

FEMS Conference on Microbiology

in association with
Serbian Society of Microbiology

30 June - 2 July

2022 • Serbia

ELECTRONIC ABSTRACT BOOK

FEMS Conference on Microbiology

in association with Serbian Society of Microbiology

30 June - 2 July 2022 • Serbia

533 / ASSESING VIRULENCE POTENTIAL OF ACINETOBACTER BAUMANNII ISOLATES RECOVERED FROM COVID-19 PATIENTS

04

Keywords: Virulence potential, Acinetobacter Baumannii, ICU, COVID-19

Brankica Filipić / Faculty Of Pharmacy, University Of Belgrade, Serbia

Katarina Novović / Institute of Molecular Genetics and genetic Engineering, University of Belgrade, Belgrade, *Serbia*

. .

Snežana Kuzmanović Nedeljković / Institute for Medicinal Plants Research "Dr Josif Pančić", Belgrade, *Serbia*Branko Jovčić / Faculty Of Pharmacy, University of Belgrade, *Serbia*

Milan Kojić / Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Belgrade, Belgrade, Belgrade, Serbia

BACKGROUND

From the start of COVID-19 pandemic, many patients suffering severe clinical presentation of COVID-19 and acute respiratory failure have been administered to intensive care units (ICUs). Need for noninvasive or invasive mechanical ventilation represents a high-risk factor for these patients to develop Acinetobacter baumannii superinfection.

OBJECTIVES

The main goal of this study was to examine virulence potential of A. baumannii isolates recovered from COVID-19 patients admitted to ICU as well as to compare differences in virulence among isolates originated from male and female patients or from different sample types.

METHODS

64 A. baumannii isolates were recovered from COVID-19 patients from December 2020 to February 2021. The isolates were originated from different sample types: blood, tip of the central venous catheter, tracheal aspirate, tip of the aspirator and sputum. Genetic relatedness of Apal digested A. baumannii isolates, was determined by pulsed-field gel electrophoresis (PFGE). Affinity to mucin binding was tested using in vitro model and isolates were examined for two types of motilities: swarming and twitching.