provides an 
accessible description and common currency for discussions among 
different resource users (Gleason et al., 2010; Stephenson et al., 2020). 
Classifications are more likely to be adopted for management purposes if 
they can demonstrate integration of true patterns in habitats or biotic 
assemblages, rather than solely environmental clustering. A description 
of the biotic and environmental characteristics of a 30-group demersal 
fish GF classification has been recently developed (e.g., see Stephenson 
et al., 2020) to facilitate the communication of biodiversity information 
in stakeholder and engagement processes. 

Fig. 3. Performance of rankings using various sets of input layers in compari
son to the baseline (species-based) ranking (open square, top right) and random 
removal of species layers (open square, bottom left). Rankings are compared 
against the overall average of species representation throughout the ranking 
process, and the number of species with >20% representation within the top- 
ranked 20% of cells. For the ranking using species composition (solid tri
angles), values indicate the number of classification groups used; for the 
ranking using species composition and turnover layers at a 30-group GF (open 
triangles), values indicate the relative weighting applied to turnover layers; for 
the ranking using equally weighted species composition and turnover layers, 
and a species richness layer (solid squares), values indicate the weighting 
applied to the richness layer. 
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Further improvements in conservation ranking efficiency were ach
ieved when adding species turnover layers. While the initial analyses 
using species composition groups effectively treated all groups as 
equally different from each other (as has been the case in the few studies 
that have used less complex environmental classifications, e.g., Ferrari 
et al. (2018); Sutcliffe et al. (2015)) adding species turnover layers gave 
greater emphasis to those groups with high compositional differences to 
all other groups (i.e., low intra-group similarity). These locations are 
likely to support distinctive species assemblages, providing small but 
valuable gains in overall average species representation. The further 
inclusion of the species richness layer improved the performance of the 
ranking analyses, encouraging the allocation of high rankings to sites 
supporting large numbers of species (Arponen et al., 2008), irrespective 
of their group membership. While the total number of species (alpha 
diversity) contributes to the relative local importance of an area for 
conservation, it is the rate of species turnover between sites that largely 
determines the optimal spatial arrangement of a set of conservation 
areas (Arponen et al., 2008; McKnight et al., 2007; Nekola and White, 
1999, 2002). 

Despite the practical advantages of using a single biologically 
informed environment-based spatial classification layer, none of the 
analyses of GF-based layers performed quite as effectively as the base
line ranking analysis (i.e., using 217 individual species distribution 
layers). The higher performance of the baseline ranking most likely re
flects, at least in part, the comprehensive dataset available here 
(>27,000 unique trawl samples versus ~ 13,000 trawl samples used to 
construction the GF-based classification). Unfortunately such datasets 
are typically rare, and generally only sample fish species; other taxa are 
rarely sampled with this intensity (Costello et al., 2017). 

Our results suggest that GF-based classifications provide important 
advantages in settings where data may be inadequate to develop indi
vidual species models for conservation planning. Previous analyses have 
demonstrated that species turnover rates derived by GF models were 
relatively robust with smaller datasets (Stephenson et al., 2018). In 
particular, repeated GF analyses with sub-samples of our entire dataset 
exhibited minimal variation in model outcomes once ca. 5000–7000 
samples were used to define the model (Stephenson et al., 2018). By 
contrast, fewer individual species distribution layers could be generated 
with this lower number of samples than represented in the GF models. In 
addition, conservation planning with a lower number of species distri
bution models would require an assumption of taxonomic surrogacy, i. 
e., that one species captures variation in another (Arponen et al., 2008), 
an unlikely assumption since relationships between environmental 
variables and species can vary between taxonomic groups (Hortal and 
Lobo, 2005; Sutcliffe et al., 2012). By contrast, the use in GF models of 
information describing species turnover makes them more likely to 
function robustly as surrogates for a full complement of biodiversity, 
even when lower numbers of species records are used (Aroponen et al., 
2008). 

Conservation outcomes differed depending on the measure used to 
assess performance. When using average representation through the 
ranking process as a measure, use of just the species composition and 
species turnover layers achieved average representation close to that 
achieved by the full set of individual species distribution layers. By 
contrast, when using numbers of highly protected species as a measure, 
addition of the species richness layer was required to deliver adequate 
performance. Careful consideration should therefore be given to the 
overall planning goals when choosing between these two measures, and 

Table 2 
Comparison of proportion of individual groups occurring in the top-ranked 20% of grid cells from rankings using GF analysis 1 (30 species composition layers), GF 
analysis 2 (30 equal-weighted species composition and species turnover layers), and GF analysis 3 (as per GF analysis 2 with a species richness layer with a weighting of 
50). Values include each group’s spatial extent, mean inter-group similarity (mean distance) to all other groups, and mean species richness. For the 3 analyses, further 
values presented are the proportion of each group’s total extent represented within the top-ranked 20% of cells, and percentage change between GF analysis 1 and 2, 
and 2 and 3, respectively.      

GF analysis 1 GF analysis 2 GF analysis 3  

Group 
Extent 
(km2) 

Mean 
distance 

Mean 
richness 

Proportion in top 
20% 

Proportion in top 
20% 

% change relative to 
GF 1 

Proportion in top 
20% 

% change relative to 
GF 2 

1 444,083 0.181 7.1 0.030 0.090 200.0 0.084 − 6.7 
2 526,900 0.165 6.5 0.031 0.062 100.0 0.042 − 32.3 
3 128,496 0.142 12.1 0.249 0.275 10.4 0.316 14.9 
4 252,919 0.122 14.6 0.143 0.128 − 10.5 0.294 129.7 
5 10,519 0.132 12.1 1.000 1.000 0.0 1.000 0.0 
6 73,390 0.143 10.7 0.086 0.107 24.4 0.130 21.5 
7 69,446 0.156 13.3 1.000 1.000 0.0 1.000 0.0 
8 56,071 0.117 9.5 0.050 0.041 − 18.0 0.039 − 4.9 
9 1211 0.117 5.7 0.424 0.349 − 17.7 0.166 − 52.4 
10 2522 0.109 16.3 0.559 0.403 − 27.9 0.703 74.4 
11 120,759 0.102 15.6 0.266 0.183 − 31.2 0.442 141.5 
12 39,024 0.104 14.7 1.000 1.000 0.0 1.000 0.0 
13 354,744 0.108 12.1 0.383 0.276 − 27.9 0.313 13.4 
14 96,679 0.120 10.0 1.000 1.000 0.0 1.000 0.0 
15 1120 0.127 5.8 1.000 1.000 0.0 1.000 0.0 
16 1605 0.129 6.7 1.000 1.000 0.0 1.000 0.0 
17 35,186 0.130 8.7 1.000 1.000 0.0 0.684 − 31.6 
18 3831 0.138 9.5 1.000 1.000 0.0 0.998 − 0.2 
19 30,854 0.117 8.6 1.000 1.000 0.0 1.000 0.0 
20 10,689 0.114 10.7 1.000 1.000 0.0 0.905 − 9.5 
21 42,989 0.103 10.6 1.000 0.874 − 12.6 0.598 − 31.6 
22 71,305 0.106 9.3 0.456 0.347 − 23.9 0.262 − 24.5 
23 3261 0.119 13.1 1.000 1.000 0.0 1.000 0.0 
24 5468 0.118 9.9 1.000 1.000 0.0 0.897 − 10.3 
25 7021 0.120 5.9 0.873 0.740 − 15.2 0.321 − 56.6 
26 30,396 0.115 9.6 0.818 0.654 − 20.0 0.415 − 36.5 
27 16,234 0.134 5.4 1.000 1.000 0.0 1.000 0.0 
28 6345 0.140 10.9 1.000 1.000 0.0 1.000 0.0 
29 500 0.147 11.6 1.000 1.000 0.0 1.000 0.0 
30 18,344 0.189 7.9 1.000 1.000 0.0 1.000 0.0 
Overall 2,461,911 0.129 10.1 0.712 0.684  0.654   
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these goals might in turn influence the selection of layers to use for 
ranking (Rowden et al., 2019). Equally, conservation planning analysis 
may aim to quantify the minimum area needed in order to protect a 
specific proportion of all species (e.g., Moilanen (2007); Sutcliffe et al. 
(2015)). Ultimately, decisions on which performance measures are used 
remain policy or stakeholder driven choices, even if implementation 
considerations are also important. 

Despite some of these uncertainties in being able to parameterise the 
conservation ranking analysis in the absence of good information on 
individual species’ distributions, some generalities emerge. We recom
mend the selection of a moderate number of classification groups, that 
balances out the complexity of the system under consideration with the 
ease of communication (e.g., in our case between 20 and 100 groups 
would be manageable – here 30 groups were sufficient). In addition, 
while we started our analyses using information describing spatial 
variation in species composition alone, addition of layers describing 
both species turnover and species richness significantly improved 
ranking performance, emphasising the value in using complementary 
measures of biodiversity distribution (as in more theoretical examples, 
e.g., Arponen et al. (2008)). We suggest equally weighting these 
different measures of biodiversity as a starting point, e.g., each of the 30 
layers of species composition and turnover weighted as 1 and the species 
richness layer weighted as 30 (so that on aggregate each group of layers 
has a weighting of 30). However, we have only explored these results 
using demersal fish in New Zealand – results may differ if using different 
taxa groups (e.g., benthic invertebrates, macroalgae, etc) or at different 
locations (with different patterns or strengths of environmental struc
turing). Where conservation objectives include broader suites of taxa, 
consideration is also required of how best to include distribution data for 
other taxonomic groups that are important contributors to marine 
biodiversity, including benthic invertebrates, pelagic species, and 

macroalgae. GF analysis provides options for merging several estimates 
of turnover (e.g., Ellis et al. (2012); Pitcher et al. (2012)) to facilitate this 
next step. However, further exploration into optimal group number and 
weighting may be required when expanding this methodology to new 
taxonomic groups. 

The methodology presented here addresses a key challenge in 
designing marine reserve networks, which is the availability of sufficient 
data to ensure representativeness of patterns of biodiversity and com
munity assemblages within an MPA network. A suite of ecological 
criteria are typically used in designing MPA networks (e.g., Clark et al., 
2014; Dunstan et al., 2016), with representation being one of many 
criteria typically also including protection for threatened taxa, areas 
important for life history stages, rarity and uniqueness. While this 
classification is based on demersal fish, other classifications have been 
developed to inform representation of other aspects of the oceans with 
limited sampling (pelagic environments: Kavanaugh et al., 2016; 
mesopelagic zone: Sutton et al., 2017; deep sea: Watling et al., 2013). A 
number of spatial planning approaches have used habitat maps and/or 
classifications in addition to other ecological criteria to inform place
ment of MPAs within a network (e.g., Evans et al., 2015; Everson, 2017; 
Virtanen et al., 2018). Classification approaches can also inform global 
priorities and targets for marine conservation by providing robust sci
entific representations of poorly sampled environments to inform more 
qualitative aspects of Aichi target 11 (Rees et al., 2018). These classifi
cations can be used to provide broad scale information in stakeholder 
planning processes, that include objectives of marine biodiversity pro
tection (Davies et al., 2018) as well as mitigating impacts of seafloor 
disturbance and other stressors (Cryer et al., 2016; Penney and Guinotte, 
2013). 
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