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Crop yields must increase in order to meet food security goals. Estimating crop yield- related traits 7 

accurately and rapidly is therefore of utmost importance, with applications in breeding, precision 8 

farming and yield monitoring. Hight throughput phenotyping (HTPP) refers to the use of non-9 

invasive techniques to measure physiological and agronomical traits of crop plants. Optical remote 10 

sensing techniques are widely used in HTPP. They encompass data captured from areas of the visible 11 

(400–700 nm, captured using red green blue- RGB- sensors), near infrared (NIR, 700–1350 nm), red 12 

edge (680–730 nm), and shortwave infrared (SWIR; 1350–2500 nm) regions of the spectrum (Gamon 13 

et al., 2019). This spectral information has numerous applications within crop monitoring direct 14 

prediction of a trait of interest such as pigment content or biomass area, of through using spectral 15 

indices, otherwise known as vegetative indices, which correlate spectral reflectance with 16 

physiological traits such as green area, portrayed by the normalised difference vegetation index 17 

(NDVI) (Fu et al., 2020; Tattaris et al., 2016). 18 

One of the most important components determining crop yield is the Harvest Index (HI); the ratio 19 

between harvestable yield and above ground biomass. However, relative to other yield-related 20 

traits, HI is poorly understood. This is partly a result of the fact that HI is traditionally measured via 21 

destructive field sampling, which is both time-consuming and labour intensive. Within many of the 22 

staple crops, such as wheat and rice, HI is approaching the theoretical maximum value. However, 23 

rapid screening of HI is valuable within breeding programmes and for the temporal evaluation of 24 

growth status.  25 

As the name suggest, remote sensing via optical, or other, techniques, permits data to be collected 26 

from a distance, without the need for physical interaction with a plant. These sensors may be fixed 27 

or in motion. For example, remote sensing from satellite data has many uses within agricultural 28 

research, however in some instances, application is limited by low resolution and fixed 29 

measurement times. Therefore, an alternative approach for field data collection is through the use 30 

of unmanned aerial vehicles (UAVs). UAVs are able to provide high resolution spatial- and temporal- 31 

data for a relatively low cost. So far, UAV-based data has been used to estimate crop traits including 32 

seedling emergence, plant height, leaf area index, above ground biomass and yield (Tsouros et al., 33 

2019). 34 

Following collection, data analysis can be supported by a variety of techniques including machine 35 

learning approaches. Ensemble Learning (EL), refers to a subset of machine learning, whereby 36 

multiple learning algorithms are combined within a single framework to obtain higher predictive 37 

performance. EL methods are able to overcome problems associated with small training sets, such as 38 

overfitting, because outputs of independent base models are integrated through secondary learning 39 

methods (Zhang et al., 2019). This integration can be facilitated by Bayesian Model Averaging (BMA), 40 

in which the posterior probability of each of the basic models are taken as weights for the secondary 41 

learning step. As such, BMA is able to overcome uncertainty in the modelling process, leading to a 42 

higher estimation accuracy, and so has been widely applied for many fields (Shu et al., 2022). 43 
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Within this issue of Plant Physiology, Ji et al. (2023) used multi-spectral data captured from a UAV 44 

combined with machine learning to calculate harvest index of pea (Pisum sativum L.) and faba bean 45 

(Vicia faba L.) at four different growth stages. Ji et al. (2023) combined data collection from RGB, 46 

multispectral (MS) and thermal infrared (TIR) sensors, as well as four different machine learning 47 

models and an integrated EL model based on MBA (Figure 1). Combining multi-modal data provided 48 

a better overall estimate of HI compared to any single sensor with improvements in model fitting 49 

(i.e. R2) of up to 18% and 31% for bean and pea, respectively. Similarly to spectral information, the 50 

combined EL model provided the best and most stable estimation of HI, and combining information 51 

from all four growth stages provided a better estimate compared to any single growth stage. 52 

Together, the results of Ji et al. (2023) indicate the power of combining multi-sensor and multi-53 

model information for the prediction of plant physiological traits. The improved HI prediction power 54 

reflects the results of previous studies which demonstrate how multi-sensor information can 55 

improve crop trait estimation (Feng et al., 2020; Li et al., 2022). However, species-specific 56 

differences were seen in the estimation accuracy of HI, with pea achieving more accurate 57 

predictions relative to bean. This improved HI estimation in pea was predicted to be a result of 58 

reduced canopy cover, and thus reduced saturation of the optical sensors. In some instances, 59 

combining information from two sensors yielded greater predictive power than three indicating 60 

possible data redundancy. Furthermore, in some cases, the base machine learning models 61 

performed better than the EL approach. Thus the optimal combination of sensors and models is 62 

likely to be both species-, growth stage- and trait- specific. 63 

Despite the recent rise in machine learning approaches for plant science disciplines, its application 64 

for crop yield prediction is not yet viable for wide-scale use. Nevertheless, whilst improvements can 65 

still be made for the estimation of HI, the study of Ji et al. (2023) presents a further step in the 66 

generation of HTPP for monitoring crop performance. Combining low-cost sensor information and 67 

machine learning permits robust and accurate measurements of physiological traits, ultimately 68 

providing an acceleration in the breeding process. Future improvements will require large datasets 69 

encompassing multiple genotypes across a variety of sites, and assessment of the redundancy 70 

between multi-sensor data. 71 

72 

Figure Legends 73 

Figure 1: Overview of the remote sensing approach designed by Ji et al. (2023) for the estimation of 74 

Harvest Index (HI) of field grown faba bean (Vicia faba L.) and pea (Pisum sativum L.). Optical data 75 

was collected using a UAV from red green blue (RGB), multispectral (MS) and thermal infrared (TIR) 76 

sensors. Data was analysed using a variety of machine learning approaches singularly and in 77 

combination using Ensemble Learning (EL) and Bayesian Model Averaging (BMA). The most accurate 78 

estimation of HI was obtained using multi-modal data combined with the EL model. 79 
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