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Abstract 
A sound analysis of DNA sequencing data is important to extract 
meaningful information and infer quantities of interest. Sequencing 
and mapping errors coupled with low and variable coverage hamper 
the identification of genotypes and variants and the estimation of 
population genetic parameters. Methods and implementations to 
estimate population genetic parameters from sequencing data 
available nowadays either are suitable for the analysis of genomes 
from model organisms only, require moderate sequencing coverage, 
or are not easily adaptable to specific applications. To address these 
issues, we introduce ngsJulia, a collection of templates and functions 
in Julia language to process short-read sequencing data for 
population genetic analysis. We further describe two 
implementations, ngsPool and ngsPloidy, for the analysis of pooled 
sequencing data and polyploid genomes, respectively. Through 
simulations, we illustrate the performance of estimating various 
population genetic parameters using these implementations, using 
both established and novel statistical methods. These results inform 
on optimal experimental design and demonstrate the applicability of 
methods in ngsJulia to estimate parameters of interest even from low 
coverage sequencing data. ngsJulia provide users with a flexible and 
efficient framework for ad hoc analysis of sequencing data.ngsJulia is 
available from: https://github.com/mfumagalli/ngsJulia.
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Introduction
Population genetics, i.e., the study of genetic variation within and between groups, plays a central role in evolutionary
inferences. The quantification of genetic diversity serves the basis for the inference of neutral1 and adaptive2 events that
characterised the history of different populations. Additionally, the comparison of allele frequencies between groups
(i.e. cases and controls) is an important aspect in biomedical and clinical sciences.3

In the last 20 years, next-generation sequencing (NGS) technologies allowed researchers to generate unprecedented
amount of genomic data for a wide range of organisms.4 This revolution transformed population genetics (therefore also
labelled as population genomics) to a data-driven discipline. Data produced by short-read sequencing machines (still the
most accessible platformworldwide) consist of a collection of relatively short (approx. 100 base pairs) fragments of DNA
which are then mapped or de novo assembled to form a contiguous sequence.4 At each genomic position, all observed
sequenced reads are used to infer the per-sample genotype (an operation called ‘genotype calling’) and the inter-samples
variability, i.e., whether a particular site is polymorphic (an operation called ‘single-nucleotide polymorphism (SNP)
calling’).5

To this end, several software packages have been implemented to perform genotype and SNP calling fromNGS data, the
most popular ones being samtools/bcftools,6 GATK,7 and freeBayes.8 When, on average, few reads map at
each genomic position (a scenario referred to as ‘low-coverage’ or ‘low-depth’), genotypes and SNPs cannot be assigned
with confidence due to the high data uncertainty.9,10 Under these circumstances, statistical methods that integrate data
uncertainty into genotype likelihoods and propagate it to downstream analyses have been proposed.5 Software packages
like ANGSD11 and ngsTools,12 among others reviewed by Lou et al.,13 implement a statistical framework to estimate
population genetic metrics from low-coverage sequencing data. Similarly, an affordable generation of sequencing data
from large sample sizes can be obtained via pooled sequencing experiments, where assignment of individual samples is
typically not retained.14 Several new and popular software for the analysis of pooled sequencing have been proposed in
recent years.15,16

Despite these advances, most of these implementations are either tuned and suitable for model organisms only (e.g., with
haploid or diploid genomes) or not easily adaptable to novel applications. Therefore, an accessible computational
framework for building and testing ad hoc population genetic analyses from NGS data is in dire need. Among
programming languages, Julia17 has emerged as both a powerful and easy-to-use dynamically typed language that
is widely used in many fields of data sciences, including genomics.18 While several Julia packages are currently
available for both population genetic and bioinformatic analyses (e.g., BioJulia), to our knowledge, a suitable framework
for custom population genetic analysis from NGS data is not available yet.

Here we present ngsJulia, a set of templates and functions in Julia language to process NGS data and create custom
analyses in population genetics. To illustrate its applicability, we further introduce two implementations, ngsPool and
ngsPloidy, for the analysis of pooled sequencing data and polyploid genomes, respectively. By extensive simulations,
we show the performance of several methods implemented in these programs under various experimental conditions.We
also introduce novel statistical methods to estimate population genetic parameters from NGS data and demonstrate their
applicability and suggest optimal experimental design.We finally discuss further directions and purposes forngsJulia
and bioinformatics for NGS data analysis.

Methods
Implementation
ngsJulia was built in Julia language (Julia Programming Language, RRID:SCR_021666) and requires the
packages ‘GZip’, ‘Combinatorics’, and ‘ArgParse’. Auxiliary scripts to process output files were built in R (R Project
for Statistical Computing, RRID:SCR_001905) version 3.6.3 and require the package ‘getopt’. ngsJulia receives

REVISED Amendments from Version 2

In the revised version, we provide users with a comprehensive online documentation of APIs and CLIs at https://ngsjulia.
readthedocs.io. Additionally, all functions have docstring documentation. The methodology behind some of the imple-
mentations has been clarified and references on the applicability of saidmethods have been added. We also rephrased few
sentences for clarity as suggested by the reviewer and fixed few typos. We believe that these changes significantly enhance
the user’s experience and simplify the interpretation of results obtained using ngsJulia.

Any further responses from the reviewers can be found at the end of the article
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gzipped mpileup input files which can be generated using samtools.19 Output files are in text file format and can be
easily parsed for producing summary plots and for further analyses. Scripts for some downstream analyses are provided in
ngsJulia.

Operation
ngsJulia is compatible with all major operating systems and is maintained at https://github.com/mfumagalli/ngsJulia.
Documentation and tutorials are available via this GitHub repository and archived at Zenodo20 at the time of writing. All
analyses in the manuscript are performed in Julia language and R.

ngsJulia implements functions to read and parse gzipped mpileup files and to output gzipped text files on various
calculations (e.g., genotype and allele frequency likelihoods) and estimations (e.g., allele frequencies), as requested by
the user. ngsJulia also allows for several data filtering options, including on global and per-sample depth, proportion
or count of minor allele, and base quality. Finally, several options for SNP and biallelic and triallelic polymorphisms
calling are available.

Nucleotide, genotype and allele frequency likelihoods
ngsJulia provides utilities to calculate nucleotide and genotype likelihoods, i.e., the probability of observed
sequencing data given a specific nucleotide or genotype,21 for an arbitrary ploidy level, as in Soraggi et al.22 We now
describe how such quantities are calculated in ngsJulia.

Following the notation in Soraggi et al.,22 for one sample and one site, we letO be the observed NGS data, Y the ploidy,
and G the genotype. Therefore, G has values in 0,1,…,Yf g, i.e., the number of derived (or alternate) alleles.

In the simplest form, genotype likelihoods can be calculated by considering individual base qualities as probabilities of
observing an incorrect nucleotide.21 We adopt the calculation of genotype likelihoods for an arbitrary ploidy level
P OjG,Yð Þ as proposed in Soraggi et al.22 From the genotype likelihoods with P OjG,Y ¼ 1ð Þ, the two most likely alleles
are identified by sorting P OjG,Y ¼ 1ð Þ values after pooling all sequencing reads together across all samples. This
operation will restrict the range of possible genotypes to biallelic variation only. Note that this calculation is still valid for
monomorphic sites, although the actual assignment of the minor allele is meaningless.

We now describe how to estimate Fa,n, the frequency of allele a∈ A,C,G,Tf g at site n. Similarly to Kim et al.,23 the log-
likelihood function for Fa,n is given by:

log P OnjFa,nð Þð Þ¼
XCn

i¼1

P Onjci,n ¼ a,Y ¼ 1ð ÞFn (1)

where ci,n is the i� th read at site n, and Cn is the total depth across all samples. Function 1 is maximised to obtain a
maximum likelihood estimate (MLE) of the sample allele frequency, bFn, either with a grid- or golden-section- search
algorithm.

SNP calling
To perform SNP calling, we implement a likelihood-ratio test (LRT) with one degree of freedom with null hypothesis H0 :
Fn ¼ 0 and alternate hypothesis H1 :Fn ¼ bFn, as described by Kim et al.23 Additionally, we develop a test for a site being
biallelic or triallelic. The former can be interpreted as a further evidence of polymorphism,while the latter as a condition not to be
met for the site being included in further estimations, as ourmodels assume atmost two alleles. The log-likelihoodof site n being
biallelic is equal to P OnjGn ¼ i, jf g,Y ¼ 1ð Þ while the log-likelihood being triallelic is equal to P OnjGn ¼ i, j,zf g,Y ¼ 1ð Þ,
with i, j, and z being the most, second most, and third most likely allele with Y ¼ 1 (i.e. haploid genotypeG), respectively. An
LRT with one degree of freedom can be conducted to assess whether P OnjGn ¼ i,Y ¼ 1ð Þ is significantly greater than
P OnjGn ¼ i, jf g,Y ¼ 1ð Þ, or the latter is significantly greater than P OnjGn ¼ i, j,zf g,Y ¼ 1ð Þ.

Allele frequency, site frequency spectrum and association test from pooled sequencing data
Several estimators of population parameters from pooled sequencing data are implemented in ngsPool, a separate
program which uses functions in ngsJulia. We now describe the statistical framework for the analysis of pooled
sequencing data.
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In case of data with unknown sample size, the MLE of the population allele frequency Fn is calculated as in Equation 1
with F∈ 0,1ð Þ. With known sample size, the same equation is used to calculate sample allele frequency likelihoods
P OnjFn ¼ fð Þ,24 for instance with f∈ 0,1,…,M�Yf g for M samples of equal ploidy Y . From these likelihoods, we can
calculate both the MLE and the expected value with uniform prior probability as estimators of Fn.

A simple estimator of the site frequency spectrum (SFS) frompooled sequencing data is obtained by counting point-estimates
of Fn across all sites. We propose a novel estimator of the SFS implemented in ngsPool. Under the standard coalescent
model with infinite sitesmutations,we let the probability of derived allele frequencyF in a sample ofN genomesP F¼ fð Þ to
be proportional to 1= f K with f∈ 1,…,N�1f g.25 The parameter K determines whether the population is deviating from a
model of constant effective population size. For instance, K¼ 1 is equal to the expected distribution of P Fð Þ under constant
population size, while K > 1 models a population shrinking and K < 1 population growth.

We optimise the value of K to minimise the Kullback-Liebrel divergence between the expected distribution of P FjKð Þ
and the observed SFS. The latter can be obtained by either counting bFn across all sites or by integrating over the sample
allele frequency probabilities P Fn ¼ f jOnð Þ∝P OnjFn ¼ fð Þ (i.e.with a uniform prior distribution). A threshold can be set
to ignore allele frequencies with low probability to improve computing efficiency and reduce noise. Within this
framework, folding spectra can be generated in case of unknown allelic polarisation.

Finally, we introduce a strategy to perform association tests from pooled sequencing data. Similarly to Kim et al.,23 we
propose an LRT with one degree of freedom for null hypothesis H0 : f cases ¼ f controls and alternate hypothesis
H1 : f cases 6¼ f controls. The likelihood of each hypothesis is calculated from P OnjFn ¼ fð Þ and, therefore, this strategy
avoids the assignment of counts or per-site allele frequencies. A statistically significant LRT with one degree of freedom
suggests a difference in allele frequencies between cases and controls, and possible association between the tested
phenotype and alleles.

Ploidy levels and test for multiploidy
We now describe the statistical framework implemented in the program ngsPloidy to estimate ploidy levels and test
for multiploidy. When multiple samples are available, two scenarios can be envisaged: (i) all samples have the same
ploidy, (ii) each sample can have a different ploidy (multiploidy, i.e. as in tumor genomes).26

The log-likelihood function for a vector of ploidy levels Y
!
M ¼ Y1 ¼ y1,Y2 ¼ y2,…,YM ¼ yMf g forM samples andN sites

is defined as:

log P OjY ¼ Y
!
M

� �� �
¼
XM
m¼1

XN
n¼1

log
X

i∈ 0,1,…,Ymf g
P OnjGm,n ¼ i,Ym ¼ ymð ÞP Gm,n ¼ ijYm ¼ ym,Fn ¼ bFn

� �0
@

1
A (2)

With bFn being the MLE of allele frequency at site n. P OnjGm,n ¼ i,Ym ¼ ymð Þ is the genotype likelihood while
P Gm,n ¼ ijYm ¼ ym,Fn ¼ bFn

� �
is the genotype probability given the ploidy and allele frequency at site n.

Once bFn is estimated and the inbreeding is known (or under the assumption of Hardy-Weinberg Equilibrium (HWE)),
then genotype probabilities are fully defined. Equation 2 is optimised by maximising the marginal likelihood of each
sample separately, assuming independence among samples and sites.

With limited sample size, bFn is not a good estimator of the population allele frequency and therefore genotype
probabilities may not be well defined. In the simplest scenario, genotype probabilities can be set as uniformly distributed,
with all genotypes being equally probable. However, the assignment of alleles into ancestral (e.g., wild-type) and derived
(e.g., mutant) states is particularly useful to inform on genotype probabilities. Recalling Equation 2, we can substitute
P Gm,n ¼ ijYm ¼ ym,Fn ¼ bFn

� �
with P Gm,n ¼ ijYm ¼ ym,Fn ¼E FjK½ �ð ÞÞ, where E FjK½ � is the expected allele frequency

of P F¼ f jKð Þ∝1= f K , as introduced previously. Note that E FjK½ � does not depend on the sequencing data for each
specific site n.

Note that, in practice, Equation 2 is a composite likelihood function, as samples and sites are not independent
observations due to shared population history and linkage disequilibrium, respectively. A solution to circumvent this
issue is to perform a bootstrapping procedure, by sampling with replacement segments of the chromosome and estimate
ploidy for each bootstrapped chromosome. The distribution of inferred ploidy levels from bootstrapped chromosomes
provides a quantitative measurement of confidence in determining the chromosomal ploidy. It is not possible to calculate
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the likelihood of ploidy equal to one after SNP calling. Nevertheless, the identification of haploid genomes from
sequencing data is typically trivial.

Unknown or uncertain ancestral allelic state
So far, we assumed to knowwhich allele can be assigned to an ancestral state, and which one to a derived state. However,
in some cases, such assignment is either not possible or associated with a certain level of uncertainty due to, for instance,
ancestral polymorphisms or outgroup sequence genome from a closely related species not being available. Under these
circumstances, we extend our formulation by adding a parameter underlying the probability that the assigned ancestral
state is incorrectly identified.

Let us define R as the ancestral state and a as any possible allele in A,C,G,Tf g. In practice, a can take only two possible
values as we select only the two most likely alleles. We label this set of the two most common alleles as A and we assume
that the true ancestral state is included in such set. The log-likelihood function of ploidy for a single sample m under
unknown ancestral state is:

log P OjYM ¼ ymð Þ¼
XN
n¼1

log
X
a∈A

X
i∈ 0,1,…,Ymf g

P OnjGm,n ¼ i,Ym ¼ ymð ÞP Gm,n ¼ ijYm ¼ ym,R¼ a,Fn ¼ bFn

� �
P R¼ að Þ

0
@

1
A

0
@

(3)

Where P R¼ að Þ indicates the probability that allele a is the ancestral state, and it is invariant across sites. If
P R¼ að Þ¼ 0:5, then the equation refers to the scenario of folded allele frequencies, where each allele is equally probable
to be the ancestral state.

Finally, note that in a sufficiently large sample size, the major allele is more probable to represent the ancestral state. This
probability depends on the shape of the site frequency spectrum, and it is equal to the cumulative distribution of P FjKð Þ
evaluated atF¼N=2.Wecan extendEquation 3 to reflect this parameter uncertaintywitha being themajor allele inP R¼ að Þ.

Test for multiploidy
We introduce a novel test for multiploidy. If all samples have the same ploidy y∈Y , then Yi ¼ Y j ¼ y is true for all
i, jð Þ∈1,2,…,M. We propose an LRT for multiploidy with null hypothesis H0 : supY

!¼ y1 ¼ y,y2 ¼ y,…,yM ¼ yf g and
alternate hypothesis H1 : Y

!¼ Y
!
MLE A large value of LRT is suggestive of multiploidy. Statistical significance can be

assessed with the LRT and M�1ð Þ degrees of freedom.

Data simulation
To benchmark the performance of methods implemented in ngsJulia, we simulated NGS data following a strategy
previously proposed by Fumagalli et al.27 available as a stand-alone R script. Briefly, individual genotypes are drawn
according to probabilities depending on input parameters. The number of mapped reads at each position is modelled with
a Poisson distribution and sequenced bases are sampledwith replacementwith a probability given by the quality score. As
an illustration, the following code

Rscript simulMpileup. R --out test.txt --copy 2x10 --sites 1000 \\
--depth 20 --qual 20 ---pool|gzip > test.mpileup.gz

will simulate 10 diploid genomes(--copy 2x10), 1000 base pairs each (--sites1000) with an average sequencing
depth of 20 and base quality of 20 in Phred score (--depth 20 --qual 20) from pooled sequencing (--pool) with
results stored in test.mpileup.gz file.

For the analysis of pooled sequencing data, we simulated 100,000 independent sites at sample sizes 20, 50, and 100 from
a diploid population with a constant effective population size of 10,000.We imposed the average per-sample sequencing
depth to be 0:5, 1, 2, or 5 with an average base quality of 20 in Phred score. To assess the performance of ngsPool, we
calculated bias and root mean squared error (RMSE) between the estimated value of the true value, either from the sample
or the whole population. While both metrics measure the distance with the true value, the bias retains the direction of the
error (i.e. over- or under-estimation). To quantify the accuracy of SNP calling, we calculated F1 scores (the harmonic
mean of precision and recall rates).
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To simulate data for association test, we assumed an equal number of cases and controls (equal to 150) and 200 SNPs, either
causal or non causal. For non causal sites, cases and controls have the same population allele frequency of 0:10. For causal
sites, cases and controls have a population allele frequency of 0:09 and 0:04, respectively. These conditions are derived
assuming a high risk allele frequency of 0:1, prevalence of 0:2, genotypic relative risk for the heterozygote of 2, genotypic
relative risk for the homozygous state of 4. The sample size simulated guarantees at least 80% powerwith a false positive rate
of 0:10.

To illustrate the usage of ngsPloidy, we simulated NGS data of genomes with different ploidy levels (one haploid,
eight triploids, one tetraploid) at 1000 sites. NGS data was simulated assuming an average depth of 10 at the haploid level.
Code and simulated data sets analysed are available in ngsJulia GitHub repository.

Empirical data
To showcase the applicability of ngsJulia to real data, we deployed to two distinct empirical data sests. To test
ngsPool, we used mapped reads of Arabidopsis lyrata produced in a previous study.28 Specifically, We used data
belonging to the population B where 25 individuals of A. lyrata have been sequenced by both pool-sequencing and
genotyping-by-sequencing. Since GBS harbours data on a fraction of the genome and Pool-seq is whole genome, We
restricted the analysis to the base pairs (bp) sequenced by both techniques, for a total of 15202 bp. The mpileup files have
been generated with samtools6 (v1.14) and SNP calling in GBS data has been performed with Varscan29 (v2.4.2),
resulting in 333 SNPs.

To test ngsPloidy, we reanalysed whole-genome sequencing data of the human fungal pathogenCandida auris from a
previous study.30We processed data for 21 samples, each one consisting of 17 contigs. As the null hypotheses is that these
samples are haploid, we tested ploidy levels from 1 to 4. We filtered out sites with a minimum depth lower than 5 and a
proportion of minor alleles lower than 0.15. The number of sites analysed per contig ranged from 555 to 754.

Results
ngsJulia implements data structures and functions for an easy calculation of nucleotide and genotype likelihoods
(of arbitrary ploidy) which serve the basis of genotype and SNP calling and for the estimation of allele frequencies and
other summary statistics. It is particularly suitable for low-coverage sequencing data and for cases when there is high data
uncertainty. To demonstrate the use ofngsJulia, we provide two custom applications from its templates and functions.

ngsPool: analysis of pooled sequencing data
We used ngsJulia to implement a separate program, called ngsPool, to perform population genetic analysis from
pooled sequencing data. Specifically, ngsPool implements established and novel statistical methods to estimate allele
frequencies and site frequency spectra (SFS) and perform association tests from pooled sequencing data.

ngsPool uses functions in ngsJulia to parse mpileup files as input. As an illustration, the following code

julia ngsPool.jl --fin test.mpileup.gz --fout test.out.gz --lrtSnp 6.64

will parse test.mpileup.gz file and write estimates of allele frequencies in test.out.gz file from unknwon
sample size after performing SNP callingwith an LRT value of 6.64(--lrtSnp6.64, equivalent to a p-value of 0:01).

Depending on the options selected by the user, output files contain, various results are printed on the screen, including

• inferred major allele,

• inferred minor allele,

• LRT statistic for SNP calling,

• LRT for bi- and tri-allelic calling,

• three estimators of the minor allele frequency at each site.
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Additionally, ngsPool can output a file with per-site sample allele frequency likelihoods. The following code

julia ngsPool.jl --fin test.mpileup.gz --fout test.out.gz \\
--nChroms 20 --fsaf test.saf.gz

will produce estimates of allele frequencies from the known sample size (specified by --nChroms 20) and allele
frequency likelihoods in test.saf.gz file.

These files can then be used to estimate the SFS and perform an association test using two scripts provided in ngsPool.
For instance, the code

Rscript poolSFS. R test.saf.gz > sfs.txt

will estimate the SFS, while the code

Rscript poolAssoc. R test.cases.saf.gz test.controls.saf.gz > assoc.txt

will perform an association test assuming two sets of allele frequency likelihood files, one from cases (test.cases.
saf.gz) and one from controls (test.controls.saf.gz).

Estimation of allele frequencies
To illustrate the usage of ngsPool, we estimated allele frequencies based on simulated data at different experimental
conditions.We sought to compare the performance among different estimators implemented in the program. If the sample
size is not provided, ngsPool provides a simple MLE of the population allele frequency assuming haploidy.
Alternatively, if the sample size is provided by the user, ngsPool calculates sample allele frequency likelihoods and
returns both the MLE and the expected value of the allele frequency using a uniform prior probability.

Results show that the error of estimating allele frequencies decreases with increasing depth and sample size, as expected
(Figure 1). Likewise, the error for estimating the population allele frequency is more pronounced for lower sample sizes.
MLE values tend to be less biased than expected values and sample estimates appear to be unbiased even at depth 1 for
moderate sample size (Figure 1).

Furthermore, we simulated NGS data at fixed population allele frequency and compared the distribution of true sample
allele frequencies and estimated values using a MLE approach from known sample size. Figure 2 shows that most of the
deviation from the true population allele frequencies occurs at intermediate frequencies (F equal to 0.5). This effect is
more evident for low depth and low sample size (Figure 2).

We then assessed the effect of low-frequency variants on SNP calling. Specifically, we calculated F1 scores for SNP
callingwhen the population allele frequency is 0 (not a SNP) or greater than 0 (a SNP). Figure 3 shows how the prediction
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Figure 1. Estimation ofminor allele frequencies frompooled sequencing data.Bias and rootmean square error
(RMSE) against the reference true value from either the population or sample are provided for each value of depthD
(the average number of sequenced reads per base pair) and sample size (on columnpanels) tested. Three estimators
of allele frequencies are considered: a population maximum likelihood estimate (MLE) from unknown sample size
and the expected value and MLE from known sample size.
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performance increases with the population allele frequency (F), sample size, and depth (D). For instance, an F1 score
greater than 0.75 is obtained with 20 samples only for F¼ 0:05 and D> 0:5. On the other hand, the same F1 score is
achieved with 50 samples even with F¼ 0:025 and also at F¼ 0:02 but only if D> 1.

SNP calling under-performs when there is no variation in the population (F¼ 0), with sequencing errors and sampling
statistical uncertainty generating estimates of F greater than 0.
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Figure 2. Distribution of estimated minor allele frequencies from pooled sequencing data. True sample allele
frequencies (SAF) and maximum likelihood estimates (MLE) are shown at different fixed population allele frequen-
cies F and sample sizes (on rows, 20 and 50) and depths (the average number of sequenced reads per base pair, on
columns, 0.5, 1, 2, and 5).
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Figure 3. Performance of single nucleotide polymorphism (SNP) calling from pooled sequencing data. F1
scores (harmonic means of precision and recall rates) for predicting either a SNP (true population allele frequency F
greater than 0) or not (F ¼0) are reported are various values of F , sample sizes (on columns, 20 and 50) and depths D
(the average number of sequenced reads per base pair).
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ngsPool implements several methods to estimate the SFS from sample allele frequencies. As described in the methods,
a simpler estimator is based on assigning the most likely sample allele frequency at each site (labelled count). ngsPool
implements novel estimators of SFS from pooled sequencing data as described in themethod section. A script implements
an algorithm to fit the theoretical SFS to the observed SFS. The latter can be calculated either by assigning per-siteMLEof
allele frequencies (labelled Fit_count) or by integrating the uncertainties across all sample allele frequency likeli-
hoods (labelled Fit_afl).

Figure 4 shows the error in estimating either the population or sample SFS at various settings with different methods. The
error decreases with increasing depth and sample size. Estimating SFS by fitting the theoretical SFS without assignment
of allele frequencies generally outperforms other tested strategies (Figure 4).

Notably, the novel approach implemented inngsPool to estimate the parameterK of the SFS distribution (seeMethods)
allow us to directly quantify the error in inferring demographic events. In fact, all simulations assumed constant
population size, equivalent to K¼ 1. Figure 5 shows the estimated values of K by fitting the SFS either by assigning
(counting) allele frequencies (Fit_count) or by using allele frequency likelihoods (Fit_afl). For low-to-moderate
depth and sample size, estimates ofK tend to suggest population expansion (K < 1), possibly due to an over-estimation of
the abundance of low-frequency alleles. However, the error is reduced when integrating the data uncertainty with sample
allele frequency likelihoods, as estimates of K values tend to be closer to the true simulated value of 1 (Figure 5).

ngsPool implements a script to perform association tests from pooled sequencing data. Specifically, the script
calculates an LRT statistic, with null hypothesis being that allele frequencies of cases and controls (or any two groups)
are the same, as used by Kim et al.23 It uses sample allele frequency likelihoods and, therefore, it maintains data
uncertainty and avoids the assignment of counts or per-site allele frequencies. An LRT statistics significantly greater than
0 indicates a difference in allele frequencies between cases and controls.

Figure 6 compares the distribution of LRT statistics between causal and non causal sites at different experimental
scenarios. The distribution of LRT at causal SNPs is skewed towards higher values for increasing depth, indicating more
support to find phenptype-SNP association. Nevertheless, a clear separation between the distributions of causal and non
causal SNPs is observed at low depth (Figure 6).
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Figure 4. Estimation of site frequency spectrum (SFS) from pooled sequencing data. Estimates based on
counting allele frequencies (Count) or fitting from counted allele frequencies (Fit Count) or from allele frequency
likelihoods (Fit afl) are calculated. Root mean square error (RMSE) values between true (either population or
sample, on rows) and estimated SFS are reported at various depths D and sample sizes (on columns).
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To illustrate the application of ngsPool to real data, we reanalysed genomic data from Arabidopsis lyrata.28 In this study,
authors generated data both by genotype-by-sequencing and by pooled-sequencing, with the former providing ground-
truth values for genotype and allele calls. Estimates of minor allele frequencies using ngsPool yield a lower RMSE
(0.09372) than estimates from Varscan (0.09783) across all SNPs analysed.

ngsPloidy: analysis of sequencing data from polyploid genomes
We further utilised ngsJulia to implement an additional program, ngsPloidy, for the estimation of ploidy from
unknown genotypes. The method implemented is similar to the one proposed by Soraggi et al.22 with some notable
differences on the calculation of genotype probabilities (see Methods). Additionally, ngsPloidy includes a novel
method to test for multiploidy in the sample. As an illustration, the following code

julia ngsPloidy.jl --fin test.mpileup.gz --nSamples 20 > test.out
Rscript ploidyLRT. R test.out

will estimate ploidy levels for 20 genomes (--nSamples 20) from test.mpileup.gz file and return LRT values.
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Figure 5. Estimation of parameter K (used to determine if the population is deviating from constant effective
population size) of the site frequency spectrum at different depths D and sample sizes (on rows) from pooled
sequencing data. Estimates based on fitting from counted allele frequencies (Fit count) and fromallele frequency
likelihoods (Fit afl) are reported. Note that the true simulated value of K is 1.
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average number of sequenced reads per base pair, on columns).
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Following Equation 2, the genotype probabilities for each tested ploidy are pre-calculated using a script provided in
ngsPloidy. This script takes as input the value of parameterK (the shape of the expected SFS), the effective population
size, and the probability that the major allele is the ancestral allele. The latter can be either set by the user (e.g., a value of
0.5 would be equivalent to unknown polarisation, as in a folded SFS) or be calculated from the expected population SFS
itself. If genotype probabilities are not set, a uniform distribution is assigned. Further options allow for estimation only on
called SNPs and/or genotypes.

ngsPloidy uses functions in ngsJulia to parse mpileup files as input. At the end of the computation, various results
are printed on the screen, including

• the number of analysed sites that passed filtering for each sample,

• a matrix of ploidy log-likelihoods for each sample,

• the log-likelihood and MLE of the ploidy vector (i.e., the individually estimated ploidy for each sample),

• LRT scores for the test of multiploidy against all tested ploidy levels.

Additionally, if requested by the user, ngsPloidy can generate output files with several statistics for each site (e.g.,
estimate allele frequency), and all per-site genotype likelihoods for each sample and the tested ploidy.

To illustrate the usage of ngsPloidy, we deployed it to simulated data of an multiploid sample consisting of one
diploid, eight triploid and one tetraploid genomes. We compared the performance of ploidy and multiploidy inference
among different choices of genotype probabilities. The latter were derived either from the expected folded population site
frequency, from the estimated ancestral population allele frequency, or from the calculated sample allele frequency.

In all tested cases, we inferred the correct vector of marginal ploidy levels. We therefore assessed the confidence in
such inference by calculating the LRT statistics of ploidy and multiploidy inferences. Both were calculated by
comparing the most against the second most likely vector of ploidy levels or the most likely vector of equal ploidy
levels, respectively.

Results show that using the per-site estimate sampled allele frequency yields higher LRT statistics (and therefore
confidence) than using expected population allele frequencies (Table 1). We reiterate that for all three cases we correctly
identified the patterns of multiploidy. However, we should caution that with lower sample sizes we do not expect
inferences using estimated sample allele frequencies to perform well.

To illustrate the applicability of ngsPloidy to real empirical data, we inferred ploidy levels on 21 isolates from an
outbreak of Candida auris.30 In all contigs analysed, haploid was inferred as the most likely ploidy and multiploidy was
rejected in all samples. These results are consistent with findings from the original study, although the identification of
polyploidy in other isolates may be associated with multidrug-resistant phenotypes.31

Discussion
Analyses presented here provide further support for the use of genotype and allele frequency likelihoods in the analysis of
NGS data.5 Notably, we demonstrated how probabilistic estimates of population genetic parameters can be obtained in
case of pooled sequencing data and short-read data from polyploid genomes. Additionally, wemotivated the inference of
SFS from allele frequency likelihoods as a direct way to infer demography from raw sequencing data.

ngsJulia offers new possibilities of software prototyping for custom analyses of NGS data for population genetic
applications. Furthermore, it facilitates experimental design as it provides a platform to benchmark the efficacy of

Table 1. Confidencevalues to thecorrectly assignedploidyvector and test formultiploidy. Likelihood-ratio test
(LRT) statistics using different methods of incorporating allele frequencies are reported.

Allele frequency LRT – ploidy LRT - multiploidy

Folded 34.19 252.72

Ancestral 31.49 277.91

Sample 37.83 373.07
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population genetic analysis from competing sequencing experiments. Finally, ngsJulia has accessible documentation
and tutorials to inform users on the theory underpinning the implemented methods. We envisage that further improve-
ments in ngsJulia will include the expansion of suitable input formats and data file types, and the compatibility with
additional NGS data type, including from long-read sequencing experiments.32

Conclusions
In this study, we introduce ngsJulia, a series of templates and functions in Julia language to analyse NGS data for
population genetic purposes. We present two implementations for the analysis of pooled sequencing data and polyploid
genomes, with the inclusion of novel methods. ngsJulia is a suitable framework for prototyping new software and for
custom population genetic analyses from NGS data.

Data availability
Underlying data
Simulated data and pipeline to reproduce all results presented here are available at https://doi.org/10.5281/zenodo.
5886879.20
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Software availability
• Source code available from: https://github.com/mfumagalli/ngsJulia

• Archived source code at time of publication: https://doi.org/10.5281/zenodo.588687920

• License: Creative Commons Attribution 4.0 International Public License
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Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited.

Nikolay Oskolkov   
Department of Biology, National Bioinformatics Infrastructure Sweden, Science for Life 
Laboratory, Lund University, Lund, Sweden 

The authors suggest a population genomics tool written in Julia programming language. They 
demonstrate the performance of the tool on simulated and real pooled sequencing data. The 
manuscript is well written and technical details of the tool are well explained. In addition, 
documentation is provided together with the tool. 
 
I believe, it is potentially interesting to approach some bioinformatics analyses (such as population 
genomics) with Julia. However, I am still missing a clear motivation for re-writing e.g. genotype 
likelihoods and SFS computation in Julia. There are many popgen tools that are fast and accurate 
enough, e.g. ANGSD, so there should be a clear advantage of ngsJulia in some way compared to 
other tools. If the motivation is the outstanding speed or accuracy of ngsJulia, it should be clearly 
demonstrated. So my main concern is the lack of comparison of ngsJulia with other popgen tools. 
 
Next, I would not advertise ngsJulia as a “population genetic analysis of next-generation sequencing 
data”, as from the text I got an impression that this was a quite pool-seq-specific tool. If ngsJulia is 
more general than a pool-seq data tool, it should be demonstrated and compared with other 
tools. Otherwise, I would suggest to change the title of the manuscript and make it less general 
and more specific. For example, accounting for polyploidy is a strength of ngsJulia, perhaps this 
should be emphasized more in the manuscript. 
 
I found it interesting and novel to determine the optimal K in the 1/f^K approximation of SFS 
profile with Kullback-Leibler optimization. However, as it seems to me from the Figure 5, this 
implementation in ngsJulia only works for D ~ 5 and large sample sizes. Perhaps other tools will 
not do a great job either, but as I mentioned above, I am missing the comparison with other tools. 
 
Minor comment: 
Page 7 I would encourage the authors to make the command line for ngsPool.jl more self-
explanatory. More specifically, the “–lrtSnp 6.64” flag is hard to grasp. Perhaps re-writing it in a way 
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so that it becomes clear that 6.64 corresponds to p-value = 0.01, and replacing the flag “–lrtSnp 
6.64” with “--pvalue 0.01” would be possible?
 
Is the rationale for developing the new software tool clearly explained?
Partly

Is the description of the software tool technically sound?
Yes

Are sufficient details of the code, methods and analysis (if applicable) provided to allow 
replication of the software development and its use by others?
Yes

Is sufficient information provided to allow interpretation of the expected output datasets 
and any results generated using the tool?
Yes

Are the conclusions about the tool and its performance adequately supported by the 
findings presented in the article?
Partly

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: bioinformatics, genomics, medical genetics, ancient DNA

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard, however I have 
significant reservations, as outlined above.

Reviewer Report 14 August 2023
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© 2023 De Mita S. This is an open access peer review report distributed under the terms of the Creative 
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited.

Stéphane De Mita   
Institut national de la recherche agronomique (INRAE), Paris, France 

After considering the updated version and using the new documentation, I managed to run some 
tests successfully. However, I couldn't understand the return value of calcGenoLike without 
extrapolating from what it done in the triploid case in the tutorial.
 
Is the rationale for developing the new software tool clearly explained?
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Partly

Is the description of the software tool technically sound?
Partly

Are sufficient details of the code, methods and analysis (if applicable) provided to allow 
replication of the software development and its use by others?
Partly

Is sufficient information provided to allow interpretation of the expected output datasets 
and any results generated using the tool?
Partly

Are the conclusions about the tool and its performance adequately supported by the 
findings presented in the article?
Partly

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Population genomics, phytopathology, programming (Python, C, C++).

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard.
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© 2023 De Mita S. This is an open access peer review report distributed under the terms of the Creative 
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, 
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Stéphane De Mita   
Institut national de la recherche agronomique (INRAE), Paris, France 

The article "ngsJulia: population genetic analysis of next-generation DNA sequencing data with 
Julia language" by Alex Mas-Sandoval and colleagues provides a library for the Julia addressing 
management of NGS data (provided in the PileUp format), SNP and genotype calling allowing for 
arbritary and dataset-varying ploidy, and maximum-likelihood parameter estimation. 
 
I've really discovered the Julia language while reviewing this article and I agree that it makes sense 
to use this language for developing tools for the analysis of NGS data. Providing a toolkit to 
perfom SNP and genotype calling under a probabilistic models makes much sense and can be 
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useful for the community. The ngsPool application provided can be of widespread use while 
ngsPloidy can be a very precious tool for specific systems which lack proper software right now. 
 
Here is a list of random typos or detail-level suggestions:

"polidy" in the "Revision" box.○

Methods: you should add Combinatorics as a requirement.○

I am not sure to understand the header "Operation".○

One or two sentences, presenting biological systems where the study of multiploidy (or in 
general MLE of ploidy) is relevant, would help.

○

I am not sure giving an example of a R command line for simulating data is a good choice. 
For a Julia package I'd like to see some Julia code example, although it is not absolutely 
necessary.

○

Discussion: rewrite: "is highly applicable in educational contexts"○

I do not get this sentence at all: "[ngsJulia] allows for efficient testing of experimental designs and, 
therefore, would be beneficial for initial planning of any sequencing experiments." 
 
My big issue with the paper, which is confirmed by a first look at the package, is that the content 
of the ngsJulia library isn't described, even succinctly. There should be an API and the article 
should point to it. 
 
In my view there is still need for more documentation. Tutorials are great and (speaking by 
experience) they are often essential, but at some point you need for some more rigourous 
reference documentation (API for the library, CLI for the applications). The Application 
Programmer Interface should be documented so that the reading planning to write a script using 
the library can know what functions are available, what input they expect, and if possible what 
errors can be expected. This remark also applies to the Command Line Interface of the two 
applications ngsPloidy and ngsPool. The help page produces an option summary, which is fine, 
but the meaning of the options isn't documented. 
 
Below I report the results of my testing of the three components of the software. 
 
*** ngsPloidy *** 
 
The tutorial is a good resource to start, but some points need clarification, and a more rigourous 
reference manual of the command-line interface would help a lot. 
 
I am not sure that it is a good idea to start by defining environment variables, which make the 
commands much less friendly. At least, do mention that you are defining environment variables so 
that unaware users can know where to look at if they need more information. Anyway the julia 
command should be available is it is installed in the environment which should be considered to 
be the default. By the way, "Julia language" is a poor choice of words. 
 
I am sorry, but I didn't get at all what "genotype probabilities" where and whether and why would 
I need to to create them. I have no idea what writePars is doing and -p and -s arguments aren't 
clearly documented. 
 
There is a "variabile" (instead of "variable") in the in simulMpileup.R manual. The simulation script 

 
Page 18 of 26

F1000Research 2023, 11:126 Last updated: 21 SEP 2023



needs its own documentation. 
 
Personally, I would think that either bam files containing aligned reads, or VCF, would be a better 
choice than PileUp, because users are more likely to already have those. 
 
Suggestions: you could print progress information while running, and displays error messages in 
stdout instead of stderr (especially useful since you advice users to redirect results which are 
printed in stdout. 
 
I tested ngsPloidy using data from my own read simulator. I thought it was a good idea to bring 
data from an independent source, and also I am more comfortable using it. It generated data 
from diploid and tetraploid organisms, using a coalescent model to draw allelic frequencies. 
 
Then I ran this type of commands: 
$ julia ../ngsJulia/ngsPloidy/ngsPloidy.jl --fin diplo.plp.gz --nSamples 20 > diplo.out 
 
Running times were (tens of minutes up to an hour for rather small simulated datasets). I suspect 
that I should have dropped non-varying sites from the PileUp (since I didn't incorporate errors, 
90% of my sites are completely fixed). 
 
When I simulated only diploid or tetraploid individuals, they are completely inferred (although in 
some parameter settings I had tetraploid individuals estimated as a mixture of tetra- and 
pentaploid individuals). When I merge diploid and tetraploid individuals in a single PileUp, the 
software tended to estimate a mixture of diploid and triploid individuals. So I suspect that I am 
doing something wrong. Most likely I miss an important step of the procedure and the 
documentation might be to blame. 
 
*** ngsPool *** 
 
Among the command line arguments, by "LRT", do you mean "threshold"? 
 
I got an exception when the pileup file didn't contain reference bases. I understand that this 
should be an error but it could be displayed in a more accessible manner. 
 
Some test results are reported as "Inf" or "-Inf" which is also not necessarily clear. 
 
I was not totally clear when --lrt* arguments should be used. 
 
I got a problem to understand the difference between maf, saf_MLE and saf_E? It is also a problem 
with the article, where the logic is mentioned by not really explained. 
 
I ran a simulation with a 20,000 bp genome, 20 diploid individuals, 10% of sites with diallelic 
polymorphism, 10,000 reads of 50 bp (so an average depth of 25X). 
 
I ran: 
# julia ../ngsJulia/ngsPool/ngsPool.jl --fin data.plp.gz \ 
            --fout results.txt.gz  --lrtSnp 6.64  
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It took ~ 4:30 minutes and the results are fitting the simulation parameters. All sites called as SNPs 
are correct and only occasionnaly a few number (~1/1000) of "real" SNPs aren't called, and whose 
are always singletons. There is also a good agreement between the 'real' and estimated maf. 
 
Using the --nChroms option gives similar results and all estimated frequencies are correct. 
 
*** ngsJulia *** 
 
An API reference  was badly needed. I tried to start writing a Julia script analysing one of the 
datasets used for previous testing and didn't get very far. My lack of knowledge of Julia didn't help, 
for sure. 
 
The last paragraph of the readme "In general, ngsJulia provides templates..." should come first. 
 
Is it normal that we need to import Combinatorics even if we are not directly using it (i.e. I reckon 
that ngsJulia should import it itself). 
 
Almost instantly, I have the following line crashing: 
  nucleoLikes = [calcGenoLike(myReads, [i], 1) for i=1:4] 
 
The error message is: ERROR: LoadError: BoundsError: attempt to access SubString{String} 
  at index [2] 
 
I thought it was because I was trying to pass a site (represented by a Reads object, I assume), 
containing a single read base. But in the end it is not this (sites with more bases are not accepted 
either). Obviously I am making a very basic error but the lack of documentation doesn't help me.
 
Is the rationale for developing the new software tool clearly explained?
Yes

Is the description of the software tool technically sound?
Yes

Are sufficient details of the code, methods and analysis (if applicable) provided to allow 
replication of the software development and its use by others?
Partly

Is sufficient information provided to allow interpretation of the expected output datasets 
and any results generated using the tool?
Partly

Are the conclusions about the tool and its performance adequately supported by the 
findings presented in the article?
Yes

Competing Interests: No competing interests were disclosed.
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Reviewer Expertise: Population genomics, phytopathology, programming (Python, C, C++).

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard, however I have 
significant reservations, as outlined above.

Version 1

Reviewer Report 13 April 2022
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Lindsay V. Clark   
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The manuscript by Mas-Sandoval et al. describes ngsJulia, a collection of functions and scripts in 
Julia and R for estimating genotype likelihoods from short read DNA sequencing data, as well as 
estimating allele frequencies in pooled samples, and estimating ploidy where it is unknown. It 
seems that the goal is also to enable biologists proficient in Julia to develop their own custom 
genotype calling and population genetic analysis scripts starting with the provided functions for 
estimating genotype likelihoods. As it is, the manuscript and software suffer from two major flaws: 
(1) the software and its outputs are not well documented for users or developers, and (2) testing is 
only performed on simulated data, not empirical data. 
 
The software documentation is not very approachable as it currently is. End-to-end tutorials with a 
real dataset (or something closely resembling a real dataset) are needed for all applications. How 
are the output files formatted and how might the user further process those files to address 
biological questions? For example, it seems that one could use ngsJulia to generate a matrix of 
genotype calls across samples and loci, starting from a set of mpileup files, but from the 
documentation I have no idea how to accomplish this task. 
 
There are eleven different functions for estimating genotype log likelihoods, depending on ploidy, 
with four different functions for haploids. This strikes me as poor software design. At minimum 
the eight calcGenoLogLikeX_MajorMinor functions could be collapsed into one, with ploidy as an 
added argument to the function. Having a single function would make it much easier to update 
the code and ensure that there aren’t any bugs that prevent it from working consistently across 
ploidy levels. The hard-coding of tuples for every possible genotype, and the repetitive if-else 
statements, could be replaced with a more programmatic approach. The programmatic approach 
with ploidy as a function argument would also enable the software to be used for organisms with 
ploidy greater than octoploid. 
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If I understand correctly, the SNP calling algorithm only seems to work on haploid samples, which 
would exclude it from being used in most studies. Please clarify. 
 
The estimation of ploidy from sequencing data using the ngsPloidy is a valuable addition. As an 
author of other software for marker analysis in polyploids, I frequently hear requests for such 
functionality, so I expect ngsPloidy to get a lot of use. It would be helpful to include a comparison 
to other tools such as ploidyNGS, ConPADE, and/or SuperMASSA. Additionally, the algorithm is 
only tested on a simulated dataset, and I would like to see it tested on an empirical dataset (with 
flow cytometry used as ground truth), both to see how well it scales up to thousands of markers, 
and how well it deals with potentially messy data. 
 
The authors use the term “aneuploidy” incorrectly. Aneuploidy refers to different chromosomes 
having different copy numbers within one individual. The authors seem to mean different 
individuals within a population having different ploidies. “Multiploid” is one term for this although 
depending on the field it is sometimes used as a synonym for “polyploid”. 
 
How should the user estimate the shape of the site frequency spectrum and the effective 
population size, which are required inputs for ngsPloidy? 
 
I tried “Case A” in the ngsPloidy tutorial. It took me a few minutes to figure out the 
(undocumented) contents of test.A.txt. I assume that columns 6-25 are the true genotypes, 
column 5 is the allele frequency, and column 26 is the sample allele frequency. The tutorial 
otherwise worked. However, I didn’t get anything useful when I added the --callGeno flag. 
 
Similarly to ngsPloidy, ngsPool is only tested on simulated data. 
 
Minor comments:

There seems to be a missing right bracket on the left side of equation 2. 
 

○

The Figure 2 caption needs to more explicitly define the abbreviations MLE and SAF. 
 

○

All of the code to reproduce the analysis in the paper is provided, although there is no 
documentation explaining the code or indicating which scripts go with which figures.

○

 
Is the rationale for developing the new software tool clearly explained?
Partly

Is the description of the software tool technically sound?
Partly

Are sufficient details of the code, methods and analysis (if applicable) provided to allow 
replication of the software development and its use by others?
Partly

Is sufficient information provided to allow interpretation of the expected output datasets 
and any results generated using the tool?
Partly
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Are the conclusions about the tool and its performance adequately supported by the 
findings presented in the article?
Partly

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Bioinformatics, polyploidy, population genetics

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard, however I have 
significant reservations, as outlined above.

Author Response 22 Nov 2022
Matteo Fumagalli 

The manuscript by Mas-Sandoval et al. describes ngsJulia, a collection of functions and 
scripts in Julia and R for estimating genotype likelihoods from short read DNA 
sequencing data, as well as estimating allele frequencies in pooled samples, and 
estimating ploidy where it is unknown. It seems that the goal is also to enable 
biologists proficient in Julia to develop their own custom genotype calling and 
population genetic analysis scripts starting with the provided functions for estimating 
genotype likelihoods. As it is, the manuscript and software suffer from two major 
flaws: (1) the software and its outputs are not well documented for users or 
developers, and (2) testing is only performed on simulated data, not empirical data. 
 
Thank you for reviewing our manuscript. We addressed all concerns by improving the 
applicability and documentation of our software and by applying it to empirical data. 
 
The software documentation is not very approachable as it currently is. End-to-end 
tutorials with a real dataset (or something closely resembling a real dataset) are 
needed for all applications. How are the output files formatted and how might the 
user further process those files to address biological questions? For example, it seems 
that one could use ngsJulia to generate a matrix of genotype calls across samples and 
loci, starting from a set of mpileup files, but from the documentation I have no idea 
how to accomplish this task. 
 
We improved the documentation as requested in the specific comments (see below). 
Examples from simulated mpileup files under various conditions are provided and now 
clarified. In our response, we clarified that ngsPloidy does not provide a matrix of genotype 
calls but rather estimates ploidy levels. 
 
There are eleven different functions for estimating genotype log likelihoods, 
depending on ploidy, with four different functions for haploids. This strikes me as 
poor software design. At minimum the eight calcGenoLogLikeX_MajorMinor functions 
could be collapsed into one, with ploidy as an added argument to the function. Having 
a single function would make it much easier to update the code and ensure that there 
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aren’t any bugs that prevent it from working consistently across ploidy levels. The 
hard-coding of tuples for every possible genotype, and the repetitive if-else 
statements, could be replaced with a more programmatic approach. The 
programmatic approach with ploidy as a function argument would also enable the 
software to be used for organisms with ploidy greater than octoploid. 
 
We agree with this comment and we now replace all those functions into a unique one that 
takes ploidy as input parameter (see calcGenoLike function in file functions.jl). We also 
replaced all if-else statements with a more programmatic approach which makes ngsPloidy 
(see file ngsPloidy.jl). 
 
If I understand correctly, the SNP calling algorithm only seems to work on haploid 
samples, which would exclude it from being used in most studies. Please clarify. 
 
The SNP calling algorithm relies on either a likelihood ratio test with the null hypothesis 
being the pooled allele frequency equal to 0 (similar to Kim et al. 2011 Bioinformatics), or 
from setting a threshold on the estimated pooled allele frequency. Therefore, it is applicable 
to all ploidy levels. 
 
The estimation of ploidy from sequencing data using the ngsPloidy is a valuable 
addition. As an author of other software for marker analysis in polyploids, I frequently 
hear requests for such functionality, so I expect ngsPloidy to get a lot of use. It would 
be helpful to include a comparison to other tools such as ploidyNGS, ConPADE, and/or 
SuperMASSA. Additionally, the algorithm is only tested on a simulated dataset, and I 
would like to see it tested on an empirical dataset (with flow cytometry used as 
ground truth), both to see how well it scales up to thousands of markers, and how well 
it deals with potentially messy data. 
 
This manuscript (submitted as Software Tool Article) aims at proposing a new 
implementation rather than a new methodology. Additionally, the likelihood function to 
estimate ploidy levels partly mirrors the approach taken by a parallel study (
https://www.biorxiv.org/content/10.1101/2021.06.29.450340) where we provide extensive 
comparisons with competing algorithms (including ngsPloidy). Therefore, a comprehensive 
benchmarking of ngsPloidy against alternative software would be outside the scope of this 
paper. 
As suggested, we applied ngsPloidy to a real empirical data of isolates from an outbreak of 
Candida auris (Rhodes et al. 2018). Whilst polyploidy could be associated with multidrug-
resistant phenotypes, we inferred haploidy for all samples and contigs, in line with findings 
from the original study. We added a paragraph on both methods and results sections to 
describe this new analysis. 
 
The authors use the term “aneuploidy” incorrectly. Aneuploidy refers to different 
chromosomes having different copy numbers within one individual. The authors seem 
to mean different individuals within a population having different ploidies. 
“Multiploid” is one term for this although depending on the field it is sometimes used 
as a synonym for “polyploid”. 
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We replaced all occurrences of “aneuploidy” in the text and documentation with 
“multiploidy”. 
 
How should the user estimate the shape of the site frequency spectrum and the 
effective population size, which are required inputs for ngsPloidy? 
 
The need to specify the shape of the site frequency spectrum and the effective population 
size is only required when the sample size is too low to have a meaningful estimate of the 
population allele frequency. Whilst these parameters are not known a prior for nonmodel 
species, in practice we found that, as long as values are within a reasonable range and the 
coverage is sufficient, there is not a significant bias associated with inaccurate settings of 
these parameters. In fact, they simply determine the prior probability of sampling allele 
frequencies and, for most species and populations, this distribution tends to have more 
mass at lower frequency values. 
 
I tried “Case A” in the ngsPloidy tutorial. It took me a few minutes to figure out the 
(undocumented) contents of test.A.txt. I assume that columns 6-25 are the true 
genotypes, column 5 is the allele frequency, and column 26 is the sample allele 
frequency. The tutorial otherwise worked. However, I didn’t get anything useful when 
I added the --callGeno flag. 
 
We now indicate the contents of all columns of the simulated file. The -callGeno flag does 
not output called genotypes but rather estimate ploidy by first assigning (calling) 
genotypes, and thus disabling the integrating over unknown genotypes. This is now 
clarified in the documentation. 
 
Similarly to ngsPloidy, ngsPool is only tested on simulated data. 
 
We now also present an application of ngsPool to empirical data. We reanalysed genomic 
data from Arabidopsis lyrata (Fracassetti et al. 2015). In this study, authors generated data 
both by genotype-by-sequencing and by pooled-sequencing, with the former providing 
ground-truth values for genotype and allele calls. We found that estimates of minor allele 
frequencies using ngsPool yield a lower RMSE (root mean squared error) than estimates 
from Varscan across all SNPs analysed. We added a paragraph both in the methods and 
results sections to describe these new analyses. 
 
Minor comments:  
There seems to be a missing right bracket on the left side of equation 2. 
 
Fixed. 
 
The Figure 2 caption needs to more explicitly define the abbreviations MLE and SAF. 
 
We added the acronyms SAF and MLE in the caption. 
 
All of the code to reproduce the analysis in the paper is provided, although there is no 
documentation explaining the code or indicating which scripts go with which figures.  
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In https://github.com/mfumagalli/ngsJulia/tree/master/paper we provide all code to 
replicate the analyses in the paper. As now indicated, ploidy/do.sh would replicate the 
simulations and estimation of ploidy variation. We now clarify that in the pool and 
pool/plots folder each folder/script corresponds to the specific figure in the paper.  
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