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ABSTRACT Air pollution reduction is a major objective for transport policy makers. This paper considers
interventions in the form of clean air zones, and provide a machine learning approach to assess whether the
objectives of the policy are achieved under the designed intervention. The dataset from the Newcastle Urban
Observatory is used. The paper first tackles the challenge of finding datasets that are relevant to the policy
objective. Focusing on the reduction of nitrogen dioxide (NO2) concentrations, different machine learning
algorithms are used to build models. The paper then addresses the challenge of validating the policy objective
by comparing the NO2 concentrations of the zone in the two cases of with and without the intervention.
A recurrent neural network is developed that can successfully predict the NO2 concentration with root mean
square error of 0.95.

INDEX TERMS Air quality, clean air zone, data-driven framework, machine learning, policy validation,
transportation system.

I. INTRODUCTION
Clean air zones are being designed and implemented by local
authorities to improve the air quality. The clean air zone can
apply specific requirements to both commercial operators
and private motorists. This include buses, taxis, heavy good
vehicles, and private cars that are not compliant with the
intended emission standards. The UK government’s Clean
Air Strategy [1] includes the implementation of clean air
zones in large UK cities. The main purpose of introducing
and implementing clean air zones is to reduce the air pollution
levels and satisfy the legal requirements on keeping specific
pollutants (e.g., nitrogen oxides) below the allowable limits.
The pollutants include nitrogen oxides (NOx), particulate
matters (PMx), carbon dioxide (CO2), and other greenhouse
gases. In particular, breathing air that has high concentrations
of NO2 can create irritation in the human respiratory system,
and can cause diseases such as asthma [2]. Once properly
designed and implemented, a clean air zone reduces traffic
emissions that are harmful, improves air quality and protects
people’s health (see the work [3] on the performance of such
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zones in European cities). The zone can affect the users’
behaviours by putting appropriate changes. Designing clean
air zone interventions and increasing their effectiveness are
essential for achieving an improved air quality, and data will
play a central role in such a design.

The recent advances in sensing and the storage of large
volumes of data have introduced a revolution in the way we
design and manage transportation systems [4], [5]. Real-time
and historical information gathered from the transportation
network enable us to learn, and develop interventions to
improve the efficiency of the network andmake it sustainable.
This has opened new research directions in the transport
research community and has generated a strong interest in
the relevant industries and among policy makers to move
towards intelligent transportation systems in which data col-
lection and analysis plays a fundamental role in decision
making, design, and increased efficiency [6], [7], [8]. The
survey papers [4] and [5] analyse the latest research efforts
on developing data-driven intelligent transport systems while
discussing the functionality of the key components and future
research directions to tackle the related challenges.

Using large volume of data effectively in the transport
sector bring its own challenges and opportunities for further
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research. Specific data-driven solutions that have been stud-
ied by researchers recently to address challenges in the trans-
port sector are as follows. The work [9] studies automation
of operations in seaport logistics and proposes a Big Data
architecture for secure data sharing and promoting an intel-
ligent transport multimodal terminal for improving decision
making. The work [10] proposes a data-driven approach to
construct an accurate model for predicting short-term traffic
flow by combining the spatio-temporal analysis with a Gated
Recurrent Unit. The article [11] proposes a convolutional
neural network architecture for predicting multi-lane short-
term traffic flow.Other applications of data-drivenmethods in
the transport sector include building preventive maintenance
decision models of urban transportation systems [12], opti-
mising fuel consumption and sulfur oxide (SOx) emissions
using big data analytics techniques to make environmen-
tally sustainable operations in maritime shipping [13], and
predicting transportation carbon emission using urban big
data to mitigate climate change [14], [15]. Unfortunately, the
previous research on validating objectives of transport policy
interventions using data-driven methods is very limited.

The main contribution of this paper is to provide data-
driven frameworks for identifying the relevant data types and
for using machine learning techniques to check whether the
objectives of a policy will be achieved. We apply the frame-
works to the use case of a clean air zone where the objective
is to improve air quality in areas where there are currently
NO2 exceedances. The intervention implemented in the clean
air zone is considered to be in the form of specific charges
on vehicles entering the zone dependent on their emission
levels. We use the datasets from the Newcastle Urban Obser-
vatory [16]. The aims of this paper are as follows: (a) Identify,
gather, integrate, preprocess and analyse data types relevant
to the policy objective (which could be for instance in the
form of reducing NO2 concentrations, or reducing the num-
ber of days with high NO2 concentrations); (b) Develop suit-
able machine learning methods based on the input processed
data and validate their outputs with respect to the clean air
zone objectives; and (c) Make predictions using the learned
models to check that the policy objectives will be achieved.

A small subset of the results of this paper is accepted for
presentation at the ITSC conference [17]. This journal paper
substantially extends the results of the conference paper in
multiple directions. First and foremost, we provide a frame-
work for finding the relevant data types in addition to a
framework for validating the interventionwhile [17] only pro-
vide one framework. Second, we have applied our framework
using four different machine learning models in addition to
the time series analysis provided also in [17]. We have also
completed our paper with an extensive literature review and
reported different performance metrics of the learned models.

This paper is organised into the following sections.
Section II gives an overview of the Newcastle Urban Obser-
vatory and the policy objective considered in this work.
Sections III and IV review the related work and machine

learning techniques used in air quality. The method of this
research in presented in Section V. A brief overview of the
dataset and the policy objective is provided. We also present
our frameworks designed to tackle the challenges that are the
focus of this paper: a framework for finding datasets that are
related to the policy objective, and a framework for validating
the policy objective targeted at air quality. In Section VI,
we provide the details of the machine learning models used in
our study (Decision Trees, Light Gradient BoostingMachine,
K-Nearest Neighbours, andGradient BoostedDecision Tree).
We also give the test metrics that can be used to assess the
performance of the learned model. These metrics include
accuracy, precision, recall, F1 score, and confusion matrix,
and will be defined in this section. We also discuss the details
of another main contribution of the paper, which is a time
series analysis of the data for making predictions on the air
quality. Section VII presents the results and discussions on
applying the frameworks on the dataset from Urban Observa-
tory at Newcastle, United Kingdom. Finally, we conclude the
paper in Section VIII with a summary and our future research
directions.

II. THE NEWCASTLE URBAN OBSERVATORY
In this paper, we will use the clean air zone intervention
as a case study and will apply the results using datasets
from Newcastle upon Tyne as the City Council is planning
to design and implement a clean air zone to be open from
January 2023. We employ data available from Newcastle
Urban Observatory [16] that initially funded under the UK
Collaboratorium for Research in Infrastructure and Cities
(UKCRIC).1

Newcastle upon Tyne is the largest city in the North East
of England with approximate population of 300, 000. The
Newcastle Urban Observatory (UO) was developed with a
multi-million-pound investment to serve as a large-scale data
capturing infrastructure. The open dataset of UO is used
by community groups, local and national government, and
research projects ranging from cyber-security to quantifying
the impact of COVIDmeasure and flood forecasting. The data
handled by the UO covers a wide range of city metrics includ-
ingmobility, air quality, climatic variables, and infrastructure.

The volume of data in UO is in the order of billions of
data points that are published as anonymous open data [18].
The dataset includes 900 million data points measured since
2016, 60 data types, and 2000 observations every minute.
Figure 1 shows the geographical locations of sensors that
measure and send data to the UO. The majority of the sensors
are located in Newcastle upon Tyne and its surrounding areas.
The map shows clusters of sensors for a better visualisation.
Note that the measurements stored in the UO are raw data and
needs to be processed for improving the quality of the data.
We have used a subset of the measurements and preprocessed
the dataset as will described in Section V-C.

1https://urbanobservatory.ac.uk/explore/ukcric
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FIGURE 1. Geographical locations of sensors that measure and send data to the Urban Observatory. Circles with numbers show
clusters of sensors.

The data being monitored and stored at the Urban obser-
vatory sites include different themes and each theme has
different variables. The themes considered for our case study
include air quality, weather, traffic and timestamp. There are
different sensors for monitoring these themes. These sensors
are installed in various locations of Newcastle. The sensors
that we have considered are close to Newcastle City Centre
to have a better understanding of the air quality at the centre of
Newcastle. Each theme has different variables. The variables
for the air quality theme that we consider include CO, PM2.5,
PM1, PM10, PM4, O3, NO, and NO2. The variables that we
consider for weather theme include Wind Direction, Wind
Speed, Solar Radiation, Solar Diffuse Radiation, Pressure,
Rain Duration, Rain ACC and Max Wind Speed. The vari-
ables for the traffic theme that we consider include Traffic
Flow and Average Speed, which are both collected by the
Newcastle UO and by the Urban Traffic Management and
Control at a greater fidelity. We also have timestamp theme
that include Year, Month, Day, Hour, Minute, and Second.
This means the measurements are taken in general every
second and stored in the database of the Newcastle Urban
Observatory.

A. POLICY OBJECTIVE AND THE INTERVENTION
The cabinet members at Newcastle and Gateshead Councils
have confirmed the plans for introducing a clean air zone to
operate in Newcastle city centre [19]. The planned date for
introducing the intervention is January 2023. The zone will
include the city centre of Newcastle and routes over the Tyne,

High Level, Swing and Redheugh bridges. The intervention
will impose charges on all buses, taxis, coaches, vans and
heavy goods vehicles (HGVs) that do not meet the emissions
standards of EUROIV for petrol and EUROVI for diesel
vehicles. The primary goal of the clean air zone in Newcastle
is to improve the poor air quality. Therefore, we consider the
following as the objective of the introduced policy:

After introducing the clean air zone at Newcastle, the
concentration of NO2 will reduce. More specifically, the
time duration when the concentration of NO2 is unhealthy
(NO2 concentration above 100 parts per billion) will be

reduced by 10%.

Note that we have selected 10% reduction as an example
for a proof of concept to demonstrate the usefulness of the
frameworks designed in this paper. This reduction can be
estimated by the Clean Air Zone experts in their technical
documents backed up by air quality modelling, operational
cost modelling, and behavioural response estimates.2

We have designed two frameworks to tackle the spe-
cific challenges of validating policy objectives using large
datasets. The first framework addresses the challenge of find-
ing data types that are related to the policy objective using
machine learning techniques. The second framework vali-
dates an intervention and checks how well the objectives of
the policy are achieved. These framework will be presented in

2https://cleanairgm.com/technical-documents
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Section V after reviewing the related literature on air quality
and machine learning in Sections III–IV.

III. RELATED WORK
In the United Kingdom, the Department for Transport (DfT)
and the Department for Environment, Food & Rural Affairs
(Defra) have jointly produced a report that lays out a frame-
work for the design and operation of clean air zones in
England [20]. It recommends the approach to be taken by
local authorities when implementing and operating a clean
air zone. These recommendations apply also to the clean air
zone being considered for implementation in Newcastle. An
example of such an implementation in England is the Greater
Manchester Clean Air Zone (GMCAZ) [21]. The interven-
tions designed in the GMCAZ was launched on 30 May
2022 and requires the vehicles that do not meet the emis-
sions standards, to pay a fee when entering the clean air
zone. The non-compliant vehicles are: Heavy goods vehicles,
buses, coaches, vans, minibuses, private hire cars, and motor-
caravans that have a EUROV or earlier diesel engine that
have a EUROIII or earlier petrol engine. Private cars are not
currently affected by the intervention. This new scheme also
provides financial support with more than £120m of govern-
ment funding to help businesses in the region, organisations
and people switch to compliant vehicles by either replacing
or retrofitting non-compliant vehicles. The technical reports
published in the website of GMCAZ3 clearly show the role
of data in designing the related interventions and evaluating
them when they are implemented. In general, datasets play
two main roles: (1) datasets are used to select and tune
parameters of the physical models developed for air quality,
and (2) datasets are used for monitoring and checking if the
policy objectives are achieved (e.g., reducing the pollutant
level to some value).

In contrast to a clean air zone in which the local authority is
actively trying to improve the quality of the air, low emission
zones put restrictions specifically on vehicles that do not meet
a minimum standard for vehicle emissions, e.g., the European
Union’s emissions standards [22] on harmful air pollutants
and greenhouse gases. The paper [23] studied how the low
emission zone implemented in London impacted the vehicle
usage and air pollution by using the data from the registration
and enforcement information. The authors focus on concen-
trations of particulate matter PM10 and NOx . This choice was
made due to the fact that in London, approximately 25%
of PM10 and 57% of NOx emissions from road transport
come from heavy vehicles [24]. Using ambient air quality
measurements, they showed that concentrations of particulate
matter have dropped by 2.5–3.1% within the low emission
zone, but they did not find any noticeable differences for all
measured NOx concentrations.

Another line of research studies various methods for spec-
ifying and deciding on boundaries of a clean air zone. The
paper [25] uses data from the air quality monitoring stations

3https://cleanairgm.com/technical-documents

and combines statistical analyses with interpolation tech-
niques to identify the areas with the highest concentrations of
particulate matter. The paper [26] integrates an atmospheric
model with a kinematic model to identify the boundaries
of the catchment of air affecting concentrations of air pol-
lution. The available data is used to initialise and calibrate
the models. The paper [27] discusses an empirical approach
called participatory modelling to find spatial representations
of local knowledge about air pollution and use them in local
governance of air quality. They present empirical data from
a three-city case study and generate maps using the local
knowledge, which can then be used as a form of consultation
for local governance of the politics on air pollution.

Although the above works show the potential of data-
driven techniques for modelling, analysing, and addressing
challenges related to air quality, developing data-drivenmeth-
ods for validating policy objectives on air quality has not
received a considerable attention. In the rest of this paper,
we review machine learning models used to solve problems
on air quality and show how to develop such models for the
clean air zone of Newcastle using the available data.

IV. MACHINE LEARNING AND AIR QUALITY
Data plays a central role in smart cities, which are cities that
integrate information, communication, and computing tech-
nologies with citizens and critical infrastructure components
and services of the city to facilitate sustainable development
and improve the life quality [28], [29], [30]. In the context of
smart cities, applying machine learning methods for air qual-
ity prediction has recently gained attention from researchers.
A systematic review of data-driven methods for air pollu-
tion prediction is provided in [29]. Their work provides an
overview of machine learning techniques used in the smart
city domain to predict air quality, and classifies the tempo-
ral resolutions analysed with these techniques. Prediction of
NO2 concentration in an air quality monitoring site of the
Greater Manchester Area (UK) is performed in [31] using
a statistical model called ARIMAX. Their results show that
the performance of ARIMAX is similar to standard statistical
approaches in terms of the difference between simulated and
measured concentrations, however the accuracy of ARIMAX
in the prediction of extreme air pollution events is 27% better
than the standard statistical methods and 113% better than
using neural network models. The paper [32] has focused on
air quality prediction in Madrid, Spain. This work provides
a method to predict CO, NO2, O3, PM10, SO2 and pollen
concentrations using long short termmemory (LSTM). It tries
to find the best configuration in the LSTM (e.g., how neurons
are connected) for reducing the prediction error and having
robust one day-ahead air quality predictions. The work does
not include any results on using these predictions for inter-
vention validation or design.

The paper [33] considers the travel restrictions and the
lockdowns imposed due to the COVID-19 pandemic, and
studies their impact on Air Quality using machine learn-
ing methods. The work uses Gradient Boosting Machine
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algorithm to assess the impact of full or partial lockdown
on air quality in Quito, Ecuador. The approach in [33] is to
use pre-lockdown data to predict the pollution levels without
lockdown and then compare the predictions with pollution
levels measured under lockdown measures. Another study
is performed in [34] to understand the effect of COVID-19
restrictions on CO2 emissions. It uses CO2 observations
and an atmospheric transport model to compute changes in
CO2 emissions caused by the imposed lockdown. It pre-
dicts a 30% decrease in CO2 emissions and concludes that
this reduction is mainly due to changes in road vehicles as
opposed to other non-traffic emissions which showed small
changes.

The paper [35] applies support vector regression (SVR)
as a machine learning approach to predict the air quality
index (AQI). AQI is an index for quantifying the level of
pollution of air. Its values range from 0 to 500 parts per billion
(ppb), where higher values indicate larger pollutions. The
SVRmodel used in [35] is a nonlinear mapping that maps the
dataset into a feature space and fits a linear regression model
to the dataset in the new feature space. A kernel function is
defined as a mapping from the input space to the new feature
space. The paper shows empirically that radial basis function
as kernel functions gives the best result for prediction on the
chosen dataset. The approach is implemented on a dataset
containing hourly data measured from the state of California,
USA, between January 1, 2016, and May 1, 2018. The result
shows that the pollutant concentrations can be successfully
predicted to using SVR method as a regression problem, and
the six categories of AQI can be predicted as a classification
problemwith an accuracy of 94.1%. The paper does not study
the effect of interventions for improving air quality.

The paper [36] uses three machine learning methods
for predicting concentrations of PM10 and PM2.5 using
road traffic, meteorological data and pollutant data mea-
sured and stored at Air Quality Monitoring sites of Lon-
don. The machine learning models used in the study of [36]
include Artificial Neural Networks (ANN), Boosted Regres-
sion Trees (BRT) and Support Vector Machines (SVM). The
reported implementations show that ANN and BRT are better
than SVM in predicting PM10 and PM2.5 concentrations and
these two models can be applied in managing the traffic-
related particulate matter concentrations. The authors also
conceptualised a hypothetical scenario to demonstrate the use
of machine learning models in air quality management. The
scenario assumed that the study area permits only EUROIV
petrol and EUROVI diesel vehicles to be driven in that area.
The dataset is the revised using the Emissions Factors Toolkit
(EFT) [37] and newmachine learning models are constructed
on the modified data. The paper demonstrate that machine
learning methods can be used to forecast concentrations of
pollutants PM10 and PM2.5 whenever rich datasets are avail-
able.

The paper [38] has developed a Bayesian network method
with an optimised configuration to provide a probabilistic

traffic data analysis and to predict traffic-related air pol-
lutions. Machine learning predictive models are developed
in [39] for predicting particulate matter concentration using
Taiwan Air Quality Monitoring datasets from 2012 to 2017.
The developed predictive models were compared with the
traditional models and cross-validation is used to select the
best model with the highest performance. The paper [40]
has studied reduction of ambient air pollution and conges-
tion using weather forecasts and predictive cordon tolls. The
authors used a model of emission dispersion to forecast air
quality using recorded weather data for Tehran in 2016. It is
shown that the constructed pricing scheme decreases the daily
average CO concentrations.

Although the works reviewed above make promising
observations on the use of machine learning methods for
making predictions on air quality, these works do not give
a framework for efficient analysis of policy interventions
related to air quality. In the next sections, we provide a general
data-driven framework for analysis of the policy objectives
that has machine learning methods as a core modelling and
computation component. As a proof of concept, we study the
reduction in concentration of NO2 by the implemented clean
air zone.

V. METHODS AND DATA
In this section, we present two frameworks for identifying
data types that are the most relevant to a policy objective, and
for checking how well the objectives of a policy are achieved.
We use the term ‘framework’ since our approaches presented
in this section are high level and flexible, and can be applied
to different policy objectives. The details and the choice of
machine learning models can be decided depending on the
specifics of the policy objective.

A. IDENTIFYING RELEVANT DATA TYPES
We have designed our first framework for identifying data
types that are the most relevant to a policy objective. The
rationale behind designing our framework is to use well-
established machine learning methods that do not require an
understanding of air pollutants’ physical or chemical prop-
erties but need sufficiently rich datasets. This framework
sets the first steps we need to take in order to capture the
complex nonlinear relationships between the concentration
of air pollutants and meteorological variables in machine
learning models.

The framework is presented in Figure 2. The first step in
this framework is to analyse a given policy objective to extract
the variables that are important in assessing the success-
ful implementation of the intervention. These variables are
the ones mentioned explicitly in the intervention documents
while specifying quantitatively how much they are expected
to change after the implementation of the intervention. Once
these target variables are identified, the next step is to analyse
the data from these variables using machine learning meth-
ods to measure their relative importance in predicting and
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FIGURE 2. A framework for identifying data types that are relevant to an intervention.

affecting the objective of the policy. This relative importance
can then be used to select a subset of datasets that make accu-
rate predictions for assessing the policy objective. In order to
compute the relative importance of the data types and extract
the important ones, we use two different data-drivenmethods.
The first one is based on Pearson correlation coefficient.
The correlation takes values in the interval [−1, 1], a value
of ±1 indicates that two variables are dependent linearly,
and values closer to 0 means they become independent of
each other. A plus sign shows positive relationship and a
minus sign shows a negative relationship. The second one is
based on permutation feature importance, which computes
the importance of a feature by first training the model on the
train dataset, then permuting the feature and computing the
increase in the prediction error of the model. If a feature is
important in making predictions, the prediction error should
increase after permutation. If a feature is unimportant, the
change in the prediction error will be by doing the permu-
tation. In general, feature importance can take any values.
We normalise the feature importance to obtain values in
the range [0, 1], which show the relative importance of the
features.

B. INTERVENTION VALIDATING FRAMEWORK
We have designed a second framework for validating an
intervention, and checking how well the objectives of an
intervention are achieved. This framework is presented in
Figure 3. The underlying idea of this framework is to compare
the behaviour of the transportation system under study in the
two cases of with and without intervention. Historical data
and new data gathered after applying an intervention can be
used to construct machine learning models and then make the
comparison. This comparison will then be judged against the
quantitative objectives of the intervention. For this purpose,
we distinguish two scenarios.

First Scenario: The Intervention Is Not Implemented in
the Real System Yet: In this case, we only have access to
historical data. A machine learning model can be trained on
the historical data to predict the target variables in the future
without the application of the intervention (i.e., assuming that
no intervention is applied, what will happen in the future).
It is also essential to understand what will happen if an inter-
vention is implemented. For this purpose, various techniques
can be used including: multi-agent simulation [41], physics-
based modelling [42], [43], machine learning models [36],
or a combination of these approaches. For example, in air
quality modelling, physical meteorological models could be
used that include DispersionModels, Photochemical Models,
or Receptor Models (See for example [42]). These mathemat-
ical models are based on the natural behaviour of physical
quantities (concentration of the gas/particle, pressure, tem-
perature, etc.), are time consuming to construct, and require
iterative tuning of their parameters based on measured data.

The underlying principle of these prediction approaches is
to raise assumptions on how the interventionwould affect var-
ious features in the system and subsequentlymake predictions
on the target variables. In this paper, we modify the histori-
cal dataset based on appropriately justified assumptions and
train a second machine learning model for predicting target
variables after the application of the intervention.
Second Scenario: The Intervention Is Already Imple-

mented: In this case, data gathered and stored can be divided
into two parts: historical data from the transportation system
before the implementation of the intervention, and the most
recent data from the system after the implementation of the
intervention. A machine learning model can be trained on
the historical data to predict the target variables in the future
without the application of the intervention (i.e., assuming that
no interventionwas applied, what would have happened in the
future). Then we compare the predicted target variables under
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FIGURE 3. A framework for validating an intervention, and checking how well the objectives of the intervention are achieved.

no intervention with the target variables measured under the
intervention. The new data obtained under intervention could
also be used for improving the quality of the models built in
the previous scenario, for instance by a better tuning of the
model parameters.

C. PRE-PROCESSING DATASETS
We consider the datasets of the Urban observatory from the
air quality, weather, traffic and timestamp themes. The vari-
ables for the air quality theme that we consider include CO,
PM2.5, PM1, PM10, PM4, O3, NO, and NO2. The variables
that we consider from the weather theme includeWind Direc-
tion, Wind Speed, Solar Radiation, Solar Diffuse Radiation,
Pressure, Rain Duration, Rain ACC and Max Wind Speed.
The variables from the traffic theme that we consider include
Traffic Flow and Average Speed. We also have the timestamp
theme that include Year, Month, Day, Hour, Minute, and
Second, thus the measurements are taken every second.

Reducing NO2 is the main objective of the interven-
tion, thus we consider the availability of NO2 data in each
year. After analysing the NO2 data gathered and stored by
the Urban Observatory, we focus our work on the dataset
for the year 2018 that has the largest number of measured
values. The dataset of the year 2018 has over one million
data entries, while the other years have a substantially smaller
number of measurements. Therefore, we choose the year
2018 for training and validating the policy objective. Table 1
shows the statistics of the dataset for the year 2018. The table
shows respectively the mean, standard deviation, minimum,
25th percentile (lower quartile), 50th percentile (Median),
75th percentile (upper quartile), and the maximum of each
variable.

The pre-processing, computations, training, testing and
visualisations of this paper are done using Python program-
ming language. Our pre-processing takes into account mea-
surements with obvious errors. For instance, any negative
measurement of positive quantities is eliminated from the

dataset. Any measurement outside the bounds of quantities
are also eliminated (e.g., any outlier sensor reading that is a
few times higher that other readings). The same is applied to
any data entry stored in the format of text that is supposed to
be number.

The traffic flow measured and stored by Urban Observa-
tory is the total number of buses, coaches, private cars, taxis,
vans and heavy goods vehicles. The clean air zone affects
these types of vehicles differently. For instance, it is designed
to put restrictions and charge commercial vehicles without
affecting private cars. In order to make accurate predictions
on how the clean air zone reduces the NO2 concentrations,
it is essential to have separate datasets for traffic flow of
different vehicle types. We divide the available dataset of the
total traffic flow to four different traffic flow for different
vehicle types including

1) buses and coaches,
2) heavy goods vehicles (HGVs),
3) cars and taxis, and
4) two-wheeled motor vehicles.

Since the available dataset includes only the total number
and does not give separate numbers for four vehicle types,
we use road traffic statistics published by the Department
of Transport [44] to get the percentages of each vehicle
type in Newcastle upon Tyne. According to this report, the
percentages are as follows:

• Traffic flow of buses and coaches = 1.24% of the total
traffic flow,

• Traffic flow of HGVs = 18.13% of the total traffic flow,
• Traffic flow of cars and taxis = 80% of the total traffic
flow,

• Traffic flow of two-wheeled motor vehicles = 0.63% of
the total traffic flow.

We visualise the available datasets in 2018 to extract use-
ful knowledge and find suitable information. After this data
exploration and visualisation, we filter the dataset to have the
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TABLE 1. Statistics of the data for the year 2018. The table shows respectively the mean, standard deviation, minimum, 25th percentile (lower quartile),
50th percentile (Median), 75th percentile (upper quartile), and the maximum of each variable.

values of variables as time series. The dataset is also unified
and transformed into an appropriate format to be compatible
with machine learning methods.
From Continuous Values of NO2 to Finite Number of

Classes: The sensor measurements of NO2 contain contin-
uous quantities. We divide these values into five different
ranges based on their risk for the general population [45]. The
range of values is based on parts per billion (ppb), which is
defined as the number of units of mass of NO2 per billion
units of total mass. These ranges are

1) ‘‘Good’’ for NO2 concentration between 0 − 50 ppb.
The NO2 concentrations in this range are expected to
have no impact on health.

2) ‘‘Moderate’’ for NO2 concentration between
51 − 100 ppb. This range of NO2 is considered to
be harmful for people who are sensitive to NO2.
These people should consider limiting extended out-
door exertion.

3) ‘‘Unhealthy for Sensitive Group’’ when the NO2 con-
centration is between 101 − 150 ppb. This range of
NO2 is considered to be harmful for people with lung
disease, for children and older people. They should
limit extended outdoor exertion.

4) ‘‘Unhealthy’’ for NO2 concentration between
151−200 ppb. Children, older people, and anyone with
lung disease should avoid extended outdoor exertion.
Anyone else should limit extended outdoor exertion.

5) ‘‘Very Unhealthy’’ for NO2 concentration between
201−300 ppb. Children, older people, and anyone with

FIGURE 4. The number of NO2 measurements in five different classes.
The data has been ordered from most to least unhealthy. The classes are
Very unhealthy (VU) with NO2 concentration range between 201–300 ppb,
Unhealthy (U) with NO2 concentration range between 151–200 ppb,
Unhealthy for sensitive group (US) with NO2 concentration range
between 101–150 ppb, Moderate (M) with NO2 concentration range
between 51–100 ppb, and Good (G) with NO2 concentration
range between 0–50 ppb.

lung disease should avoid all outdoor exertion. Anyone
else should limit outdoor exertion.

Figure 4 represents the number of NO2 measurements
inside the above five classes. As it can be seen also from
Figure 4, Very Unhealthy class has the highest number
of measurements between these five classes. Therefore,
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we expect that the machine learning models and the training
learn the Very Unhealthy class quite well. On the other hand,
the number of data entries for Unhealthy class is relatively
smaller. We use averaging to change the time resolution of
the measurements from second to hour. This will make the
dataset a better representation of the hourly average quantities
and make them more robust against measurement noises.

Since the clean air zone of Newcastle is not implemented
yet, we only have access to historical data before the imple-
mentation of the intervention. To develop a machine learn-
ing model for predicting the concentration of NO2 after the
implementation of the clean air zone, wemodify the historical
dataset based on assumptions mentioned next.

• Implementation of the clean air zone of Newcastle will
result in at least 20% reduction in the number of cars and
taxis, 10% reduction in the number of buses and coaches,
and 20% reduction in the number of HGVs.

• The implementation of the zone will result in an average
reduction in the air pollution concentrations. To make
this assumption quantitative and realistic, we use the
Emissions Factors Toolkit (EFT) [37] published by the
Department for Environment, Food & Rural Affairs
(Defra) of the united Kingdom to estimate the aver-
age concentrations based on the traffic flow before and
after the intervention. We take the difference between
these two concentration estimations and deduct it from
the original dataset. This means we modify the parti-
cles from the Air Quality Theme as follows: CO – 18,
PM2.5 – 16, PM1 – 10, PM10 – 21, PM4 – 23, O3 – 29,
NO – 18, NOx – 24, and NO2 – 25.

We have used these assumptions to demonstrate the appli-
cability our framework. These assumptions can be validated
using approaches that study travel behaviour changes in
response to the intervention [46], [47].

VI. MACHINE LEARNING MODELS
With the recent advances in artificial intelligence and big
data, prediction methods based on machine learning mod-
els are becoming more and more common [48]. The main
advantage of machine learning models is that their training
do not require an understanding of air pollutants’ physical or
chemical properties. The structures and properties of machine
learning models allow us to incorporate complex nonlinear
relationships between the concentration of air pollutants and
meteorological variables. In this section, we provide the
details of the machine learning models used in our study.
These models are Decision Trees [49], Light Gradient Boost-
ing Machine [50], K-Nearest Neighbours [51], and Gradient
Boosted Decision Tree [52]. We also give the test metrics that
can be used to assess the performance of the learned model
(accuracy, precision, recall, F1 score, and confusion matrix).
We also discuss the details of one of the main contributions of
the paper, which is time series analysis of the data for making
predictions on the air quality.

The prediction problem can be formulated as a classifica-
tion or regression problem depending on the range of quan-
tities being predicted. These two are the main two categories
of supervised learning, where the dataset contains labels that
need to be predicted after training a model appropriately on
the training dataset. In other words, it is clear what quan-
tities needs to be predicted and the values of these quanti-
ties is known for the train dataset. The difference between
classification and regression is in the nature of predicted
quantities: classification problem deals with discrete quan-
tities or a finite number of classes (e.g., low/medium/high
classification, or character recognition). An example of a
classification problem is to predict mode of transport using
an appropriate dataset. Mode of transport can take a finite
number of different forms: bus, bike, car, taxi, and walking.
Therefore, this is a classification problem. In contrast, the
regression problem deals with continuous quantities that can
take arbitrary values from an infinite set (e.g., price of a
house, amount of rain, concentration of NO2).

In the following subsections, we briefly discuss the under-
lying ideas of the classifiers used in this paper. We note that
if the performance of the classifier is high (by appropriate
selection of the hyper-parameters), this means that the clas-
sifier can capture the essential relations in the dataset and
can provide more accurate predictions to be used by policy
evaluators and policy makers. We emphasise that the general
aim of our work is not to provide new machine learning
algorithms but to show how current learning algorithms can
be used in a framework for validating implementations of pol-
icy objectives. Our work is novel since previous research on
validating objectives of transport policy interventions using
data-drivenmethods is very limited as described in the related
work section.

A. DECISION TREE
Decision Tree (DT) classifiers were initially developed in
[53]. Since then, it has been used extensively as one of the
most powerful classifiers. Recent use of DT classifiers in
transport systems includes the work in [54] that predicts
the mode choice behaviour of commuters and in [55] for
automatic freeway incident detection. DT has a tree structure.
At each node of the tree, the data is compared with a constant
and depending on the direction of the comparison, one child
node is selected. The leaf nodes of the tree holds the class
labels. DT classifier assumes the labels to be a function of
features. It tries to sequentially divide the space of features
into two parts using comparison with a constant until the right
label is identified. The depth of the tree is a hyper parameter
that shows the required number of comparisons needed to
assign a label to a data point.

B. LIGHT GRADIENT BOOSTING MACHINE
Light Gradient Boosting Machine (LGBM) classifier [50]
is designed to be efficient and more effective for handling
big data (large number of features and data instances). The
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general idea of LGBM is to speed up learning and reduce
the computational complexity by focusing on the training
examples that result in a larger gradient. LGBM is used in
transport applications, e.g., in [56] for predicting traffic crash
severity.

C. K-NEAREST NEIGHBOURS
K-Nearest Neighbours (KNN) classifier was developed first
in [57]. It assumes that data points that are near to each other
in the feature space have the same label. The KNN algorithm
predicts the label of a given data point as follows: it computes
the distance of all the points from the current data point; it
then sorts the computed distances from smallest to largest; it
picks the first K smallest distances; it finally gets the labels
of the selected K data points associated with those distances
and returns the label with the highest repetition. The KNN
classifier has been used extensively in transport applications
including the work in [58] for short-term traffic forecasting
and in [59] for imputation of missing traffic data.

D. GRADIENT BOOSTED DECISION TREES
Gradient Boosted Decision Tree (GBDT) combines multiple
machine learning models (as weak learners) into a single
machine learning model (as a strong learner) in an iterative
fashion [60]. In GBDT, we use regression decision trees as
weak models (a numerical value is assigned to each region of
the feature space, which is the average of training data in that
region). The loss function is also the log-loss function, which
is then passed to a sigmoid function to find the predicted label.
GBDT is used in transport applications for example in [61] to
predict the occupancy of public transport vehicles.

E. JUSTIFICATION OF THE CHOICE OF CLASSIFIERS
The selection of DT, LGBM, KNN, and GBDT classifiers for
identifying relevant data types associated with NO2 can be
justified as follows.

• DT classifiers are interpretable and non-parametric
models that can capture complex relationships between
features and the target variable [53]. They can help
identify relevant data types by revealing which fea-
tures are used to split the data and make predictions
about NO2 levels, highlighting the importance of these
features.

• LGBM classifier is a gradient boosting framework that
uses tree-based learning algorithms. It is an efficient and
effective method for identifying relevant features, as it
iteratively refines the model by focusing on the residuals
of the previous iteration [50]. This results in a model that
can emphasise the importance of certain features and
their relationship with NO2 levels.

• KNN classifier is a non-parametric, instance-based
learning algorithm that can capture complex, nonlin-
ear relationships between features and the target vari-
able [57]. By analysing the proximity of data points in
the feature space, KNN can identify relevant data types

that share similar characteristics, which may contribute
to NO2 levels.

• GBDT classifier is an ensemble learning method that
combinesmultiple weak learners (usually decision trees)
to build a strong predictive model [60]. By iteratively
adding trees that correct the errors of the previous trees,
GBDT can identify relevant data types by focusing on
the features that contribute most to the prediction of
NO2 levels.

From the above four classifiers, GBDT and LGBM are devel-
oped recently and can have complex structures with larger
number of hyper-parameters. The training of GBDT and
LGBM could require more computational resources. DT and
KNN are relatively simple and can be easily implemented.
The KNN algorithm becomes slower for increasing data sizes
(number of data points and features).

In summary, the combination of these methods provides
a comprehensive approach to identifying relevant data types
associated with NO2 levels. These techniques cover a range
of model types (linear, tree-based, instance-based) and fea-
ture selection methods (correlation, importance, proximity),
allowing for a thorough exploration of the relationships
between various data types and NO2 levels.

F. TEST METRICS
For the initial assessment of the performance of the learn-
ing algorithms, we use accuracy, which is defined as
Accuracy = (TP + TN)/(TP + TN + FP + FN), where TP,
TN, FP, and FN indicates the number of predictions that are
respectively true positives, true negatives, false positives, and
false negatives. For Decision Tree classifier, we need to find
the best maximum depth. This can be chosen by computing
the accuracy of the classifier as a function of maximum
depth. The best maximum depth can be selected such that the
accuracy of the classifier is maximised.

There are also three other scores that can be used to
assess the performance of the machine learning algorithms.
Precision score is defined as Precision = (TP)/(TP + FP).
Precision score gives the percent of correct predictions
among all instances classified positive. Recall score is
defined as Recall = (TP)/(TP + FN), which gives
the percent of correct predictions among all instances
that were actually positive. F1 score is defined as
F1 = (2 × Precision × Recall)/(Precision + Recall). The F1
score can take its best value (one) when both precision and
recall scores are equal to one. In worst case, it can be zero.
Confusion Matrix: The precision score defined above is

very useful but does not contain all the information needed
to assess the performance of a classification model. This is
in particular important when the dataset is imbalanced (i.e.,
some of the labels may appear much less than other labels).
The confusion matrix is a matrix that includes the statistics
of the correct classes and predicted classes when the trained
model is applied on the test dataset to make predictions.

A confusion matrix C is a square matrix with dimension n
equal to the number of classes, where the entry Cij of matrix
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C shows the number of predictions predicted to be in group
j and are known to be in group i. For binary classification
(two classes), the numbers of true negatives is C00, true
positives is C11, false positives is C01 and false negatives is
C10. The performance of a classification is judged to be good
if the diagonal entries of the confusion matrix is close to 1
and the off-diagonal entries are close to 0.

G. TIME SERIES ANALYSIS AND PREDICTION
The dataset of air quality from the Urban Observatory
includes measurements of the features as a function of time.
These measurements can be seen as a sequence of data
points that are sequential and are dependent along the time
axis. Recurrent neural networks (RNNs) are a special class
of neural networks with a particular structure designed for
processing sequential data [48]. The basic idea of RNN is
to introduce hidden states ht that can encode some form of
memory for capturing the essential information from previous
data points in the sequence. The relation between hidden
states ht , features xt , and labels yt can be summarised with
the equations

ht = f (xt , ht−1; bh)

yt = g(ht ; by),

where at each time point, the hidden state ht is a function
of current features xt and previous hidden states ht−1. The
labels yt are also functions of the hidden states ht . The
parameters bh, by are learned from the data. The functions
f , g are usually in the form of neurons that take the weighted
sum of their inputs together with some appropriate activation
functions.

Long Short-Term Memory (LSTM) networks are a type of
RNNs for learning order dependence in sequence prediction
problems [62]. An LSTM has four parts: a memory cell
that keeps values over time periods of arbitrary length, and
three gates (input, output, and forget gates) that regulate the
information flow into and out of the cell. We have chosen
LSTM networks for predicting NO2 emissions instead of
using Convolutional Neural Networks (CNN), Deep Neural
Networks (DNN) or other types of networks due to the fol-
lowing reasons:

• Temporal dependencies: LSTM networks are specifi-
cally designed to handle time-series data and capture
long-range dependencies, which are crucial when work-
ing with air quality data. Air quality variables like
NO2 emissions are influenced by past values and trends,
making LSTMs more suitable for this task than DNNs,
which do not explicitly model temporal dependencies.

• Handling of vanishing and exploding gradients: LSTMs
are designed to overcome the vanishing and exploding
gradient problems often encountered in training tradi-
tional RNNs. These issues make it difficult for RNNs
to learn long-range dependencies in time-series data.
LSTMs, with their gating mechanisms, can efficiently
learn long-range dependencies without the gradient

problems, making them more appropriate for predicting
NO2 emissions.

• Robustness to missing data: In real-world air quality
datasets, missing data is a common issue. LSTMs are
more robust to missing data than DNNs due to their
ability to maintain hidden states over time. This allows
LSTMs to better handle gaps in the data and still provide
accurate predictions.

• Better performance in practice: LSTMs have demon-
strated superior performance in numerous time-series
prediction tasks when compared to DNNs and other
methods [62]. Their ability to model temporal depen-
dencies and handle missing data makes themwell-suited
for predicting NO2 emissions, which are influenced by
a variety of factors that change over time.

Performance Metric: The accuracy of an LSTM model in
making correct predictions on the dataset is evaluated by a
metric called ‘‘Root Mean Square Error (RMSE),’’ defined
as

RMSE =

√√√√1
n

n∑
t=1

|yt − ŷt |2 (1)

where yt is the true output (vector of labels) and ŷt is the
output predicted by the LSTM model.

VII. RESULTS AND DISCUSSION
After data analysis and pre-processing, suitable machine
learning methods are selected for training and extracting the
relevant datasets that are most important to the objective of
the intervention. We divide our dataset randomly into 70%
training data for learning the model and 30% test data for
assessing the accuracy of the trained model.4 In our case
study, we consider as reference point the objective of the
intervention to be 10% reduction in the time duration when
the concentration of NO2 is unhealthy (NO2 concentration
above 100 ppb). In the next subsections, we discuss how to
apply our framework presented in Section V to this clean air
zone intervention.

A. APPLYING THE FIRST FRAMEWORK ON THE DATASET
We use the most popular machine learning models includ-
ing DT, KNN, GBDT and LGBM to build models that can
accurately capture the important information in the dataset,
make accurate predictions, and help us to extract relevant
important data types according to our first framework in
Figure 2. A short description of these classification models
can be found in Section VI. Note that the computation of
Pearson Correlation for the framework can be done without
the need for training a classification model, but the Feature
Importance needs constructing a classification model first
and then computing the importance values by shuffling the
dataset.

4This is done using train_test_split function of sklearn package in Python.
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TABLE 2. Normalised feature importance computed from different machine learning methods (LGBM, DT, KNN, GBDT), and the normalised correlation
between NO2 concentration and other measured variables. The variables belong to four themes, which is indicated with different colours in the first
column (green, red, yellow, and dark blue). The variables in the air quality theme are in green colour, the variables in the timestamp theme are in red
colour, the variables in the weather theme are in yellow colour, and the variables in the traffic theme are in dark blue colour. The cut-off value 1% is used
to identify the most important features.

1) FIRST FRAMEWORK USING PEARSON CORRELATION
We compute the correlation between different features and
the NO2 concentration according to Equation (3) to find the
most relevant variables related to the NO2 according to our
first framework in Figure 2. The result is presented in the
right column of Table 2 after normalising the values. The
feature importance does not have a specific range. To make
them comparable, we have normalised the correlation coef-
ficient and permutation feature importances and reported
the percentages in the table. The numbers in the table are
now in the range [0, 100]. These numbers show the relative
importance of the features. We use the cut-off value 1% as
a proof of concept to identify the most important features.
In general, this cut-off value should be selected with respect
to the size of the dataset and the available computational
resources.

The measured variables are written in the left column of
Table 2 and they are colour-coded to indicate each theme.
The variables in the Air Quality Theme are in green colour,
the variables in the Timestamp Theme are in red colour, the
variables in the Weather Theme are in yellow colour, and
the variables in the Traffic Theme are in dark blue
colour.

The normalised correlation coefficient reported in the right
column show that the two highest coefficients belong to the
variables O3 and the number of cars and taxis. We now
look at coefficients across each theme separately. From the
Air Quality Theme (green variables), O3, NO, and CO have
the highest correlation with NO2 but PM4 has a negligi-
ble correlation. In the Timestamp Theme (red variables),

Month and Day have the highest correlation. In the Weather
Theme (yellow variables) Pressure and Wind Direction have
the higher correlation, and in the Traffic Theme (dark blue
variables), Cars and Taxis give the highest correlation. Note
that although HGVs have a high emission factor, they have
a negligible correlation because there is a small numbers of
them.

2) FIRST FRAMEWORK USING FEATURE IMPORTANCE
After training the four classification models, we compute the
Feature Importance values for all these models. The result is
presented in Table 2. In each column, the relative importance
values more than 1% are highlighted in magenta colour. For
LGBM model, O3 and Month have the highest importance.
The following variables have the highest importance value in
each theme: O3 from the Air Quality Theme, Month from the
Timestamp Theme, Pressure from the Weather Theme, and
Car and taxis from the Traffic Theme.

For DTmodel, O3 andMonth have the highest importance.
The following variables have the highest importance value in
each theme: O3 from the Air Quality Theme, Month from the
Timestamp Theme, Pressure from the Weather Theme, and
Car and Taxis from the Traffic Theme.

For KNN model, O3 and Car and taxis have the high-
est importance. The following variables have the highest
importance value in each theme: O3 from the Air Quality
Theme, Month from the Timestamp Theme, Pressure and
Wind Direction from the Weather Theme, and Car and Taxis
from the Traffic Theme.
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FIGURE 5. Normalised Confusion Matrix for the four classification models, from top left to bottom right for GBDT, DT, KNN, and LGBM
models. The numbers associated with different classes are: 0 for Good, 1 for Moderate, 2 for Unhealthy Sensitive Group, 3 for
Unhealthy, and 4 for Very Unhealthy.

For GBDT model, O3 and Car and taxis have the high-
est importance. The following variables have the highest
importance value in each theme: O3 from the Air Quality
Theme, Month from the Timestamp Theme, Pressure from
the Weather Theme, and Car and Taxis from the Traffic
Theme.

All these models share common conclusions about the
importance of different variables in predicting NO2 and val-
idating or designing an intervention that involves reduction
of NO2. The conclusions of these models could be used in
a voting mechanism to decide on the importance of features
(similar to ensemble learning [63]). For this voting mecha-
nism, we train machine learning models, compute the rela-
tive feature importances, and extract the features indicated
as important by the majority of these models. For instance,
most of these models used in our framework state that O3,
Month, Day, Pressure, and the Number of Cars and Taxis are

important. On the other hand, Wind Speed and Number of
two-wheeled motor vehicles are less important in building
a model for policy validation. These findings are also con-
firmed by the general intuitive observations about air qual-
ity: there is evidence of high correlation between NO2 and
O3 [64], [65], [66]; the month is important as the air quality
can get impacted duo to the seasons and weather conditions;
the day will impact the air quality as usually traffic volume
might be higher during the working days and lower over the
weekends. In our dataset, the average difference in traffic
volume between weekends and the rest of the week is 35%.

There are also differences between the importance values
computed using these models. This is mainly due to the
nature of these algorithms that elements of randomness in
their computations. The randomness is originating from the
optimisation used to lean the model (exploring the parameter
space of the model randomly), from the random initialisation
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FIGURE 6. Precision, F1 and recall scores for each method.

of the optimisation, and from random splitting of the dataset
to train-test data [67]. Therefore, any conclusion taken from
the computations should be balanced with the accuracy of the
constructed model. for instance, as we discuss in the rest of

this subsection, the accuracy of the LGBM model is lower
compare to other models. Therefore, the results obtained
based on this model should be discounted appropriately for
making the final decision.
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3) EVALUATION OF THE CLASSIFICATION MODELS
We have used Accuracy, Confusion Matrix, F1 score, Preci-
sion, and Recall to evaluate the obtained classificationmodels
(See Subsection VI-F for the definition of these metrics). The
accuracy of themodels are computed and repeated 10 times to
account for different training and test split of the dataset. The
average accuracy of the LGBM model is 88%, the average
accuracy of DT model is 85%, the average accuracy of KNN
model is 80%, and the average accuracy of GBDT model is
84%. The standard deviation of these accuracies is less than
1%. Among all these methods LGBM has the highest average
accuracy and KNN model has the lowest average accuracy.
This shows that the LGBMmodel can predict the correct class
in almost 9 out of 10 cases.While this is an excellent outcome,
the accuracy should be considered along other metrics to have
the full understanding of accuracy in each class. Therefore,
we also report the confusion matrix.

Figure 5 shows the Normalised Confusion Matrix for the
four classification models, from top left to bottom right for
GBDT, DT, KNN, and LGBM models. The numbers associ-
ated with different classes are: 0 for Good, 1 for Moderate,
2 for Unhealthy Sensitive Group, 3 for Unhealthy, and 4 for
Very Unhealthy. Recall that for a good classification the diag-
onal entry of the confusion matrix should be close to one and
the off-diagonal entries should be close to zero. As you can
see from these Confusion Matrices, the models have learned
the classes 1, 2, 3, 4 relatively well, but the performance is
not good for class number 3. This is mainly due to the
fact that our dataset has different number of data points in
each class, and the number of data points in the Unhealthy
class is much smaller than other classes. The accuracy of the
obtained classification models can be improved by sampling
techniques that deal with imbalanced datasets [68].

Figure 6 shows the comparison between the trained models
using Precision, F1 score and Recall score. The figures pro-
vide these metrics for all five classes separately. The number
of data points of classes are different as reported in Figure 4,
the machine learning algorithms have different performances
in capturing the relations in the data: the class Unhealthy with
the smallest data points has the lowest score and the class Very
Unhealthy with the largest data points has the highest score.

B. APPLYING THE SECOND FRAMEWORK FOR
INTERVENTION EVALUATION
Since the clean air zone of Newcastle is not implemented
yet, we use our framework in Figure 3 under the first sce-
nario, where we only have access to historical data before
the implementation of the intervention. We use LSTMmodel
for training on the historical time series data and predict
NO2 concentrations (or its level) in the future without the
application of the intervention. We also develop an LSTM
model for predicting the concentration ofNO2 with the imple-
mentation of the clean air zone using the dataset modified
according to Section V-C. The dataset of the year 2018 is
divided into the first 10 months for training and evaluation,

FIGURE 7. Percentages of each class of NO2 (number of hourly
NO2 measurements in each class divided by the total number of hours).
The results is for the year 2018 with and without the implementation of
the clean air zone over the whole year. The number of NO2 concentrations
is reduced in all classes except Good class that is increased by 19.45%.
The largest reduction is in the Moderate class (15.44% reduction) and the
smallest reduction is in the Very Unhealthy class (0.18% reduction).

and the next two months for prediction. Figure 7 shows the
percentages of each class of NO2 predicted by the two LSTM
model for the year 2018 with and without the intervention.
According to Figure 7, the NO2 concentrations of this year
under no intervention will be 37.34%Very Unhealthy, 3.77%
Unhealthy, 8.74% Unhealthy for Sensitive Group, 30.46%
Moderate, and 19.69% Good. Figure 7 also shows that the
NO2 concentration of this year under intervention will be
37.16%Very Unhealthy, 0.84%Unhealthy, 7.84%Unhealthy
for Sensitive Group, 15.02% Moderate, and 39.14% Good.
As you can see, the number of NO2 concentrations that are
Very Unhealthy, Unhealthy, or Unhealthy for Sensitive Group
and Moderate is reduced and the number of NO2 concen-
trations that are Good is increased. The largest reduction is
in the Moderate class (15.44% reduction) and the smallest
reduction is in the Very Unhealthy class (0.18% reduction).

Figure 8 shows the LSTM prediction of NO2 concentra-
tions with and without the intervention in the available data
points of months 11 and 12 (not used for training the models).
The horizontal axes of these figures indicate the available
time points ordered in a sequence. The vertical axes are the
classes of NO2 concentrations for these time points predicted
by the LSTM models. Figure 9 shows the Cumulative Dis-
tribution Function (CDF) in the LSTM predictions with and
without the intervention. According to the CDF, the classes
0 and 1 (good and moderate) have more amount than other
three classes compared with the case of no intervention.
Outcome of Our Framework Applied to the Dataset: The

number of NO2 concentrations that are unhealthy is the sum
of three classes: Very Unhealthy, Unhealthy, and Unhealthy
for Sensitive Group. According to Figure 7, this is 37.34%+

3.77% + 8.74% = 49.85% without implementing the inter-
vention and is 37.16% + 0.84% + 7.84% = 45.84% with
the implementation of the intervention. This shows the total
reduction of 49.85 − 45.84 = 4.01% and relative reduc-
tion of 4.01/49.85 = 8%. Therefore, the objective of the
intervention which is 10% reduction will not be achieved
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FIGURE 8. LSTM prediction for NO2 concentrations for two months. The LSTM models are trained and evaluated on the available
dataset from the first 10 months and are used for predicting the NO2 concentration on the available data points of the next two months
(more data points are available in the 12th month).

FIGURE 9. CDF of the LSTM method with and without the intervention.

FIGURE 10. LSTM loss with and without the intervention as a function of
epoch number (i.e., the number times that the learning algorithm will
work through the entire training dataset for updating the model).

and additional intervention may be needed to reach the 10%
reduction.

Time Series Model Evaluation:We use RMSE from Equa-
tion (1) to assess the performance of the learned LSTM
models. The value of the RMSE for the model without the
intervention is 0.946, while the RMSE for the model with
the intervention is 0.850. This shows that the two model are
performing similar to each other in terms of capturing the
behaviour of data. Figure 10 shows the loss value of the
training with and without the intervention. The loss starts
from a high value and gradually decreases until converging
to a fixed value while the learning algorithm finds the best
parameters for the LSTM model.

VIII. CONCLUSION
In this paper, we discussed the use of machine learning meth-
ods for validating interventions in transportation systems
using air quality and clean air zone intervention as a case
study. We proposed a framework for finding data types that
are relevant to the intervention objective. We also proposed a
framework for validating the intervention, and checking how
well the objectives of the intervention are achieved. We used
the dataset from the Urban Observatory in Newcastle, United
Kingdom, and considered an intervention related to clean air
zone with the objective of reducing the concentration of NO2.
We developed an LSTM model for predicting the behaviour
of the NO2 without the implementation of the clean air zone.

In our first framework, we used the machine learning clas-
sifiers DT, KNN, GBDT and LGBM, and computed correla-
tion coefficient and feature importances using these models.
We then normalised these values to get the relative impor-
tance of the features. We used the cut-off value 1% as a proof
of concept to identify themost important features.We showed
that the constructed models share common conclusions about
the importance of features in predicting NO2, which could be
used in a voting mechanism to decide on the importance of
features. Our implementations also showed that among the
selected learning models, LGBM performs best in capturing
the relations in the dataset with accuracy 88%.
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In our second framework, we used historical data of the
year 2018 to model air quality in Newcastle upon Tyne both
assuming no intervention is implemented and under the clean
air zone implementation. The historical data from the first
10 months were used to build and evaluate the LSTM model,
and the predictions are made for the last two months. The
LSTMmodel can successfully predict the NO2 concentration
with root mean square error of 0.95. Our approach shows the
use of machine learning methods in analysing and validating
interventions in transportation systems. The role of machine
learning can be summarised as predicting what is going to
happen in the future if the policy is not implement (using
available historical data), and predicting the air quality and
other related variables using transport behaviour changes in
response to the implemented policy.

We used the term ‘framework’ since our approaches pre-
sented in the paper are high level and flexible, and can be
applied to different policy objectives. The details and the
choice of machine learning models can be decided depending
on the specifics of the policy objective.

Our results are useful for the local authorities who are
participating in the design and implementation of the clean air
zone in Newcastle upon Tyne (e.g., Newcastle City Council).
The clean air zone has come into effect with charges for
non-compliant taxis, buses, coaches, and heavy good vehicles
started from January 2023, and charges for vans and light
goods vehicles will start from July 2023. It is important to
assess the effectiveness of these charges in improving the
air quality in Newcastle city centre and reducing the traffic-
related pollution within the legal limits. Our frameworks
help in modelling and understanding the relation between the
gathered data, imposed charges, and reduction in air pollution
at Newcastle. Our research contributes to a more sustain-
able urban environment by providing valuable insights into
effective clean air zone interventions, which can improve air
quality, reduce NO2 concentrations, and promote sustainable
transportation solutions. As a result, our work helps Newcas-
tle city advance towards achieving its climate and air quality
goals.

Our approach presented in this paper is currently focused
on machine learning models that do not include any infor-
mation from the pollutant’s physical/chemical models. It is
also used as a proof of concept since the data after the
implementation of the policy is not available yet. In the future,
we plan to integrate our data-driven framework with physics-
based models associated with an intervention to improve
the performance and accuracy of our approach. We will
also include optimisation methods in our framework to help
designing better interventions for achieving the intervention
objectives. We also note that the data quality is critical for
drawing conclusions on the effectiveness of an intervention.
There is additional work needed to improve the quality of
the data stored in Urban Observatory, reduce the number of
missing data points, and reduce the observation errors by
calibrating sensors.

For future work, we plan to expand our data-driven frame-
work to address additional sustainability-related challenges in
urban transportation systems, such as promoting alternative
modes of transportation and optimising the expansion of the
electric vehicle charging infrastructure. This will allow us
to design better interventions for achieving the intervention
objectives and contribute to the sustainable ecosystem of the
studied city. We plan to also analyse the data gathered from
the clean air zone of Newcastle under the implementation of
the zone and suggest improvements in implementing the zone
(e.g., by adjusting the charges or categories of the cars).

APPENDIX
A. PYTHON PROGRAMMING LANGUAGE
We have selected Python programming language for the
implementation of the approach of this paper that involves
the process of large volumes of data. Python is open-source,
and has an excellent documentation and a large community
of developers. It also has a simple syntax that makes the cod-
ing faster when compared to other programming languages.
Python comes with many libraries and frameworks. The most
popular libraries areNumPy and SciPy for scientific computa-
tions, and scikit for data analysis. The framework TensorFlow
is essential for machine learning projects. New libraries are
being developed specifically for transportation applications
(see e.g., the TransBigData package in [69]). We will use
Scikit-learn library for training the machine learning models.
Pearson Correlation Coefficient: The correlation between

different datasets and target variables can be computed using
available data and statistical methods. Correlation coefficient
gives a way to assess how much two variables are associated
with each other. The correlation coefficient takes values in the
interval [−1, 1]. A value of ±1 indicates that two variables
are dependent linearly. As the correlation coefficient goes
towards 0, the relationship between the two variables will
be weaker (they become independent of each other). A plus
sign in the correlation coefficient shows positive relationship
(increase in one variable will result in increase in another
variable) and a minus sign shows a negative relationship
(increase in one variable will result in decrease in another
variable). More formally, for two random variables x, y, the
correlation coefficient is defined as

ρx,y =
E[(x − mx)(y− my)]

σxσy
, (2)

whereE is the expectation operator,mx ,my are the means and
σx , σy are the variances of x, y. The correlation coefficient
is computed using the following formula when a dataset
{(x1, y1), (x2, y2), . . . , (xn, yn)} of size n is available for x, y:

ρx,y =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
, (3)

where x̄, ȳ are the empirical means of x, y.
Permutation Feature Importance: The permutation feature

importance was introduced in [70] for random forest models
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and was extended in [71] to other machine learning models.
In this metric, the importance of a feature is computed by first
training the model on the train dataset, then permuting the
feature and computing the increase in the prediction error of
the model. If a feature is important in making predictions, the
prediction error should increase after permutation. If a feature
is unimportant, the change in the prediction error will be by
doing the permutation.
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