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Basking sharks (Cetorhinus maximus) were widely reported throughout New Zealand
waters. Once commonly observed, and sometimes in large numbers, basking sharks are
now infrequently reported. Basking shark observations are known to be highly variable
across years, and their distribution and occurrence have been shown to be influenced
by environmental predictors such as thermal fronts, chl-a concentration, and the
abundance of prey (zooplankton). Little is known of basking sharks in the South Pacific
and more information on distribution, habitat use, and migratory patterns is required to
better understand the species’ regional ecology. Here, we used bootstrapped Habitat
Suitability Models [HSM, ensembled from Boosted Regression Tree (BRT) and Random
Forest (RF) models] to determine the drivers of basking shark distribution, predict
habitat suitability and estimated uncertainty in the South Pacific for the first time.
High−resolution environmental (1 km2 grid resolution) and biotic data, including inferred
prey species, and all available basking shark records across New Zealand’s Exclusive
Economic Zone (EEZ) were included in the ensemble HSMs. The most influential driver
of modeled basking shark distribution was vertical flux of particulate organic matter at
the seabed, which may indicate higher levels of primary production in the surface ocean
and higher prey density in the mesopelagic zone and at the seafloor. The BRT and RF
models had good predictive power (AUC and TSS > 0.7) and both models performed
similarly with low variability in the model fit metrics. Areas of high basking shark habitat
suitability included the east and west coasts of the South Island, Puysegur Ridge, and
Auckland Island slope. The outputs produced here could be incorporated into future
management framework for assessing threat and conservation needs (e.g., spatially
explicit risk assessment) for this regionally protected species, as well as providing
guidance for future research efforts (e.g., areas of interest for sampling).

Keywords: New Zealand, species distribution models, boosted regression tree models, threatened species,
elasmobranch
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INTRODUCTION

The basking shark (Cetorhinus maximus) is a planktivorous
coastal-pelagic species widely distributed in the temperate and
tropical waters of the Atlantic and Pacific Oceans, and fringes of
the Indian Ocean (southern Australia, Indonesia, South Africa)
(Rigby et al., 2019). It is the second largest fish in the world after
the whale shark (Rhincodon typus), reaching an maximum size
greater than 10 m total length (Weigmann, 2016). Basking sharks
are known for their slow surface swimming behavior but may also
spend months at mesopelagic depths, and may dive to at least
1,264 m depth (Gore et al., 2008; Skomal et al., 2009; Dewar et al.,
2018). The species also engages in long distance migrations and
has been recorded crossing the Atlantic Ocean both from east to
west and from north to south (Skomal et al., 2009; Braun et al.,
2018; Dewar et al., 2018; Johnston et al., 2019). Recent genetic
analysis suggests high gene flow and weak genetic structuring
across the Atlantic and Pacific Oceans (Lieber et al., 2020).
Despite their large size, basking sharks remain elusive and data-
poor in the Pacific Ocean; habitat use and movement patterns in
the South Pacific, and more specifically around New Zealand, are
poorly understood.

New Zealand was once a hotspot for basking sharks in the
South Pacific Ocean. Historically, the species was common
in New Zealand coastal and offshore waters between 39◦S
and 51◦S. Most records were from south of Cook Strait
in cold, nutrient-rich waters along the Subtropical Front
(Francis and Duffy, 2002). Individuals and large schools
were most commonly reported during the spring and
summer months along the east coast of the South Island
and off Snares-Auckland Islands (Francis, 2017). Aerial
surveys for Hector’s dolphins (Cephalorhynchus hectori)
conducted around Bank’s Peninsula (east coast of the South
Island) reported large groups of over 100 individuals in the
early 1990s (Francis and Duffy, 2002). Subsequent aerial
surveys for basking sharks and Hector’s dolphins have not
seen any basking sharks. Only a few individuals are now
reported annually, primarily as fisheries bycatch (Francis,
2017). Beyond New Zealand, basking sharks have been very
infrequently observed across the South Pacific Ocean (Yatsu,
1995; Hernández et al., 2010).

Basking sharks are susceptible to exploitation from fishing due
to their naturally low population sizes, presumed slow growth
rates, and low reproductive rates (Francis, 2017). The species
was subject to targeted fishing throughout its range and while
most targeted fisheries ceased in the 2000s, basking sharks are
still taken as bycatch by a number of fishing gear types (e.g.,
trawl, trammel net, set net). Elsewhere they are threatened by
interactions with recreational vessels and commercial shipping
due to the species’ time spent at the surface (Austin et al., 2019;
Rigby et al., 2019). Population recovery has been low or negligible
up to two decades after fishing ceased (Fowler et al., 2005). In
2002, basking sharks were listed in Appendix II of the Convention
on International Trade in Endangered Species of Wild Fauna and
Flora (CITES, 2002), and in 2005, were listed on Appendices
I and II in the Convention of Migratory Species (CMS). In
2019, basking shark was assessed as globally Endangered by the

International Union for Conservation of Nature (IUCN) Red List
of Threatened Species (Rigby et al., 2019).

Basking sharks have been protected in New Zealand waters
since 2010. There are no specific management measures in place
for basking sharks, apart from mandatory reporting of captures
and the return of captured individuals to the sea. There are very
few fisheries independent data available and estimates of basking
shark bycatch likely underestimate the total New Zealand catches
because they do not account for captures in unobserved set
net fisheries and inshore trawl fisheries (Francis, 2017). Patterns
in unstandardized catch-per-unit-effort (CPUE) imply basking
sharks were captured in relatively large numbers in the late 1980s
and early 1990s, with peak bycatch occurring between 1988 and
1991 (Francis, 2017). Following this period, observed bycatch
rates declined substantially. Off the east coast of the South Island
raw CPUE peaked in 1991 at 81.9 sharks per 1,000 tows then
fell to zero reported captures from 2005–2016 (Francis, 2017). In
recent years, the species has occasionally been taken as bycatch in
trawl and set net fisheries, with trawl bycatch typically occurring
near or beyond the edge of the continental shelf (Francis and
Smith, 2010; Francis, 2017). It is unclear if the recent decline
in basking shark records in New Zealand is a result of a change
to fishing practices that are less likely to encounter basking
sharks, changes in regional availability of sharks, a real decline
in abundance or a combination of these (Francis, 2017).

Distributions of basking shark are known to be highly variable
between years, with up to 20 years between sightings reported
from some Northern Hemisphere locations (Dewar et al., 2018).
Their distribution and occurrence appears to be strongly linked
to zooplankton/prey abundance at smaller spatial scales, but the
drivers of broad scale distribution patterns are largely unknown
(Sims, 2008). In the Northern Hemisphere, environmental
predictors such as sea surface temperature (SST), thermal fronts,
chl-a concentration, and the abundance of zooplankton seem to
influence their distribution (Cotton et al., 2005; Austin et al.,
2019). However, without sufficient information on the species’
distribution, habitat use, and migratory patterns, it is difficult to
determine the cause of variability in abundance and distribution.

Correlative models that predict the occurrence of species in
relation to environmental variables (termed habitat suitability
models or species distribution models) have become an
important part of resource management and conservation
biology. Such models are capable of filling knowledge gaps on
spatial and temporal distributions and predicting areas of suitable
habitat for widely distributed species (Elith et al., 2006; Weber
et al., 2017). By relating species’ sightings to environmental
predictor variables, the abundance or probability of taxa presence
at a given location can be estimated along with a characterization
of the environmental drivers of species distributions. These
models are becoming increasingly popular for use on marine
species spanning large geographic and bathymetric ranges and
have been employed for a range of cetaceans (Stephenson
et al., 2020b), seabirds (Cleasby et al., 2020), and cartilaginous
fishes, including basking sharks in the Northeast Atlantic
(Austin et al., 2019).

Here, we combine functionally relevant, high−resolution
environmental data (1 km2 grid resolution) with data on

Frontiers in Marine Science | www.frontiersin.org 2 April 2021 | Volume 8 | Article 665337

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-08-665337 April 20, 2021 Time: 16:1 # 3

Finucci et al. Southwest Pacific Basking Shark Distribution

basking shark occurrences to predict basking shark habitat
suitability across New Zealand’s Exclusive Economic Zone (EEZ).
Unlike many habitat suitability models which include only
environmental data and primary productivity, here we had the
unique opportunity to also include high trophic level biotic data
(zooplankton prey densities). The distribution of prey is often
unavailable or overlooked, and at times, is a key predictor of
species’ distributions (Dormann et al., 2018; Carroll et al., 2019).
Understanding biotic interactions and their influence in driving
species’ distributions is important for predicting into unsampled
space because the trophic interactions that are at the core of
species habitat use may be better captured (e.g., more accurate
predictions due to climate change) (Araújo and Luoto, 2007).
Regional differences in drivers of species’ distribution can also be
present (Petatan-Ramirez et al., 2020). Thus, identifying factors
that drive basking shark distribution across the New Zealand
marine region is important for better understanding the species’
regional ecology and to direct and inform future research and
spatially explicit conservation efforts for this protected species.

MATERIALS AND METHODS

Study Area
The study area extends over 4.2 million km2 of the South
Pacific Ocean within the New Zealand EEZ (≈ 25–57◦S; 162◦E–
172◦W; Figure 1). New Zealand’s EEZ contains highly productive
zones of mixing between warm, higher salinity, nutrient poor,
northern waters, and cold, lower salinity, nutrient rich, southern
waters. These productive zones support high biological diversity
and a variety of customary, recreational, and commercial
fisheries (Bradford-Grieve et al., 2006; Leathwick et al., 2006;
Stephenson et al., 2018, 2020a). The New Zealand continental
shelf environment is influenced by a combination of climatic
features that produce a range of nearshore conditions, upwelling,
tidal mixing, and upper-ocean mixing. Surface and thermocline
waters of different origin are separated by three major fronts,
the Subtropical Front, the Subantarctic Front, and the Polar
Front, while the flow of bottom water is predominately carried
by the Deep Western Boundary Current (Chiswell et al., 2015).
New Zealand bathymetry is equally as complex, reaching abyssal
depths beyond 10,000 m in the Kermadec Trench and includes
over 800 distinct sea features (Rowden et al., 2005; Linley et al.,
2017).

Species Records
Basking shark records (n = 401) were collated from various
sources including records from observed and self-reported
captures in commercial fisheries, public sightings, media reports,
museum records, fishery surveys, aerial surveys and beach cast
specimens. Records variously included information on date,
number of individuals, geographic co-ordinates and source
(where available) and spanned a period of 131 years (1889–
2020). The only directed sampling effort for New Zealand basking
sharks were aerial surveys off the east coast of the South Island
over the summer months (January to March) of 2010–2011.
No sharks were observed during these surveys. The data were

groomed to ensure accurate identification and only records that
were confirmed or probable basking shark observations within
the New Zealand EEZ were retained. Where geographic co-
ordinates were missing an approximate position was assigned
based upon the description of the location. This was necessary
for all aerial survey records, media reports and public sightings.
Because of difficulties in correcting for differences in sampling
methods, all catch records were converted into presence records
(Elith et al., 2011; Stephenson et al., 2018). To minimize the
effect of spatial bias in the occurrence data, species records were
aggregated spatially to a 1 km2 grid resolution (Aiello-Lammens
et al., 2015; Stephenson et al., 2020b). Strandings and records
without an approximate date reference (month) were removed.
The final dataset included presence records of basking sharks at
369 unique sampling locations (Figure 1).

Environmental and Biotic Predictor
Variables
To characterize variability in the New Zealand marine
environment, spatial environmental and biotic variables
were collated at a 1 km2 grid resolution, with each spanning the
breadth of the New Zealand EEZ (Table 1 and Supplementary
Table 1, further details are available in Stephenson et al.,
2020a). In addition to these variables, spatial estimates of
various zooplankton densities (inferred prey for basking
shark) (Pinkerton et al., 2020) were used as biological
predictors in the models (Supplementary Table 1). Estimates
of zooplankton densities did not cover the entire New Zealand
EEZ (Supplementary Figures 1.9–1.15). Areas lacking this
information will simply represent the modeled relationship
between basking shark records and the environmental variables.
A preliminary examination of currently available zooplankton
density estimates reveals these are likely to cover core areas of
basking shark distribution.

Of the available environmental and biotic variables, a subset
was selected to be used in the models (Table 1) based on
model tuning described in section “Predictor Variable Selection.”
Although most of the chosen environmental variables were static
(e.g., bathymetry, Bathy), several variables were dynamic in
time, representing mean monthly statistics for the past 20 years
(e.g., chlorophyll-a concentration, Chl-a, “temporal resolution”
column in Table 1). The environmental data spans a much
shorter timeframe than the basking shark observations (131
years), and thus, long-term trends in habitat suitability could not
be examined. Prior to fitting of the habitat suitability models,
values for each environmental and biotic variable were extracted
for locations of basking shark records by overlaying the records
onto each of the environmental and biotic variable layers using
the “raster” package in R (Hijmans and van Etten, 2012).
For dynamic environmental variables (mean monthly statistics),
recorded dates of basking shark records were used to extract
respective values from the month the record was made.

Habitat Suitability Modeling
Habitat Suitability Models (HSMs) were used to analyze and
spatially predict the distribution of basking shark habitat
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FIGURE 1 | Map of the study region. New Zealand Exclusive Economic Zone (EEZ, black dashed line), bathymetry, and feature names used throughout the text
modified from Stephenson et al. (2020a), and the location of basking shark records used in this study (black dots).

suitability (measured as habitat suitability index—HSI).
Acknowledging that our environmental predictors are mean
(or mean monthly) averages for the past 20 years, we explored

models for two time periods: 1889–2020 (all data, n = 369)
and as subset of basking shark occurrence which matched
the time frame of our environmental predictors 2000–2020
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FIGURE 2 | Partial dependence plots of the mean boosted regression tree (BRT) and random forest (RF) models for the nine variables (time series 1889–2020),
showing the influence of each predictor variable on the response. Variables are ordered by influence as indicated in top left hand of plots. Shaded area represents
standard deviation.

(n = 123). The relationship between environmental variables,
biotic variables and basking shark records was explored
using ensemble predictions (Ensemble HSM) from Boosted
Regression Tree (BRT) and Random Forest (RF) models. This
approach limits dependence on a single model type or structural
assumption and may result in a more robust characterization
of the predicted spatial variation and uncertainties (Robert
et al., 2016). To estimate basking shark distributions, BRT and
RF models require locations of both presences (occurrence
records) and absences. Here, true absences (i.e., sample locations
where no basking sharks were recorded) were not available for
opportunistic records such as public sightings, media reports,
or museum records. True absences were also unavailable for the
non-opportunistic sampling methods (i.e., trawl tows, observer
records, scientific surveys), particularly from commercial records
which are complicated with the inclusion of multiple gear types
and fishing protocols (thus affecting catchability) and issues
regarding a lack of reporting of basking shark interactions
(Francis, 2017). Therefore, presence only modeling approaches
using pseudo-absences (i.e., locations where basking sharks were
not recorded within our study area) were necessary.

Pseudo-Absence Selection
A two-dimensional kernel density estimate (KDE) was produced
using all basking shark locations (presence data) using a cell size
of 1 km2 and a default bandwidth (Supplementary Figure 2).
Within the KDE, the 95% percentage volume contour (minimum

area in which 95% of the KDE value is located) was selected
(Calenge, 2006). The 95% KDE was used to create a probability
grid from which pseudo-absences were sampled according to
the probability of grid weights (that is, where KDE values were
high, the chance of selecting an absence was high) (Georgian
et al., 2019). Pseudo-absences were generated through random
selection of points from within the probability grid except within
a 1 km2-grid radius of the presence localities. By selecting pseudo-
absences in this manner, the pseudo-absences were subject to
the same sampling bias as the presence data. This method has
been shown to increase the accuracy of presence only BRT and
RF models (Elith et al., 2010; Cerasoli et al., 2017; Georgian
et al., 2019). Following recommended best practice, the number
of pseudo-absences selected by month were equivalent to the
number of monthly presences (Barbet-Massin et al., 2012).

Predictor Variable Selection
In most cases, the inclusion of many variables (e.g., >20 variables)
in tree-based machine learning models (i.e., BRT and RF) is
avoided because they only provide minimal improvement in
predictive accuracy, and complicate interpretation of model
outcomes (Leathwick et al., 2006). As the interpretation of
drivers of distribution of basking shark was a key requirement, a
reduction in the number of predictor variables was undertaken
in order to produce a parsimonious model. A BRT model
was initially fitted using all available environmental variables
which was then subjected to a simplification process whereby
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TABLE 1 | Spatial environmental and biotic predictor variables included in the final models, collated for species distribution models from Stephenson et al. (2020a).

Abbreviation Full name Temporal
resolution

Description Units

Bathy Bathymetry Static Depth at the seafloor was interpolated from contours
generated from various sources, including multi-beam
and single-beam echo sounders, satellite gravimetric
inversion, and others (Mitchell et al., 2012).

m

BPI_broad Bathymetric position
index_broad

Static Terrain metrics were calculated using an inner annulus of
12 km and a radius of 62 km using the NIWA bathymetry
layer in the Benthic Terrain Modeler in ArcGIS 10.3.1.1
(Wright et al., 2012). Bathymetric Position Index (BPI) is
a measure of where a referenced location is relative to
the locations surrounding it.

m

Chl-a Chlorophyll-a
concentration

Mean monthly A proxy for the biomass of phytoplankton present in the
surface ocean (to ∼30 m). Blended from a coastal Chl-a
estimate [quasi-analytic algorithm (QAA), local aph*(555)]
and the default open-ocean chl-a value from
MODIS-Aqua (v2018.0) (Pinkerton, 2016).

mg m−3

MLD Mixed layer depth Mean monthly The depth that separates the homogenized mixed water
above from the denser stratified water below. Based on
GLBu0.08 hindcast results using a potential density
difference of 0.030 kg m−3 from the surface. Models
used are: (1) hycom: from day 265 (2008) to present; (2)
fnmoc: from day 169 (2005) to present; (3) soda: from
day 249 (1997) to end of 2004; (4) tops: from day 001
(2005) to 225 (2010) (Pinkerton, 2016).

m

POCFlux Downward vertical flux
of particulate organic
matter at the seabed

Mean monthly Net primary production in the surface mixed layer
estimated as the VGPM model (Behrenfeld and
Falkowski, 1997; this table). Export fraction and flux
attenuation factor with depth estimated by refitting
sediment trap and thorium-based measurements to
environmental data (VGPM, SST) as (Lutz et al., 2002;
Pinkerton, 2016) and using data from Cael et al. (2018).

mgC m−2 d−1

Turbidity Particulate backscatter
at 555 nm (previously

used to generate
“turbidity”)

Mean monthly Optical particulate backscatter at 555 nm estimated
using blended coastal and ocean products. Coastal:
QAA v5 product bbp555 from MODIS-Aqua data.
Ocean: bbp_555_giop ocean product (Werdell, 2019).
Result calculated as long-term (2002–2017) average.

m−1

Slope Slope Static Bathymetric slope was calculated from water depth and
is the degree change from one depth value to the next.

Degree

SST Sea surface
temperature

Mean monthly Blended from OI-SST (Reynolds et al., 2002) ocean
product and MODIS-Aqua SST coastal product.
Long-term (2002–2017) average values at 250 m
resolution.

◦C

Copepoda Copepoda Static Copepods, including calanoid, other cyclopoid, and
harpacticoid copepods across at least 50 species. Most
abundant identified species include Calanus simillimus
(29%) and Ctenocalanus citer (27%) (Pinkerton et al.,
2020).

Counts per 5 nautical
mile Continuous

Plankton Recorder
(CPR) segment

Further details for each environmental variable are available in Stephenson et al. (2020a) and details on the biotic variables are available in Pinkerton et al. (2020). All other
environmental and biotic predictor variables are found in the Supplementary Table 1.

environmental variables were removed from the models, one at
a time, using the “simplify” function (Elith et al., 2006). This
simplification process firstly assesses the relative contributions
of each variable in terms of deviance explained, with the lowest
contributing variables removed from the model. The model is
then refitted with the remaining environmental variables. The
change in deviance explained that resulted from removing the
variable was then examined and the process repeated until
the deviance explained decreased by >1% between removal of
predictor variables. Despite having a relatively small influence on
the model, Chl-a was retained as this predictor was found to be
an important predictor of basking shark distribution elsewhere
(Austin et al., 2019).

The final variables retained for modeling were Bathymetry,
BPI broad, Chl-a, mixed layer depth (MLD), Turbidity, POCFlux,
Slope, and SST (Table 1), as well as Copepoda, a known prey
species for basking sharks (Grieve, 1966). Several environmental
variables showed some co-linearity (Supplementary Figure 3)
however, all levels of co-linearity were considered acceptable
for tree-based machine learning methods (Pearson correlation
< 0.75; Elith et al., 2010; Dormann et al., 2013). The “final”
environmental variables selected through this approach were also
used in RF models (Supplementary Table 1 and Supplementary
Figures 1.1–1.8). Partial dependence plots were made for the
BRT and RF models to evaluate the effect of each predictor on
species’ distribution by plotting the effect of the predictor on
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the response (basking shark presence) after accounting for the
average effects of all other model predictors (Elith et al., 2008).

Boosted Regression Tree Models
BRT modeling combines many individual regression trees
(models that relate a response to their predictors by recursive
binary splits) and boosting (an adaptive method for combining
many simple models to give improved predictive performance)
to form a single ensemble model (Elith et al., 2008). Detailed
descriptions of the BRT method are available in Ridgeway
(2007) and Elith et al. (2008). All statistical analyses were
undertaken in R (R Core Team, 2020) using the “Dismo”
package (Hijmans et al., 2017). BRT models were fitted with a
Bernoulli error distribution, a tree complexity of 2, a learning
rate of 0.01 (with parameters selected so as to fit trees for each
bootstrapped model), a bag fraction of 0.7 and random 10-fold
cross evaluation following recommendations from Leathwick
et al. (2006) and Elith et al. (2008). The BRT method has been
widely used in ecological applications and has performed well in
previous studies of fish, zooplankton, and cetacean distributions
in New Zealand (Leathwick et al., 2006; Compton et al., 2013;
Pinkerton et al., 2020; Stephenson et al., 2020b).

Random Forest Models
RF models fit an ensemble of regression (abundance data) or
classification tree (presence/absence data) models describing the
relationship between the distribution of an individual species
and some set of environmental variables (Ellis et al., 2012).
Following environmental and biotic predictor variable selection
using the BRT model, RF models were fitted using the R package
“randomForest” (Breiman, 2001) and were tuned using the train
function in the R package “caret” (Kuhn et al., 2020). The train
function selects optimal values for the complexity parameters
mtry (the number of variables used in each tree node), maxnodes
(the maximum number of terminal nodes in each trees), and ntree
(the number of trees to grow).

Bootstrapping the Models
BRT and RF models were bootstrapped 200 times. A random
“training” sample with a sample size equal to the number
of presence records was drawn with replacement. A random
sample of pseudo-absences of equal number was drawn without
replacement from the full set of available pseudo-absences
stratified by month (to match the monthly environmental data)
(Barbet-Massin et al., 2012) and the models were run using these
presence-pseudo absence records. Presence records which were
not randomly selected were combined with a random number of
pseudo-absences and were set aside for independent assessment
of model performance (referred herein as “evaluation” data).
At each BRT and RF model iteration, geographic predictions
were made using environmental predictor variables to a 1 km2

grid. Given that BRT and RF models used pseudo-absences,
we refer to our outputs as “habitat suitability” (rather than
the commonly used “probability of occurrence”) because we
did not have information on “catchability” or “sightability” of
basking sharks from the different sampling methods nor did
we have estimates of species prevalence (Anderson et al., 2016;
Georgian et al., 2019). HSI and a spatially explicit measure of

uncertainty (measured as the standard deviation of the mean
predicted HSI) were calculated for each grid cell using the 200
bootstrapped layers.

Model Performance
BRT and RF model performance were evaluated using AUC
(area under the Receiver Operating Characteristic curve) and
TSS (True Skill Statistic). AUC is an effective measure of model
performance and a threshold-independent measure of accuracy,
while the TSS is a threshold-dependent measure of accuracy,
but is not sensitive to prevalence (Allouche et al., 2006; Komac
et al., 2016). AUC scores range from 0 to 1, with a score of
0.5 indicating model performance is equal to random chance,
a score > 0.7 indicating adequate performance, and a score
> 0.80 indicating excellent performance (Hosmer et al., 2013).
TSS, which takes into account Specificity (correct prediction
of absence) and Sensitivity (correct prediction of presence) to
provide an index ranging from –1 to+1, where+1 equals perfect
agreement and –1 is no better than random, Allouche et al.
(2006). A TSS value > 0.6 is considered useful (Allouche et al.,
2006). Model fit metrics were calculated using both the “training”
dataset and the “evaluation” dataset. The latter is considered a
more robust and conservative method of evaluating goodness-of-
fit of a model than using the same data with which the model was
trained (Friedman et al., 2001).

Ensemble Models
We produced an ensemble model by taking weighted averages of
the predictions from each model type, using methods adapted
from Anderson et al. (2016, 2020) and Georgian et al. (2019).
This adapted procedure derives a two-part weighting for each
component of the ensemble model, taking equal contributions
from the overall model performance (AUC value derived from
the “evaluation”) and the uncertainty measure (SD) in each cell,
as follows:

W1BRT =
AUCBRT

AUCBRT + AUCRF
and

W1RF =
AUCRF

AUCBRT + AUCRF

W2BRT = 1−
SDBRT

SDBRT + SDRF
and

W2RF = 1−
SDRF

SDBRT + SDRF

WBRT =
W1BRT + W2BRT

2
and

WRF =
W1RF + W2RF

2
XENS = XBRT∗WBRT + XRF∗WRF

SDENS = SDBRT∗WBRT + SDRF∗WRF

where AUCBRT and AUCRF are the model performance statistics;
XBRT and XRF are the model predictions; SDBRT and SDRF
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are the bootstrap SDs; and XENS and SDENS are the weighted
ensemble predictions and weighted SDs, respectively, from
which maps of predicted species distribution and model
uncertainty were produced.

Measures of Uncertainty
Two measures of spatially explicit uncertainty were produced:
an estimate of our spatial coverage of species occurrence (95%
KDE) and the standard deviation of the predicted basking
shark distribution (i.e., model uncertainty). The calculated spatial
coverage of species occurrence was assumed to be indicative of
basking shark distributions, and thus, is presumed to have more
certain predictions of the species’ distribution of suitable habitat.
Where predictions were projected outside the spatial coverage of
species occurrence (i.e., where there are few or no sightings), it
is assumed that the relationship between the environment and
species’ records may be less robust and thus predictions outside
this range contain some degree of uncertainty (e.g., similarly
to the methods used in Stephenson et al., 2020b). Standard
deviation (SD) of the mean predicted habitat suitability were
estimated through the bootstrapping methods outlined in section
“Bootstrapping the Models” and are provided as uncertainty
estimates of basking shark distribution.

Ensemble model performance was assessed using AUC and
TSS by comparing ensemble model predictions to all basking
shark presence records and an equal number of randomly
selected pseudo-absence data. To ensure that the random
selection of pseudo-absence data did not provide misleading
model performance metrics, this procedure was iterated 50 times
and mean AUC and TSS score calculated for the ensemble
model (Barbet-Massin et al., 2012). Ensemble partial dependence
plots were created with an average of the BRT and RF partial
dependence plots.

Model performance and outputs for the two time-series were
found to be very similar and the outputs for the longer time
series (1889–2020) are reported in the Results. The final model
shown here is a temporally and spatially smooth prediction of
basking shark HSI in New Zealand waters. By including all
available data points, the model has retained a substantial amount
of the New Zealand environment, including areas known to
be historically important for basking sharks (e.g., east coast of
the South Island). Inclusion of historical data across a long
temporal span has been shown to achieve the highest model
performance in SDMs, particularly when presence-only data
is available (Lütolf et al., 2006). Model performance, partial
dependence plot and predicted habitat suitability for the shorter
time series (2000–2010) are found in the Supplementary Table 2
and Supplementary Figures 8, 9).

RESULTS

Basking Shark Records
Of the records retained for use in the models, most basking
shark records (72%, n = 265) occurred in the spring and summer
months (September to February). Most (69%) records came from
fishing interactions (trawl = 244, set net = 7, surface longline = 3),

followed by public sightings (13%, n = 47), aerial surveys (11%,
n = 41), research vessels (4%, n = 14), and alternative capture
methods (e.g., harpoon) or unknown sources (4%, n = 13). Since
2000, most records (84%, n = 103) have been from fishing events,
with one aerial record and 19 opportunistic sightings. The most
recent coastal sighting and coastal fishing interaction (set net)
occurred in March 2012 and August 2014, respectively, and the
last known report of a school (≥3 individuals) was from April
2013 where seven individuals were captured in one trawling
event. Estimated lengths were available for 169 records (42%);
32 records were <5 m (19%), 126 records were 5–10 m (74.5%),
and 11 records were >10 m (6.5%) (Supplementary Figure 4).
For observations where length was recorded, sex was available
for 81 of these records (20% of all basking shark observations).
Most sharks (89%, n = 72) were male and nine (11%) were female
(Supplementary Figure 5).

Model Performance
AUC and TSS scores using evaluation data were very similar
between models, with the RF model performing slightly
better than the BRT model (AUC: 0.92 and 0.89; TSS: 0.72
and 0.69, respectively, Table 2). Both indices indicated the
models were useful in predicting basking shark occurrence
(>0.7). Measures of BRT and RF model performance scores
had low variability (measured by the standard deviation
of the mean), suggesting the models were performing
consistently across bootstrap samples. Model fits between
training data and evaluation data were similar, with model
fits for the evaluation data slightly lower than the training
data (as would be expected). The similarity of these fits
provides some indication that the training data were not
overfitted in the models.

Variable Selection and Contribution
The relative importance of each predictor and their influence
on basking shark habitat suitability were consistent across BRT
and RF models (Supplementary Figures 6, 7). The three most
important variables in predicting basking shark habitat suitability
were vertical flux (POCFlux, with 26.0% influence on the
response), slope (Slope, 14.1%), and turbidity (Turbidity, 10.6%)
(Figure 2). Bathymetry (Bathy, 9.7%) and BPI broad (BPI broad,
9.6%) were also moderately important variables. There was a
strong positive relationship of predicted basking shark HSI with
vertical flux, highest in areas where vertical flux was 20 mgC
m−2 d−1 or greater than what would be expected for the given
depth. High HSI was predicted in gently sloping and less complex
seafloor topographies with moderate turbidity. Two depth strata
had high HSI—nearshore depths and depths between 200 and
550 m. A less clear relationship was observed between HSI and
SST and mixed layer depth (MLD), with low HSI occurring
between temperatures of 12.5 and 15◦C and in areas where the
mixed layer depth was approximately 75 m. There was a weak
relationship between HSI and copepod (Copepoda) densities,
with low HSI occurring with low levels of copepod densities, a
peak in HSI at moderate copepod densities (10–20 counts per
5 nautical miles), and a plateau in HSI values at the highest
levels of copepod densities (>25 counts per 5 nautical miles).
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TABLE 2 | Mean cross-validated estimates of model performance for the bootstrapped boosted regression tree (BRT) and random forest (RF) models (time series
1889–2020).

Years Model type Deviance
explained

(training data)

Deviance
explained

(evaluation data)

TSS (training
data)

TSS (evaluation
data)

AUC (training
data)

AUC (evaluation
data)

1889–2020 BRT model 0.60 ± 0.03 0.36 ± 0.10 0.92 ± 0.02 0.69 ± 0.05 0.95 ± 0.01 0.89 ± 0.03

RF model 0.75 ± 0.02 0.52 ± 0.07 0.88 ± 0.02 0.72 ± 0.04 0.98 ± 0.00 0.92 ± 0.02

HSI was lowest at moderate levels of chl-a concentration (Chl-
a) (0.5–1.0 mg m−3) and highest at high chl-a concentration
(>1.2 mg m−3).

Predicted Basking Shark Distributions
Areas of predicted high habitat suitability for basking sharks
in New Zealand waters occurred along the continental slope,
particularly along the 250 m contour along the North and South
Islands, Mernoo Bank, Pukaki Rise, Puysegur Ridge, and around
New Zealand’s offshore islands (Chatham Islands, Stewart Island,
Bounty Islands, and Auckland Islands) (Figures 3, 4). Within
the spatial coverage of species occurrence, areas of moderate
uncertainty (SD > 0.2) included most offshore waters north
of 40◦S, the deeper depths (>500 m) of the Hokitika Canyon,
northern Chatham Rise, coastal waters off east coast of the
South Island (Canterbury Bight), Foveaux Strait and Puysegur
Ridge (Figure 5). The northern North Island and features further
from the continental shelf, including the eastern half of the
Chatham Rise were outside of the estimated spatial coverage
(95% KDE) of species occurrence. In addition, moderate—high
uncertainty (SD > 0.2) was reported along deep sea features north
of New Zealand, including the Kermadec Ridge and Trench, the
Lau-Colville Ridge, and the Norfolk Ridge (Figure 5).

DISCUSSION

This study has provided the first insight into habitat suitability for
basking sharks in the Southwest Pacific. Our approach assessed
habitat suitability by incorporating a combination of static and
temporally dynamic environmental (n = 7), biotic (n = 1), and
inferred prey (n = 1) predictors into ensembled HSI models. The
BRT and RF models had good predictive power (AUC and TSS >
0.7) and both models performed similarly with low variability in
the model fit metrics. The outputs produced here will be useful for
fisheries risk assessment (e.g., spatially explicit risk assessment),
as well as providing guidance for future research efforts (e.g.,
areas of interest for future sampling). However, caution should
be considered given the relatively few species presence records
and lack of true absence data.

Drivers of Predicted Basking Shark
Distribution
Basking shark habitat suitability was largely influenced by
variables representing ocean processes. The environmental
predictors used in this work were comprehensive and many were
dynamic (i.e., monthly means were available). Overall, areas with

high levels of vertical flux of particulate organic matter at the
seabed had high habitat suitability. This is likely indicative of
higher levels of primary production in the surface ocean and
higher prey density in the mesopelagic zone and at the seafloor
and may be a suitable proxy when prey data is unavailable.
The biotic predictive layers included here were found to have
lower influence on habitat suitability compared to some of the
environmental predictors. However, prey availability is highly
patchy and temporally variable; thus, it is likely that a static
variable reflecting prey abundance was unable to accurately
represent the spatial distribution of prey. The inclusion of biotic
predictors in the model is important in understanding species’
relationship with the marine environment in unobserved space
and has been identified as a potential link in understanding
effects of climate change. In the Northeast Atlantic, basking
sharks are often observed in shallow, highly productive coastal
waters during spring and summer months where they feed
on zooplankton blooms (Sims, 2008). Historically, basking
sharks were commonly observed in similar environments (e.g.,
east coast of the South Island) around New Zealand (Francis
and Duffy, 2002). Although prey preference for New Zealand
sharks is poorly understood, there is some relationship between
New Zealand basking shark distribution and copepod abundance,
as seen in the North Atlantic (Sims and Merrett, 1997).

The inclusion of dynamic (mean monthly) environmental
variables here may allow the models to capture temporal change
in patterns of basking shark distribution, including seasonal
changes and interannual variability. Despite the availability of
dynamic environmental predictors, true temporal changes in
distribution are difficult to confirm due to the limited amount of
biological data (basking shark observations) available. However,
in our results, both inshore and offshore regions were highlighted
as areas of high habitat suitability. This is particularly evident in
the bimodal effect of the bathymetry predictor, where basking
shark habitat suitability was observed to be highest in very
shallow depths (<100 m), and again at depths between 200
and 500 m. This result is consistent with previous work where
basking sharks have been shown to exhibit seasonal vertical
space use in the Northeast Atlantic, with tagged individuals
occupying shallow depths (<100 m) in the summer months
and depths greater than 1,000 m in late winter/early spring
(Doherty et al., 2019).

While bathymetry (and slope) were also found to be important
predictors, their effect may be partially influenced by basking
shark availability to fisheries (see below). Basking sharks have
been shown to dive as deep as 1,264 m and have been regularly
documented at depths of 600–1100 m (Francis and Duffy, 2002;
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FIGURE 3 | The predicted habitat suitability index (HSI) of basking shark in the New Zealand Exclusive Economic Zone (EEZ) from 1889 to 2020 modeled using the
bootstrapped ensemble models for (A) west coast South Island; (B) east coast South Island; (C) south of South Island including Puysegur Ridge and Stewart Island;
(D) Chatham Islands; and (E) Auckland Islands. Areas outside 95% kernel density estimate (KDE) probability grid indicating lower confidence that can be placed in
the predicted probability occurrence are covered by crossed black lines. Note that the Chatham Islands (D) is outside the KDE probability grid estimate.

Gore et al., 2008; Doherty et al., 2017). The species has also
been shown to follow distinct water masses at depth, remaining
at depths of 250 m or more for months without coming to
the surface (Braun et al., 2018; Dewar et al., 2018). Basking
sharks are known for complex diel vertical movements, which
are thought to be influenced by shifts in prey availability and
oceanography (Sims et al., 2005; Dewar et al., 2018). In well-
stratified deep waters, basking sharks exhibit normal diel vertical
movements (shallow depths at night, deeper depths during
daylight), while sharks occupying inshore, inner-shelf areas near
thermal fronts conduct reverse diel vertical movements (shallow
depths during the day, deeper depths at night) (Sims et al.,

2005). This may explain, at least in part, why more contemporary
reports of basking sharks in deepwater fisheries have been
made during daylight hours (when sharks are occurring at their
preferred deeper depth range) but does not offer insight into the
disappearance of inshore observations or why individuals are no
longer seen at the surface in the region.

Water temperature had relatively minimal influence on
basking shark distribution. Basking sharks appear to have a
broad thermal range and are therefore relatively unrestricted
by temperature (Sims et al., 2003). They are also known to
cross tropical regions by submerging into deeper, colder water
(Skomal et al., 2009), and one individual was encountered in

Frontiers in Marine Science | www.frontiersin.org 10 April 2021 | Volume 8 | Article 665337

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-08-665337 April 20, 2021 Time: 16:1 # 11

Finucci et al. Southwest Pacific Basking Shark Distribution

FIGURE 4 | The predicted habitat suitability index (HSI) of basking shark in the New Zealand Exclusive Economic Zone (EEZ) from 1889 to 2020 modeled using the
bootstrapped ensemble models. Areas outside 95% kernel density estimate (KDE) probability grid indicating lower confidence that can be placed in the predicted
probability occurrence are covered by crossed black lines.

tropical waters off Indonesia (Fahmi and White, 2015). While
gradual changes in sea temperatures may have minimal effect
on basking sharks, ocean heat waves and extreme processes
associated with SSTs might be more relevant and are expected
to become more prevalent with climate change. By 2100, climate

change projections predict SST will increase by 2.5◦C, which in
turn is predicted to lead to a deepening in the surface mixed
layer depth (by 15%), declines in primary production (4.5%) and
particle flux (12%); the largest changes in macronutrients are
predicted in eastern Chatham Rise and southern Sub-Antarctic
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FIGURE 5 | Standard deviation (SD) of the predicted habitat suitability index (HSI) of basking shark in the New Zealand Exclusive Economic Zone (EEZ) from 1889 to
2020 modeled using the bootstrapped ensemble models. Areas outside 95% kernel density estimate (KDE) probability grid indicating lower confidence that can be
placed in the predicted probability occurrence are covered by crossed black lines.

waters (Law et al., 2018). Such changes may alter food availability
(prey distribution and abundance) for basking sharks resulting in
shifts in their distribution.

Predictors found to positively influence basking shark HSI
could be further explored to better understand historic and
future basking shark distribution. Predictors including chl-a
concentration and vertical flux are often used as an index of
phytoplankton abundance (primary production) and are strongly

linked to primary consumers such as copepods. In recent decades,
dramatic shifts in chl-a concentration have been reported in
the South Pacific and the Southern Oceans (Del Castillo et al.,
2019). Significant declines in chl-a concentration were observed
in spring and summer months in the South Pacific from 1979 to
2000, while significant increases were linked to extreme summer
marine heatwaves in the Southern Ocean between 2002 and
2018 (Gregg and Conkright, 2002; Montie et al., 2020). Highly
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variable oceanographic conditions around New Zealand are
strongly correlated with climate phenomenon such as El Niño–
Southern Oscillation (ENSO) (Bradford-Grieve et al., 2006). In
the Northern Hemisphere, basking shark movement patterns
have been linked to shifts in prey availability and oceanography
(Sims et al., 2005; Gore et al., 2008; Dewar et al., 2018).
One tagged individual was shown to remain in an area with
putative upwelling and high abundance of phytoplankton in
the Western Atlantic for up to a month (Gore et al., 2008).
In the Northeast Atlantic, a northward shift in basking shark
distribution in response to long-term zooplankton declines was
found to correspond with declines in basking shark catch in
Irish fisheries to the south from 1948 to 1975 (Sims and Reid,
2002). Similar models used in this project could be explored
to predict basking shark distribution response to future climate
change forecasting and events such as ENSOs [e.g., Earth System
Models, Anderson et al. (2020)].

Basking Shark Habitat Suitability in
New Zealand
Areas of high basking shark habitat suitability included the
east and west coasts of the South Island, Puysegur Ridge,
and the Auckland Island slope. Some areas of Chatham Rise,
specifically around Mernoo Bank (including Mernoo Saddle)
and off the southern slope of Pitt Island (Chatham Islands),
were also identified as areas of high habitat suitability. Much
of Chatham Rise, however, was outside the spatial coverage
of species occurrence and thus habitat suitability predictions
hold a higher degree of uncertainty. Chatham Rise is a
known hotspot for chondrichthyan diversity in New Zealand
waters (Wetherbee, 2000), but interestingly, basking sharks
have very rarely been reported from the area. Chatham Rise,
as well as Puysegur Ridge, have relatively low densities of
copepods (see Supplementary Figure 1.9) and may not be
optimal feeding grounds for basking sharks. However, in
international waters east and north-east of Chatham Rise,
15 juvenile basking sharks (180–310 cm total length) were
reported by Japanese drift net vessels operating at shallow
depths (10 m) (Yatsu, 1995). This report suggests juvenile
sharks may inhabit epipelagic waters in the open ocean
(Francis, 2017).

Given the long temporal span of the data, model predictions
may be more representative of past, rather than current habitat
suitability, particularly some inshore parts of the predicted
distribution. Basking sharks are occasionally recorded from
northern New Zealand and were reported to be regular visitors
to the Hauraki Gulf during spring in the late nineteenth century
(Cheeseman, 1891). The predictions presented here are smoothed
over time, as there is a mismatch between the availability
of basking shark records (131 years) and environmental data
(approximately 20 years). It is possible that the models have
highlighted seasonal patterns of distribution by indicating both
inshore and offshore regions as areas of high habitat suitability
with the presence of bimodality in the bathymetry HSI. However,
these patterns could also be indicative of a shift to deeper, offshore
habitats in recent decades.

There were several areas where the spatially explicit
uncertainty (measured as the SD) was relatively high, indicating
the relationship between basking sharks and the environment
was more uncertain. Our understanding of basking shark use
of the pelagic habitat remains relatively unknown, largely due
to the spatial bias in observations (e.g., lack of open ocean
pelagic research surveys). In areas with high uncertainty, such
as Cook Strait, the northern Chatham Rise, and Foveaux Strait,
few basking shark sightings where available and uncertainty
might be linked to low sample size. Uncertainties regarding the
most northern predictions of habitat suitability (north of 40◦S)
may, in part, be explained instead by a lack of information on
copepod density north of 40◦S (Pinkerton et al., 2020), but is
more likely associated with a lack of basking shark data. Despite
a lack of surface sightings around northern New Zealand, there
is some evidence of basking shark captures in deepwater trawl
fisheries off central Hawke’s Bay. Basking sharks may be present
along the upper slope around northern New Zealand but there
is no fisheries-independent data (research or public sightings) to
indicate their presence. In the Kermadec Islands where there is
minimal human presence, there is one unconfirmed stranding of
a basking shark from Raoul Island (Morton, 1957).

The estimate of spatial coverage of species occurrence (top
95% of the KDE of basking shark occurrences) provides
a representation of the likely geographic (and in turn
environmental) space occupied by basking sharks within
New Zealand waters. Predicted distribution outside of this area,
should be treated with caution as this represents prediction
into largely unsampled space. In this study, the environmental
threshold reflects the distribution of presences only—and
thus retains any spatial biases associated with these datasets.
In particular, the spatial distribution of presences is related
to the distribution of fishing effort and human population
centers (for opportunistic sightings) and may not be an accurate
representation of hotspots. However, using the top 95% of the
KDE of basking shark occurrences provides a more conservative
estimate of this species’ spatial distribution, which can be useful
in determining when modeled predictions are occurring outside
of sampled environmental space. This measure provides a
meaningful threshold with which to classify broad areas as
“uncertain.”

Future Directions
The lack of basking shark records in New Zealand waters
during recent years highlights the need to better understand
their overall abundance, distribution, movements, and habitat
use in the South Pacific Ocean as well as changes to the
sighting effort. Currently data collection on the species in the
Southern Hemisphere is heavily reliant on interactions with
fisheries, especially trawl fisheries (Francis and Smith, 2010;
Hernández et al., 2010; Lucifora et al., 2015; Francis, 2017).
Because of this, our knowledge of New Zealand basking shark
distribution is essentially limited to areas of relatively high
historic and current trawl fishing effort (Clarke et al., 2017;
Baird and Wood, 2018). Most basking shark interactions occur
during the spring-summer months, corresponding to when
fishing vessels target commercially important species, such as

Frontiers in Marine Science | www.frontiersin.org 13 April 2021 | Volume 8 | Article 665337

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-08-665337 April 20, 2021 Time: 16:1 # 14

Finucci et al. Southwest Pacific Basking Shark Distribution

spawning aggregations of arrow squid (Nototodarus sloanii)
(Hurst et al., 2012). As a protected species, it is mandatory
to report basking shark interactions with fisheries. However,
there is uncertainty in the levels of reporting, and observer
coverage is relatively low in some fisheries (e.g., inshore fisheries),
particularly around northern New Zealand, so that presence
records are likely underestimated (Francis, 2017). Understanding
habitat use will assist in assessing risk to fishing activities and
could be incorporated into management frameworks such as the
spatially explicit risk assessment that New Zealand has in place
for other protected species (Large et al., 2019).

Identifying areas of high habitat suitability could also assist in
decision making processes for future research efforts. Previous
research has identified the need to tag free-swimming basking
sharks to better understand species movement, habitat use, and
interactions with fisheries (Francis, 2017). This will require the
ability to find individuals at the surface, and at an accessible
location. Meeting these requirements has prevented any efforts
of tagging New Zealand basking sharks to date. In the Atlantic
Ocean, basking sharks have been successfully tagged off Cape
Cod, Massachusetts and the west coast of Scotland and Isle of
Man (Skomal et al., 2009; Doherty et al., 2017; Hawkes et al.,
2020) and in the Pacific, off San Diego and Monterey Bay,
California (Dewar et al., 2018). By identifying areas of high
habitat suitability, research efforts can be directed to specific
areas of interest to increase the tagging success. For example,
the Auckland Islands has been identified as an area of high
habitat suitability for basking sharks where basking sharks were
historically sighted at the surface (Parrott, 1958). This area is
also a known hotspot for other large filter-feeding vertebrates
that feed along the Subtropical Front (STF), a continuous feature
within the Southern Tropical Convergence at latitudes 39◦–42◦S,
characterized by elevated primary productivity (Murphy et al.,
2001; Rayment et al., 2015; Mackay et al., 2020). Southern Ocean
oceanographic fronts have been identified as important foraging
areas for a range of marine predators (Bost et al., 2009) and may
also be important for basking sharks.

Differences in habitat suitability among sexes or size classes, a
common observation among sharks, were not examined at this
time due to the relatively small sample size of basking sharks
across the region and low availability of size and sex data for most
records. This information is becoming more readily available
through fisheries observer data collection and should be explored
further in the future. New Zealand has a considerable number
of records of small (<5 m) sharks, accounting for nearly 20%
of records where length has been recorded. Some of the most
recent reports of basking sharks in New Zealand waters have been
juvenile individuals, including a 3 m female captured east of the
Auckland Islands in January 2018 and a 3.3 m male captured off
the west coast South Island in August 2020. Both individuals were
released alive. Continued collection of biological data on basking
sharks is essential for understanding differences in habitat use
across life history stages, particularly for juvenile basking shark
as they are globally rare and their habitat preference is unknown.

More data on at-sea distribution of basking sharks is required
to understand habitat use, threat overlap, and population status
throughout the New Zealand and South Pacific region. The total

South Pacific basking shark population size is unlikely to be
high; in the Northeast Atlantic, basking shark numbers likely do
not exceed 10 000 individuals (Lieber et al., 2020). With little
population differentiation across global regions, it is plausible
that basking sharks observed in New Zealand waters engage
in large scale intra- and inter-oceanic migrations (Lieber et al.,
2020). This may make species’ detection more difficult in the vast
marine space of New Zealand’s EEZ. In the past, aerial surveys
have been successful in detecting basking sharks distributed over
relatively large spatial scales in New Zealand, and elsewhere for
estimating regional population sizes (Francis and Duffy, 2002;
Westgate et al., 2014). However, surveys conducted in 2010–2011
off Banks Peninsula failed to locate any basking sharks (Chapman
and Duffy, 2011). These surveys have not been repeated since.
Basking sharks may travel or feed in subsurface habitat, and
therefore go undetected in aerial surveys. Alternative means of
tracking these animals, such as autonomous underwater vehicles
(AUV) (Hawkes et al., 2020) offer great potential for the future.
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