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A B S T R A C T
The accurate segmentation of clustered microcalcifications in mammography is crucial for the
diagnosis and treatment of breast cancer. Despite exhibiting expert-level accuracy, recent deep
learning advancements in medical image segmentation provide insufficient contribution to practical
applications, due to the domain shift resulting from differences in patient postures, individual gland
density, and imaging modalities, etc. In this paper, a novel framework named MLN-net is proposed
for clustered microcalcification segmentation. It can segment multi-source images using only single
source images. Specifically, to rich domain distribution information, we introduce a source domain
image augmentation for generating multi-source images. A structure of multiple layer normalization
(LN) layers is then used to construct the segmentation network, which can be found efficient for
clustered microcalcification segmentation in different domains. Additionally, a branch selection
strategy is designed for measuring the similarity of the source domain data and the target domain data.
To validate the proposed MLN-net, extensive analyses including ablation experiments are performed,
comparison of 12 baseline methods. MLN-net enhances segmentation quality of full-field digital
mammography (FFDM) and digital breast tomosynthe (DBT) images from the FFDM-DBT dataset,
achieving the average Dice similarity coefficient (DSC) of 86.52% and the average Hausdorff distance
(HD) of 20.49mm on the source domain DBT. And it outperforms the baseline models for the task
in FFDM images from both the CBIS-DDSM and the FFDM-DBT dataset, achieving the average
DSC of 50.78% and the average HD of 35.12mm on the source domain CBIS-DDSM. Extensive
experiments validate the effectiveness of MLN-net in segmenting clustered microcalcifications from
different domains and its segmentation accuracy surpasses state-of-the-art methods. Code will be
available at https://github.com/yezanting/MLN-NET-VERSON1.

1. Introduction
Breast cancer is the most common cancer diagnosed in

women, accounting for 2.3 million cases and 11.7% of all
cancers worldwide Sung et al. (2021). Compelling evidences
demonstrate that the establishment of a screening program
can reduce breast cancer-related mortality by as much as
20% Mukama et al. (2020). Mammography is widely used
for screening breast cancer, with a detection rate ranging
from 80% to 90%. Clustered microcalcifications, present in
30% to 50% of breast cancer patients, constitute primary
pathological features of this disease. Principal mammog-
raphy modalities employed for detecting clustered micro-
calcifications encompass FFDM and DBT Tarver (2012);
In (2019). FFDM, a 2D imaging modality, acquires two-
dimensional X-ray breast images in a single view. DBT is an
advanced 3D imaging technology that captures a sequence
of low-dose X-ray images of the breast from varying angles,
subsequently reconstructing these images into thin tomo-
graphic slices with a 1 mm separation Chong et al. (2019);
Zuckerman et al. (2020). Microcalcifications manifest as
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bright spots in both FFDM and DBT, as shown in Fig. 1. The
morphology, dimensions, and distribution of clustered mi-
crocalcifications hold a pivotal role in distinguishing benign
and malignant breast cancer cases Chong et al. (2019). Com-
pared with FFDM, DBT mitigates the challenge of overlap-
ping structures, facilitating radiologists in the differentiation
between healthy breast tissue and potential abnormalities.
This ultimately improves breast cancer detection and reduce
false-positive findings Conant et al. (2020); Richman et al.
(2019). Nevertheless, FFDM continues to serve as the pri-
mary approach for detecting clustered microcalcifications in
the majority of countries, chiefly due to the following three
factors: 1) DBT entails multiple low-dose X-ray images,
resulting in a higher cumulative radiation dose compared to
FFDM Liu et al. (2018). 2) The data volume of DBT is a
hundredfold greater than that of FFDM, leading to extended
acquisition and interpretation times attributable to the larger
image dataset Chong et al. (2019). 3) DBT is a more re-
cent technology, and its adoption may vary by location and
healthcare provider. Radiologists require additional training
to interpret DBT images. The concern regarding radiation
dose is gradually being addressed through advancements in
imaging technology, leading to increased DBT utilization in
recent years. In this paper, we aim to enhance the efficiency
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Figure 1: Examples of images from FFDM and DBT imaging
modalities. The images are from the same patient and repre-
sent the same area of breast tissue. Clustered microcalcifica-
tions can be seen in both imaging modalities. Compared to
FFDM, DBT performs slice photography of the lesion with a
much narrower interval of 1mm, producing dozens to hundreds
of images depending on individual differences.

and precision of clustered microcalcifications recognition
within the FFDM modality from diverse sources, while also
exploring the transfer of knowledge acquired in the FFDM
modality to the realm of DBT.

Deep neural network (DNN) is widely recognized as
a state-of-the-art technology for image analysis, deliver-
ing superior performance in various tasks such as image
classification, semantic segmentation, and object detection
Miao et al. (2023); Ibtehaz and Rahman (2020); Miao et al.
(2022); Zhou et al. (2022); He et al. (2022). The sharing of a
substantial volume of high-quality datasets has significantly
bolstered the advancement of DNNs Miao et al. (2021); Lee
et al. (2017). DNN-based computer-aided diagnosis (CAD)
for clustered microcalcifications is rapidly and effectively
being integrated into systems engineering. These methods
use deep learning technology for automated screening of
clustered microcalcifications in mammograms, reducing the
workload of medical professionals and enhancing the ac-
curacy of diagnosis. For instance, Wang and Yang (2018)
proposed a context-sensitive deep learning approach that
utilized the local features of clustered microcalcifications as
well as the surrounding tissue background to reduce false
positives in the output. Carneiro et al. (2017) proposed an
automated methodology that combined information from
cranio-caudal (CC) and medio-lateral oblique (MLO) views
in FFDM and applied a deep learning model to extract the
features. The feature was then used to assess the risks of
lesions. Zheng et al. (2020) proposed a novel 3D Context-
Aware Convolutional Neural Network (CNN) for improving
the accuracy of clustered microcalcifications detection in
DBT. The method utilized a 2D CNN to extract the intra-
slice features of DBT images, while a 3D CNN was em-
ployed to extract the inter-slice features. This method effec-
tively employed multi-fault information in DBT to reduce

false positives in the output. Samala et al. (2016) recon-
structed the DBT volume using a multiscale bilateral filter-
ing regularized simultaneous algebraic reconstruction tech-
nique, and subsequently used a CNN model to extract rel-
evant features from the reconstructed volume. DNN-based
methods assume that the source (training data) and target
(test data) domains, as well as the the marginal distributions
of the data, are supposed to be the same Kowald et al. (2022),
resulting in a close coupling of methods with data sources.
While these DNN-based methods achieve high sensitivity in
clustered microcalcifications detecting, they often face a re-
duction in performance when there is a substantial difference
between the source and target domains. The phenomenon
commonly referred to as the domain shift problem. Although
a labelled dataset can help alleviate this problem, it can be
costly for collecting such labeled medical datasets, and so
these approaches are impractical.

Domain shifts frequently occur in clinical practice, pre-
senting a significant obstacle to the effective use of DNNs.
Factors such as the continuous advancement of image ac-
quisition technology, variation in diagnostic procedures, di-
versity of scanners, and evolving imaging protocols may
cause a decline in prediction accuracy on new data or render
models obsolete due to these domain shifts Perkonigg et al.
(2021). Our research focuses on identifying clustered micro-
calcifications in breast cancer, with a particular emphasis on
countering the domain shift challenge in mammography. In
mammography, gland density disparities among individuals,
patient positioning, and exposure intensity variances on the
same equipment contribute to intrinsic data variability. This
issue becomes even more prominent when data is sourced
from divergent imaging modalities (distinct imaging proto-
cols), such as FFDM and DBT, representing extrinsic data
variability.

Therefore, we propose MLN-net, which accepts single-
domain data and can generalize to unseen domains. At its
core, MLN-net seeks to tackle the domain shift issue, specif-
ically when handling disparate clustered microcalcifications
datasets. MLN-net has been meticulously designed to miti-
gate data variation impacts, enabling its application to new
target datasets without necessitating retraining with labeled
data. Furthermore, MLN-net is a medical image segmenta-
tion method, providing more detailed lesion information for
the diagnosis and treatment of breast cancer.

Specifically, MLN-net reconstructs the original data ex-
actly from the single-domain set to multi-domain under the
Bézier curve and grayscale-inversion transformation, foster-
ing greater data diversity and simulating potential shifts in
the target domain. To perform multi-domain feature extrac-
tion, we propose a novel segmentation network with multi-
ple LN layers. This network enhances domain information
capture and reduces computation through the shared use of
features among different inputs. Lastly, we propose a branch
selection strategy, hinged on distance metric, for optimal
LN layer selection within the segmentation network. Dur-
ing testing, this strategy gauges the distribution difference
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between the target and source domains by computing cosine
similarity, thereby selecting the best segmentation results.

In summary, our contributions are summarized as fol-
lows:

• We propose a novel framework for segmenting clus-
tered microcalcificationsm, called MLN-net. MLN-
net is capable of accurately segmenting multi-source
images using only single-source images, thus effec-
tively addressing the issue of domain shift between the
source and target domains.

• We introduce a novel segmentation network with mul-
tiple LN layers to capture the features of multi-source
images.

• We develop a source domain data augmentation based
on Bézier curves and grayscale-inversion transfor-
mation to increase the diversity of the source do-
main data. Additionally, we develop a branch selection
strategy to measure the similarities between the source
domain data and the target domain data.

• We evaluate the proposed MLN-net on both the
private FFDM-DBT dataset and the publicly available
CBIS-DDSM dataset. MLN-net achieved superior
performance over state-of-the-art methods. And in-
depth analytical experiments demonstrate the efficacy
of MLN-net.

2. Related work
2.1. Domain shift

Domain shifts arise from differences between the distri-
bution of the training and the test data. In medical image
analysis, these differences can result from different scanners,
scanner generations, manufacturers, or imaging protocols
during data acquisition Perkonigg et al. (2021); He et al.
(2021). For example, breast cancer diagnosis involves mak-
ing use of medical image information obtained from both
DBT and FFDM Horvat et al. (2019); Giess et al. (2017),
corresponding to different imaging protocols. Even with the
same imaging protocols, shown in Fig. 7, there can be signif-
icant discrepancies between images. These image disparities
are a result of the rapid evolution of mammography tech-
nology. Therefore, to ensure successful deployment of deep
learning-based clustered microcalcifications identification
models in the changing environment, it is crucial to develop
and advance methods that consider these domain shifts.

Recently, several methods have been proposed to address
the issue of domain shift, encompassing semi-supervised
transfer learning (STL) Wang et al. (2021); Abuduweili et al.
(2021); Zhang et al. (2021); Jakubovitz et al. (2019); Wei
et al. (2019), unsupervised domain adaptation (UDA) Du
et al. (2019); Dong et al. (2020); Doersch et al. (2015), and
domain generalization (DG) Fan et al. (2021); Seo et al.
(2020); Zhang et al. (2020); Zhou et al. (2020). Table 1
presents a comprehensive overview of the merits and demer-
its found in a range of related research endeavors, along with
the primary technologies employed therein.

2.1.1. Semi-supervised transfer learning
STL constructs effective self-supervised mechanisms for

unlabeled data to migrate the rich knowledge of the source
domain to the target domain. For instance, Abuduweili et al.
(2021) proposed an adaptive consistency regularization ap-
proach to leverage both pre-trained weights and unlabeled
data. The adaptive consistency regularization approach con-
sists of two complementary components: Adaptive Knowl-
edge Consistency, which applies to the examples between
the source and target models, and Adaptive Representation
Consistency, which applies to the target model between
labeled and unlabeled examples. Wang et al. (2021) utilized
a pretrained model and a novel transfer feature learning
model to extract image features, followed by proposing a
deep fusion method and a selection method to combine the
features from the pretrained and transfer feature learning
model. This architecture enhanced the model’s generaliza-
tion capability.
2.1.2. Unsupervised domain adaptation

Unlike STL, UDA does not require a large amount of
relevant data. UDA mitigates the distribution difference
between the source and target domains to address the domain
shift issue. For example, Du et al. (2019) and Dong et al.
(2020) applied deep adversarial networks to decrease the
feature distribution gap among data from different domains
so that the model can learn the same semantic features.
Another noteworthy contribution includes He et al. (2021),
which presented a system of three neural networks: the task
model, the autoencoder model, and the adaptor model. The
task model undertaken the image analysis task, while the
autoencoder and adaptor models transfigured the features of
the target domain to minimize domain shift. Other methods,
such as those proposed by Liu et al. (2020b) and Ma et al.
(2019), adopted style transfer methods to adapt the trans-
formation of the target domain by analyzing the differences
between the source and target domains.
2.1.3. Domain generalization

STL and UDA face challenges when applied in the
medical field due to privacy concerns that hinder the sharing
of data between different hospitals and departments. These
privacy concerns result in the target domain being unknown
during the training process. Unlike STL and UDA, DG relies
solely on the source domain data and builds models capable
of directly generalizing to target domains, presenting a more
pragmatic solution. Several DG methods have been proposed
recently Zhou et al. (2022); Zhang et al. (2020); Balaji et al.
(2018); Dou et al. (2019); Liu et al. (2020a); Fan et al.
(2021); Segu et al. (2023); Seo et al. (2020); Zhou et al.
(2020). Meta-learning, for instance, has been utilized to
facilitate domain-invariant representation of multi-domain
data Balaji et al. (2018); Dou et al. (2019); Liu et al. (2020a).
There are also investigations that enhance the normalization
process of DNNs by incorporating improved batch nor-
malization (BN) and instance normalization (IN), thereby
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Table 1
Summary of related methods to solve domain shift. We evaluated the merits and demerits of each method based on four aspects:
whether it requires a large amount of relevant data, the availability of target domain data, its suitability for large-scale domain
shift, and small target segmentation tasks. “-” means it cannot be determined or defined.

Method Literature
Demerits

Main TechniqueRequire a large number
of relevant data

Require available target
domain data

Unsuitable for large
scale domain shift

Unsuitable for small
target segmentation

STL Wang et al. (2021) ✓ ✓ - Transfer learning and Fine-tuning
Abuduweili et al. (2021) ✓ ✓ - Transfer learning and Fine-tuning

UDA

Du et al. (2019) ✓ - ✓ Deep adversarial network
Dong et al. (2020) ✓ - ✓ Deep adversarial network
He et al. (2021) ✓ - - -
Liu et al. (2020b) ✓ ✓ Style transfer
Ma et al. (2019) ✓ ✓ Style transfer

DG

Balaji et al. (2018) ✓ ✓ Meta-learning
Dou et al. (2019) ✓ ✓ Meta-learning
Liu et al. (2020a) ✓ ✓ Meta-learning
Fan et al. (2021) ✓ Normalization strategy
Segu et al. (2023) ✓ Normalization strategy
Seo et al. (2020) ✓ Normalization strategy
Zhang et al. (2020) ✓ ✓ Data augmentation
Zhou et al. (2022) ✓ ✓ Data augmentation and normalization strategy
MLN-net Data augmentation and normalization strategy

strengthening the networks’ capacity to grasp domain infor-
mation Fan et al. (2021); Segu et al. (2023); Seo et al. (2020).
Additionally, strategies such as specific style transfer or data
augmentation, which indirectly tackle potential changes in
the target domain, have been successfully applied in medical
image analysis to mitigate the issue of domain shift Zhang
et al. (2020); Zhou et al. (2022).

Clustered microcalcifications identification is a critical
task in clinical practice Pan et al. (2022). Existing DG
methods are not directly applicable to the clustered microcal-
cifications segmentation task, mainly for two reasons. First,
segmentation of the clustered microcalcifications involves
distinction between the lesion’s characteristics and the back-
ground, which presents a challenging classification problem.
Second, most DG methods is relatively sensitive to small
shifts of domain distribution and so is unable to provide a
accurate segmentation to large domain shifts. To overcome
these limitations, we propose a novel segmentation method
for clustered microcalcifications that is the first segmentation
method with domain generalization ability for clustered
microcalcifications, filling a critical gap in the field.
2.2. Medical image segmentation based on deep

learning
Medical image segmentation is a crucial component of

automated medical image analysis, as it allows for the extrac-
tion of essential quantitative imaging markers, which in turn
improves diagnosis, personalized treatment planning, and
therapy monitoring Sourati et al. (2019). With the emergence
of deep learning, segmentation approaches have evolved
from traditional machine learning models to deep learning
methods, yielding promising results in various segmentation
tasks Jiang et al. (2020).
2.2.1. Convolutional neural network

Convolutional neural network (CNN) He et al. (2016),
which utilizes convolution and pooling operations to extract
image features, have found widespread application in the
field of medical imaging. CNNs offer significant benefits in
image classification and object detection, particularly in the

context of clustered microcalcifications Bekker et al. (2015);
Wang and Yang (2018); Zheng et al. (2020); Carneiro et al.
(2017). However, image segmentation, a pixel-level clas-
sification task, necessitates a meticulous representation of
image features often compromised during down-sampling
in pooling operations. Moreover, the scarcity of semantic
information in shallow feature maps generated by CNNs
typically results in subpar segmentation performance, espe-
cially when dealing with small targets set against complex
backgrounds.
2.2.2. Vision transformer

In recent years, vision transformer methods Vaswani
et al. (2017); Cao et al. (2023); Li et al. (2022), based on
attention mechanism, have been introduced to exploit the
correlations that exist in medical images between pixels.
In contrast to CNNs, these methods excel at preserving
detailed features and demonstrate superior feature represen-
tation capabilities Cao et al. (2023); Chen et al. (2021);
Bougourzi et al. (2023); Gu et al. (2020). Representatively,
Swin-Unet Cao et al. (2023) and Transunet Chen et al. (2021)
incorporated a self-attention mechanism into the basic Unet
framework Ronneberger et al. (2015), enhancing the global
modeling ability and achieving excellent segmentation per-
formance. PDAttunet Bougourzi et al. (2023), the latest
work, which used the attention mechanism to segment the
COVID-19 lesions. In our study, we employ Swinuet Cao
et al. (2023) as the backbone of segmentation network to
extract image features. Diffident from the previous work Cao
et al. (2023), we introduce a multiple LN layers structure
into the network, thereby improving its capability to capture
multi-domain information.

3. Method

Let 𝐷𝑠 =
𝑁
∑

𝑖
{𝑥𝑖, 𝑦𝑖} represents a source domain set,

where S denotes the domain label, x𝑖 is the i𝑡ℎ image in
the domain, y𝑖 signifies the ground truth, and N is the total
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Figure 2: The schematic diagram of MLN-net framework. MLN-net utilizes source domain data for generalizable segmentation
on unseen domain data. MLN-net is composed of a source domain data augmentation, a segmentation network, and a branch
selection strategy. During training stage, the source domain data augmentation is utilized to augment the source domain data.
The augmented data is then fed to the segmentation network with multiple LN layers, and the loss functions is used to optimize
the segmentation results of different branches. During testing stage, the test data is fed into the trained segmentation network.
And the branch selection strategy is adopted to choose the optimal segmentation results.

number of samples within the domain. Our primary objec-
tive is to develop a multi-source image segmentation model
𝑀𝜙 that can achieve excellent generalization performance
on the source domains 𝐷𝑠s and the target domains 𝐷𝑠d. The
segmentation model takes the form:

𝑀𝜙(𝑥) = 𝑦𝑝, (𝑥) ∈ 𝐷𝑠𝑠, 𝐷𝑠𝑑 , (1)

min(𝑦𝑝 − 𝑦𝑔) = 0. (2)
where 𝜙 represents the parameters of segmentation model, x
denotes the input image, y𝑝 signifies the mask of prediction,
and y𝑔 signifies the mask of ground truth.

The overall pipeline of MLN-net is illustrated in Fig.
2. MLN-net comprises three primary modules: a source
domain data augmentation, a segmentation network, and a
branch selection strategy. This framework facilitates a gen-
eralizable segmentation approach that can extract features
from the source domain data and segment clustered micro-
calcifications on unseen domains. Subsequent sections will
provide a detailed explanation of MLN-net’s architecture.

3.1. Source domain data augmentation
Data augmentation is frequently employed to improve

accuracy in neural network recognition systems for medical
data. And recent studies have suggested that data augmenta-
tion can alleviate the problem of domain shift Zhang et al.
(2020); Zhou et al. (2022). Motivated by these insights,
we present, as depicted in Fig. 3, a monotonic non-linear
transformation function that uses the Bézier curve to adjust
pixel values, acquiring the source-similar data. Furthermore,
we introduce a grayscale-inversion transformation method to
acquire the source-dissimilar data. Algorithm 1 elucidates
the comprehensive procedure of the source domain data
augmentation.
3.1.1. Source-similar data augmentation

Mammography images, such as FFDM and DBT, are
typically grayscale images. As depicted in Fig. 1, the distri-
bution, boundary, and morphology of clustered microcalci-
fications in both types of images share similarities. The pri-
mary distinguishing factor is the pixel mapping strategy that
defines light and dark features. Inspired by this observation,
we propose a straightforward source-similar data augmenta-
tion method that utilizes the Bézier curve to transform the
gray distribution of images. This method enhances the use
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Figure 3: Examples of source-similar and source-dissimilar
transformations results on the FFDM-DBT dataset. In the
first row, the red line signifies the transformation of source-
similar based on the Bézier curve. This curve has four critical
points; P1 denotes the starting point while P4 denotes the
endpoint. P2 and P3 denote the control points that determine
the curvature of the Bézier curve. In contrast, the blue line
signifies transformation of source-dissimilar based on grayscale-
inversion. And the second and the third row are the images
after the transformations

of the source domain data and facilitates the generalization
of the model to unseen target domains. The Bézier curve
has a starting point, an end point, and two control points.
Its mathematical expression can be represented as:

𝐵(𝑘) =
∑𝑁

𝑖=0

(

𝑁
𝑖

)

𝑃𝑖(1 − 𝑘)𝑁−𝑘𝑘𝑖, 𝑁 = 3, 𝑘 ∈ [𝑝𝑙𝑜𝑤, 𝑝ℎ𝑖𝑔ℎ],

(3)
where k is a fractional value along the line’s length. In our

study, we normalize the pixel values of data to the range
[0,1]. Therefore, the total length of the line is fixed at 1,
divided into 10,000 segments. P𝑠𝑡𝑎𝑟𝑡 = (𝑝𝑙𝑜𝑤, 𝑝𝑙𝑜𝑤) and
P𝑒𝑛𝑑 = (𝑝ℎ𝑖𝑔ℎ, 𝑝ℎ𝑖𝑔ℎ) are the start and end points, which
are set to (0, 0) and (1, 1), respectively, based on the pixel
distribution value range. A series of P𝑐 represents the control
point with values randomly generated from the interval
[𝑝𝑙𝑜𝑤, 𝑝ℎ𝑖𝑔ℎ]. To augment the data, we employ two sets of
curve control points. A comprehensive discussion of these
parameter settings will be provided in the following ablation
experiment.

Algorithm 1 elucidates the comprehensive procedure
of our augmentation pipeline, whereas the aforementioned
source-similar data augmentation is expounded in lines 1-
19. The process of source-similar data augmentation unfolds
as follows: Initially, we initialize the parameters and nor-
malize the input images. Subsequently, two sets of curve
control points 𝑃𝑐 are randomly generated from the interval
[𝑝𝑙𝑜𝑤, 𝑝ℎ𝑖𝑔ℎ]. Next, the pixel distribution of input images is
adjusted using Bézier curves to generate source-similar data,
as detailed in lines 4-19 of Algorithm 1.
3.1.2. Source-dissimilar data augmentation

In mammography images, lesions appear in the form of
small white spots with black background, which results in

Algorithm 1: Source Domain Data Augmentation

Input: Training data (𝑥), P𝑠𝑡𝑎𝑟𝑡, P𝑒𝑛𝑑 , two sets of curve
control points P𝑐
Output: Augmented data 𝑥𝑎𝑢𝑔

1: Initialize the parameters
2: 𝑥𝑛𝑜𝑟 ← Normalize(𝑥)
3: Randomly generate two sets of curve control points P𝑐
from the interval [𝑝𝑙𝑜𝑤, 𝑝ℎ𝑖𝑔ℎ]
4: Input P𝑠𝑡𝑎𝑟𝑡, P𝑒𝑛𝑑 and two sets of curve control points
P𝑐
5: 𝑁 ← len(𝑃 ) ⊳ Calculate total number of 𝑃
6: for 𝑝 in 𝑃 do
7: 𝑥𝑝𝑜𝑖𝑛𝑡𝑠 ← p[0]
8: 𝑦𝑝𝑜𝑖𝑛𝑡𝑠 ← p[1]
9: end
10: for 𝑇 𝑖𝑚𝑒𝑠 ← 0 to 10000 do
11: 𝑘[𝑇 𝑖𝑚𝑒𝑠] ← 𝑇 𝑖𝑚𝑒𝑠∕10000
12:end
13:for 𝑖 ← 0 to 𝑁 do
14: 𝐿𝑎𝑟𝑟𝑎𝑦 ← 𝐵(𝑘) ⊳ See Eqn.3
15:end
16:𝑥𝑣𝑎𝑙𝑠 ← 𝑥𝑝𝑜𝑖𝑛𝑡𝑠 ⋅ 𝐿𝑎𝑟𝑟𝑎𝑦
17:𝑦𝑣𝑎𝑙𝑠 ← 𝑦𝑝𝑜𝑖𝑛𝑡𝑠 ⋅ 𝐿𝑎𝑟𝑟𝑎𝑦
18:𝑥𝑠𝑜𝑟𝑡 ← sort(𝑥𝑣𝑎𝑙𝑠)
19:𝑦𝑠𝑜𝑟𝑡 ← sort(𝑦𝑣𝑎𝑙𝑠) ⊳ Sort in ascending order
20:𝑥𝑠𝑖𝑚𝑖𝑙𝑎𝑟 ← Interp(𝑥𝑛𝑜𝑟, 𝑥𝑠𝑜𝑟𝑡, 𝑦𝑠𝑜𝑟𝑡) ⊳ Interpolation
21:𝑥𝑑𝑖𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟 ← 𝑝ℎ𝑖𝑔ℎ − 𝑥𝑛𝑜𝑟 ⊳ See Eqn.4
22:𝑥𝑎𝑢𝑔 ← 𝑥𝑠𝑖𝑚𝑖𝑙𝑎𝑟 ⊙ 𝑥𝑑𝑖𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟

23:Return 𝑥𝑎𝑢𝑔

⊳ ⊙ indicates mutually exclusive events (which is inactive
in the case of monotonic non-linear transformation)

decreased reliability in lesion identification. Besides, dif-
ferent imaging modalities apply varied pixel mapping ap-
proaches, further complicating the detection of pathological
features. Standard DNN models that rely solely on superfi-
cial features may perform inadequately when presented with
domain shifts. Because of the close similarity between the
source-similar data, it is difficult to identify the correspond-
ing internal feature mapping on domain shift tasks. Data
augmentation method can therefore be used to give rise to
variations in source-dissimilar data, in order to obtain a good
generalization performance.

The grayscale-inversion transformation, as an image
augmentation method, is commonly used in medical image
processing to enhance the visibility of lesion areas. In
our study, we introduce a novel use-case, employing the
grayscale-inversion transformation, as a data augmentation
method, to encourage an adaptive model. The training
set is augmented using replicas of the training patterns,
transformed according to the desired invariances. Specifi-
cally, anti-gray images, defined as source-dissimilar data,
is introduced to allow a more complex target domain in
the training dataset. This greatly reduces the dependence
of the classification performance on notable features, which
provides a framework for feature extraction with broad
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applicability. The mathematical expression of the grayscale-
inversion transformation is presented as follows:

𝑔(𝑥, 𝑦) = 𝑇 − 𝑓 (𝑥, 𝑦). (4)
where T is the maximum pixel value of the image, f is the
pixel value of the current position. x, y are the coordinate
positions, respectively.
3.2. Segmentation network
3.2.1. Backbone of segmentation network

In order to segment clustered microcalcifications across
diverse domains, a novel segmentation network with mul-
tiple LN layers is introduced. This network utilizes Swin-
Unet Cao et al. (2023) as its backbone, with the self-attention
mechanism for advanced feature representation learning. As
depicted in Fig. 4, the Swin-Unet block is the heart of
the Swin-Unet, primarily comprises of the window-based
multi-head self-attention (W-MSA) and shifted window-
based multi-head self-attention (SW-MSA) module. A win-
dow partitioning approach can therefore be proposed, which
applies multi-head self-attention modules to two consecu-
tive blocks. And successive Swin-Unet Transformer blocks
based on this approach can be represented as follows:

𝑥̃𝑡 = 𝑊 −𝑀𝑆𝐴(𝐿𝑁(𝑥𝑡)) + 𝑥𝑡−1, (5)

𝑥𝑡 = 𝑀𝐿𝑃 (𝐿𝑁(𝑥̃𝑡)) + 𝑥̃𝑡, (6)

𝑥̃𝑡+1 = 𝑆𝑊 −𝑀𝑆𝐴(𝐿𝑁(𝑥𝑡)) + 𝑥𝑡, (7)

𝑥𝑡+1 = 𝑀𝐿𝑃 (𝐿𝑁(𝑥̃𝑡+1)) + 𝑥̃𝑡+1. (8)
where 𝑥𝑡 is the output of layer 𝑡. LN represents the LN layer.

The self-attention mechanism of Swin-Unet can be
viewed as performing a feature extraction. And information
from such features can then be used to address long-term
dependency issues prevalent in CNN-based methods Zhang
et al. (2022). Unlike conventional self-attention based meth-
ods, Swin-Unet can capture the correlations between each
region in the image and reduce computational overhead Cao
et al. (2023).
3.2.2. Multiple LN layers structure

LN, a data normalization technique, can reduce the im-
pact of internal covariance transformation and resolve the
problem of vanishing and exploding gradients Ba et al.
(2016). Unlike the commonly used BN method Ioffe and
Szegedy (2015), LN is insensitive to the input data batch
size. This makes it an efficient normalization method in
terms of self-attention based architectures. The mathemat-
ical expression of LN can be written as:

u𝑙 = 1
𝑛

𝑛
∑

𝑖=1
ℎ𝑙𝑖, (9)

𝜎𝑙 =

√

√

√

√

1
𝑛

𝑛
∑

𝑖=1
(ℎ𝑙𝑖 − u𝑙)2, (10)

𝐿𝑡 =
𝛾
𝜎𝑙

⊙ (ℎ𝑡 − u𝑙) + 𝜔. (11)

where ℎ𝑙𝑖 represents the i element of the l layer, n represents
the total number of elements at l layer, u𝑙, 𝜎𝑙 are mean
and standard deviation; 𝛾 , 𝜔 are parameters for scaling and
translation.

Data standardization is applied in LN to mitigate the
variability in input data. However capturing domain distribu-
tion information from multiple domains poses a significant
challenge. The deficiency of domain distribution informa-
tion results in the overall loss incurred in decision making,
which can lead to poor generalization and robustness. To
resolve this issue, we introduce a segmentation network
with multiple LN layers to extract the required distribution
information of varying domains. The segmentation network
utilizes the same backbone network parameters but different
normalization strategies, which takes the form:

𝑀𝐿𝑁(𝑑) =
𝛾𝑑

√

𝜎2𝑑 + Δ
(𝑥 − u𝑑) + 𝜔𝑑 . (12)

where d is the label of domain, u, 𝜎 are mean and standard
deviation, Δ is a small constant value to avoid

√

𝜎2𝑑 + Δ =
0, 𝛾𝑑 , 𝜔𝑑 are parameters for scaling and translation of d
domain.

During the training process, domain-specific informa-
tion can be estimated by recording the parameters of the
normalization layer for each domain at the final iteration.
Evaluation of the best branch is straightforward as each
normalization layer only involves the u and 𝜎 values, which
are recorded in training and test process.
3.2.3. Loss function

MLN-net is modeled with multiple LN layers corre-
sponding to a multi-branch structure. To evaluate the perfor-
mance of all branches, we can formalize such issue through
the introduction of a Dice loss, which is a overall measure
of loss incurred in each branch. In this case, the overall loss
can be written:

𝑓𝑘
𝑑𝑖𝑐𝑒 = − 2

𝑁
∑

𝑛∈𝑁

∑

𝑖 𝑐𝑖,𝑛𝑧𝑖,𝑛
∑

𝑖 𝑐𝑖,𝑛 +
∑

𝑖 𝑧𝑖,𝑛
, (13)

𝐿 =
𝑘
∑

𝑏=1
𝑓 𝑏
𝑑𝑖𝑐𝑒. (14)
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Figure 4: The composition structure of the backbone network and the Swin-Unet blocks in the Swin-Unet model.

where 𝑘 is the 𝑘𝑡ℎ branch, 𝑁 is the total number of classifi-
cation categories, 𝑐𝑖,𝑛 is the softmax output that classifies the
pixel 𝑖 into the class 𝑛, and 𝑧𝑖,𝑛 is the ground truth of pixel 𝑖.
3.3. Branch selection strategy

The normalization process in segmentation network is
expressed in terms of multiple LN layers, which leads to
multiple outputs. And we can provide a much more general
view of domain distribution information by giving a prob-
abilistic interpretation to the multiple segmentation outputs
Segu et al. (2023). A branch selection strategy grounded in
distance metrics is devised, which calculates the distance be-
tween the mean and standard deviation of both the target and
source domains. Thus the domain distribution information is
given by:

𝑄𝑑 = [𝑞1𝑑 , 𝑞
2
𝑑 , ..., 𝑞

𝑙
𝑑] = [(𝑢1𝑑 , 𝜎

1
𝑑), (𝑢

2
𝑑 , 𝜎

2
𝑑), ..., (𝑢

𝑙
𝑑 , 𝜎

𝑙
𝑑)],
(15)

𝑄𝑡 = [𝑞1𝑡 , 𝑞
2
𝑡 , ..., 𝑞

𝑙
𝑡 ] = [(𝑢1𝑡 , 𝜎

1
𝑡 ), (𝑢

2
𝑡 , 𝜎

2
𝑡 ), ..., (𝑢

𝑙
𝑡, 𝜎

𝑙
𝑡 )]. (16)

where d represents the label of source domain, t represents
the label of target domain, and l represents the l𝑡ℎ LN layer
in MLN-net.

In practice, it is often feasible to use the Euclidean
distance metric for similarity evaluation. In the branch selec-
tion strategy, we replace the traditional Euclidean distance

with cosine distance to measure similarity between 𝑄𝑑 and
𝑄𝑡, as cosine distance metric has superiority in quantifying
similarity of high-dimensional space vectors Strehl et al.
(2000). The corresponding strategy is given by:

𝐶(𝑄𝑖
𝑑 , 𝑄

𝑖
𝑡) =

𝑞𝑖𝑑 ⋅ 𝑞
𝑖
𝑡

|

|

|

𝑞𝑖𝑑
|

|

|

|

|

𝑞𝑖𝑡||
, (17)

Distance(𝑄𝑑 , 𝑄𝑡) =
𝑙

∑

𝑖=1
𝐶(𝑄𝑖

𝑑 , 𝑄
𝑖
𝑡), (18)

𝑆 = argmin(Distance(𝑄𝑑 , 𝑄𝑡)). (19)
where d represents the source domain, t represents the target
domain, i represents the i𝑡ℎ LN layer of MLN-net. C is cosine
similarity.

4. Experiments
4.1. Experiments setup
4.1.1. Data and pre-processing

The private dataset FFDM-DBT and the public dataset
CBIS-DDSM Lee et al. (2017) are used to validate our
methodology for segmenting clustered microcalcifications.
The FFDM-DBT dataset consists of DBT data from 80
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patients and FFDM data from 420 patients, each with corre-
sponding pixel-level labels, sourced from the Breast Surgery
department at the First Affiliated Hospital, Zhejiang Uni-
versity. DBT data, each with a thickness of 1mm, incor-
porate double breast tomography images for every patient.
The image count ranges from 70 to 200 per patient, main-
taining a resolution of 1996×2457. Each patient’s FFDM
data includes four views: CC and MLO images of the left
and right breasts, all at the same resolution of 1996×2457.
Experienced radiologists manually annotated the labels for
both FFDM and DBT data. The image preprocessing stage
applies a 2×2 equal ratio segmentation on FFDM and DBT
data to exclude the background blocks, and subsequently
resamples the images to a 512×512 resolution, readying
them for the source domain data augmentation. For this
study, we randomly selected 80% of the data for the training
set and reserved the remaining 20% for the test set.

The CBIS-DDSM dataset includes 735 original breast
images, each paired with corresponding pixel-level labels,
procured from Massachusetts General Hospital, the Univer-
sity of South Florida, and Sandia National Laboratories.
Similar to the FFDM-DBT dataset, data preprocessing pro-
cedures, such as image augmentation and resampling, are
performed on the CBIS-DDSM dataset, thereby tailoring the
data for our study.
4.1.2. Evaluation metrics

To evaluate the performance of MLN-net, we used five
evaluation metrics: True Positive Rate (TPR), Precision
(Pr), DSC, HD, and Average Surface Distance (ASD). TPR
gauges the ability of MLN-net to detect lesions. Pr appraises
its proficiency in identifying positive samples, whereas DSC
assesses the extent of overlap between the predicted and
actual annotations. The spatial overlap index for these three
metrics (TPR, Pr, and DSC) ranges from 0 to 1, a higher
value signifying superior segmentation performance. Con-
versely, HD and ASD evaluate the segmentation error, with
lower values denoting superior segmentation performance.
The metrics are defined as follows:

TPR = TP
TP + FN , (20)

Pr = TP
TP + FP , (21)

DSC = 2TP
2TP + FP + FN , (22)

ASD = 1
𝑛
∑

𝑝∈𝑃
min
𝑔∈𝐺

||𝑝 − 𝑔||, (23)

HD = max
(

sup
𝑝∈𝑃

inf
𝑔∈𝐺

||𝑝 − 𝑔||, sup
𝑔∈𝐺

inf
𝑝∈𝑃

||𝑔 − 𝑝||
)

. (24)

where TP is the number of true positives, TN is the number
of true negative and FP is the number of false positives. P and
G are the surface voxel set of predicted segmentation results
and ground truth, respectively. s and g are an arbitrary voxel
in P and G, and n is the total number of S and G elements.
‖ ⋅ ‖ denotes the shortest Euclidean distance.
4.1.3. Implementation details

The implementation of the proposed MLN-net is based
on Pytorch. The experimentation was conducted on a system
operating with Windows 10 and equipped with an NVIDIA
GeForce RTX 3080 graphics card, possessing 10GB mem-
ory. During training, the ADAM optimizer was employed
with a batch size of 4, momentum set at 0.9, weight decay at
0.001, and a maximum of 100 epochs.
4.2. Experiment I: Experimental results on the

FFDM-DBT dataset
In this section, the performance of the proposed MLN-

net is assessed by taking experiments with the FFDM-DBT
dataset, as shown in Table 2. The results are segmented
into three sections: P1 exhibits the performance of four
basic segmentation networks; P2 exhibits the performance
of four state-of-the-art methods for clustered microcalcifica-
tions recognition; P3 shows the performance of four state-of-
the-art DG methods. Additionally, Fig. 5 illustrates the seg-
mentation results of MLN-net and other baseline methods on
the target domain DBT. And Fig. 6 visualizes the segmen-
tation results of MLN-net alongside the physician-labeled
gold standard for four comprehensive cases on the target
domain FFDM, each case comprising four FFDM images
from distinct imaging angles. A more detailed discussion of
these results will follow.
4.2.1. Comparison with the basic segmentation

methods
Table 2 (P1) shows the results of four basic medical

image segmentation methods. Among these methods, both
Unet Ronneberger et al. (2015) and Resnet He et al. (2016)
are fully convolutional neural network (FCNN) based meth-
ods. On the source domain FFDM, Unet and Resnet achieve
TPR of 48.52% and 46.45%, as well as DSC of 37.32% and
37.25%, respectively. Resnet exhibites a 3.39% improvement
in Pr over Unet. Since both Unet and Resnet have similar
feature extraction processes, they yield comparable results.
M-net Fu et al. (2018) and Unet employ a U-shaped network,
but M-net introduces a novel segmentation mode with multi-
scale input and side output. M-net constructs multi-level
receptive fields and develops multi-distance dependence re-
lationships to enhance predictive performance. The use of
diverse scale receptive fields is beneficial in addressing
the issue of image feature extraction. Furthermore, M-net
utilizes side-output layers and multi-label loss functions to
capture both global and local characteristics, respectively.
These proposed loss functions establish an information cor-
relation between local lesions and global images, enhancing
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Table 2
Segmentation performance comparison with twelve baseline methods on the FFDM-DBT dataset. The baseline methods include
P1: The basic segmentation methods, P2: The state-of-the-art methods for recognizing clustered microcalcifications and P3: The
state-of-the-art DG methods. TPR, Pr, DSC, HD and ASD are used to evaluate the performance of these methods (best result is
in bold for each column). Target DBT (Source FFDM): The models are trained on the domain FFDM and tested on the domain
DBT, Target FFDM (Source DBT): The models are trained on the domain DBT and tested on the domain FFDM.

Target DBT (Source FFDM) Target FFDM (Source DBT)

Method TPR (%) Pr (%) DSC (%) HD (mm) ASD (mm) TPR (%) Pr (%) DSC (%) HD (mm) ASD (mm)

P1

Unet 48.52 35.77 37.32 51.97 20.65 52.32 36.74 43.63 44.64 21.91
Resnet 46.45 39.16 37.25 42.05 16.76 46.07 47.46 46.98 35.32 17.06
M-net 57.13 60.22 55.56 30.47 13.10 52.71 65.97 59.41 25.98 13.76
Swin-Unet 50.09 46.41 46.97 29.17 13.78 53.65 51.80 57.07 26.21 13.74

P2

CS-net 65.42 68.81 66.28 28.86 10.99 67.21 69.65 67.72 28.12 11.08
Iadml 52.24 55.82 47.67 67.91 29.64 48.07 50.32 47.64 56.42 27.03
Musn 57.19 55.62 55.32 45.18 22.63 61.27 59.74 58.49 39.98 19.12
CA-net 71.15 72.40 77.92 26.50 8.71 73.06 77.59 78.06 22.03 9.59

P3

BigAug 70.91 79.66 76.96 29.15 12.01 71.70 76.43 74.26 26.74 11.85
Dofe 65.58 59.96 59.77 37.47 18.14 67.57 66.49 66.58 34.40 16.01
Feddg 73.59 82.74 75.33 31.48 12.97 77.11 79.70 77.79 26.24 9.94
Sadn 79.36 81.97 74.95 27.78 9.20 83.06 78.84 87.25 23.80 7.67

MLN-net 78.43 81.02 78.91 23.32 6.72 85.49 88.75 86.52 20.49 5.96

Figure 5: Clustered microcalcifications segmentation results of different methods. In the input and ground truth images, the red
markings indicate the lesions annotated by doctors. The rest of the red markings represent the lesions identified by the different
methods.

the segmentation power of unseen and variable target im-
ages. And on the source domain FFDM, M-net significantly
enhances TPR, Pr and DSC by 8.61%, 24.45% and 18.24%,
respectively, compared to Unet, confirming their beneficial
effect on domain shift problem. However, Unet, Resnet,
and M-net exhibited a low overall accuracy due to the
FCNN’s limited ability to learn explicit global and long-term
semantic information interactions. This constraint directly
affects their cross-center generalization ability. Moreover,
FCNN’s pooling operation can cause the loss of detailed fea-
tures, leading to low recognition rates of small and discrete

clustered microcalcifications. Swin-Unet Cao et al. (2023)
leverages a U-like segmentation network that employs local
window self-attention instead of convolution and pooling
operations. And it employs fixed window self-attention and
window self-attention sliding strategy, which results in deep
feature learning while reducing computational cost. The
effectiveness of Swin-Unet has proven in clustered micro-
calcifications segmentation tasks, achieving TPR of 53.65%
, Pr of 51.80% , and DSC of 57.07% on the source domain
DBT.

Ke Wang et al.: Preprint submitted to Elsevier Page 10 of 18



MLN-net

Figure 6: Example cases of MLN-net result on the target domain FFDM. This figure contains four cases, which trained on the
different source domains. The left part of each case is the gold standard marked by doctors, and the right part is the output
result of MLN-net. This figure shows the segmentation effectiveness of MLN-net on a complete case.

Swin-Unet is specifically designed for solving lesion
segmentation within a single domain. Compared to CNNs,
Swin-Unet demonstrates potential in addressing domain
shift issues, which can be attributed to its ability to incor-
porate long-term semantic information interactions Kirillov
et al. (2023); Butoi et al. (2023). In addition, every approach
demonstrates appreciable performance enhancement when
utilizing DBT as the source domain, in comparison to
FFDM. This enhancement can likely be attributed to the
wide array of tomographic images encompassed in the

DBT data. These data are notably more comprehensive and
encompass a broader diversity of lesion shapes and contours.
4.2.2. Comparison with the state-of-the-art methods

for recognizing Clustered microcalcifications
In this section, MLN-net is contrasted with the state-

of-the-art methods for recognizing clustered microcalcifica-
tions Hossain (2022); Zheng et al. (2020); Wang and Yang
(2018); Wichakam et al. (2018). And the quantitative results
are presented in Table 2 (P2). CS-net Wang and Yang (2018)
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and Musn Hossain (2022) are developed on FFDM data. CS-
net employs two parallel subnetworks to detect lesions in im-
ages of varying resolutions, effectively preserving intricate
details. In our experiment, we selected images with 512x512
and 1024x1024 resolutions as CS-net’s input. On the source
domain FFDM, CS-net achieves TPR of 65.42% and DSC of
66.28%. These results underscore the potential advantages of
multi-scale inputs in capturing domain-specific information,
a finding consistent with that of M-net. Musn augments
FFDM data via a local Laplacian filter and C-means cluster-
ing algorithm to select the region of interest, followed by a
modified Unet for segmentation. However, Musn’s excessive
emphasis on local image information limits its ability to
process global data, which produces a significant reduction
in generalization, resulting in the subpar DSC of 45.18% on
the source domain FFDM. Iadml Wichakam et al. (2018)
and CA-net Zheng et al. (2020), developed on DBT data,
use CNN architectures to detect clustered microcalcifica-
tions. Iadml merely uses four convolutional layers for feature
extraction, which consequently leads to a potential loss of
deep semantic features. In comparison, CA-net constructs a
step-wise screening detection model, drawing upon a deeper
CNN architecture and a more intricate detection process. It
achieves DSC of 77.92% on the source domain FFDM even
domain shift occur. In our implementation of CA-net, we
replicated 2D FFDM and DBT images to bestow a third di-
mension, as CA-net applies 3D convolution for image feature
extraction. This transformation, which can be perceived as a
form of data augmentation, could potentially improve CA-
Net’s performance, possibly leading to an overestimation of
its capabilities..

Current deep learning methods applied in clustered mi-
crocalcifications detection are originally designed for data
on the same domain, thereby overlooking the challenge of
domain shift. The swift advancement of medical imaging
technology, which leads to data transformation, has pro-
foundly curtailed the applicability of these techniques. To
remedy this shortcoming, we propose MLN-net: A recogni-
tion method for clustered microcalcifications boasting cross-
domain generalization capabilities. This method alleviates
the intrinsic dependence of deep learning on substantial
data, and holds the potential to surmount the data barriers
spanning diverse imaging devices.
4.2.3. Comparison with the state-of-the-art DG

methods
In this section, four state-of-the-art DG methods are

chosen for comparision, including BigAug Zhang et al.
(2020), Dofe Wang et al. (2020), Feddg Liu et al. (2021)
and Sadn Zhou et al. (2022). BigAug, using a deep stacked
transformation approach, emulates domain shifts for specific
medical imaging modalities by augmenting data on a solitary
source domain. Notably, on the source domain FFDM, Bi-
gAug achieves DSC, HD, and ASD of 74.26%, 26.74mm,
and 11.85mm, respectively, underscoring the potency of
simple data augmentation in addressing domain shift issues.
Dofe, a domain-invariant feature learning method, leverages

multi-source domain knowledge via the proposed domain
knowledge pool to improve the generalization ability. To en-
sure a fair comparison between MLN-net and Dofe, we used
both source-similar and source-dissimilar images as inputs
to Dofe. However, Dofe’s segmentation performance proves
subpar, achieving DSC of 59.77% and HD of 18.14mm on
the source domain FFDM. This diminished performance
may result from Dofe’s design specificity for Fundus image
segmentation tasks, where its extensive prior knowledge
may obstruct generalization to different segmentation tasks.
Feddg, a meta-learning-based approach, demonstrates per-
formance comparable to BigAug. Unlike BigAug, Dofe, and
Feddg, which focus on learning or maintaining domain-
invariant information, Sadn combines data augmentation
methods and utilizes information from similar domains to
improve generalization. This results in an improvement in
the DSC by approximately 10% compared to Feddg on the
source domain DBT. The success of Sadn may arise from
recognizing similarities among various medical imaging
technologies, where the variance is considerably less than
that between different imaging technologies used for natural
images.

Inspired by Sadn, MLN-net combines the multiple LN
layers structure with the branch selection strategy and thereby
selecting the optimal network branch. With the introduction
of a self-attention mechanism, we can obtain a significant
further improvement in feature extraction. Experimental
results show that MLN-net gives better performance on
evaluation metrics and outperforms other approaches in HD
and ASD by a significant margin.
4.3. Experiment II: Experimental results on the

CBIS-DDSM and the FFDM-DBT dataset
In Experiment I, the efficacy of MLN-net is validated on

the FFDM and DBT images obtained from the hospital using
different imaging techniques. As shown in Fig. 1, the data
retain a significant degree of relevance despite variations
in image acquisition. To further verify the robustness of
MLN-net, we select the FFDM data from both the FFDM-
DBT dataset and the CBIS-DDSM dataset. The chosen data
come from varied hospitals and equipment, resulting in a
notable disparity in pixel distribution, as illustrated in Fig.
7. The quantitative results are presented in Table. 3. And
Fig. 5 shows the segmentation results of four cases on the
target domain CBIS-DDSM. Further details on the results
are discussed below.
4.3.1. Comparison with the basic segmentation

methods
The results from four basic medical image segmentation

methods are presented in Table. 3 (P1). The performance
of these methods has significantly declined. For instance,
M-net, which exhibited superior segmentation performance
in Experiment I, only achieves a TPR of 9.87% and a DSC
of 12.32% in this experimental setting. The method’s multi-
scale input and output strategy has proved effective in seg-
mentation in the presence of minor domain shifts. However,
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Table 3
Segmentation performance comparison with twelve baseline methods on the FFDM-DBT and the CBIS-DDSM dataset. The
baseline methods include P1: The basic segmentation methods, P2: The state-of-the-art methods for recognizing clustered
microcalcifications and P3: The state-of-the-art DG methods. TPR, Pr, DSC, HD and ASD are used to evaluate the performance
of these methods (best result is in bold for each column). Target FFDM-DBT (Source CBIS-DDSM): The models are trained
on the domain CBIS-DDSM and tested on the domain FFDM-DBT, Target CBIS-DDSM (Source FFDM-DBT): The models are
trained on the domain FFDM-DBT and tested on the domain CBIS-DDSM.

Target FFDM-DBT (Source CBIS-DDSM) Target CBIS-DDSM (Source FFDM-DBT)

Method TPR (%) Pr (%) DSC (%) HD (mm) ASD (mm) TPR (%) Pr (%) DSC (%) HD (mm) ASD (mm)

P1

Unet 27.62 29.39 26.97 50.92 36.69 22.14 24.08 19.92 52.51 38.16
Resnet 24.76 27.15 27.36 58.36 47.05 19.54 22.28 21.87 50.33 38.80
M-net 9.87 13.19 12.32 69.90 44.18 7.67 8.91 6.72 71.77 47.05
Swin-Unet 33.39 34.29 35.10 31.25 34.75 37.81 30.15 29.97 46.04 30.58

P2

CS-net 28.71 26.94 23.19 45.16 32.63 24.45 19.80 20.07 51.37 35.87
Iadml 7.61 10.07 8.10 77.48 52.66 8.23 8.68 6.29 81.78 59.15
Musn 16.48 20.73 21.01 55.50 41.36 20.12 22.77 18.56 55.14 40.70
CA-net 35.13 27.93 33.67 39.97 32.10 30.16 26.76 25.82 56.18 35.75

P3

BigAug 55.14 56.39 44.51 33.64 22.58 41.93 43.17 40.48 39.99 25.03
Dofe 32.76 34.83 29.48 55.79 31.75 37.16 33.87 31.05 46.74 28.10
Feddg 43.08 41.32 37.97 48.95 29.84 37.15 37.32 38.82 46.04 26.99
Sadn 51.75 49.92 45.16 41.04 26.11 39.49 41.60 42.35 48.00 26.72

MLN-net 56.85 54.57 50.78 35.12 20.33 48.35 49.41 45.76 36.74 23.02

Figure 7: Example cases on the FFDM-DBT and the CBIS-
DDSM dataset. Eight images from the CBIS-DDSM and the
FFDM-DBT dataset are selected to perform a comparative
analysis of data variations. This comparison reveals the dif-
ferences in the pixel mapping approaches used by the two
datasets. The third row of this figure presents a quantitative
analysis of pixel values for the two types of data. Notably, we
excluded from statistical analysis the points with pixel values
of 0 and 1, which comprise the background. Additionally, for
safeguarding patient privacy, confidential patient information
is masked with grey regions on the FFDM-DBT dataset.

as the distribution differences in the data domain increase
further, the method appears to excessively focus on detailed
image features, thereby overlooking the global distribution
information. This focus results in an inability to detect
clustered microcalcifications. Unet gets DSC of 19.92% and
HD of 52.51mm on the source domain FFDM-DBT. The

DSC and HD decreased by about 25% and 10mm compared
to the results of Table. 2. Similarly, Swin-Unet demonstrates
a significant decrease in segmentation accuracy compared
to Experiment I. These results suggest that the robustness
and generalization performance of these methods is lacking.
Consequently, their generalization quality across all target
domains cannot be guaranteed when the domain shift scale
is substantial.
4.3.2. Comparison with the state-of-the-art methods

for recognizing clustered microcalcifications
The Table. 3 (P2) shows the result of state-of-the-art

methods for recognizing clustered microcalcifications. Com-
pared with the four basic segmentation methods, the seg-
mentation accuracy of these methods has a significant de-
cline. For instance, CA-net achieves DSC of 33.67% on
the source domain CBIS-DDSM, indicating a decline of
approximately 40% compared to Table. 2. Moreover, it is
noteworthy that Iadml almost loses its ability of clustered
microcalcifications segmentation, with DSC of 8.1%, HD
of 77.48mm, and ASD of 52.66mm on the source domain
CBIS-DDSM. The poor segmentation effect of Iadml is also
revealed in the four examples in Fig. 5. In summary, the
overall performance degradation of segmentation involves
two key factors. First, the CBIS-DDSM dataset demon-
strates limitations in effectively characterizing clustered mi-
crocalcification lesions, because of the early technological
limitations. Second, as shown in Fig. 7, the disparity be-
tween the CBIS-DDSM and the FFDM-DBT datasets is
greater than that between FFDM and DBT images within the
FFDM-DBT dataset. These four current advanced methods
for recognizing clustered microcalcifications lack robustness
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in handling variations in target distribution. As a result, it
can result in poor performance, especially when the dataset
exhibits significant shifts in distribution.
4.3.3. Comparison with the state-of-the-art DG

methods
The Table. 3 (P3) presents the results of the state-of-the-

art DG methods. The results reveal that the DG methods
improve the generalization performance over the methods of
P2 and P1, which is largely due to their regularization effect
on local learning enabling them to extract general feature
representations. For example, BigAug achieves a segmenta-
tion accuracy surpassed only by the proposed MLN-net, with
a DSC of 44.51%, HD of 33.64mm and ASD of 22.58mm on
the source domain CBIS-DDSM, further confirming the pos-
itive impact of data augmentation. Similarly, Sadn registers
commendable segmentation accuracy. As anticipated, MLN-
net outperforms all other methods in terms of average results
of DSC, HD, and ASD by significant margins. Specifically,
on the source domain CBIS-DDSM, MLN-net achieves the
highest average DSC of 50.78% and ASD of 20.33mm,
which are 5.62% and 2.25mm higher than the suboptimal
algorithm, respectively. And as shown in Fig. 5, the proposed
MLN-net accurately segments the structure and delineates
the boundary in images with unknown distributions, while
other DG methods sometimes fall short. These results sug-
gest that MLN-net exhibits superior generalization perfor-
mance, even under challenging circumstances characterized
by significant deviations between the source and target do-
mains.

5. Discussion
5.1. Ablation study

MLN-net comprises three modules: the source domain
data augmentation, the segmentation network, and the branch
selection strategy. To demonstrate the effectiveness of each
module, ablation studies were presented on the FFDM-DBT
dataset. And the corresponding experiments with different
configurations are given in TABLE 4, providing quantitative
insights into the performance of each module.

• Basenet: The standard Swin-Unet.
• Basenet-S: The Basenet combined with the source

domain data augmentation.
• MLN-net-R: The Basenet combined with the source

domain data augmentation and the multiple LN layers,
and without the branch selection strategy.

• Unet-R: The standard Unet combined with the source
domain data augmentation and the multiple LN layers,
and without the branch selection strategy.

• MLN-net-E: The Basenet combined with the source
domain data augmentation, the multiple LN layers
and the branch selection strategy based on Euclidean
distance.

• Unet-E: The standard Unet combined with the source
domain data augmentation, the multiple LN layers
and the branch selection strategy based on Euclidean
distance.

• MLN-net: The Basenet combined with the source
domain data augmentation, the multiple LN layers
and the branch selection strategy based on cosine
similarity.

• Unet*: The standard Unet combined with the source
domain data augmentation, the multiple LN layers
and the branch selection strategy based on cosine
similarity.

• MLN-net-E+: Compared to MLN-net-E, a correc-
tional mean parameter is added to the matrices Q𝑑 and
Q𝑡.

• MLN-net+: Compared to MLN-net, a correctional
mean parameter is added to the matrices Q𝑑 and Q𝑡.

Table 4
Segmentation performance comparison with different configu-
rations. DSC and HD are used to evaluate the performance of
these methods (best result is in bold for each column). Target
DBT (Source FFDM): the models are trained on the domain
FFDM and tested on the domain DBT, and Target FFDM
(Source DBT): the models are trained on the domain DBT
and tested on the domain FFDM.

Datesets: Target DBT Target FFDM
FFDM-DBT (Source FFDM) (Source DBT)

Method DSC (%) HD (mm) DSC (%) HD (mm)

Basenet 46.97 29.17 57.07 26.21
Basenet-S 67.48 25.06 70.93 24.33
MLN-net-R 68.12 25.95 73.03 24.39
Unet-R 53.62 30.10 53.03 31.75
MLN-net-E 78.76 24.02 84.96 22.62
Unet-E 66.18 25.44 66.12 25.39
MLN-net 77.91 23.32 85.52 20.49
Unet* 68.99 26.47 69.07 24.76
MLN-net-E+ 78.53 22.42 86.12 20.69
MLN-net+ 79.12 22.75 89.37 19.66

5.1.1. Efficacy of the source domain data
augmentation

The source-similar data augmentation, based on Bézier
curves, requires manually initialization of hyperparameters.
To evaluate the impact of these hyperparameters, an ablation
study was conducted, in which control point pairs for the
Bézier curve were discussed in detail within the context of
MLN-net. And the parameters of control point that will be
chosen are often set to mean or random values of some vari-
ables. The Random strategy takes values arbitrarily chosen
between 0 and 0.5 for 𝑎, while the Mean strategy generates
𝑎 uniformly, based on the number of control points (i.e.,
𝑎𝑛 = 0.5 ⋅ 𝑛∕𝑁 , where 𝑛 denotes the label of the control
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Figure 8: The segmentation performance of MLN-net on the
FFDM-DBT dataset based on different numbers of control
point pairs for the Bézier curve and different selection strate-
gies of parameters. The vertical axis represents the DSC and
the horizontal axis represents different number of control point
pairs of the Bézier curve.

Figure 9: Evaluation comparison of source domain image
augmentation method.The experimental results shown in (a)
and (b) are from the source domains of FFDM and DBT,
respectively.

point pair). Once 𝑎 is established, a pair of control points
can be identified as (𝑎, 1-𝑎) and (1-𝑎, 𝑎). Fig. 8 represents the
results evaluated for DSC, suggesting that the performance
of MLN-net is less impacted by both the number of Bézier
curve’s control point pairs and the selection strategy of
parameters, as long as they are maintained within a sensible
range. However, the increase in the number of control point
pairs correspondingly expands the training data volume,
resulting in a challenging computational problem. And the
Random strategy may introduce uncertainty into MLN-net.
As a result, we chose two control points and set 𝑎 at 0.30
and 0.70 Zhou et al. (2022, 2020). And both the start and
end points are initialized to (0,0) and (1,1), in accordance
with the image’s pixel value range.

Based on these parameters settings, we further inves-
tigated the effect of the source domain data augmentation
on clustered microcalcifications segmentation. The original
Swin-Unet was selected as the base network for this exper-
iment to ensure that the results remained untainted by mul-
tiple LN layers and varying branch selection strategy. Our
control group comprises both a non-augmentation group and
a conventional augmentation groups, where conventional
augmentation methods consists of random cropping, flip-
ping, and scaling geometric transformations. Domain shifts
in mammography primarily manifest as disparities in image
quality and appearance, with brightness being a key aspect.

Among various modalities, the primary distinguishing factor
among the datasets lies in the variation of pixel mapping
strategies, leading to pixel brightness differences. Conse-
quently, we considered the source domain data augmenta-
tion, employing the monotonic non-linear and grayscale-
inversion transformation for medical images, as the abso-
lute intensity values convey information of the underlying
substructure Forbes (2012); Buzug (2011). Our proposed
augmentation generates data that closely resembles real-
world scenarios and enriches the distribution of samples,
effectively mitigating the impact of domain shifts. Fig. 9
presents TPR, PR and DSC for the segmentation of testing
sets on unseen domains. On the source domain DBT, Swin-
Unet, with the proposed source domain data augmentation,
achieves a DSC of 70.93%, surpassing the conventional aug-
mentation by 13.86%. Table 4 demonstrates that Basenet-S
(augmented with source domain data augmentation) attains a
HD of 25.06mm on the target domain DBT. When compared
to Basenet, HD decreased by 4.11mm, providing evidence
that the proposed source domain data augmentation en-
hances the model’s ability to differentiate ambiguous lesion
areas. Being a distance-based metric, the improvement in
HD serves as a demonstration of the advantages brought
about by the proposed source domain data augmentation
in distinguishing ambiguous lesion areas. The visualization
results of Fig. 5 offer a more intuitive representation of this
advantage.
5.1.2. Efficacy of the segmentation network with

multiple LN layers and the branch selection
strategy

MLN-net employs the segmentation network with mul-
tiple LN layers to capture image features and domain in-
formation. It also leverages the branch selection strategy to
determine the optimal segmentation outcomes. This section
scrutinizes the benefits of using these modules by comparing
the resulting performance, as shown in Table 4. MLN-net-
R and Unet-R models do not include the branch selection
strategy. The integration over multi-domain outputs can be
performed by summing over the pixel values of segmenta-
tion results from different branches. The pixel values greater
than or equal to 1 are considered as lesion areas. It can
be observed that MLN-net-R (with the source domain data
augmentation and multiple LN layers) attains a DSC of
68.12% and a HD of 25.95mm. In comparison to Basenet, it
demonstrates a significant enhancement of 21.15% in DSC
and a notable 3.22 mm improvement in HD. However, it does
not yield a significant improvement compared to Basenet-S
(only with domain data augmentation). The results suggest
that the primary source of these performance enhancements
is attributed to the source domain data augmentation. And
the application of multiple normalization layers alone is not
sufficient to capture multi-domain distribution information.
By the introduction of branch selection strategy, MLN-
net demonstrates a noticeable performance improvement in
comparison to MLN-net-R. This finding suggests that the
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branch selection strategy within MLN-net is closely inter-
twined with the multiple normalization layers. The multiple
LN layers are designed to segregate and record domain-
specific distribution information, whereas the branch selec-
tion strategy is tailored for establishing the normalization
branch based on similarity calculations between the target
and source domains. The effective synergy between these
components stands as a crucial factor contributing to MLN-
net’s exceptional performance.

Furthermore, we explored the potential advantages of
using cosine similarity in the branch selection strategy. As
shown in Table 4, when Q𝑑 and Q𝑡 only encompass mean and
variance of data, the cosine similarity does not exhibit signif-
icant superiority over Euclidean distance. The introduction
of a correctional mean parameter in Q𝑑 and Q𝑡 provides
MLN-net+ an improved segmentation performance on the
source domain DBT, with DSC and HD reaching 89.37%
and 19.66mm, respectively. This performance signifies an
improvement of 4.41% and 2.96mm compared with MLN-
net-E. Importantly, this correctional mean parameter is taken
from the mean of the input pixels, excluding the minimum
pixel value that corresponds to the background region in
mammography. In practice, the size of the background re-
gion fluctuates significantly with respect to various breast
sizes, affecting the global pixel mean. The comparison be-
tween MLN-NET+ and MLN-net indicates that integrating
additional domain distribution information can lead to an
enhancement in performance. Moreover, compared to MLN-
Net-E+, MLN-net+ improves DSC and HD from 86.12%
and 20.69mm to 89.37% and 19.66mm on the source domain
DBT, indicating the benefits of branch selection strategy
with cosine similarity in processing high-dimensional data.

In the ablation studies, we also established the baseline
models based on Unet framework. We discovered that mod-
els based on the Swin-Unet framework outperform those
based on Unet framework with a significant gap. The results
verify the superior efficacy of MLN-net’s feature extraction
network, which is rooted in self-attention mechanisms.
5.2. Analysis on params of MLN-net’

segmentation network
MLN-net utilizes the Swin-Unet architecture to extract

data feature and applies the multiple LN layers to differenti-
ate the characteristics of various domains. These LN layers
serve as containers, separating domain distribution informa-
tion using mean and standard deviation. This distribution
information serves as classification standard to determine
the possible domain affiliations of the target domain. How-
ever, the use of multiple LN layers increases the parameters
of the segmentation network. To assess the impact of these
multiple LN layers on the network’s parameter count, we
compared the total number of parameters between Swin-
Unet and MLN-net’s segmentation network. Both networks
take single-channel, 512×512 resolution images as input to
eliminate the influence of different inputs. The experiment
reveals that Swin-Unet and MLN-net’ segmentation network
have 83.6M and 84.9M parameters, respectively. MLN-net’

segmentation network has 1.3M additional parameters com-
pared to Swin-Unet. Nevertheless, Swin-Unet fails to ef-
fectively capture multi-domain data features and address
domain shift issues. This necessitates network retraining,
which in turn doubles the required parameter count. MLN-
net’s segmentation network accomplishes the separation of
domain distribution information by employing independent
multiple LN layers. Obviously the proposed straightforward
yet efficient framework has introduced additional layers, but
it is worth the extra parameters for the improvement on
feature extraction from multi-domain data.

6. Conclusion
In this study, we developed a multi-source medical image

segmentation method, MLN-net, for the segmentation of
clustered microcalcifications, a key indicator of breast can-
cer. Combining the source domain data augmentation based
on Bézier curves and grayscale-inversion, it improves data
diversity dramatically. And a novel segmentation network
is constructed using multiple LN layers, so as to extract
features from both source-similar and source-dissimilar data.
Furthermore, the branch selection strategy is incorporated
into MLN-net by utilizing cosine similarity distance to get
the best results for target domain. To our knowledge, MLN-
net is the first cross-center generalization method for seg-
menting clustered microcalcifications in breast cancer diag-
nosis.

We aimed to develop a clustered microcalcifications seg-
mentation method with cross-center generalization ability,
which overcomes the binding characteristics inherent to deep
learning models and data sources, thus bridging the data
gap between imaging methods of different hospitals. MLN-
net, no doubt, provides an innovative solution for intelligent
breast cancer detection and treatment, with the potential to
be applied widely in a clinically meaningful setting.

While the MLN-net has some important practical prop-
erties, it suffers from several limitations particularly in the
interpretability. Deep learning-based methods are often dif-
ficult to understand the rationale behind the results, pos-
ing significant challenges for medical diagnoses based on
artificial intelligence and impeding the clinical application
of these approaches. Consequently, future research should
concentrate on improving the interpretability of MLN-net,
introducing the key concepts needed for an understanding of
the complex models, and assisting healthcare professionals
in disease diagnosis and treatment.
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