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NEEDS for NOVEL TREATMENTS IN CNS DISORDERS ARE HIGH...
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Figure 2: Percentage of years lived with disability (YLDs) in 2010, by cause and age
(A) In male individuals. (B) In female individuals. An interactive version of this figure is available online at http://healthmetricsandevaluation.org/ghd/visualizations/regional.
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Few new pharmacotherapies for the treatment
of anxiety have been developed since the 1940s
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Neuropharmacokinetics as a
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Neuropharmacokinetics
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to predict neuro-pharmacokinetics and pharmacodynamics
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We investigated whether capacity-limited transport processes were involved in morphine
and morphine-6-B-d-glucuronide (M6G) neuropharmacokinetics, at the level of the blood-brain ...
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2,4 ...
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The aim of our study was to determine the neuropharmacokinetics of 518986 [(5)-2,3-dihydro-[3 4]cyclo
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a new positive allosteric modulator
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Antiepileptic drug pharmacokinetics and neuropharmacokinetics in individual
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The temporal pharmacokinetic (blood) and neurophannacokinetic (cerebrospinal fluid, CSF)
interrelationship of phenytoin was studied after acute and during chronic (up to 5 days) ...
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... and behaving rat model for the chronic and simultaneous study of drug
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A freely moving and behaving rat model for the chronic and simultaneous study of drug
pharmacokinetics (blood) and neuropharmacokinetics [cerebrospinal fluid (CSF)] is described.
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ABSTRACT:

The objective of this study was to compare the blood-brain barrier
(BBB) transport and brain distribution of levo- (R-CZE) and dextro-
cetirizine (S-CZE). Microdialysis probes, calibrated using retrodi-
alysis by drug, were placed into the frontal cortex and right jugular
vein of eight guinea pigs. Racemic CZE (2.7 mg/kg) was adminis-
tered as a 60-min i.v. infusion. Unbound and total concentrations of
the enantiomers were measured in blood and brain with liquid
chromatography-tandem mass spectrometry. The brain distribu-
tion of the CZE enantiomers were compared using the parameters
K, Ky, Kpuw @and V. K, compares total brain concentration to
total plasma concentration, K, compensates for binding in
plasma, whereas K, also compensates for binding within the
brain tissue and directly quantifies the transport across the BBB.

V. ur describes binding within the brain. The stereoselective brain
distribution indicated by the K, of 0.22 and 0.04 for S- and R-CZE,
respectively, was caused by different binding to plasma proteins.
The transport of the CZE enantiomers across the BBB was not
stereoselective, since the K, ,,, was 0.17 and 0.14 (N.S.) for S- and
R-CZE, respectively. The K, values show that the enantiomers
are effluxed to a large extent across the BBB. The V,,,, of approx-
imately 2.5 ml/g brain was also similar for both the enantiomers,
and the value indicates high binding to brain tissue. Thus, when
determining stereoselectivity in brain distribution, it is important to
study all factors governing this distribution, binding in blood and
brain, and the BBB equilibrium.



 the unbound (free) concentration of a drug at
the site of action, such as the brain, is the
driving force for pharmacological response
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Affinity
profile of
clozapine

Target Sp. Type Action Value Parameter Reference
Hy receptor Hs Antagonist Antagonist 88-98 =] 5,18,31
5-HTa4 receptor Rn Antagonist Inverse agonist 89 =] L]
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The blood-brain barrier

Astrocyte

Capillary wall made of
microvascular endothelial
cells

Neuron

An endothelial barrier
formed by the blood
vessels that vascularize
the parenchyma of the
CNS. The BBB makes up
most of the surface area
of the brain barriers and
hence is most important
for drug delivery to the
CNS
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More Effective Clinical Translation. Pharmaceutics. 2023 Jan 29;15(2):443. doi:
10.3390/pharmaceutics15020443.
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Figure 3. Proposed drug-delivery mechanisms across BBB in interaction with lipid nanoparti-
cles [5,10,54,140]. Created with BioRender.com (accessed on 16 February 2022).

The presence of the BBB readily leads to an asymmetry of drug (unbound) exposure
in the brain and in the systemic circulation, which prohibits the use of unbound drug
concentration in plasma as a surrogate for unbound drug concentration in the brain



Neuropharmacokinetic parameters

* brain-to-plasma partition coefficient:
Kp = AUCO-t, brain/AUCO-t, plasma

* The concept of K, ,, prains d€Scribing the ratio of unbound drug
concentrations in brain interstitial fluid to that of unbound drug
concentrations in blood (or plasma), was introduced in: Gupta A, et al.
Brain distribution of cetirizine enantiomers: comparison of three
different tissue-to-plasma partition coefficients: K(p), K(p,u), and
K(p,uu). Drug Metab Dispos. 2006 Feb;34(2):318-23.

e Kp,uu can be calculated by dividing either

a) the area under the curve (AUC) of the profile of the concentration of
unbound drug in brain and plasma after a single administration or

b) the steady-state unbound concentrations of drug in brain interstitial
fluid and plasma



Ligands that selectively potentiate GABAA
receptors containing the a6 subunit

Journal of Medicinal Chemistry
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Processes and factors affecting and stemming from neuropharmacokinetic behavior
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low concentration in
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Supplementary Figure 2. Estimate maximum free brain concentrations of 5 mg/kg of GL-1-54
and 5 mg/kg of GL-II-73



Supplementary Figure 2. Estimate maximum free brain concentrations of 5 mg/kg of GL-1-54 and 5 mg/kg of GL-11-73

Stepwise approach to estimate the maximum free brain concentrations of 5 mg/kg of GL-I1-54 and 5 mg/kg of GL-1I-73 (doses
used in acute behavioral testing), and associate them with the range of corresponding GABA, receptor potentiation values
(obtained in electrophysiological experiments). Maximum brain concentrations are achieved around 20 min after dosing
(Figure 1C and Prevot et al.®). Blue content refers to GL-I-54 and green to GL-1I-73. White and nuances of the grey and black
color at the right bottom graph refer to the particular a subunit of GABA, receptors, as indicated in the upper right table.
Step 1 — brain concentrations (ng/g) determined 20 min after intraperitoneal dosing of 3 mg/kg GL-I1-54 or GL-1I-73 to male
mice, respectively (n = 3 per compound); Step 2 — estimation of maximum brain concentrations (ng/g) for 5 mg/kg of GL-I-54
and 5mg/kg of GL-1I-73, obtained by multiplying Step 1 concentrations with the factor 5/3 (=1.67), based on an assumption
that both GL-I-54 and GL-1I-73 display a first-order pharmacokinetics (pharmacokinetics of GL-1I-73 is not saturated at 3 and
10 mg/kg, since the increase in the concentration of the compound is proportionate); Step 3 — free brain concentrations
(ng/g) obtained by multiplying Step 2 concentrations with the free fractions in the brain determined by rapid equilibrium
dialysis (0.1149 for GL-I-54 and 0.1214 for GL-11-73); Step 4 — adjusting the Step 3 concentrations (ng/g) for the brain density
(1.04 g/ml) and converting the units to ng/ml; Step 5 — further conversion of units to nmol/I (unit used in
electrophysiological experiments) by multiplying Step 4 concentrations with 1000/386.42 (386.42 g/mol is a molecular
weight of GL-I-54 and GL-II-73) — the comparable estimated maximum free brain concentrations (nmol/I) of 5 mg/kg GL-1-54
and 5 mg/kg of GL-1I-73 are now obtained; Step 6 — association of Step 5 concentrations with the electrophysiological results
— the estimated concentrations closely correspond to 100 nmol/l or, to a lesser extent, to 330 nmol/l of a compound
administered in electrophysiological experiment. This implies that, in acute behavioral experiments with 5 mg/kg dose, GL-I-
54 likely potentiates a,, a,, o; and o GABA, receptors, however, o, potentiation is mild. 5 mg/kg of GL-1-73, on the other
hand, is fairly silent on all GABA, receptors, with the potential to mildly activate a, and as receptors; on a, and a, receptors,
nevertheless, it behaves as a null modulator. Due to such properties, the racemic mixture of 5 mg/kg of GL-I-54 and 5 mg/kg
of GL-1I-73 might display advantageous pharmacological profile in vivo. By complete attenuation of activity at al GABA,
receptors with GL-1I-73, the potentiation of a2, a3 and a5 GABA, receptors by GL-I-54 might become predominant,
exhibiting favorable behavioral effects. @ — potentiation < 120% (null), + — potentiation < 200% (mild), ++ — potentiation <
250% (moderate), +++ — potentiation 2 250 % (strong). For exact values of potentiation at GABA, receptors containing
distinct a subunits, please refer to Figure 1.



Ligands that selectively potentiate GABAA
receptors containing the a5 subunit

Genus Structure

Compound Structure

Chemical Name

Code #

Formula

M.W. (g/mol)

(R)-8-ethynyl-6-(2-
fluorophenyl)-N,4-
dimethyl-4H-
benzo[flimidazo[1
-
a][1,4]diazepine-3-

carboxamide

MP-1I-022

C22H17FN40

372,39

(R)-8-ethynyl-6-(2-
fluorophenyl}-
N,N,4-trimethyl-
4H-
benzo[flimidazo[1
-
a][1,4]diazepine-3

carboxam

GLHI-73

C23H19FN40

386,42

(R)-N-ethyl-8-
ethynyl-6-(2-
fluorophenyl)-4-
methyl-4H-
benzo[flimidazo[1
-
a][1,4]diazepine-3

carboxamide

GLI-74

C23H19FN40

386,42

W

{R)-N-cyclopropyl-
8-ethynyl-6-(2-
fluorophenyl)-4-
methyl-4H-
benzo[flimidazo[1
-
a][1,4]diazepine-32-

carboxamide

GLHI-75

C24H19FN40

398,43




Example of a mouse neuropharmacokinetic study at two doses and in both sexes, with
measurement of the parent molecule and its active metabolite in parallel

Plasma parameters Brain parameters

Dose (mg/kg) Compound Unbound Unbound AUC_ Unbound Unbound AUC_ K
Cmax C i
ngeh/mL iEES ngeh p,uu,brain
il (ngeh/mL) e (ngeh/g)
135.57 + 17.57 0.11 +0.01
PAR 596.91 £59.57  1190.81 +182.99  101.43 + 14.43
Male 17.65 + 8.21 0.94 + 0.44
MET 5.74 +0.37 18.95 + 3.04 11.00 + 7.85
146.24 + 17.64 0.12 +0.01
PAR 583.21 +118.68  1250.29 + 35.89 75.71 + 14.85
Female 22.68 +2.40 0.86 + 0.19
MET 5.98 +0.22 27.42 +6.73 9.58 +2.97
2394.52 +309.53 +
PAR 4460.62 + 647.34 14155.58 + 753.08 + 114.34 017001
e =R 1779.64 R
Male
780.78 + 80.14 6.14 + 0.81
MET 19.23 £+2.11 128.83 +20.62 92.97 +12.77
1821.04 + 181.73 -
PAR 3353.97 +491.77 12205.66 + 545.73 + 65.14 0-15+001
Ch 1200.87 R
Female 709.97 + 85.62 4.77 £ 0.59

MET

23.58 £4.13

149.68 + 19.49

93.64 +15.03
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In closing...

There are distinct methodological hurdles that govern selection of
techniques to be used (e.g. many substances may stick to the membrane
of the microdialysis probe)

Neuropharmacokinetic assessment of biologicals is especially challenging
(the premise on the lack of brain exposure to such pharmaceuticals is
misleading)

The establishment of clear guidelines for the assessment of K by

regulatory authorities is still pending

p,uu,brain

The critical moment in translational approach is to select a
pharmacological marker that reflects the desired therapeutic effect as
accurately as possible

Wider use of translational brain imaging technologies (such as PET) in
CNS drug development programs would increase the translational
validity of neuropharmacokinetic studies (but: general lack of tracers
that would be highly selective for subpopulations of receptors in vivo,
such are each of the four populations of GABAA receptors)



Artificial intelligence and the human race: Is it easier to create a
shared brain than to use one's own?

Vesna Knezevi¢, journalist

In reality, artificial intelligence possesses the consciousness of
a graphite pencil

Sepp Hochreiter, a pioneer in the field of Artificial Intelligence

How about neuropharmacokinetics?



Editorials

The New England Journal of Medicine Volume 339 Number 12 - 841

840 - September 17, 1998

ALTERNATIVE MEDICINE —
THE Risks OoF UNTESTED
AND UNREGULATED REMEDIES

[t 1s time for the scientific community to stop giv-
ing alternative medicine a free ride. There cannot be
two kinds of medicine — conventional and alterna-
tive. There 1s only medicine that has been adequately
tested and medicine that has not, medicine that works
and medicine that may or may not work. Once a
treatment has been tested rigorously, 1t no longer
matters whether it was considered alternative at the
outset. If 1t 1s found to be reasonably safe and eftec-
tive, it will be accepted. But assertions, speculation,
and testimonials do not substitute for evidence. Al-
ternative treatments should be subjected to scientitic
testing no less rigorous than that required for con-
ventional treatments.

Marcia AnGELL, M.D.
JeEroMmE P. Kassirer, M.D.
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Dr Aleksandar Obradovi¢, Department of Physiology (previous)

Dr Bojan Batini¢, Department of Physiology (previous)

Dr Marija Mili¢ (nee Milinkovié¢), Department of Pharmacology (previous)

Dr Srdan Joksimovié, Department of Pharmacology (previous)

Dr. Tanja lli¢ (nee Isailovic¢), Department of Pharmaceutical Technology and Cosmetology

Dr Sanela Savi¢ (nee Dordevic), Department of Pharmaceutical Technology and Cosmetology
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Assist. PharmM Aleksandra Vidojevi¢, Department of Pharmacology
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Assist. PharmM Jelena Mitrovi¢, Department of Pharmaceutical Technology and Cosmetology
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Prof. Dr. Katarina Vuciéevié, Department of Pharmacokinetics and Clinical Pharmacy

Prof. Dr. Snezana Savi¢, Department of Pharmaceutical Technology and Cosmetology



...and also collaboratory teams

James M Cook group in Margot Ernst group in Vienna
Milwaukee (previously lead by Werner Sieghart)
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