
Trends in

TRMOME 1941 No. of Pages 13
Molecular Medicine OPEN ACCESS
Opinion
Multiomics tools for improved atherosclerotic
cardiovascular disease management
Miron Sopic,1,2 Baiba Vilne,3 Eva Gerdts,4 Fábio Trindade,5 Shizuka Uchida,6 Soliman Khatib,7,8

Stephanie Bezzina Wettinger,9 Yvan Devaux ,1,13,* Paolo Magni10,11,13,*
on behalf of EU-AtheroNET COST Action CA2115312
Highlights
Multiomics approaches are pivotal in
understanding atherosclerotic cardio-
vascular disease (ASCVD) and offer
promising preventive and therapeutic
strategies beyond traditional risk factors.

Integrating genomics, epigenomics,
transcriptomics, proteomics, and meta-
bolomics data enhances risk stratifica-
tion quality.
Multiomics studies offer accurate preventive and therapeutic strategies for
atherosclerotic cardiovascular disease (ASCVD) beyond traditional risk factors.
By using artificial intelligence (AI) and machine learning (ML) approaches, it is
possible to integrate multiple ‘omics and clinical data sets into tools that can be
utilized for the development of personalized diagnostic and therapeutic ap-
proaches. However, currently multiple challenges in data quality, integration,
and privacy still need to be addressed. In this opinion, we emphasize that joined
efforts, exemplified by the AtheroNET COST Action, have a pivotal role in over-
coming the challenges to advance multiomics approaches in ASCVD research,
with the aim to foster more precise and effective patient care.
Artificial intelligence (AI) and machine
learning (ML) models provide advanced
tools for accurate ASCVD risk prediction
by integrating multiomics and clinical
data.

Large-scale collaborative efforts are es-
sential for gathering comprehensive data
sets to train AI/ML models effectively.

Standardized data, interdisciplinary col-
laboration, and regulatory approval are
crucial for successful implementation.
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The need for multiomics approaches to improve management of ASCVD
ASCVD (see Glossary) remains a persistent global health challenge, contributing significantly to
premature mortality and reduced quality of life. It arises from a complex interplay of modifiable
(e.g., lifestyle, smoking, alcohol intake, uncontrolled hypertension, hypercholesterolemia, obesity,
and type 2 diabetes mellitus) and non-modifiable (i.e., genetic background, age, and sex) risk
factors [1]. The current paradigm for managing ASCVD largely relies on clinical risk algorithms,
such as theSystematicCoronaryRiskEvaluation 2 (SCORE2) system in Europe [2]. However,
risk scores primarily rely on a limited set of conventional risk factors, potentially neglecting under-
represented subpopulations [3–5] (Box 1). This context highlights the need for a more comprehen-
sive and holistic approach to ASCVD management. To achieve this goal, multimodal research
initiatives are needed to first unravel the complex pathological mechanisms beyond ASCVD,
which will then lead to the discovery of novel biomarkers and therapeutic targets to improve
ASCVD management in a personalized manner. By combining data spanning from genotypes to
phenotypes and the myriad molecular intermediates spanning the entire spectrum of ‘omics disci-
plines, we can gain deeper insights into the complexity of atherosclerosis and reduce its societal
burden. A comprehensive understanding of various molecular and pathophysiological aspects of
atherosclerosis, crucial for clinical application, is facilitated by different ‘omics, including genomics
[6,7], epigenetics [8], transcriptomics [9], proteomics [10], and metabolomics [11–13].

Multiomics and systems biology use mathematical modeling as a critical step in predicting and
comprehending the intricate behaviors of complex biological systems, which allows for better un-
derstanding of complex diseases, such as atherosclerosis [14]. The integration of different ‘omics
methodologies, collectively referred to as ‘multiomics’, provides a potent means to virtually quan-
tify cellular behavior and offers a formidable tool for uncovering the genetic variations and path-
ways that contribute to the disease, representing a major step toward precision medicine in
ASCVD [15–19]. For instance, integration of epigenetic, transcriptomic, and proteomic data
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Box 1. Background information for the clinical risk algorithms and risk factors

Clinical risk algorithms are developed to improve risk stratification and prediction of future cardiovascular events, but they are
based upon only a few traditional risk factors [systolic blood pressure, sex, tobacco smoking, and serum non-high-density
lipoprotein (non-HDL) cholesterol level] and result from studies that are biased toward certain populations. Therefore, apply-
ing SCORE2 is less sensitive for the identification of high-risk subjects among under-represented subgroups in epidemiolog-
ical studies, such as young adults, women, and people with obesity. Sex-based differences in the association between
clinical risk factors and ASCVD are well documented [3–5]. For example, in the Tromso Study, higher serum cholesterol level
was a stronger risk factor for myocardial infarction (MI) in men, while higher blood pressure was a stronger risk factor in
women [71]. Several studies have documented that the blood pressure-attributed risk for MI starts at a lower level of blood
pressure in women [72,73]. While controlling traditional risk factors can improve treatment outcomes and prognosis, a more
in-depth characterization of the molecular mechanisms leading to atherosclerotic plaque development and rupture is needed
for effective risk management in specific subpopulations, possibly highlighting novel pathogenetic features particularly rele-
vant to these groups. Considering the multifactorial pathophysiology of ASCVD, it is evident that a more systemic view of
the disease is required. In this regard, multiomic approaches can improve our understanding of the relationships between
disease components and help with better risk stratification.
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provided valuable insights into the association between subclinical atherosclerosis, accelerated
Grim epigenetic age, and proinflammatory profiles, shedding light on the potential role of chronic
inflammation in mediating the adverse effects of subclinical atherosclerosis on health [20].

While the potential of multiomics studies in advancing ASCVD management is undeniable, it re-
mains a nascent concept. Numerous attempts are under way to deploy this approach; however,
the lack of established guidelines for study design, methodologies, preanalytical considerations,
and data integration poses a substantial barrier to its broader and more clinically relevant imple-
mentation. In this opinion, we emphasize key considerations in the design of ASCVD multiomics
studies, provide a concise overview of the technologies used with their respective advantages
and limitations, and highlight ongoing initiatives leveraging ML for robust data integration
(Figure 1). It is our opinion that, to realize the full potential of multiomics studies in the field of
ASCVD management, interdisciplinary dialog and meticulous planning are paramount. Thorough
considerations encompassing inclusion/exclusion criteria, sample types and collection timing,
technology selection, data and sample handling, data integration algorithms, and, perhaps
most crucially, data interpretation, need standardization to maximize clinical applicability of
multiomics research initiatives.

Methodological requirements and challenges of multiomics studies
To maximize the usefulness of multiomics studies, they should involve the integration of vast
amounts of data not only from genomics, transcriptomics, proteomics, and metabolomics, but
also including lifestyle (e.g., data collected through different questionnaires) and clinical informa-
tion. Moreover, a thorough knowledge of the advantages and pitfalls of ‘omics technologies, to-
gether with appropriate study design and study planning, is essential in multiomics studies
because it determines the accuracy and reliability of the results. Elements, such as sample
size, sample source and type, selection of ‘omics platforms, end-points, and statistical analysis
methods, must be carefully considered when designing studies. Here, we discuss the various
techniques [whole-exome sequencing (WES), short read sequencing (SRS), bulk RNA
sequencing, single cell RNA sequencing (scRNA-seq), mass spectrometry (MS), and
nuclear magnetic resonance (NMR)] developed for ‘omics investigations in the context of
ASCVD research, their advantages and disadvantages, and recommendations for a more
homogenous use and increased reproducibility of findings among independent labs (Table 1).

Whole-exome and short read sequencing
The genomic sequence is largely independent of pre-analytical variables and is relatively stable
throughout life, except in cancerous tissues. WES is commonly conducted using SRS, in which
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Glossary
Artificial intelligence (AI): simulation
of human intelligence in computer
systems to perform tasks such as
learning, problem-solving, and
decision-making.
Atherosclerotic cardiovascular
disease (ASCVD): chronic pathological
condition characterized by the build-up
of fatty deposits on the inner walls of
arteries.
Gas chromatography (GC): analytical
technique for separating/analyzing
volatile compounds in a mixture.
Gene Expression Omnibus (GEO):
publicly accessible database hosted by
the National Center for Biotechnology
Information.
GitHub: web-based platform that
facilitates collaborative development of
software projects.
High-resolution mass spectrometry
(HRMS): analytical technique used to
accurately determine the mass-to-
charge ratio of ions in a sample with
exceptional precision and accuracy.
Liquid chromatography (LC): analyti-
cal technique widely used to
separate/analyze compounds in a liquid
sample.
Low-density lipoprotein (LDL):
lipoprotein that carries cholesterol and
other lipids from the liver to various
tissues in the body.
Machine learning (ML): subfield of AI
that focuses on the development of
algorithms and statistical models that
enable computer systems to learn from,
and make predictions or decisions
based on, data without being explicitly
programmed.
Mass spectrometry (MS): analytical
technique used to determine the
molecular composition of a sample by
measuring the mass-to-charge ratio of
ions.
Non-high-density lipoprotein
(non-HDL): low-density, very-low-
density, and intermediate-density
lipoproteins.
Nuclear magnetic resonance
(NMR): analytical technique used to
study the structure, dynamics, and
interactions of molecules.
Parallel reaction monitoring (PRM):
targeted MS technique used for
comprehensive and sensitive
quantification of specific analytes.
Selected reaction monitoring
(SRM): a targeted MS technique used
to quantify specific analytes.
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the genome is read in short (150-base pair) fragments, which are mapped to the reference se-
quence bioinformatically. The costs of analysis and interpretation, storage, and processing
power are still significant. The recent pangenome reference will improve some issues related to
the reference genome [21]. Approaches to flag rare variants in the reference sequence have
been developed [22,23]. Moreover, there is increasing interest in noncoding genes as well as
intergenic and regulatory regions of the genome. However, the mitochondrial genome is often
not properly assessed [24] and neither is mosaicism, which is becoming evident in atherosclero-
sis using single cell WES [25].

SRS is unable to distinguish identical or highly similar reads from repetitive DNA sequences or
parts of pseudogenes and their functioning counterparts. Long read sequencing can resolve
this problem once error rate and cost of sequencing decrease [26]. Although various software
analysis packages exist to identify structural variants, which are estimated to constitute 17.2%
of rare deleterious alleles [27], from SRS data [28], few studies on atherosclerosis take structural
variants into account. Ultimately, multiomics approaches may prove critical to understanding the
functionality of variants, which remains challenging. Allele frequency in relevant ethnic groups is
also important for this aspect.

Bulk and single cell RNA sequencing
Bulk RNA sequencing has enabled unbiased exploration of the RNA landscape. However, chal-
lenges arise in library preparation, including target enrichment and optimization of sequencing
depth depending on the abundance of the targets [e.g., long noncoding RNAs (lncRNAs) are
known to be expressed at a very low levels]. In addition, protocols enabling simultaneous analysis
of long and short transcripts remain sparse. Unlike standard RNA-sequencing methods, the
Oxford Nanopore platform relies on direct RNA sequencing, which provides information beyond
differential expression, including the detection of specific RNA modifications [29,30]. Currently,
the major limitations of this methodology include the relatively large amount of starting material
(may be limiting in clinical studies), library preparation protocols (especially when focusing on
lncRNAs), and the availability of bioinformatic tools for adequate and reliable detection of modified
bases. The emergence of single cell profiling, such as scRNA-seq, has highlighted the presence
of cellular heterogeneity in tissues and diseases, making it an important topic of discussion [31].
Since these methods enable the simultaneous acquisition of tens of thousands of molecular sig-
natures, the data acquisition process is variable, depending on the specific reagents used to iso-
late the target materials as well as the sequencing depth, especially for those transcripts
expressed at low levels, such as lncRNAs [32,33]. Moreover, the quantification of these signa-
tures is heavily reliant on the equipment and reagents used during sample conversion, such as
the preparation of sequencing library from total RNA in the case of RNA-sequencing techniques.

Additionally, the bioinformatic computational analysis significantly influences the results, because
even slight changes in parameter settings can lead to dramatic differences in outcomes. Conse-
quently, most scientific journals now require researchers to disclose the catalog and batch num-
bers of each reagent used, as well as the parameters for each bioinformatic tool. Furthermore, the
generated raw and processed data should be publicly uploaded to repositories [e.g., Gene
Expression Omnibus (GEO)]. To ensure transparency and reproducibility, it is recommended
that all computational codes and programs utilized be made available to the public through online
platforms (e.g., GitHubi).

Mass spectrometry and untargeted proteomics
MS remains the preferred approach for untargeted proteomics. Antibody- and aptamer-based
technologies are gaining momentum as targeted strategies and can complement MS-based
Trends in Molecular Medicine, Month 2023, Vol. xx, No. xx 3
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Short read sequencing (SRS): high-
throughput DNA-sequencing technique
that generates short fragments of DNA
sequences (50–300 base pairs in
length).
Single cell RNA sequencing
(scRNA-seq): technique used to
analyze the transcriptome of individual
cells at a single cell resolution.
Standard operating procedure
(SOP): document that outlines a step-
by-step process to be followed in
experiments within a specific research
setting.
Systematic Coronary Risk
Evaluation 2 (SCORE2):
cardiovascular risk evaluation system
that considers age, sex, total cholesterol
levels, systolic blood pressure, and
regional genetic risk.
Systematic Coronary Risk
Evaluation 2 Older People
(SCORE2OP): version of SCORE2 for
people over 70 years of age.
Very low-density lipoprotein (VLDL):
lipoprotein synthesized in the liver that
transport triglycerides, cholesterol.
Whole-exome sequencing (WES): a
comprehensive procedure used to
determine the complete, or nearly
complete, DNA sequence of the exome
of an organism simultaneously.

Trends in Molecular Medicine
OPEN ACCESS
methods, such as selected reaction monitoring (SRM) and parallel reaction monitoring
(PRM). While the discovery potential is lost from untargeted to targeted MS methods or protein
arrays, the gains in sensitivity (allowing the measurement of signaling proteins in tissue or prod-
ucts released from atherosclerotic plaques in blood), reproducibility, and quantification accuracy
support a faster integration of surrogate biomarkers in clinical practice [14,18]. Nonetheless, un-
targeted MS remains fundamental for mechanistic and drug development studies, particularly to
unveil obscure proteoforms and protein variants as well as to discover post-translational
modifications. Regardless, the output of untargeted MS can be optimized if we accelerate the im-
plementation of more reproducible and quantitative data-independent acquisition approaches
(as opposed to classic data-dependent ones), eliminating the stochasticity in the selection of
proteins/peptides for fragmentation, resulting in more complete data, and generating spectral
libraries that can be shared among laboratories to harmonize protein quantification [34]. The
development, sharing, and strict adherence to standard operating procedures (SOPs) is rec-
ommended for both non-MS or MS-based methods. This is especially important when using
blood-derived fluids, where new sources of bias are introduced with prefractionation or depletion
approaches required to unveil low-abundance species, hindering multiomics data integration
[35,36].

Analytical platforms for metabolomics
Metabolomics offers a novel approach to the discovery of disease biomarkers that could be used
to assess the risk of developing a disease and to diagnose diseases, including ASCVD, before
clinical symptoms appear [37–40]. Targeted metabolomics focuses on the analysis of a specific
set of molecules of interest, whereas untargeted metabolomics focuses on all of the metabolites
present in a biological sample in a particular physiological state, with no prior knowledge of what
to expect [40,41].

Due to advances in analytical instrumentation and bioinformatic tools, the field of metabolomics
has grown exponentially over the past decade. The two main analytical platforms in metabolo-
mics research are NMR spectroscopy and high-resolution mass spectrometry (HRMS)
coupled with liquid or gas chromatography (LC or GC, respectively). NMR has the capacity
to provide structural information on lipoprotein distribution of lipids but lacks sensitivity, besides
requiring high purchasing and operating costs. Due to their high sensitivity and selectivity, LC-
MS/MS-based techniques are most commonly used in metabolomics with the wide dynamic
range of MS systems [42]. The choice between these platforms depends on the specific struc-
tural information required, with NMR focusing on lipoprotein distribution and LC-MS/MS offering
high resolution of lipid species. The typical workflow for untargeted metabolomics includes the
following steps, each of which requires careful attention to protocol implementation: sample
preparation and metabolite extraction; data acquisition; data processing by bio/chemoinformatic
tools; data analysis using univariate and multivariate statistics; metabolite identification; and data
interpretation [43].

Pre-analytical considerations
To ensure the coherence, accuracy, and reproducibility of ‘omics data, careful consideration of
various factors is essential throughout the study process (Box 2). For instance, when focusing
on liquid biopsy and biomarker development, the specific type of blood derivative (e.g., whole
blood, serum, plasma, or platelet-poor plasma), the time from collection to processing, and the
processing conditions used are critical. Transcriptomics and proteomics signatures are different
in plasma and serum (due to the coagulation process and the activity of platelets), and different
types of plasma show significant variations in their transcriptomic signature. Platelets carry
RNAs, and the differences in the number of platelets from sample to sample can introduce
4 Trends in Molecular Medicine, Month 2023, Vol. xx, No. xx
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Figure 1. Overall workflow of multiomics studies in atherosclerotic cardiovascular disease (ASCVD) research. It is important to emphasize the significance of
defining precise inclusion and exclusion criteria based on specific research objectives and the risk populations under consideration. The crucial data inputs include
comprehensive medical histories, imaging results, and detailed information on sample collection, processing, storage, and quality. It is also important to specify the
methodologies used for genomics, transcriptomics, proteomics, and metabolomics analyses. The available data are then integrated through machine learning (ML)
algorithms, enabling the development of: (1) innovative diagnostic and prognostic tools; (2) novel drug targets to enhance drug development; and (3) personalized
therapeutic strategies. Figure created with BioRender (biorender.com).
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significant bias toward RNA quantification. Tomitigate this issue, the use of platelet-free plasma is
recommended, unless platelet-related effects are important for the study [44,45]. In addition, for
transcriptomics studies, it is recommended to use EDTA to prepare plasma, and not heparin,
which inhibits PCR [44]. Regular and platelet-free plasma have distinct proteomic signatures,
underscoring the importance of platelet management in proteomic analysis [46]. By contrast,
platelets do not appear to introduce bias in metabolomics studies [47].

Hemolysis is a common preanalytical issue that can occur either in vivo due to a disease or ex vivo
during blood collection or handling [48]. In both daily clinical practice and research studies, ex vivo
hemolysis represents one of the most frequent pre-analytical errors [48]. Hemolysis can signifi-
cantly impact transcriptomic [44], proteomic [49], and metabolomic profiles [48] and should be
actively prevented. Thus, it is crucial to document any signs of hemolysis for accurate analysis.

Lipemic samples are relatively common in ASCVD due to underling dyslipidemia. Therefore, it is
crucial to investigate the impact of lipemia on sample preparation and analysis, ensuring the integ-
rity of the metabolomics data. Furthermore, recent guidelines highlighted the importance of mea-
suring non-high-density lipoprotein (non-HDL)-cholesterol and lipid markers in postprandial
samples to provide insights into the dynamic changes of proatherogenic very low-density lipo-
protein (VLDL) and chylomicron remnants [50]. This recommendation necessitates careful
Trends in Molecular Medicine, Month 2023, Vol. xx, No. xx 5
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Table 1. Summary of genomic, transcriptomic, proteomic, and metabolomic methodological approaches

Type Approach Principle Strengths Limitations Refs

Genomics

WES SRS Sequences are read in short fragments
(typically 150 base pairs) and then
aligned to reference genome

Cheaper than long read
sequencing
Generally high accuracy in
variant calling
Very small quantity of DNA
required
Laboratory methods and
bioinformatic pipelines well
established
Considerable experience
working with WES

Errors in alignment can result
in missed variants or false
positives, especially in
regions of high similarity,
such as pseudogenes
Not well suited for structural
variation
Reference genome may have
its own variations, which then
are not recognized

[21,22,63]

Long read
sequencing

Pacbio Single Molecule Real-Time
(SMRT) involves real-time sequencing
by synthesis of fragments typically of
~10–20 kb
In Oxford Nanopore sequencing,
nucleotides are identified in real time
using changes in electrical current as
single strand of DNA is passed through
molecular nanopore with many
sequenced in parallel; allows long
reads of 10–100 kb or ultra-long reads
of 100–300 kb

Best approach for structural
variants
Shows potential to replace
SRS in future

Bioinformatic pipelines not
easily available
Error rate, although greatly
improved, can be higher than
with SRS
Cost remains high
Mainly used to resequence a
targeted region that indicates
structural variation

[26,64]

Transcriptomics

Bulk RNA
sequencing

Illumina based Sequencing by synthesis approach
during which fluorescently labeled
nucleotides are incorporated into
growing DNA strands, and
fluorescence signals are detected and
recorded to determine sequence of
DNA molecules

High-throughput technology
Cheaper than long read
sequencing
Laboratory methods and
bioinformatic pipelines are
well established

Since RNA is converted to
cDNA before sequencing,
information about RNA
modifications is lost
Absence of protocols for
simulations miRNA and
mRNA/lncRNA analysis
No information on
cell-specific transcriptomes

[65,66]

Direct Oxford
Nanopore

Sequencing involves passing RNA
molecules through nanopores
embedded in a membrane. As RNA
passes through nanopore, it disrupts
ionic current, generating unique
electrical signals characteristic of RNA
sequence. These signals are recorded
and analyzed in real time to decode
RNA sequence

Generating long reads (even
spanning thousands of
bases)
Detection of RNA
modifications

Low-throughput technology
Currently more expensive
than sequencing-by-synthesis
approach
Laboratory methods and
bioinformatic pipelines are not
well established
Protocols for small RNA
sequencing are not
established
No information on cell-specific
transcriptomes

[29]

Single cell
RNA seq

10x Genomics
Chromium
Fluidigm C1
Clontech iCell8

Sequencing enables analysis of gene
expression in individual cells to uncover
cellular heterogeneity in a sample
(e.g., tissues)

Identify distinct cell
types/populations,
characterize cell states, and
explore cellular dynamics
within population of cells

Large batch effects and
noise leading to loss of data
Limited sensitivity and miss
low-abundance transcripts
(e.g., lncRNAs)
Cost is high; thus, number
of cells analyzed is limited
for deeper sequencing
depth

[22]

Proteomics

Untargeted
proteomics

Discovery MS Intact proteins (top-down) or peptides
(bottom-up) resulting from enzymatic
digestion (e.g., trypsin) are separated

Highly customizable
separation, ionization, and
detection techniques

Acquisition and maintenance
costs
Limited sensitivity

[14,67]
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Table 1. (continued)

Type Approach Principle Strengths Limitations Refs

by liquid chromatography, ionized,
and injected into mass spectrometer.
Protein or peptide fragments are
selected and analyzed according to
mass-to-charge ratio (m/z). Resulting
spectra are matched against data-
bases of known sequences for identi-
fication. Peptides can also be
sequenced de novo
Quantification can be performed
label-free or with isotope tags/labeling

Discovery of new protein
species (including different
splicing products,
post-translational
modifications and protein
variants)
Complete coverage of
proteome is theoretically
possible
Minute amounts of sample
required (~1 μg)
Absolute quantification is
possible

Bias for higher-abundance
species
Batch effects can be
appreciable
Data sparsitya

Throughput can still preclude
application in large cohort
studies
Absolute quantification can
be expensive and technically
demanding (label based) or
has low accuracy (label free)

Targeted
proteomics

SRMb
– MS Set of precursor ions (peptides) is

selected in first quadrupole for
fragmentation in second quadrupole.
Only a set of specific fragment ions are
selected for detection using third
quadrupole
Typically performed in triple
quadrupole mass spectrometers
Quantification can be performed label
free, by spiking with labeled reference
peptide or even using heavy peptides

More affordable than
high-resolution
spectrometers, facilitating
clinical implementation
Higher specificity and
sensitivity than discovery MS
due to peptide/fragment
filtering and higher dwell
timec

Higher signal/noise ratio
Better performance in
absolute quantification than
untargeted MS
Full customization of targets
to monitor

Selection of optimal peptide
targets and transitions can be
time-consuming
Requires pre-selection of
product ions to measure
(preventing post-acquisition
method refinement)
Increasing number of species
to quantify comes at expense
of instrument performance
(lower signal/noise ratio)

[34,68]

PRM – MS Set of precursor ions (peptides)
selected for fragmentation, and all
resulting product ions are measured
Typically performed in
quadrupole-Orbitrap or QqTOF
systems
Quantification can be performed label
free, by spiking with a labeled reference
peptide, or even using heavy peptides

Higher mass accuracy than
in SRM
Higher specificity and
sensitivity than discovery MS
due to peptide filtering and
higher dwell timec

Higher signal/noise ratio
Better performance in
absolute quantification than
untargeted MS
Full customization of targets
to monitor

Acquisition and maintenance
cost
Increasing number of species
to quantify comes at expense
of instrument performance
(lower signal/noise ratio)

Antibody-based
microarray
(e.g., Olink
assay)

Proximity extension assay
Dual recognition immunoassay in
which two antibodies binding to target
protein are labeled with DNA
oligonucleotides, which hybridize when
in proximity. DNA double chain is then
used as template for PCR amplification
Quantification can be performed by
quantitative PCR or next-generation
sequencing

High specificity without
antibody cross-reactivity
High sensitivity and dynamic
range
High stability, reproducibility,
and throughput

Limited proteome coverage
(3072 proteins)
No discovery potential
Relative quantificationd

Biased toward plasma
proteome

[14,18,69]

Aptamer-based
microarray
(e.g., SomaScan
assay)

Protein affinity-based approach with
modified aptamers
Aptamers (single-stranded
oligonucleotides) are modified to
endow protein-like functional groups,
allowing their binding to specific
proteins in multiplex
Modified aptamers are then amplified
and quantified by quantitative PCR

High specificity
High sensitivity and dynamic
range
High stability, reproducibility,
and throughput

Limited proteome coverage
(7000 proteins)
No discovery potential
Relative quantification
Biased toward plasma
proteome

[14,18,70]

(continued on next page)
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Table 1. (continued)

Type Approach Principle Strengths Limitations Refs

Metabolomics

Targeted
metabolomics

Analyses of
known
metabolites

Absolute qualitative and quantitative
analysis of test substance using
standard substances
Isotope internal standards could
improve sensitivity and accuracy of
substance qualitative and quantitative
analysis

High sensitivity and accuracy
Qualitative and quantitative
analysis of metabolites

Limited coverage of
metabolites

[41]

Untargeted
metabolomics

Analysis of
unknown
metabolites

Analysis of all of metabolites present in
biological sample in particular
physiological state, with no prior
knowledge of what to expect

Extensive coverage of
metabolites.
A higher amount of chemical
and biological knowledge
could be obtained from
sample data set

Lack of standard
substances, false-positive
signals, lacks absolute
qualitative and quantitative
data on metabolites

[41]

Untargeted metabolomics using NMR Provide structural
information on lipoprotein
distribution of lipids
Fundamentally quantitative
Nondestructive

Lacks sensitivity
Suffers high purchasing and
operating costs

[34]

Untargeted metabolomics using
high-resolution GC or LC-MS/MS

High sensitivity and
selectivity
High resolution of lipid
species
Wide dynamic range of MS
systems

Suffers matrix effects
Difficulty in distinguishing
isomers

[34]

aCan be greatly improved when using data-independent acquisition approaches.
bAlso known as multiple reaction monitoring (MRM).
cDwell time is time spent by the spectrometer to collect target peptide ions (higher in targeted approaches because other peptides are ignored).
dAbsolute quantification is already possible but in smaller Olink panels (<50 proteins).
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consideration during sample collection and preparation to ensure that the timing of sample collec-
tion aligns with the postprandial state.

Artificial intelligence and machine learning as solutions for multiomics data
integration
As mentioned previously, high-throughput ‘omics technologies offer promise for personalized
treatments and improved outcomes in ASCVD risk prediction beyond conventional factors
through integration with AI and ML. However, to fully realize the benefits of AI/ML-based
approaches for ASCVD risk prediction, several challenges need to be addressed. First, large-
scale studies collecting different types of data from the same patients are crucial for accurate pa-
tient stratification and risk prediction. Collaborative efforts across multiple institutions and
healthcare providers are also necessary to gather such comprehensive data sets. However, inte-
grating data from different studies is challenging due to inconsistencies in experimental design,
sample preparation, ‘omics profiling methodologies, and data analysis workflows [51]. Data qual-
ity poses another issue because certain ‘omics data (genomics and transcriptomics) are more re-
liable and consistent compared with others (epigenomics, proteomics, and metabolomics). This
discrepancy makes it difficult to develop AI/ML models that can accurately account for differ-
ences in data quality [51,52]. Integrating AI/ML with clinical data presents additional challenges
due to variations in data formats, structures, and descriptions, as well as complexities associated
with processing ‘omics data. Additionally, incomplete information, inconsistencies, and noise in
clinical data can compromise analysis outcomes. Biases related to ethnicity, gender, and socio-
economic status must also be carefully considered to avoid inflated AI/ML models. Safeguarding
8 Trends in Molecular Medicine, Month 2023, Vol. xx, No. xx
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Clinician’s corner
The current guideline-recommended
ASCVD risk charts, such as SCORE2
and Systematic Coronary Risk
Evaluation 2 Older People
(SCORE2OP), are based on risk over a
5–10-year period. Although important in
the daily clinical practice, these risk scores
are not very accurate in the prediction of
longer term individual ASCVD risk.
Furthermore, they underestimate the risk
in women and in young individuals or
those with obesity.

As we approach precision medicine
strategies in different clinical areas,
novel approaches should also be
implemented in this field by inclusion of
biomarkers of key causal mechanisms
in the development of ASCVD.

A particularly promising research area
is the integration of multiomics data
with lifestyle and clinical data and use
of AI and network analyses for explor-
ing such complex data sets.

More complete clinical characterization
is needed during patient recruitment.
Missing clinical data are still a major
caveat in any ‘omics study.

Health workers in clinical and
laboratory medicine should be aware
of the pre-analytical factors resulting
in analytical variance not explained by
biological factors, and adhere to rigor-
ous SOPs for sample collection and
processing.

Multiomics studies has the potential to
improve elucidation of pathophysiology,
which can aid identification of novel
drug targets.

Box 2. Considerations before starting an ASCVD multiomics study

Relevant inclusion/exclusion criteria: should be clearly defined before both hypothesis-driven or hypothesis-generating
types of study. Factors to take into account include age, sex, ethnicity, clinical end-point and how it is defined, and, if
the clinical end-point is MI, whether before or how long after the MI. Frequency matching by sex and defined age groups
should also be specified.

Variables to be included in the study: anthropometric data: (height, body weight, body mass index, waist circumference,
etc.), and lifestyle data (smoking status, alcohol consumption, physical activity, diet, etc.).

Number of samples: dependent on the number of ‘omics used, hypothesis and funds available. Currently there are no
recommendations for power analysis.

Costs: consider available funds and costs of different ‘omics platforms.

Questionnaire: should be in line with the hypothesis and include demographic, anthropometric, and lifestyle data. Several
standardized questionnaires are available. Consider whether data will be used for further studies and include additional
details. Back-translate if questionnaire is in more than one language.

SOPs: should be developed for every step of the study (pre-analytical, analytical, and post-analytical).

Sample type: whole blood, serum (clotting activator, gel separator, etc.), plasma (EDTA, heparin, citrate, etc.), platelet-
poor plasma, peripheral blood mononuclear cells, neutrophils, platelets, tissue, and so on.

Pre-analytical considerations: data collection; sample collection (type of tubes), treatment (centrifugation speed, etc.),
transport (temperature, timing), coding, aliquoting (number of aliquots) and storage (+4, –20, –80°C). Consider timing of
sample (after fasting, post prandial, during MI, after MI). Consider storing some standards at time of sample collection
to see effect of long-term storage. Records of sampling time and duration of processing. In case of blood samples, take
note of hemolysis or lipemia. Consider using Standard Preanalytical Code Version 3.0.

Clinical data: results of coronary angiography, percutaneous coronary intervention, heart echocardiography, and other im-
aging techniques, blood tests (glucose, hemoglobin A1c, total cholesterol, HDL-cholesterol, LDL-cholesterol, triglycer-
ides, non-HDL-cholesterol, troponin, N-terminal pro B-type natriuretic peptide, high sensitive C-reactive protein, etc.).
Presence of other co-morbidities or diseases (obesity, dyslipidemia, DM, nonalcoholic fat liver diseases, chronic kidney
disease, thyroid disease, cancer), medication and doses.

Ethics and informed consent: consult ethical experts and/or undergo training in ethics and informed consent design;
consider using data/samples for future studies; include in the informed consent the possibility of using samples/data out-
side of study institution/country and specify types of project; ensure compliance with national and European General Data
Protection Regulation.

Trends in Molecular Medicine
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patient privacy and confidentiality is crucial when handling sensitive information, necessitating ap-
propriate data de-identification and secure transfer protocols. Furthermore, regulatory approval
by authorities, such as the European Medicines Agency, is essential, but still does not rely on es-
tablished procedures, for implementing AI/ML models into medical products [53].

Optimizing AI/MLmodels to overcome overfitting or underfitting issues is critical. High dimension-
ality and complex interactions in multilayered information, coupled with relatively small sample
sizes, require careful feature selections to enhance disease prediction. Understanding the rela-
tionships between different ‘omics layers and their relevance is crucial for accurate modeling
[51,52]. Selecting appropriate algorithms tailored to specific circumstances is essential, especially
when dealing with complex data or generating large volumes of high-throughput data [54]. Model
complexity, interpretability, and clinical relevance are also factors to consider. While complex
models may provide accurate predictions, they can be challenging to implement and computa-
tionally demanding. Prioritizing clinical relevance over predictive accuracy is vital for actionable in-
sights and improved patient outcomes. Ensuring model generalizability across different patient
populations and seamless integration with clinical systems requires significant investments in
computational infrastructure, personnel training, and maintenance [51,54].
Trends in Molecular Medicine, Month 2023, Vol. xx, No. xx 9
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Outstanding questions
How can we enhance the accuracy of
individual ASCVD risk assessment
using multiomics data and AI/ML ap-
proaches in the context of precision
medicine?

What are the critical challenges in
implementing a successful multiomics
strategy for ASCVD research?

Should resources be focused on well-
designed smaller multiomics studies
or investing in AI/ML methods for inte-
grating larger single-omics studies?

What is the optimal approach for
integrating ‘omics layers to extract
meaningful insights from multiomics
data?

How can we effectively validate clinical
models developed using AI/ML in the
context of ASCVD risk prediction?

What methods should be used to
assess statistical power when
designing multiomics studies for
ASCVD?

Can deep phenotyping through
multiomics approaches improve
patient stratification and personalized
therapeutic strategies for ASCVD
management?

How can we overcome biases related to
ethnicity, gender, and socioeconomic
status when using AI/ML in ASCVD
research?

What are the potential long-term risks
and ethical considerations of integrat-
ing AI/ML in ASCVD management?

What are the most effective ways to
share multiomics data and AI/ML
algorithms across institutions to
facilitate collaborative research in
ASCVD?

Can multiomics approaches be used
to identify early molecular signatures
of ASCVD before clinical symptoms
appear?

Trends in Molecular Medicine
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To address these challenges, researchers can share data and codes, use standardized proto-
cols, review AI/ML research, optimize models, and validate with diverse data sets for reliability
[40,41], thus enabling AI/ML to effectively integrate multiple layers of information and advance
our understanding of complex diseases, such as ASCVD.

Translational perspectives
To facilitate the successful translation of findings from bench to bedside and advance the manage-
ment of ASCVD, the establishment of a clear translational roadmap is imperative. The application of
novel multiomics-based tools in clinical practice depends on not only their transparency and
evidence-based benefits, but also fostering trust among end-users (i.e., healthcare providers
and patients). Trust in these innovative tools is a cornerstone of their adoption and effective utiliza-
tion to improve ASCVD management.

The translation of ‘omics tools in ASCVD management necessitates adherence to evidence-
basedmedicine principles. The road to widespread clinical use for any novel ‘omics tool is fraught
with multiple criteria that must be met to ensure its reliability and clinical utility [55,56]. As dis-
cussed in the preceding text, pre-analytical and analytical standardization is crucial during the dis-
covery process to ensure reproducibility of findings [56]. Extensive independent validation steps
are required to assess sensitivity, specificity, positive and negative predictive values, and overall
diagnostic accuracy of multiomics biomarkers and models in clinical settings [55].

The wealth of information provided by multiomics studies enables the development of thera-
nostic approaches, where diagnosis and therapy are seamlessly intertwined. For instance,
Mendelian randomization studies can help unravel causality by exploiting genetic variants as
natural experiments to determine whether specific biomarkers are implicated in disease
pathogenesis [57,58].

Only when a new multiomics marker demonstrates high analytical precision and accuracy,
coupled with diagnostic robustness in terms of specificity, sensitivity, predictive values, and like-
lihood ratios, can it be considered for approval and reimbursement by health authorities. This
stringent process, requiring unwavering commitment to precision and reliability, is essential for
obtaining the necessary regulatory clearance.

An additional critical aspect of this translation process is the inclusion of patients and patient or-
ganizations in the planning and implementation of multiomics studies [59]. Patient compliance
with new tools and sophisticated approaches can be challenging, and their active engagement
is key to addressing this issue. Patient organizations can have a pivotal role in disseminating in-
formation, fostering awareness, and soliciting feedback.

Concluding remarks
Multiomics studies hold the promise to discover new preventive, diagnostic, and therapeutic
strategies for ASCVD. Recent studies showed that it is useful to go beyond low-density lipo-
protein (LDL) cholesterol, and other traditional risk factors, and that anti-inflammatory drugs
are beneficial in the treatment of ASCVD [60,61]. New clinical tools should be able to provide
more information to better stratify patients with ASCVD and replace the old one-size-fits-all ap-
proach with a new one that is tailored to each patient. Ideally, this so-called ‘deep phenotyping’,
followed by appropriate data interpretation, would provide a uniquemolecular identity of each pa-
tient that can complement the clinical data and then be used for a specific therapeutic approach
or ‘fine-tuning’ of current therapy, as is now being done in some therapies for cancer [62]. In the
evolving landscape of ASCVD precision medicine, defining the ideal combination of ‘omics
10 Trends in Molecular Medicine, Month 2023, Vol. xx, No. xx
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platforms and bioinformatic algorithms is challenging due to rapid technological advancements.
Notably, ongoing development of explainable ML and AI approaches is crucial for trust and us-
ability among patients and clinicians. The future likely entails merging ‘omics data with digital
markers to enhance prediction and risk stratification, promising improved patient care.

However, in the case of ASCVD, we are still a long way from translating this concept from bench
to bedside. The high cost of high-throughput ‘omics technologies still prevents their widespread
use in large-scale studies. It is important to discuss and resolve some of the fundamental chal-
lenges (see Outstanding questions) and then develop and implement appropriate multiomics ap-
proaches for cardiovascular research first. Given the multidimensional nature of the challenges,
ranging from study design and methodological challenges to data processing and data integra-
tion, it is obvious that joint interdisciplinary efforts are needed to successfully overcome the cur-
rent obstacles. Bringing together researchers, analytic specialists, clinicians, and data scientists
ensures accuracy and generalizability of results and accelerates the implementation of multiomics
approaches in the clinic (see Clinician’s corner). This interdisciplinary concept is the underlying
basis of the CA21153 Network for implementing multiomics approaches in atherosclerotic
cardiovascular disease prevention and research (AtheroNET COST).
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