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1 Introduction
The thermophoretic effect is a thermo-mechanical phe-
nomenon that results from the absorption of electromag-
netic radiation on a material (Fig. 1). Incident radiation 
creates a temperature gradient, which further fuels heating 
and material expansion.1
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Fig. 1 – Schematic presentation of thermophoresis
Slika 1 – Shematski prikaz termoforeze

The physical properties of polymers and biophotonic struc-
tures are determined at the mesoscopic level by their in-
ternal architecture, and are not directly dependent on the 

chemical structure of the material. The correlation length 
specifies the average distance between two structural el-
ements (polymer chain, nano-geometry, etc.). When the 
correlation length (structure dimension) corresponds to the 
molecule’s mean free path and interacts with electromag-
netic radiation, a force is formed, the effect of which is 
visible at the macroscopic level; this force is known as radi-
ometric force.2 As pointed out previously, the existence of 
a temperature gradient, in addition to the previously stated 
structural dimension, is crucial for producing the desired 
effect.1 In this regard, a simple experiment was conducted: 
for the purpose of detecting the thermophoretic velocity 
in microgravity, an experimental setup was created.3 This 
apparatus (see Fig. 2) had the ability to quickly replicate an 
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Fig. 2 – Schematic of apparatus for detection of thermophoret-
ic velocity of particles in microgravity conditions3  
(CC BY 3.0)

Slika 2 – Shematski prikaz aparature za mjerenje termoforetske 
brzine čestica3 (CC BY 3.0)
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experiment. Among regular thermophoretic experiments, 
one with no temperature gradient was carried out, which 
verified no particle movement.3

The method of holographic interferometry proved to be an-
other interesting method for detecting the thermophoretic 
effect, that is, for monitoring deformations of nanostruc-
tures. This method is described in detail elsewhere.4 The 
holographic approach is extremely useful since it monitors 
changes at the nano-level in real time. Furthermore, this 
approach has no effect on the deformation itself.

This effect will be crucial in the field of structured nano-
materials. It is especially important for materials that may 
be heated as part of their application. Understanding the 
behaviour of the corrugated structure under different con-
ditions, such as interaction with light of different wave-
lengths, is critical for selecting suitable materials for various 
applications.1

When the nanodimensions of the observed effect are tak-
en into account, we cannot rely with confidence on the 
laws of classical physics that apply at macro-levels5. For 
particles with dimensions on the order of magnitude of the 
mean free path of the molecules in the surrounding gas, 
the photophoretic force can be greater than the gravita-
tional force, causing movement against the law of gravity.6 
Furthermore, in order to observe the specific structures of 
materials as well as their chemical and physical properties, 
thermophoresis and photophoresis must be related with 
intermolecular interactions within the material, and thus 
the studies enter the field of quantum physics.7,8

The thermophoretic effect has piqued the interest of sci-
entists over the past two centuries because, on the one 
hand, it is enigmatic and unusual, and on the other, it is 
practically applicable for research and confirmation of 
other phenomena in the world around us, that is, in the 
world reduced to the micro- and nano-scale.9 Theoreti-
cally, there are numerous applications for the studied phe-
nomenon in the world of science. Scientists have already 
experimented in the fields of astronomy and avionics,10–12 
chemistry,13–16 physics,17–18 and this effect also contributes 
to pharmacy and medicine.19–21 In practically any environ-
ment with extremely small object dimensions and a tem-
perature gradient, one of the aforementioned cases of the 
effect will manifest.

2 Term definitions
Keeping in mind the many similar and closely related terms 
in this delicate area, as well as some inconsistencies, i.e., 
ambiguities in the literature, the differences and similarities 
between radiometric force, thermophoresis, thermopho-
retic effect and force, and photophoresis, photophoretic 
effect and force, will be clarified first.1

Radiometric force is a consequence of the non-uniform 
distribution of radiation energy, i.e., the result of the in-
teraction between the fluid and the unevenly illuminated/
heated surface.22 This force represents a component of 
the photophoretic/thermophoretic force, which depends 
solely on the temperature gradient and the characteristic 

dimension (nano, meso correlation length “ƞ”) of the ma-
terial. The characteristic dimension of the nanostructure 
must match the size of the mean free path of the molecule 
to produce a force, and this relationship is characterised 
as the dimensionless Knudsen number, which is used in 
practice as a parameter for gas flow analysis.1 This quan-
tity is named after the Danish physicist, Martin Knudsen 
(1871–1949).23

It should be emphasized that thermophoresis is a process 
of movement of particles, typically in a gas around the con-
sidered material, which is conditioned by the existence of 
a temperature gradient (e.g., due to different absorption 
of thermal radiation) on the material. On the other hand, 
thermophoretic force is a force that leads to the deforma-
tion of the material, and arises after the temperature gradi-
ent occurs on the same.1

A special case of thermophoresis is called photophoresis. 
The photophoretic effect is caused by the action of suffi-
cient light intensity, which creates a non-uniform temper-
ature distribution, and the photophoretic force causes the 
effect of material deformation due to the effect of light ra-
diation on small-sized particles.1

Apart from the cause of the temperature gradient, the only 
difference between the described effects is that, due to 
photophoresis, the gradient does not spread over the en-
tire material.

3 The very beginnings of the 
thermophoretic effect

The first hints of the thermophoretic effect were observed, 
in the form of material movement due to the appear-
ance of a temperature gradient, by Augustin-Jean Fresnel 
(1788–1827), a French engineer and physicist known for 
his achievements in the field of optics, and William Crook-
es (1832–1919), an English physicist and chemist.24 Later, 
the phenomenon was investigated and observed by nu-
merous scientists, until Felix Ehrenhaft (1879–1952), an 
Austrian physicist, produced it with light radiation and de-
fined it as photophoresis.25

In 2002, Passian experimentally demonstrated that by 
heating microcantilevers with laser beams, if they are at 
a distance comparable to the mean free path of the sur-
rounding gas molecules, certain forces are created that act 
on the observed microcantilevers.26

Scientific research at the end of the twentieth century was 
mostly focused on the application of the thermophoretic 
effect in gas systems.27,28 During this time, the effect was 
also mainly used to study channel/pipe flow.29,30

4 Thermophoretic effect:  
The twenty-first century

Since its discovery, the thermophoretic effect has not been 
thoroughly investigated. Until recently, the application of 
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this effect was mostly limited to polymer solutions and 
other colloidal fluids. When discussing the process’s na-
ture, thermophoresis is described as a non-equilibrium 
transport process with the potential to play an important 
role in macromolecular fractionation as well as microflu-
idic manipulation.31 When mentioning thermophoresis as 
a non-equilibrium effect, it is important to highlight that 
it can be observed in different systems. When it comes to 
applications in chemistry, Talbot et al.13 used thermopho-
resis to exploit directed motion of liposomes. This is signif-
icant because it demonstrates the ability to segregate lipids 
based on their head group by utilising this effect (Fig. 3).13
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Fig. 3 – Schematic cross-section of the temperature cell used for 
monitoring thermophoresis of single-type lipid vesicles. 
An example of thermophoretic effect exploitation in 
chemistry.13 (CC BY 4.0)

Slika 3 – Shematski prikaz poprečnog presjeka temperaturne 
ćelije upotrijebljene za praćenje termoforeze lipidnih 
mjehurića. Primjer primjene termoforetskog efekta u 
kemiji.13 (CC BY 4.0)

As previously stated, it has a wide range of applications in 
chemistry, and can be applied to any chemical reaction 
system that is diffusing along a temperature gradient (see 
Fig. 4).16 A group of authors16 discussed how most micro-
scopic systems exhibit thermophoretic behaviour, requir-

ing heat to be transported from warm to cold regions. The 
conclusion is that thermophoresis occurs in all systems that 
have internal states, whether structural or chemical.16

It is mostly used in aerosol systems, particularly as a tool for 
particle manipulation, such as particle deposition technol-
ogy for particle collection or a thermal precipitator for sam-
pling nanoparticles on two parallel plates.32 Another exam-
ple suggests that thermophoresis can be used to control the 
motion of water nanodroplets confined in carbon nano-
tubes. Because wetting the water-carbon interface has no 
effect on thermophoresis, this mechanism was demonstrat-
ed to be successful in this case.33 These studies proposed 
thermophoresis as a method for controlling particle separa-
tion as an ideal process for use in microfluidic devices that 
employ appropriate temperature control strategies.34

A group of authors35 conducted a numerical investiga-
tion into some factors influencing thermophoretic effect. 
They discovered the influence of particle density, airflow 
velocity, and thermal conductivity. However, the thermal 
conductivity ratio between the particle and the air had no 
effect.35

At one point, thermophoresis was represented as a recti-
fication of Brownian motion. The observed microgel par-
ticles in this study demonstrated unusual thermophoretic 
properties.36 Until recently, the most common applica-
tion of the thermophoretic effect was as a mass transfer 
mechanism.37 It can thus be used for chemical reactions 
with characteristic particle deposition, which is related to 
thermophoresis.38 When discussing the influence on heat 
transfer such as through nanofluids, the thermophoretic 
effect is also important.38,39 Some flow field studies con-
sider micropolar nanofluids due to the thermohoretic ef-
fect.40,41 There are numerous thermophoresis-related heat 
and mass transfer studies. One of these is investigated in 
an induced magnetic field by observing the flow through 
a vertical cone.42

The thermophoretic effect is mostly used in engineering 
to remove small particles.43 This effect is also useful for 
other methods, such as holographic techniques.4,44 Ther-
mal Diffusion Forced Rayleigh Scattering is a technique for 
detecting thermophoretic behaviour in liquids. The point 
is that certain chemical interactions in liquids are causing 
the shifts in thermophoretic behaviour nature.45 Aside 
from that, there is the holographic method, which uses the 
thermophoretic effect for various types of research, such as 
studying biophotonic materials or oscillatory reactions.4,46

This phenomenon was even investigated by NASA. As a 
result, when discussing the prospects for microgravity re-
search, the scientists also considered the thermophoretic 
effect.47

A review of the thermophoretic effect in solid-state parti-
cles may be even more important in terms of technology, 
industry, and material sciences. To begin with, it is demon-
strated that thermophoresis has an effect on solids. Of 
course, when discussing thermophoresis, only very small 
particles are taken into account.

While developing a new plasma spraying process it was 
discovered that small solid zirconia particles are quite 
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Fig. 4 – Schematic representation of temperature absorption 
on the warm side, followed by diffusion and particles 
moving to the cold side. After cooling the particles and 
their transition to low energy states, the cycle repeats.16 
(CC BY 4.0)

Slika 4 – Shematski prikaz apsorpcije temperature na toploj stra-
ni praćenoj difuzijom i pomicanjem čestica na hladnu 
stranu. Nakon hlađenja čestica taj ciklus se ponavlja.16 
(CC BY 4.0)
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sensitive to thermophoretic effect.48 These particles move 
away from the plasma jet, which could represent the pre-
viously described solid-state model of fluid motion. Also 
proposed is a mechanism based on this effect for studying 
DNA translocations through plasmonic nanopores.49

Many scientists have observed thermophoretic motion of 
solid nanoparticles. Schoen’s work described how thermo-
phoretic force caused mass transport of gold nanoparticles 
inside carbon nanotubes.50 It has also been demonstrated 
that the movement of graphene oxide nanosheets is de-
pendent on thermophoresis, among other.51 The investi-
gation of nanotransportation and nanoparticle positioning 
identified thermophoresis as a suitable technique for ma-
nipulating solid nanoparticles. Becton et al. demonstrated 
how the motion of a nanoflake is controlled by thermal 
gradient; therefore, thermophoresis has been used to 
move nanoparticle on a solid surface.52 The complex in-
teraction of small oxide smoke driven by thermophoresis 
with aluminium particles again demonstrated thermopho-
retically affected nanoparticle motion.53

An example of thermophoretic effect application was stud-
ied to improve understanding of the behaviour of soot 
particles in combustion fields and devices. Carbon black 
particles were observed in this study, and the relationship 
between thermophoretic velocity and bulk density was dis-
covered.54,55 When studying soot formation in two-phase 
combustion, thermophoresis was revealed to be an impor-
tant contributor to high volumetric fractions.56 One con-
crete application is the use of the thermophoretic effect as 
a propulsion mechanism for polymeric nanomotors. These 
motors are designed to generate motion as a result of the 
aforementioned effect.57

At the turn of the century, an intriguing concept was pro-
posed. Specifically, thermophoretic forces were used to 
form and position the dust structures. This was referred to 
as “thermophoretic traps”.58 This premise later evolved into 
the invention of optical tweezers. Thermophoretic manip-
ulation of nanoscaled particles is obviously the foundation 
of opto-thermophoretic tweezers.59 Because they do not 
use lasers, these thermophoretically based optical tweezers 
have a significant advantage in terms of not damaging bio-
logical samples. Instead, fluid flow fields are employed, for 
example, near the heated gold surface (as seen in Fig. 5).60

Because the presence of a temperature gradient is a neces-
sary condition for the thermophoretic effect, the influence 
of this gradient on the effect must be investigated. Keeping 
this in mind, the thermophoretic effect was investigated at 
various levels, the most important of which was the inves-
tigation of solid-state nanopores.61 This study predicted a 
successful outcome in biosensing applications. In this re-
gard, microscale thermophoresis was proposed as a new 
biophysical method for studying the binding of large bio-
molecules and small molecules.62 Our research group in-
vestigated the thermophoretic effect in biological samples.1 
The butterfly wing is an excellent example of structured 
materials that can be used in infrared radiation sensors.63 
This same thermophoretic effect was used to examine 
the impact of various wavelengths of light on heating and 
deformation of biological structures.1 The thermophoretic 
effect is caused by heating the wing structure with laser 

light. The influence of this effect on the observed micro-
structure was monitored holographically.1,4 Fig. 6 depicts a 
hologram4 recorded during the induced effect and its re-
construction.

Fig. 6 – Images selected at random from holographic monitoring 
of the thermophoretic effect on a butterfly wing: holo-
gram (left), and holographic reconstruction (right). Ho-
lographic analysis was carried out in order to discover 
new sensing applications.1

Slika 6 – Holografsko snimanje termoforetskog efekta na krilu 
leptira: hologram (lijevo) i holografska rekonstrukcija 
(desno). Holografska analiza izvedena s ciljem pronala-
ska novog mehanizma detekcije.1

The reconstruction recorded the resulting changes in mi-
crostructure. The dynamics of the effect and its influences 
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Fig. 5 – Schematic diagram of optical tweezers setup60  
(CC BY-NC 3.0)

Slika 5 – Dijagram postavke eksperimenta s “optičkim pinceta-
ma”60 (CC BY-NC 3.0)
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were defined by comparing and analysing a large number 
of reconstructions that record different moments of the 
heating process, i.e., deformation.1 This is a good example 
of utilising the thermophoretic effect in a sensing applica-
tion. It is crucial to highlight that thermophoresis is an un-
studied phenomenon, and new discoveries and scientific 
research studies on the subject are anticipated.

5 Conclusion
The thermophoretic effect was introduced in this review. 
This is an effect in which the micro/nano-particles move 
under the influence of the thermophoretic force created 
by the temperature gradient on the material/fluid. This 
force arises due to the size of the particles, which are of 
the order of magnitude of the mean free path of the mole-
cules of the surrounding gas, within which the temperature 
gradient is created. This effect plays a role in the processes 
within practically all micro/nano-systems, so it is of great 
importance for fundamental sciences, such as physics and 
chemistry, as well as many others. For the first time, terms 
related to this effect are precisely defined, and a thorough 
analysis of research on this topic over the past two decades 
is presented. However, thermophoresis is a relatively new 
concept and its applications have yet to be developed.
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SAŽETAK
Termoforeza – ili kad se susretnu mikroobjekti s gradijentom 

temperature: brojne primjene
Marina Simović-Pavlović,a* Maja Pagnacco,b Aleksandra Radulović,c 

Jelena Senćanskic i Miloš Marković a

Ovaj pregled bavi se fenomeom termoforeze odnosno termoforetskog efekta. U pitanju je efekt 
koji nastaje kao posljedica kombinacije temperaturnog gradijenta i čestica veoma malih dimen-
zija, reda veličine srednjeg slobodnog puta molekula okolnog plina. Radi se o ne tako poznatom 
efektu, koji je od velikog značaja za mnoge fizikalne i kemijske procese, kao i za karakterizaciju 
svojstava nanostrukturiranih materijala koja može imati primjenu u industriji za različite detektore. 
Dan je i opis definicija inače veoma sličnih pojmova iz područja termoforeze, kao i sažet pregled 
literature na ovu temu, s posebnim osvrtom na istraživanja u dvadeset prvom stoljeću.
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