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Methods that predict the distributions of species and habitats by developing statistical
relationships between observed occurrences and environmental gradients have become
common tools in environmental research, resource management, and conservation.
The uptake of model predictions in practical applications remains limited, however,
because validation against independent sample data is rarely practical, especially at
larger spatial scales and in poorly sampled environments. Here, we use a quantitative
dataset of benthic invertebrate faunal distributions from seabed photographic surveys
of an important fisheries area in New Zealand as independent data against which to
assess the usefulness of 47 habitat suitability models from eight published studies in
the region. When assessed against the independent data, model performance was
lower than in published cross-validation values, a trend of increasing performance over
time seen in published metrics was not supported, and while 74% of the models were
potentially useful for predicting presence or absence, correlations with prevalence and
density were weak. We investigate the reasons underlying these results, using recently
proposed standards to identify areas in which improvements can best be made. We
conclude that commonly used cross-validation methods can yield inflated values of
prediction success even when spatial structure in the input data is allowed for, and that
the main impediments to prediction success are likely to include unquantified uncertainty
in available predictor variables, lack of some ecologically important variables, lack of
confirmed absence data for most taxa, and modeling at coarse taxonomic resolution.

Keywords: habitat suitability, species-environment models, distributions, deep sea, benthos, epifauna, predictive
models, AUC

INTRODUCTION

Understanding and managing ecosystem effects of human activities, such as bottom-contact fishing
and mineral extraction in the deep sea (depths greater than ca. 200 m), requires quantitative
information on the distributions of benthic habitats and fauna (Kaiser et al., 2016; Pitcher et al.,
2017). Because such information is generally sparse in waters beyond coastal areas, management
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decision-making relies increasingly on outputs from habitat
suitability models (also known as species distribution models),
which develop correlations between point-sampled faunal
occurrence records and spatially continuous environmental
variables to predict probabilities of suitable habitat or taxon
occurrence across unsampled environmental space (Guisan and
Zimmermann, 2000; Elith and Leathwick, 2009; Guisan et al.,
2013; Vierod et al., 2014; Reiss et al., 2015). Methods commonly
in use include Boosted Regression Trees (BRT, Friedman et al.,
2000; Leathwick et al., 2006; De’ath, 2007), Generalized Additive
Models (GAM), Maximum Entropy (MaxEnt, Phillips et al.,
2006), and Random Forests (RF, Breiman, 2001). These and other
types of habitat suitability models are in constant development
(e.g., Warton et al., 2015) and are used increasingly in a broad
range of applications (Guisan et al., 2013; Robinson et al.,
2017; Araujo et al., 2019). The fundamental requirements of all
methods, however, are the same: accurate and sufficient point-
sample data about where a taxon has been recorded and, ideally,
where it is has been confirmed to be absent, and accurate and
ecologically relevant environmental data as continuous layers
spanning the region of interest.

The relative paucity, patchiness, and taxonomic selectivity of
available faunal sample data in the deep sea, a lack of spatial
resolution and local validation of environmental layers, and
limited understanding of biotic interactions and historical factors
that might influence present distributions, in combination, can
result in high levels of uncertainty being associated with the
outputs from habitat suitability models (Fielding and Bell, 1997;
Araujo and Guisan, 2006; Vierod et al., 2014; Reiss et al., 2015;
Anderson et al., 2016a). This uncertainty is exacerbated by the
cross-validation methods commonly used to evaluate model
performance, in which subsets of the input taxon occurrence
data are withheld from the model and used as test sites to assess
predictions. While this approach is practical, it can generate
overly optimistic values of model performance (Bahn and Mcgill,
2013; Ploton et al., 2020) that may not be supported by field
validation (Anderson et al., 2016a) because the data used in cross-
validation methods are not independent from those used to build
the model itself and are likely to be spatially biased (e.g., Lobo
et al., 2008; Ploton et al., 2020).

Evaluation against data collected independently of those used
in the modeling process is the most convincing approach to
model assessment because it is directly relevant to the way
in which model predictions are used in practice: if we are to
have confidence in the model outputs, we need to know how
reliable they are in relation to independent observations of the
target taxa (Verbyla and Litvaitis, 1989; Fielding and Bell, 1997;
Pearce and Ferrier, 2000; Araujo et al., 2019). An important
point here is that such independent observations should be
made using methods that detect the taxa of interest reliably. In
most studies of benthic invertebrate taxa in the deep sea, taxon
occurrence data are compiled from sampling methods, typically
demersal fish trawls, that are not efficient at catching benthos,
leading to unquantified uncertainty in relation to detection and
selectivity. Evaluation against independent data is rare, however,
for the same reasons that habitat suitability modeling itself is a
useful tool. That is, sample data about species’ occurrences are

usually sparse because such data are time-consuming, logistically
challenging, and expensive to collect and habitat suitability
modeling approaches have been developed as a more pragmatic,
rapid, and affordable way to map distributions. However,
because independent validation of models is rarely undertaken,
confidence in their predictions can be low, limiting their
credibility for use in environmental management (Anderson
et al., 2016a; Winship et al., 2020). Model uncertainty can
be reduced by development of more sophisticated modeling
methods or by increasing the quality and quantity of data inputs
but without evaluation of performance against independent data,
we cannot be sure that such developments translate into practical
gains. Therefore, in places where successive models have been
developed, with progressive updates to input data and modeling
techniques, it is important to understand whether more recent
models represent improvements in terms of increased prediction
accuracy and thereby build confidence in their use for fisheries
and other management purposes.

In New Zealand and the wider southwest Pacific region,
growing concern about the ecosystem effects of fisheries and
potential seabed mineral extraction operations has stimulated
interest in improving knowledge about the distributions of
seafloor fauna (Rowden et al., 2019). Habitat suitability modeling
has been used in several studies of seafloor faunal distributions,
mostly for sessile invertebrate taxa such as corals and sponges
that are recognized as being particularly sensitive or vulnerable
to anthropogenic disturbances (e.g., Tracey et al., 2011; Anderson
et al., 2014) but also for demersal fishes (Leathwick et al., 2006)
and mobile benthic fauna (Compton et al., 2013; Bowden et al.,
2019a). The potential of habitat suitability modeling methods
to predict distributions across unsampled space is of particular
appeal in the region because, despite being rich in biological and
mineral resources, relatively little of its seafloor has been surveyed
in detail, other than in areas of particular interest for fisheries
research. Many of the broad-scale habitat suitability modeling
initiatives in this region arose as direct or indirect consequences
of concerns about the seabed impacts of commercial bottom-
contact fisheries. Bottom trawl fisheries target hoki (Macruronus
novaezelandiae) and other demersal species on smooth substrata
over large areas of New Zealand’s Exclusive Economic Zone
(EEZ) in depths of 300–1,400 m and deep-sea species including
orange roughy (Hoplostethus atlanticus), oreo (Oreosomatidae),
and alfonsino (primarily Beryx splendens) on seamounts and
other underwater topographic features throughout the region
(Fisheries New Zealand, 2020). Much of what is known about
the distributions of non-target seafloor taxa comes from bycatch
records from these fisheries and the research trawl surveys that
inform catch advice for them (O’Driscoll et al., 2011), and most
habitat suitability models in the region have been based on
occurrence data from these records in combination with records
from museum and other specimen collection databases.

The only evaluation of deep-sea habitat suitability model
predictions using data collected independently and by methods
designed to detect the target taxa to date in the region is
the study of Anderson et al. (2016a), in which the authors
of the present paper first developed models for cold-water
coral taxa, then designed and ran a seabed photographic
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survey specifically to test their predictions on the Louisville
Seamount Chain to the east of New Zealand. We found that
the models performed poorly in practice and attributed this
to a number of potential factors, including a lack of reliably
supported taxon absence records, low precision of available
environmental variables, particularly bathymetry, and lack of
ecologically relevant variables, such as substrate type, which are
key determinants of benthic taxon distributions. In light of these
results and a general lack of confidence in modeled distributions
for use in environmental management, Fisheries New Zealand
and the National Institute of Water and Atmospheric Research
initiated a project to independently assess the predictive
performance of existing models and improve confidence in future
predictions. Focusing on a major fisheries area in New Zealand,
Chatham Rise, the first stage of this project was to generate a fully
independent, quantitative, dataset of seabed faunal distributions
derived from photographic surveys that would enable objective
assessment of existing habitat suitability models for the region
(Bowden et al., 2019b).

Here, we use this independent dataset to assess the usefulness
of outputs from published habitat suitability models for the
region. We first use best-practice model building standards
proposed by Araujo et al. (2019) to rank the existing models
in order of their expected predictive performance, then by
comparing model predictions against the independent data, we
generate five metrics describing performance: area under the
receiver operating characteristic curve (AUC); true skill statistic
(TSS); results from t-tests comparing the mean of published
model probability values for all locations at which a taxon was
present in the independent test data against the mean value
for locations at which it was absent; and correlation strength
between predicted probability of suitable habitat for a given
taxon and both its prevalence in the test data (R2

prev) and its
standardized population density in the test data (R2

dens). We use
these metrics to assess how well each model performs in absolute
terms, and to rank them in order of realized performance, which
we hypothesize should match the expected ranking based on the
Araujo et al. (2019) criteria. We then refer to the Araujo et al.
(2019) criteria to discuss which aspects of model development
have the greatest influence on realized model performance.

MATERIALS AND METHODS

Study Area
The study focuses on Chatham Rise because this part of
New Zealand’s EEZ has the highest density of seafloor
photographic survey data available for use in model evaluation,
is physically central to many of the habitat suitability models
available for evaluation in the region, and is the source of
much of the specimen data that informed development of
these models (Figure 1). Chatham Rise is a continental rise
that extends eastward from the South Island of New Zealand
for approximately 1,000 km, with the Chatham Islands toward
the eastern end. The Sub-Tropical Front coincides with and is
partially constrained by the rise, making it the most biologically
productive fisheries region in the EEZ (McClatchie et al., 1997;

Clark et al., 2000; Marchal et al., 2009; Nodder et al., 2012). Recent
summaries of bottom-contact trawl history across Chatham Rise
(Black et al., 2013; Black and Tilney, 2015; Baird and Mules, 2019)
show high trawling intensity, primarily from the hoki fishery, at
a 450–700-m depth west of Mernoo Bank and on the southern
and northern central flanks of Chatham Rise, with locally very
high intensities of trawling for orange roughy, oreo, and alfonsino
on seamount and knoll features on the northern, eastern, and
southern flanks. At present, initiatives to protect benthic habitats
and fauna are limited to closures to fishing on some seamounts
in the “Graveyard” and “Andes” regions (since 2001) on the
northwest and southeast flanks of the rise, respectively (Brodie
and Clark, 2003; Clark and Dunn, 2012), and establishment in
2007 of two benthic protection areas (BPAs): the Mid Chatham
Rise BPA and the East Chatham Rise BPA (Helson et al., 2010).

Existing Models
Predictive models of habitat suitability for benthic epifaunal
invertebrate taxa that encompass Chatham Rise have been
published, primarily, in eight separate studies by our research
team since 2011 (Tracey et al., 2011; Baird et al., 2013; Compton
et al., 2013; Anderson et al., 2014, 2015, 2016a,b; Georgian et al.,
2019). Most of these studies have focused on protected corals
(Tracey et al., 2011; Baird et al., 2013; Anderson et al., 2014,
2015) and vulnerable marine ecosystem (VME, sensu FAO, 2009)
indicator taxa (Anderson et al., 2016a,b; Georgian et al., 2019),
with only one study producing models for individual species
across a wide range of taxonomic groups (Compton et al., 2013).
We selected models for taxa that were well represented in our
independent dataset (see below), with presence records at nine
or more sites within the spatial domain of the model. Across the
eight studies, 47 individual models spanning 31 taxa (Table 1)
were suitable for assessment against the independent dataset.

All of the studies were undertaken with the principal aim of
predicting occurrence across unsampled geographic space within
the geographic range of their input faunal data (Prediction,
sensu Araujo and Guisan, 2006; Araujo et al., 2019). Three
modeling techniques were used across the studies: BRT, RF,
and MaxEnt, with BRT being the most commonly used. The
treatment of input data varied across studies, particularly in
the approach to defining absence records. Five studies worked
with presence–background data, using either randomly selected
or spatially structured background points from the study area
as assumed “pseudo-absences” (Tracey et al., 2011; Baird et al.,
2013; Anderson et al., 2014, 2016a; Georgian et al., 2019), while
the others used presence–absence data, deriving absence sites
either from a combination of research trawl bycatch and museum
databases or, in the case of Compton et al. (2013), from the
source photographic survey data. Presence–absence models give
an indication of the probability of a taxon being present, whereas
models using pseudo-absences provide only a measure of the
probability of suitable habitat being present.

The spatial extents of the studies range from the entire South
Pacific Regional Fisheries Management Organisation (SPRFMO)
Convention area (Anderson et al., 2016a) down to a section
of the central part of the New Zealand EEZ (Compton et al.,
2013), but all are centered on Chatham Rise (Figure 1).
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FIGURE 1 | (Top) areas of eight published studies from which predictive models were assessed: A, Tracey et al. (2011); B, Baird et al. (2013); C, Compton et al.
(2013); D, Anderson et al. (2014); E, Anderson et al. (2015); F, Anderson et al. (2016a), G, Anderson et al. (2016b); and H, Georgian et al. (2019). Boundary B is the
New Zealand Exclusive Economic Zone (EEZ). Also showing New Zealand’s Extended Continental Shelf boundary (red polygon), the 1,000-m isobath, and Chatham
Rise (bold black rectangle). (Bottom) Chatham Rise showing the location of DTIS photographic transect stations (color-coded points, see legend) for the five
surveys from which the independent test dataset was developed. The Graveyard and Andes seamount complexes are indicated, isobaths show 250-, 500-, 1, 000-,
and 1,500-m depths, and red polygons show Benthic Protection Areas (BPAs), which are protected from seabed trawl fishing.

Spatial resolution for all studies was constrained to 1 km2

by the resolution of available environmental predictor data.
This resolution approximates to that of most of the methods
used to collect the underlying sample data—primarily towed
sampling gear including trawls, dredges, and epibenthic sleds—
and matches closely the length of photographic transects from
which the independent data were compiled.

All but one of the published studies were trained on benthic
invertebrate sample data from physical specimens from research
trawl surveys, fisheries bycatch, and museum collections, with
most occurrence records coming from within the New Zealand

EEZ, and many of these from Chatham Rise itself. Compton et al.
(2013), by contrast, used observation data from photographic
transects and epibenthic sled samples collected during two
dedicated surveys of benthic biodiversity, one of which was
TAN0705 (see below for relevance). All studies used k-fold
cross-validation to evaluate model performance, a technique
in which portions of the available sample data are iteratively
withheld from the model training phase and then used to generate
performance metrics based on how well the model predicts
their values. The detail of how this validation was performed
varied across studies, from random withholding of sites across
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TABLE 1 | Summary details of the eight existing SDM studies and the individual models suitable for assessment against the independent dataset.

Name Spatial extent Model type Assessed taxa Model resolution

Tracey et al., 2011 New Zealand ECS BRT Goniocorella dumosa 1 km

Baird et al., 2013 New Zealand EEZ BRT Coral-reef, solitary small, Gorgonacea, Stylasteridae,
Antipatharia, Scleractinia

1 km

Compton et al.,
2013

Central
New Zealand
region

BRT Anthomastus robustus, Corallimorpharia, Flabellum spp.,
Galatheidae, Hyalinoecia tubicola, Metanephrops
challengeri, Radicipes spp., Scaphopoda, Serolidae,
Spatangidae, Taiaroa tauhou, Volutidae, Zoantharia,
Paguridae, Gracilechinus multidentatus, Echinothuroida

1 km

Anderson et al.,
2014

New Zealand EEZ BRT Coral-reef, Goniocorella dumosa, Antipatharia 1 km

Anderson et al.,
2015

New Zealand
region

BRT Coral-reef, Goniocorella dumosa, Antipatharia 1 km

Anderson et al.,
2016a

SPRFMO
convention area
and EEZ

BRT and MaxEnt Coral-reef (REEF; BRT and MaxEnt), Goniocorella dumosa
(MaxEnt)

30 arc-seconds
(ca. 1 km N-S)

Anderson et al.,
2016b

New Zealand
region

Ensemble
(BRT + MaxEnt)

Goniocorella dumosa, Brisingidae, Antipatharia,
Stylasteridae, Crinoidea, Demospongiae, Hexactinellida,
Pennatulacea

1 km

Georgian et al.,
2019

South West Pacific
Ocean

Ensemble: Goniocorella dumosa, Antipatharia, Stylasteridae,
Demospongiae, Hexactinellida, Pennatulacea, Alcyonacea

1 km

(BRT+ RF+MaxEnt)

ECS, extended continental shelf; EEZ, exclusive economic zone; Coral-reef, scleractinian branching corals Goniocorella dumosa, Enallopsammia rostrata, Solenosmilia
variabilis, and Madrepora oculata combined; solitary small = hydrocorals and cup corals.

the entire model domain (e.g., Tracey et al., 2011) to selection
within longitudinal bands to compensate for spatial structuring
of sample data (Anderson et al., 2016b). Spatial autocorrelation
in the input sample data was addressed explicitly only in the
most recent study (Georgian et al., 2019), by inclusion of a
residual auto-covariate (RAC) predictor variable in their models
(Crase et al., 2012). All of the studies used the area under
the receiver-operating characteristic curve (AUC, Hanley and
Mcneil, 1982; Swets, 1988; Bradley, 1997) as their metric of
model predictive success.

Expected Performance
Before evaluating the published models against the independent
dataset, we ranked the eight studies in order of their expected
performance by applying the standards for best practice in habitat
suitability modeling proposed by Araujo et al. (2019). The aim of
this ranking was to place our results in the context of an objective
framework that might subsequently help identify which aspects
of the models contributed most to their predictive performance
when assessed against independent data. The standards span
the four broad components of model design: response variables,
predictor variables, model building, and model evaluation,
nested within which there are 15 “issues” (Table 2), each with
guidelines allowing a given model to be ranked as either “Gold”
(best practice), “Silver,” “Bronze,” or “Deficient.” Each author
in the present paper scored each study for each of the 15
issues independently. Scores were then discussed, adjusted by
consensus, and the studies ranked in order of overall score, with
the expectation that models from higher-ranking studies should
perform better against the independent data than those from
lower-ranking ones.

Independent Dataset
Source Data
A dataset of benthic mega-epifauna density records from
Chatham Rise was assembled from quantitative analyses of
seabed video and still-image transects from five research surveys
conducted between 2007 and 2017 (Figure 1). Voyages TAN0705
(Bowden, 2011; Compton et al., 2013), TAN1701 (Bowden et al.,
2017), and TAN1306 (Bowden and Leduc, 2017) were broad-
scale surveys of benthic biodiversity following stratified random
designs, while voyage TAN1503 was focused on seamounts, with
multiple summit-to-base camera transects on features in the
Graveyard and Andes seamount complexes (Clark et al., 2019).
Voyage CRP2012 (Rowden et al., 2014) focused on areas of
phosphorite-rich sediments on the central crest area of Chatham
Rise, using a design with replicate transects within multiple
survey blocks. Data derived from these surveys are independent
from those used to train the published models in that they were
collected without reference to the original source data or the
surveys from which they were compiled. They are, however, from
a region of the published model domains that has the highest
density of sample data and, thus, are spatially interspersed with
the original training data.

Quantitative data on the occurrence of benthic invertebrate
fauna were extracted from imagery from each survey under
separate research projects over a period of 10 years (see survey
references above), but the data extraction methods used were
similar throughout, being run by the same team of researchers
(DB, AR, and MC). These methods, and the auditing procedures
that were used to create a combined dataset of faunal occurrences,
are described in detail by Bowden et al. (2019b). In brief, seafloor
photographic transects of approximately 1 km distance were
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TABLE 2 | Predictive model assessment criteria (1–4) and issues (A–E) proposed by Araujo et al. (2019).

1 – Response variables 2 – Predictor variables 3 – Model building 4 – Model evaluation

A Sampling Selection Complexity Evaluation of model assumptions

B Identification of taxa Spatial resolution Treatment of bias and noise in response variables Evaluation of model outputs

C Spatial accuracy Uncertainty Treatment of collinearity Measures of model performance

D Environmental extent Dealing with modeling and parameter uncertainty

E Geographic extent

run at each survey site, recording either high-definition digital
color video (HD1080 format), digital still images (at 8-, 10-, 12-,
or 24-megapixel resolution, depending on survey), or, for most
surveys, both formats simultaneously. Four of the surveys used
the same towed camera system (NIWA’s Deep Towed Imaging
System, DTIS, Hill, 2009; Bowden and Jones, 2016), which
records continuous HD video with intermittent high-resolution
still images captured simultaneously at 15-s intervals and was
deployed using the same operating procedures and methods for
logging navigational and observational data on all surveys. The
CRP2012 survey was conducted by remotely operated vehicle
(ROV) on the central Chatham Rise crest. It was designed by
the same research group (AR and DB) specifically to generate
data compatible with standard DTIS surveys but the ROV used
lower-resolution video and still-image cameras.

For surveys TAN0705, TAN1306, and TAN1701, the full
length of each video transect was reviewed by analysts using
Ocean Floor Observation Protocol (OFOP, Huetten and Greinert,
2008) software to record the occurrence and taxonomic identities
of all fauna visible (larger than ca. 5 cm) on the seabed and
referring to the high-resolution still images to confirm taxonomic
identifications in consultation with taxonomic experts. In this
method, each occurrence is referenced by spatial coordinates and
time, enabling direct retrospective audit of individual records
by examination of the original imagery. For surveys CRP2012
and TAN1503, still images were analyzed, rather than video;
for the former because video quality was too low, and for the
latter, to be comparable with data from earlier surveys (Clark
et al., 2019). Merging data from the five surveys involved three
stages: (1) checking and aligning taxon identities to ensure
consistency of identifications and nomenclature; (2) comparing
taxon presence and counts in areas of survey overlap to check
for systematic survey or analyst bias; and (3) aggregating taxa
into higher groupings where necessary to match those used
in the nine published models under evaluation. For example,
several of the modeling studies produced models for all reef-
forming stony coral species combined; therefore, observations
of Goniocorella dumosa, Enallopsammia rostrata, Solenosmilia
variabilis, and Madrepora oculata in the independent data were
combined under a single taxon label “coral-reef” or “REEF” for
comparison with these models. Similarly, records of comatulid
and stalked crinoids were combined to match model predictions
which did not differentiate between these forms.

The independent test dataset spanned the full extent of
Chatham Rise from 172◦ 50′ E to 173◦ 53′ W and 42◦ 29′
S to 45◦ 5′ S and from 40- to 1,850-m depth. It consisted
of 125,658 observations of individual benthic organisms from

analyses of 358 seabed photographic transects, with 109,161
records from analyses of video, and 15,795 from still images.
In the full dataset, there were 354 taxa across 13 phyla,
with taxonomic level ranging from phylum to species, and
the initial taxon aggregation process yielded a set of 79
“aggregated” taxa, ranging in taxonomic level from species level
for distinctive taxa (e.g., the decapod crustacean Metanephrops
challengeri), to family (e.g., Primnoidae and Brisingidae), order
(e.g., Ceriantharia), class (e.g., Asteroidea and Holothuroidea),
and phylum (e.g., Brachiopoda and Bryozoa). Full details of the
data are given in Bowden et al. (2019b).

Density and Prevalence Measures
Standardized population density estimates (as individuals 1,000
m−2 of seafloor) for each taxon recorded in the photographic
surveys were derived from the observation data, using seafloor
swept areas calculated as the product of transect length and
average image frame width for video (see Bowden et al., 2019b
for details), and summed areas of all individual images for
still photographs. While density estimates are ideally suited for
assessment of predictions from abundance-based models, they
are not strictly comparable with the probability values generated
by models based on presence–absence data. Because none of the
existing models available for evaluation were based on abundance
data, we also calculated prevalence (i.e., occurrence rate, see
Anderson et al., 2016a) for each taxon at each site, which more
closely approximates to measures of probability of occurrence
or suitable habitat. Prevalence was calculated in two ways,
depending on the type of imagery. For the video-based analyses
(surveys TAN0705, TAN1306, and TAN1701), each transect was
divided into 1-, 5-, and 10-min time segments (three alternative
values chosen to allow for a segment-length effect). Time, rather
than distance, was used here for simplicity of calculation, but
as tow speeds during individual transects are relatively constant,
differences in resulting distance at the seabed are minor. The
number of segments in which the taxon was recorded at least once
was then divided by the total number of segments in the transect
to calculate its prevalence at the site (Supplementary Figure 1).
For the still-image-based analyses (CRP2012 and TAN1503),
prevalence in each transect was estimated simply by calculating
the proportion of the total number of images analyzed in which
the taxon of interest was identified.

Habitat suitability values associated with the midpoint
location of each photographic transect were extracted from the
model grids of each of the published models for each taxon, using
functions in the raster and rgdal packages in R (R Core Team
2017). Because transects were approximately 1 km long and the
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environmental predictors were gridded at 1 km, it is likely that a
proportion of the transects cross boundaries between grid cells.
However, because the spatial domains of the models were large
in relation to the grid size, and because the 1-km grid of the
predictor variables is a convenient minimum scaling that does not
necessarily reflect the native resolution of the data that inform
them, fine-scale adjustments to allow for boundary crossing are
unlikely to affect our results or to yield reliable insights at the
scale of the study.

Model Assessment
The level of agreement between model predictions and the
independent data was assessed using five metrics, three based on
ability to predict presence–absence correctly and two on ability to
predict abundance correctly:

(1) AUCind—area under the receiver operating characteristic
curve, using predicted probabilities of occurrence from
the existing models against presence in the independent
dataset. This is a presence–absence comparison, with AUC
yielding a single metric of discrimination across all possible
thresholds for predicted presence (Fielding and Bell, 1997;
Lobo et al., 2008). AUC is a standard measure of predictive
model performance and in this context can be defined as
the area under a plot of the proportion of true positives
versus the proportion of false positives; a value of 0.5
indicates a model with no discriminatory power, and
a value of 1 indicates a model that correctly identifies
all records. There are no formally agreed thresholds for
interpreting AUC values but there is some consensus that
models with values greater than 0.7 can be considered
useful and those with values greater than 0.85 reliable
(Swets, 1988; Fielding and Bell, 1997; Wiley et al., 2003;
Glover and Vaughn, 2010).

(2) TSS—true skill statistic (Allouche et al., 2006). This is
a presence–absence comparison, calculated as sensitivity
(i.e., the probability of predicting presences correctly) plus
specificity (the probability of predicting absences correctly)
minus one. It is proposed as a prevalence-independent
measure of model success. TSS takes into account both
omission and commission errors, and scales from −1 to
1. A value of 1 indicates perfect prediction success, while
values of 0 or less indicate a performance no better than
random or a systematically incorrect prediction. Models
with TSS values 0.6 or more are considered to be useful
(Allouche et al., 2006).

(3) t-test—results from one-tailed independent sample t-tests
comparing the mean of published model probability values
for all locations at which a taxon was present in the
independent test data (x̄P) against the mean value for all
locations at which it was absent (x̄A). Prior to testing,
distributions of the model probabilities for each taxon were
examined and log transformations applied in some cases
to reduce skewness in the data and better approximate the
normal distribution. This test is also a presence–absence
comparison, based on the simple expectation that modeled
probabilities should, on average, be greater at sampled sites

where a taxon is present than at sites where it is absent
(i.e., x̄P > x̄A) in the independent dataset. The resulting
p-values are presented as three categories: not supported
(p ≥ 0.05, “NS”); true (0.05 > p > 0.01, “T”); or significant
(p < 0.01, “TS”).

(4) R2
prev—correlation strength from a linear model fitting the

published model probabilities to prevalence values from
the independent dataset. Separate fits were assessed for
taxon prevalence calculated from the 1-, 5-, and 10-min
time segments, and results presented as the mean and
standard deviation of these. This is a test of prediction
success against a measure that is intermediate between
presence–absence and density.

(5) R2
dens—correlation strength from a linear model fitting the

published model probabilities to measured taxon density
values from the independent dataset. This is a test of
prediction success against the full quantitative detail of the
independent data.

The challenge associated with correct prediction increases
with the level of information demanded of the prediction, with
prediction of presence or absence being a simpler task than
prediction of relative or absolute abundance (Bahn and Mcgill,
2013). Therefore, we expected better performance against the
three presence–absence metrics (AUC, TSS, and t-tests) than
against the prevalence and abundance metrics (R2

prev and R2
dens)

but still with the expectation that more recent models and models
ranked higher in our initial qualitative assessment would perform
better than earlier and lower ranked models.

AUC is the most widely used metric of prediction performance
and was used in all the existing published studies as the primary
metric. Therefore, calculation of AUC using the independent
data here enabled direct comparison against the published AUC
values calculated by k-fold cross-validation (AUCkcv). Both AUC
and TSS are considered to be largely independent of differences
in prevalence (the proportion of sites at which a target taxon
is present) and might be expected to yield comparable results
because the underlying logic of their calculation is similar
(Allouche et al., 2006; Somodi et al., 2017). The t-test comparison
also reduces the required predictions to presence–absence and
thus was expected to yield results comparable to those from
AUC and TSS. The two quantitative metrics here, R2

prev and
R2

dens, are intended to evaluate predictive performance in terms
of how these habitat suitability model outputs are likely to be
used in practice: to answer questions about both where taxa are
likely to be encountered and at what relative densities (Bahn and
Mcgill, 2007). Strictly interpreted, presence-only models predict
only the probability of suitable habitat for a taxon being present
and thus should not be expected to predict the occurrence of a
taxon or its population density. We include a density comparison
here, however, because the outputs from presence-only models
are often intuitively interpreted as predictions of distribution,
particularly in environmental management scenarios, and the
availability of fully quantitative independent evaluation data here
affords a rare opportunity to demonstrate in practice what the
consequences of inferring population density from predictions of
habitat suitability might be.
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For most models, the performance metrics were calculated by
comparing against the full independent dataset (i.e., including
data from all five of the Chatham Rise photographic surveys),
with modeled taxa being considered for assessment only if they
could be matched reliably with taxon names in the independent
dataset and were present at 10 or more sites. However, because
most of the models developed by Compton et al. (2013) were
constructed using taxon occurrence data from TAN0705, data
from this voyage were excluded from the test set for assessment
of models from this study, with the exception of those for Taiaroa
tauhou, Hyalinoecia tubicola, and Serolidae, which were based
solely on physical specimen data.

We generated two graphs to compare AUCind against AUCkcv.
First, we plotted all AUC values in chronological order of the
studies, together with mean values for AUCkcv and AUCind
per study. Second, we plotted AUCind against AUCkcv, with
results viewed in the context of how similar the two values
were (proximity to a 1:1 regression line) and how they placed
in relation to a threshold value of 0.7. For Anderson et al.
(2016b), we plotted both of the AUC values reported for each
of the 8 taxa they modeled: one calculated using random
cross-validation sites, the other using spatially discrete (i.e.,
in longitudinal bands) sets of sites. We also visualized trends
in model performance in relation to taxonomic resolution by
plotting AUCkvc and AUCind values against taxon level (Class,
Order, Family, Genus, and Species), and by plotting model
sensitivity (true positive rate) and specificity (true negative rate)
in relation to the independent data against taxon level. In this
analysis, the combined reef-forming coral grouping (REEF) was
assigned to Family, and Scaphopoda was assigned to Genus,
rather than Class because all recent specimen records from
Chatham Rise are of Fissidentatum spp. (NIWA Invertebrate
Collection, unpublished data).

To compare model performance against the expected rank
performance generated using the Araujo et al. (2019) criteria,
and to assess potential trends of improving model performance
(prediction success) with time, we generated a “realized”
ranking of the models by comparing the mean values of each
model’s rank scores across the five assessment metrics listed
above. The expectation, again, was that models with higher
expected performance should also rank higher in terms of
realized performance.

RESULTS

Expected Performance
Against the standards of Araujo et al. (2019), the two most
recent studies, Anderson et al. (2016b) and Georgian et al.
(2019), ranked highest. Below these, however, there was no
clear temporal trend in expected performance (Supplementary
Table 1). All studies were assessed as being “deficient” against
standards for dealing with uncertainty in predictor variables
(Issue 2C), while later models were assessed to be improvements
in terms of treatment of bias and noise in response variables
(Issue 3B), treatment of collinearity (Issue 3C), dealing with
modeling and parameter uncertainty (Issue 3D), and measures

FIGURE 2 | AUC values generated using internal cross-validation (blue) and
independent test data (red) for individual habitat suitability models in eight
published studies (S1–S8, see Table 1 for details) in order of time of
publication from 2011 to 2019 (Left), and a priori ranking of expected model
performance based on the criteria of Araujo et al. (2019) (Right). Cross bars
show mean values for each study.

of model performance (Issue 4C). It was also noted that the two
most recent studies made allowance for spatial autocorrelation,
which is not listed explicitly in the Araujo et al. (2019) criteria
(Supplementary Table 1). The final consensus rank order of
the studies from highest to lowest was Georgian et al. (2019) >
Anderson et al. (2016b) > Anderson et al. (2016a) = Compton
et al. (2013) > Tracey et al. (2011) > Anderson et al. (2015) =
Anderson et al. (2014) = Baird et al. (2013).

Model Assessment
AUC and TSS
AUC values from cross validation in the published studies
(AUCkcv) increased both with time and when ordered by expected
rank performance, with all but one model (“REEF” in Anderson
et al., 2014) scoring at least 0.7 and all models in the two most
recent studies scoring higher than 0.85 (Figure 2). AUC values
based on the independent test data (AUCind), by contrast, did
not show matching increases over time and were lower than
corresponding AUCkcv values for all but two of the models, and
values of 0.7 or higher were recorded for only 18 of the 47 models
(38.3%), nine of these coming from a single study (Compton
et al., 2013) (Figure 3).

The two models that scored more highly against the
independent test data (AUCind > AUCkcv) were those for the
molluscan class Scaphopoda in Compton et al. (2013) and the
stony coral G. dumosa in Anderson et al. (2016b). For the
latter model, however, this was only the case when AUCkcv
was calculated using spatial banding in cross validation. Of
the remaining 29 models, 22 had AUCind values of less than
0.65, despite all but one of these (REEF in Anderson et al.,
2014) scoring higher than 0.7 by internal cross-validation. The
exceptions here, again, were the models in Anderson et al.
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FIGURE 3 | Model assessment. Comparison of benthic invertebrate species-distribution model performance (as area under the receiver operator curve, AUC) when
assessed against sample data withheld from the original dataset used to build the models (internal AUC) and an independent dataset of faunal distributions derived
from photographic surveys (independent AUC). The 48 models are from eight published studies (see text for details) and cover 29 taxa: Alcyonacea (Alc);
Anthomastus robustus (Ar); Antipatharia (Ant); Brisingidae (Bri); coral reef-forming taxa (REEF); Corallimorpharia (Cor); Crinoidea (Cri); Demospongiae (Dem);
Gracilechinus multidentatus (Ech); Echinothuroida (TAM); Flabellum spp. (Fla); Galatheidae (Gal); Goniocorella dumosa; Hexactinellida (Hex); Gorgonacea (Gor);
Hexactinellida (Hex); Hyalinoecia tubicola (Hya); Metanephrops challengeri (Met); Paguridae (Pag); Pennatulacea (Pen); Radicipes spp. (Rad); Scaphopoda (Sca);
Scleractinia (Scl); Serolidae (Ser); small solitary corals (Sma); Spatangidae (Spa); Stylasteridae (Sty); Taiaroa tauhou (Tai); Volutidae (Vol), and Zoanthidae (Zoa).
Anderson et al. (2016a) modeled REEF and G. dumosa with BRT and MaxEnt separately; MaxEnt results are indicated with a cross. Anderson et al. (2016b)
calculated AUC in two ways: random selection of sites (black plots) and in longitudinal bands (white plots). Gray line shows a 1:1 relationship between internal and
independent AUC scores, and gray shading indicates independent AUC scores less than 0.7, a value above which models are considered to be potentially useful for
prediction, with darker shading to highlight the largest discrepancies between internal and independent AUC values.

(2016b) in which spatial banding was used to generate AUCkcv.
For these models, AUCkcv values were less than 0.7 and closer to,
but still higher than, their AUCind values.

The highest published cross-validation values (AUCkcv > 0.9)
were all from the three most recent studies (Anderson et al.,
2016a,b; Georgian et al., 2019) but the corresponding AUCind
values for these studies ranged widely, including both the highest
(0.86 for G. dumosa) and lowest (0.52 for Alcyonacea) scores.
Only two of the seven models from Georgian et al. (2019) and
three of the eight from Anderson et al. (2016b) scored AUCind
values of 0.7 or higher (G. dumosa and Antipatharia in both
studies, and Stylasteridae in Anderson et al., 2016b) but both the
MaxEnt and BRT models for REEF from Anderson et al. (2016a)
scored above 0.7. There was a trend for AUCind to increase at
finer taxonomic resolution but this was not matched in AUCkvc
values (Supplementary Figure 1), with strongly divergent values

at Class level becoming more similar to AUCind values at finer
resolutions. The increasing trend in AUCind at finer taxonomic
resolution was associated with increases in the true positive rate
(sensitivity), rather than the true negative rate, which showed no
trend across taxonomic levels.

True skill statistic was strongly correlated with AUCind
(R2 = 0.92). Only six models yielded TSS values greater
than 0.5, three of these scoring 0.6 or higher (Table 3), and
the best-performing models were the same as identified by
the AUC analysis.

t-Tests
For 35 of the 47 published models (74.5%), mean predicted
probability of suitable habitat was significantly higher (TS,
p < 0.01) at sites where the modeled taxon was present,
rather than absent, in the independent data, with another four
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TABLE 3 | Model assessment results.

Study Taxon AUC TSS t-test Goodness-of-fit Sites

Cross validation Independent x̄P > x̄A Prevalence R2 Density R2 All Presence

(mean ± 1 sd)

Tracey et al., 2011 Goniocorella dumosa 0.87 ± 0.012 0.79 0.55 TS 0.074 ± 0.008 0.071 237 53

Baird et al., 2013 Antipatharia 0.84 0.60 0.22 T 0.1 ± 0.03 0.022 296 31

Stylasteridae 0.70 0.66 0.27 TS 0.057 ± 0.015 0.081 341 85

Gorgonacea 0.81 0.48 0.05 NS 0.007 ± 0.004 0.019 341 149

Scleractinia 0.76 0.64 0.30 TS 0.082 ± 0.040 0.182 341 232

Coral-reef 0.86 0.75 0.41 TS 0.090 ± 0.008 0.235 238 65

Small solitary 0.73 0.62 0.19 TS 0.049 ± 0.008 0.230 288 178

Compton et al., 2013 Anthomastus robustus 0.755 ± 0.043 0.71 0.42 TS 0.086 ± 0.021 0.040 204 61

Corallimorpharia 0.849 ± 0.071 0.56 0.19 NS 0.030 ± 0.001 0.010 243 25

Flabellum spp. 0.795 ± 0.042 0.55 0.10 NS 0.005 ± 0.003 <0.001 237 142

Galatheidae 0.852 ± 0.041 0.82 0.50 TS 0.183 ± 0.030 0.070 243 180

Hyalinoecia tubicola 0.760 ± 0.027 0.52 0.15 NS 0.011 ± 0.005 0.001 237 88

Metanephrops challengeri 0.888 ± 0.031 0.70 0.39 TS 0.080 ± 0.002 0.077 237 76

Radicipes spp. 0.798 ± 0.031 0.64 0.29 TS 0.046 ± 0.019 0.002 243 43

Scaphopoda 0.814 ± 0.043 0.85 0.75 TS 0.099 ± 0.035 0.037 145 9

Serolidae 0.808 ± 0.054 0.73 0.42 TS 0.174 ± 0.018 0.143 198 66

Spatangidae 0.745 ± 0.042 0.69 0.32 TS 0.093 ± 0.021 <0.001 237 133

Taiaroa tauhou 0.843 ± 0.042 0.70 0.43 TS 0.065 ± 0.031 <0.001 198 88

Volutidae 0.760 ± 0.037 0.70 0.38 TS 0.055 ± 0.023 0.028 243 114

Zoantharia 0.795 ± 0.042 0.72 0.38 TS 0.051 ± 0.014 0.068 204 42

Paguridae 0.789 ± 0.048 0.61 0.22 T 0.021 ± 0.008 0.026 184 152

Gracilechinus multidentatus 0.832 ± 0.038 0.81 0.59 TS 0.420 ± 0.034 0.186 190 48

Echinothurioida 0.841 ± 0.054 0.59 0.27 TS 0.013 ± 0.002 0.038 204 79

Anderson et al., 2014 Coral-reef 0.68 0.63 0.33 TS 0.037 ± 0.001 0.023 236 63

Goniocorella dumosa 0.97 0.77 0.54 TS 0.083 ± 0.004 0.069 232 53

Antipatharia 0.98 0.55 0.26 NS 0.011 ± 0.005 0.021 296 31

Anderson et al., 2015 Coral-reef 0.884 0.76 0.48 TS 0.115 ± 0.027 0.105 237 65

Goniocorella dumosa 0.876 0.75 0.43 TS 0.111 ± 0.011 0.144 231 53

Antipatharia 0.800 0.63 0.33 TS 0.240 ± 0.038 0.339 295 30

Anderson et al., 2016a Coral-reef (MXE) 0.880 0.72 0.43 TS 0.016 ± 0.021 0.027 237 65

Coral-reef (BRT) 0.950 0.74 0.36 TS 0.014 ± 0.024 0.027 236 64

Goniocorella dumosa (MXE) 0.97 0.76 0.50 TS 0.032 ± 0.006 0.050 231 53

Anderson et al., 2016b Brisingidae 0.860 (0.680) 0.64 0.27 TS 0.013 ± 0.010 0.090 339 99

Antipatharia 0.965 (0.803) 0.70 0.34 TS 0.043 ± 0.009 0.014 294 29

Stylasteridae 0.950 (0.733) 0.70 0.31 TS 0.069 ± 0.011 0.067 339 83

Crinoidea 0.942 (0.772) 0.55 0.11 NS 0.081 ± 0.071 0.708 339 70

Demospongiae 0.965 (0.622) 0.59 0.16 TS 0.099 ± 0.019 0.201 339 234

Goniocorella dumosa 0.963 (0.659) 0.86 0.61 TS 0.122 ± 0.033 0.208 230 53

Hexactinellida 0.887 (0.696) 0.56 0.13 T 0.040 ± 0.018 0.079 339 116

Pennatulacea 0.901 (0.674) 0.61 0.22 TS 0.121 ± 0.015 0.020 294 157

Georgian et al., 2019 Antipatharia 0.959 0.75 0.45 TS 0.089 ± 0.007 0.043 294 29

Stylasteridae 0.956 0.68 0.27 TS 0.134 ± 0.006 0.097 339 82

Demospongiae 0.962 0.55 0.11 NS 0.020 ± 0.006 0.071 339 233

Goniocorella dumosa 0.942 0.86 0.60 TS 0.161 ± 0.013 0.105 229 53

Hexactinellida 0.914 0.62 0.20 TS 0.046 ± 0.007 0.040 339 115

Pennatulacea 0.872 0.58 0.17 T 0.071 ± 0.004 0.080 294 157

Alcyonacea 0.972 0.48 0.03 NS 0.006 ± 0.004 0.030 339 233

Original cross validation AUC values extracted from the published studies; AUC values calculated against the independent dataset; correlation strength between predicted
probability of presence and prevalence values from the independent dataset (R2 mean ± 1sd calculated from prevalence results from three transect segment lengths; 1,
5, and 10 min); correlation strength between predicted probability of presence and population density values from the independent dataset (density R2); significance of
t-tests for the hypothesis that a taxon is more likely to be present than absent at sites where the published studies predict it to be present (x̄ P > x̄A: NS, p ≥ 0.05; T,
0.05 ≥ p ≥ 0.01; TS, p ≤ 0.01); the total number of sites available for each comparison (All), and the total number of sites at which each taxon was present in the test
dataset (presence). Cross validation AUC values from Tracey et al. (2011) and Compton et al. (2013) are shown as means ± 1 standard error, and for Anderson et al.
(2016b) as results of both random sample cross-validation and spatially banded cross-validation (in parentheses).
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models included at the lower significance level (T, p < 0.05)
(Table 3). For the remaining 8 models (“NS” results), the mean
predicted probability of suitable habitat was never higher for
absence sites than for presence sites. Twelve of the TS models
were from Compton et al. (2013) but there were significant
(TS) results for models in all studies and the proportions of
significant results in each of the studies that modeled more
than 3 taxa were broadly comparable: Baird et al. (2013), 66.6%;
Compton et al. (2013), 75.0%; Anderson et al. (2016b), 75.0%,
and Georgian et al. (2019), 57.1%. The models that scored
as TS spanned a range of taxonomic levels, including species
(Goniocorella dumosa, Anthomastus robustus, Metanephrops
challengeri, Taiaroa tauhou, and Gracilechinus multidentatus),
Genus (Radicipes), Family (Galatheidae, Serolidae, Spatangidae,
Volutidae, and Stylasteridae), Order (Scleractinia, Alcyonacea,
Antipatharia, Brisingida, Zoantharia, and Pennatulacea), and
Class (Demospongiae and Hexactinellida). However, except for
G. dumosa, which was modeled in six of the eight studies,
all of the species-level models and the models for Radicipes,
Galatheidae, Serolidae, Spatangoida, Volutidae, and Brisingida
were from the Compton et al. (2013) study, which used
occurrence data primarily from photographic sampling.

Correlations With Taxon Prevalence and Density
Correlations between predicted probability of suitable habitat
in the published models and values of both prevalence and
population density in the independent dataset were weak
(R2

prev < 0.25 for 46 of the 47 models, and R2
dens < 0.25 for

45 of the 47 models). The three cases where correlation strength
exceeded 0.25 were models for the echinoid G. multidentatus
(R2

prev = 0.42 in Compton et al., 2013), the black coral
Order Antipatharia (R2

dens = 0.34 in Anderson et al., 2014),
and the Order Crinoidea (R2

dens = 0.71 in Anderson et al.,
2016b). Across all other models, the mean correlation strength
against both prevalence and density values in the independent
dataset was less than 0.1 (mean ± sd: R2

prev = 0.071 ± 0.052,
R2

dens = 0.078 ± 0.121). The high R2
dens value for Crinoidea

in Anderson et al. (2016b) was driven by very high densities of
crinoids on the Graveyard seamounts, which were within the area
of high predicted probability of suitable habitat in this model.

Realized Rank Performance
When the models were ranked by their average rank results across
all evaluation metrics, there was a broad spread of performance
within and among studies. The 10 highest-ranked models were
spread across 6 studies from 2013 to 2019, the 10 lowest-
ranked models included two from the most recent study, and
mean ranking by study showed no indication of a general trend
of improvement over time (Figure 4). Of the four taxa that
were modeled in more than two studies (G. dumosa, Coral
reef, Stylasteridae, and Antipatharia), G. dumosa was the most
consistently highly ranked, with five of its six models in the
top fifteen. G. dumosa models also showed some indication of
improving performance over time, as did Stylasteridae, with
models from the two most recent studies ranking higher than
those from earlier studies (Figure 4).

FIGURE 4 | Rank performance of 47 predictive models, showing average
rank across four evaluation measures (TSS, t-test, R2

prev, and R2
dens) for

each model (blue dots), and the mean (black bars) and median (gray bars)
ranking for each study (S1–S8). (Left) studies in chronological order, asterisks
indicate models for which the average predicted probability of suitable habitat
for the target taxon was significantly higher (t-test, p < 0.01, “TS”) at sites
where that taxon was present in the independent dataset than at those where
it was absent. Four taxa that were modeled in more than two studies are
linked by lines (see Figure 3 for full names). (Right) with studies ordered by
their expected rankings as assessed by reference to the standards of Araujo
et al. (2019).

The spread of high- and low-ranked models across studies was
such that no overall ranking of the studies could be assigned with
confidence (Figure 4). There was, however, neither evidence for
substantially improved performance from earlier to later models
nor support for the rankings assigned by reference to Araujo et al.
(2019) prior to the evaluation exercise.

DISCUSSION

In this study, we have used independent data from seabed
photographic surveys to explore the general utility of habitat
suitability models that we have developed over more than 10 years
with the aim of predicting distributions of seafloor taxa in the
southwest Pacific, centered on New Zealand. The key results
of our assessment are that (1) measured model performance
was lower when assessed against independent data than by
k-fold cross-validation for all but two of 47 models; (2) a trend
of increasing model performance with time, which is seen in
published cross-validation (AUCkcv) values and is anticipated
when the methods used in these studies are judged against
objective criteria, is not supported when the models are tested
against independent data; (3) for approximately 72% of the
models, predicted probability of suitable habitat in the models
was significantly higher at sites where a taxon was present in the
independent data than where it was absent; and (4) correlation
strengths between predicted probability of presence and observed
taxon prevalence and density were weak.

While the third result here is the only statistic that offers
support for the expectation that such models might be reliable for
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predicting distributions, and then only at the level of prediction
of presence, the results overall should also be viewed in the
context of how realistic our expectations of such models are.
A key aspect here is that Chatham Rise is in a highly dynamic
oceanographic environment and encompasses a wide range of
seafloor topographies within a relatively confined spatial extent
(Nodder et al., 2012). Thus, although the Rise is one of the
areas within New Zealand’s EEZ that we are most interested
in predicting to, because of its importance to commercial
fisheries (Fisheries New Zealand, 2020) and potential mineral
interests (Von Rad and Kudrass, 1987), it is also likely to
be one of the most challenging. Perhaps more importantly
for future work in this field, the evaluation exercise affords
the chance to review our expectations and to explore which
aspects of the models, in terms of input data, spatial scope, and
modeling methods, contribute most to the observed differences
in performance against the independent data. We use this
evaluation to suggest future directions for model building that
should produce models that can be used with greater confidence
for environmental management.

Cross-Validation and Non-independence
of Data
Several studies have demonstrated that model performance
metrics generated by the common practice of cross-validation
using withheld subsets of the input sample data will yield inflated
values (e.g., Bahn and Mcgill, 2013; Valavi et al., 2019) because
the withheld data are not independent of those used to train
the model, particularly with respect to spatial autocorrelation
(Bahn and Mcgill, 2007; Ploton et al., 2020). It is interesting
here, however, that AUC values for most models in the two
studies that made explicit allowance for spatial structure in the
sample data, whether by withholding data in longitudinal bands
(Anderson et al., 2016b) or by including spatial autocorrelation
as a predictor variable (Georgian et al., 2019), were still inflated
by comparison with those calculated against the independent
data. This finding suggests that neither of these methods entirely
overcame the issue of non-independence of data and, thus, that
issues associated with using cross validation as a primary method
for model performance are not easily overcome. Awareness of
the need to account for spatial structuring of data in habitat
suitability models is increasing, and availability of new, more
flexible, tools now allows for more nuanced approaches that
are likely to improve estimation of predictive performance by
cross-validation (Valavi et al., 2019).

Regardless of the absolute values obtained from AUC analyses,
our finding that the trend of increasing model performance
with time was not supported against the independent data
is concerning for two reasons: firstly, because our results
show that we do not appear to be getting substantially better
at describing distributions and, more importantly, because if
apparent increases in performance encourage overconfidence in
predictions from more recent models, it could lead to poor
environmental management decisions (Regan et al., 2005). If our
modeling methods have, indeed, improved over time, however,
this result is also revealing because it suggests that the main
impediments to accurate prediction are associated primarily with
the quality and quantity of the input sample and environmental

data, rather than with the details of specific modeling methods.
This suggestion is further supported by the broad spread of
AUCind values within individual studies in our results, with both
the highest and lowest values being for models generated in
the most recent, most technically sophisticated study (Georgian
et al., 2019), and comparably high and low values recorded from
earlier studies.

In our initial assessment of the studies against the standards of
Araujo et al. (2019), the principal areas we characterized as being
either “deficient” or “bronze” in all studies were understanding
variability and uncertainty in the predictor variables (Issue 2C),
and dealing with modeling and parameter uncertainty (Issue 3D).
It was also clear, however, that the reliability and precision of
taxon identification (Issue 1B) were likely to influence model
performance. Thus, although our ranking was at the level of
study, any assessment of how well taxon identification had been
addressed in studies that covered multiple taxa would ideally be
at the level of individual models, rather than the whole study,
because of wide differences in how taxa were grouped.

Uncertainty in Predictor Variables
Uncertainty associated with the predictor variables used in
the models was the area of greatest concern in the initial
model assessments, with questions around the lack of some key
ecologically relevant variables, limitations of spatial resolution,
and the reliability of predictor layers that are themselves outputs
from spatial modeling or interpolation processes (Davies and
Guinotte, 2011). These issues affect all broad-scale habitat
suitability modeling initiatives in the deep sea and present
unique challenges by comparison with terrestrial studies,
which often have the benefit of greater accessibility for direct
sampling and full-coverage, high-resolution, remote sensing by
satellite (e.g., Pearce and Ferrier, 2001; Parmentier et al., 2011;
Ploton et al., 2020).

The lack of key variables is a fundamental issue affecting
prediction of the distributions of seabed fauna. Substrate type
in particular is a determinant of realized distributions for
most benthic taxa, but our knowledge about the occurrence of
substrate types in the deep sea at anything beyond highly local
scales is of qualitatively the same type as our knowledge of the
fauna we are interested in predicting: patchy, spatially auto-
correlated, point sample records collated from multiple sources.
Despite recent initiatives to generate continuous substrate-type
layers by interpolation among point samples in our region (e.g.,
Bostock et al., 2019), these characteristics currently render such
layers unreliable for use in predictive models (Georgian et al.,
2019). In a study area that has been subject to modification by
bottom-contact trawl fisheries for decades (Bowden and Leduc,
2017; Baird and Mules, 2019; Clark et al., 2019), it is also of
note that none of the models assessed here included fishing effort
as a predictor variable. While fishing might be expected to vary
in location and intensity over finer spatial and temporal scales
than most environmental variables, and thus have inconsistent
influence on realized faunal distributions, it is also likely that
any influence it does exert is likely to be strong in some
habitats. The present distributions of cold-water scleractinian
corals on seamounts and other topographic features that have
been targeted by trawling, for instance, have been modified from
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their natural state (Williams et al., 2010, 2020; Clark et al., 2019)
and thus are unlikely to be predicted accurately by models that do
not incorporate fishing effort as a predictor of presence.

While some environmental variables commonly used in deep-
sea habitat suitability models are derived directly from full-
coverage satellite remote sensing (e.g., sea surface temperature,
chlorophyll a concentration), or acoustic remote sensing [e.g.,
multibeam echosounder (MBES) for smaller-scale studies], many
others are derived indirectly from discrete sample data (e.g.,
single-beam acoustic soundings, CTD casts, and Argo floats),
either by spatial interpolation (regional bathymetry and, thus,
all topographic variables derived from it, including seabed slope,
curvature, rugosity, and position index) or via modeling of
physical (e.g., seabed currents and temperature), chemical (e.g.,
salinity and aragonite saturation), or biogeochemical (organic
carbon flux to the seabed) processes. Furthermore, in modeling
studies of seafloor fauna, values for individual grid cells are
necessarily extracted by reference to the bathymetry layer (Davies
and Guinotte, 2011), which as noted above, at spatial scales
greater than local MBES surveys, carries its own unquantified
uncertainty. Thus, all of the environmental data layers relied
upon as predictor variables in habitat suitability modeling
initiatives in the deep sea introduce some degree of additional,
usually unquantified, uncertainty into the final predictions.

Formal analysis of the influence of inaccuracies in
environmental variable layers used as predictors in SDM
models is beyond the scope of this study, but some of the issues
are illustrated by one of the studies assessed here (Anderson
et al., 2016a), in which we ran a purpose-designed photographic
survey of seamount features in the Louisville Seamount Chain
to assess the reliability of predictions from habitat suitability
models we had generated for the entire SPRFMO Convention
Area. We found that our models were not successful at
predicting occurrence of scleractinian corals at the scale of
the survey, despite high AUC values for the models from
internal cross-validation. We attributed this failure primarily
to inaccuracies in the bathymetry layer at the spatial resolution
of the model and to the lack of a predictor variable describing
substratum type. Inaccuracies in the bathymetry later were
compounded in all other predictor variables derived from it,
including seafloor slope and rugosity, while the absence of hard
substrata across large proportions of the seamount summits
confounded predictions of high habitat suitability because
hard substrata are a fundamental habitat requirement for the
corals we were predicting. While these factors were probably
exacerbated by the steep topography and isolated oceanic context
of the Louisville seamounts, results in the present assessment
indicate that the Anderson et al. (2016a) models fare no better
against survey data from Chatham Rise, where bathymetric data
are much more reliable and where much of their input faunal
occurrence data were collected.

Modeling and Parameter Uncertainty
Acknowledging uncertainty in the predictor variables leads
to the issue of how to deal with modeling and parameter
uncertainty (Issue 3D in Araujo et al., 2019) because in deep-
sea models the predictor variables are likely to be the largest
source of uncertainty, for the reasons discussed above. Modeling

uncertainty was considered explicitly in only three of the eight
studies considered here (Anderson et al., 2016a,b; Georgian
et al., 2019), but in each case it was quantified only in terms
of the influence either of using different subsets of the response
variable (taxon) data, or of using different modeling methods, or
both, with no quantification of the uncertainty associated with
the environmental predictor layers used. Thus, for all studies
considered here, the largest potential source of uncertainty
in the final model predictions remained unquantified. Our
current inability to account for the uncertainty associated
with the environmental layers used as predictors in habitat
suitability models for the deep sea is a major impediment
to increasing confidence in the predictions of such models
(e.g., Kenchington et al., 2019).

Another rarely acknowledged source of uncertainty in habitat
suitability models for the deep sea is that taxon occurrence data
are, in most cases, compiled from sources that span periods
of years, decades, or even centuries. This is a practical way to
compensate for the general paucity of data available from deep-
sea environments, which results from the logistical difficulty and
cost of sampling at depth (Clark et al., 2016). All but one of the
studies assessed here used data compiled over extended periods
(e.g., Tracey et al., 2011 used coral occurrence data from 1955 to
2009), the exception being the study of Compton et al. (2013),
in which models were trained on data from surveys conducted
within 2 years of each other and only 2 years before the modeling
work was undertaken. Two important assumptions are implicit
when occurrence data are accumulated over extended periods:
first, that patterns of occurrence will not have changed materially
during the entire period from the date of the first occurrence
record to production of the model predictions, and second,
that the environmental characteristics used as predictors (the
summaries for which are likely to represent somewhat different
periods to those over which taxon records are accumulated)
will not have changed materially either. For long-lived sessile
taxa, such as cold-water corals, the first assumption might be
reasonable in many cases. However, with increasing evidence of
the effects of bottom-contact fishing and other anthropogenic
and natural disturbances on realized occurrences (e.g., Clark
et al., 2000, 2019, Mountjoy et al., 2018), and parallel increases
in our understanding of the rates of large-scale environmental
change resulting from global warming (Smith et al., 2009; Hoegh-
Guldberg and Bruno, 2010; Doney et al., 2012), such assumptions
become increasingly tenuous.

Taxonomic Resolution
Our study showed that there was a tendency for models of
finer taxonomic levels to perform better against the independent
data than those at a coarser level (Supplementary Figure 2).
Aggregating records to coarser taxonomic groupings is common
in studies of deep-sea benthic invertebrate distributions, where
records are often collated from multiple sources at differing
levels of identification and where available records at finer
levels (species or genus) can be too sparse to inform habitat
suitability models. This issue is not covered explicitly by Araujo
et al. (2019) but is likely to have a strong influence on
the predictive success of models because coarser taxonomic
groupings encompass taxa with different adaptations and
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environmental tolerances, which, when combined in a single
model, may lead to predicted distributions that are too general
to be useful. Effects of aggregating to coarser taxonomic levels
are evident in our results, with the broadest groups modeled,
including Alcyonacea (soft corals), Gorgonacea (gorgonian
corals), Demospongiae (sponges), and Hexactinellida (glass
sponges), generating among the lowest AUCind values and
overall rank performances. An important observation here is
that the models for these taxonomic groups are also potentially
the most misleading because, in contrast to their performance
against the independent data, they scored highly when assessed
by cross validation—all models for the VME indicator taxa
Demospongiae and Hexactinellida in the most recent studies
(Anderson et al., 2016b; Georgian et al., 2019), for instance,
yielding AUCkcv values greater than 0.87, indicating “reliable”
or “excellent” performance. While these contrasting patterns
of model performance in relation to taxonomic resolution
are intriguing and suggest an important direction for further
investigation, the results here should be viewed with some
caution because of confounding factors in the data available to
this study. For instance: the numbers of taxa within taxonomic
levels are unequal; taxonomic levels are not represented evenly
across studies, thus introducing potential methodological bias;
some reported taxonomic levels are potentially inaccurate (as
we determined for the group Scaphopoda), and most of the
species-level models are for a single taxon, G. dumosa, which
was modeled using essentially the same response variable
data in all models.

These issues notwithstanding, comparison between two taxa
with the highest- and lowest-ranked models in our analysis, the
scleractinian coral G. dumosa and sponges (Porifera, modeled
as two Classes: Demospongiae and Hexactinellida, in Anderson
et al., 2016b; Georgian et al., 2019), illustrates the probable
influence of taxonomic resolution on model performance.
G. dumosa is consistently identified to species level because it has
a protected status in New Zealand and is of high conservation
interest due to its provision of complex biogenic habitat.
However, G. dumosa occurrence records are also clustered within
relatively narrow environmental and spatial bounds, with the
highest density of records used to inform all of the models
assessed here coming from Chatham Rise itself (e.g., Tracey et al.,
2011; Anderson et al., 2016b). Sponges, by contrast, are highly
diverse and difficult to identify to species and thus are typically
modeled at the coarse taxonomic level of Class (Demospongiae
and Hexactinellida). Grouped at this level, occurrence records
for sponges are spread much more widely across environmental
gradients than would be the case for individual species. Given
these differences in their input data, the task of modeling
distributions is clearly simpler for G. dumosa than for the sponge
classes and it is not surprising that their respective models ranked
as they did, despite being modeled using the same methods and
the same predictor variables.

The study of Compton et al. (2013) is interesting here
because, unlike all the other studies, its models were based on
data from two surveys designed specifically to sample seafloor
invertebrate communities using high-resolution photographic
transects and epibenthic sled samples. Only one of the surveys
covered Chatham Rise (TAN0705), and the resulting density of

sample points for both presences and absences was, therefore,
lower than for the other studies. However, because photographic
survey methods yield close to 100% detection of epibenthic
invertebrates, a high proportion of taxa were identified reliably
and consistently to species or genus level and it was possible to
use true absence data, rather than random background absences,
target-group absences, or pseudo-absences. We expected the fine
taxonomic resolution and availability of true absence data to yield
improvements in model predictions compared to other studies,
but while some models from the study are among the highest
ranked in our assessment (e.g., Scaphopoda, Galatheidae, and
Gracilechinus multidentatus), others are among the lowest (e.g.,
Hyalinoecia tubicola, Flabellum spp.) and the overall range of
results is comparable with other studies. Given that the sampling
methods and taxonomic resolution scored highly against the
evaluation criteria, the two key aspects remaining that might
explain the overall performance are, again, uncertainty in the
environmental predictor variables and the relatively low density
of sampling for the response variables.

Measuring Prediction Success
The metrics used to evaluate models here were chosen to assess
how useful the model predictions are likely to be in practical
applications, the primary intended use for such predictions being
to inform management and conservation decisions across a range
of spatial scales (km to 100s km) within the model domain
(Anderson et al., 2016a; Araujo et al., 2019; Winship et al., 2020).
Thus, in addition to the well-established AUC and TSS metrics,
we used the three simpler measures that were intended to reflect
naïve questions about a taxon’s distribution at differing levels of
predictive skill: is it likely to be present at a given site? (t-tests);
what is its prevalence likely to be at that site? (R2

prev), and what
is its abundance likely to be at that site? (R2

dens). While these
are simplistic measures of model performance, not least because
any relationship between predicted probabilities and measured
occurrences is unlikely to be linear and realized occurrences and
densities are likely to be influenced by historical events, ecological
interactions, and stochastic processes (Dayton and Hessler, 1972;
Connell and Slatyer, 1977; Connolly and Roughgarden, 1999),
they provide intuitively interpretable measures of how well the
model predictions match the independent observations and, thus,
our expectations of a model’s predictive ability.

The models evaluated here can only predict the probability of
suitable habitat being present at a given site, which in itself is of
limited use for most applications (Bahn and Mcgill, 2013), but
continuous maps based on these probabilities inevitably invite
the interpretation that higher predicted habitat suitability should
correspond with higher population densities of the target taxon
(Lobo et al., 2008). This interpretation is not justifiable from
a theoretical perspective, but it is, arguably, the way in which
outputs from habitat suitability models are often viewed. Indeed,
it is arguable that if such an interpretation is not at least partially
justified, we should question what purpose such predictions
serve, if not to indicate where a taxon is most likely to be found.
In this context, an important result here is that most correlations
between predicted probability of suitable habitat being present
and observed densities of taxa on the seabed were weak. This is
a practical demonstration that inferring the likelihood of taxon
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FIGURE 5 | Probability of suitable habitat for the branching scleractinian coral Goniocorella dumosa on Chatham Rise, as predicted by habitat-suitability models in
five published studies. Probability values are scaled at right, and prediction maps are overlaid with presence (red dots) and absence (gray circles) locations from the
independent photographic observation dataset. AUC values from testing against the independent dataset are shown for each model (AUCind ).
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FIGURE 6 | Probability of suitable habitat for all thicket- or reef-building Scleractinian corals (Solenosmilia variabilis, Madrepora oculata, Enallopsammia rostrata, and
Goniocorella dumosa) on Chatham Rise, as predicted by habitat-suitability models in four published studies. Anderson et al. (2016a) produced two models for
reef-building corals, one using BRT, the other MaxEnt (MXE). Probability values are scaled at right, and prediction maps are overlaid with presence (red dots) and
absence (gray circles) locations from the independent photographic observation dataset.

Frontiers in Marine Science | www.frontiersin.org 16 April 2021 | Volume 8 | Article 632389

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-08-632389 April 1, 2021 Time: 11:48 # 17

Bowden et al. Assessing Habitat Suitability Models

occurrence or population density from predictions of suitable
habitat being present is, indeed, unlikely to be justified.

Prediction of presence or absence is less demanding than
prediction of relative or absolute density (Bahn and Mcgill,
2013), so it is not surprising that models generally performed
better against the presence–absence tests (AUC, TSS, and
t-tests) than against the quantitative ones (R2

prev, and R2
dens),

the most encouraging results being from tests of the simple
expectation that modeled probabilities of suitable habitat would
be significantly higher at sites where a given taxon was present
in the independent data than at those where it was absent. At
this level of predictive skill, 72% of models met the expectation
at the more conservative level (TS, p = 0.01), offering some
support for the utility of existing models in practical applications
that require only prediction of likelihood of presence. However,
that there was no pattern of general improvement against
this test with increasing sophistication of modeling methods
suggests that performance is limited more by the quality and
quantity of input data than by analytical methods, and for the
more interesting and potentially useful task of predicting taxon
densities, there is no support.

Despite all but a few of the models performing less well than
was anticipated from their original cross-validation scores, some
emerge as being potentially useful for reliable prediction of taxon
occurrence at unsampled sites. Thus, models that performed
well against the independent data and predicted the occurrence
of suitable habitat for taxa that have high management or
conservation status might be used with some confidence in
spatial management (Moilanen et al., 2006). In our case, these
criteria would limit the set of potentially useful predictions to
those for the scleractinian coral G. dumosa (Figure 5), and the
combined grouping of reef-forming scleractinian corals (REEF,
Figure 6). For the few taxa that have been modeled in more
than one study, notably G. dumosa, models from the most
recent studies (Anderson et al., 2016b; Georgian et al., 2019)
performed better than earlier ones. However, the difference in
performance between the earliest (Tracey et al., 2011) and latest
(Georgian et al., 2019) models for G. dumosa was relatively
minor, and the most recent studies also included some of
the lowest-ranked models in our comparison. This finding
suggests, again, that any benefits gained from refinement of
modeling methods may be small by comparison with other
aspects of the model-development process, including the quantity
and spatial distribution of occurrence data, the taxonomic
level and consistency of identifications, and the availability of
reliable and appropriate environmental layers at ecologically
relevant spatial scales.

CONCLUSION

For habitat suitability models to be useful in deep-sea
environmental management applications, we need to have
confidence that their predictions are reliable at appropriate
spatial scales and taxonomic resolutions. A first step toward
this should be routine use of cross-validation methods that
account for spatial structuring in the input data. Reliability can

only be confirmed, however, by assessing model predictions
against independent data using methods that sample the target
taxa effectively, our results demonstrating that such assessments
can yield a very different picture of prediction success than is
gained from cross-validation methods. While it is concerning
that most of our current model predictions are apparently of
limited use for their intended applications in management, the
process of objective assessment helps to identify which aspects
of the modeling process are most in need of improvement.
Limitations in the quality and quantity of input data, for both
response and predictor variables, appear to be the primary factors
affecting prediction success, rather than details of the modeling
methods used. If this is the case, increased confidence in the
outputs from future models will probably be achieved only by
greater investment in data collection and in quantifying the
uncertainty associated with these data, for both response and
predictor variables. Generating more reliable environmental data,
particularly bathymetry, at spatial resolutions relevant to the
habitat preferences of target taxa will be a critical component
of this, with initiatives such as the Irish National Seabed Survey
(O’toole et al., 2020) and Seabed 2030 Project (Mayer et al., 2018),
exemplifying the scale of commitment required. In parallel with
this, it seems likely that dedicated surveys of taxon distributions
will always be necessary, both to validate existing models and to
enhance data inputs for their successors.

Despite the generally disappointing performance of our
models in this assessment, they can serve as useful heuristics if
viewed as hypotheses to be tested. Approached in this way, we
suggest that a practical long-term strategy to reduce uncertainty
in model predictions can be structured around iterations of a 4-
step cycle in which (1) initial habitat suitability modeling based
on all available taxon occurrence data generates predictions, (2)
these predictions are used to structure field validation surveys,
(3) survey data are used for objective evaluation of prediction
success, and (4) the survey data are then integrated with
existing data and used to develop revised models. Predicting to
overlapping seabed areas at each iteration of the cycle would
progressively expand the environmental and spatial scope of the
models while staying within the bounds of ecological credibility.
The present study represents stage 3 of the first iteration of this
cycle in New Zealand but as we note above, our results show that
major sources of uncertainty in our models, including the quality,
spatial resolution, and ecological relevance of the environmental
predictor variables, have yet to be addressed adequately.
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Supplementary Figure 1 | Illustration of prevalence calculation, showing the
seabed track of a video transect (Voyage TAN0705, station 170) divided into
10-min segments (alternating blue–red), with individual observations of the taxon
Paguridae (hermit crabs) indicated by black circles. Prevalence is calculated as the
proportion of the total number of segments in which the taxon was observed, in
this case 8/12 = 0.66. Also shown are the density of Paguridae as individuals
1,000 m−2, and the probability of suitable habitat as predicted by the BRT
model of Compton et al. (2013).

Supplementary Figure 2 | Variation in AUC and Sensitivity (true positive rate) with
taxonomic resolution. (Left) AUCkvc (by cross validation, blue) and AUCind (against
independent data, red) values as described in Figure 3, plotted by taxonomic
level. (Right) Sensitivity (true positive rate) for all models when assessed against
the independent data. Horizontal bars show mean values in each taxonomic level.

Supplementary Table 1 | Author’s ranking of eight published SDM studies by
reference to assessment criteria and issues proposed by Araujo et al. (2019). DB,
David Bowden; OA, Owen Anderson; AR, Ashley Rowden; FS, Fabrice
Stephenson. Rankings from best to worst are: gold (G); silver (S); bronze (B), and
deficient (D).
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